数学建模4-稳定性模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳定性模型
一、微分方程和差分方程的稳定性理论简介
详见《数学模型》7.7节(Page242-Page247),包括一阶微分方程、二阶微分方程和差分方程的平衡点及稳定性,关键记住结论。

二、捕鱼业的持续收获模型
1.渔场鱼量(x)满足的方程:r固有增长率,E单位时间捕捞率(捕捞强度)。

2.根据F(x)=0,当E<r时有平衡点。

进一步根据图解法(作f(x)=rx(1-x/N)
和h(x)=Ex的图像,求交点)可得最大产量模型:
3.最大效益模型:R单位时间利润,p鱼的销售单价,c单位捕捞率费用
4.捕捞过度模型:令R(E)=0,得E S=r(1-c/pN),为盲目捕捞下的临界强度。

图解法可得,E S存在的必要条件是p>c/N。

三、食饵-捕食者模型
(也首先求微分方程的数值解,然后研究其平衡点和相轨线,得到平衡点为P(,)可以求x(t)和y(t)在一个周期内的平均值)。

得到模型解释如下:
四、差分形式的阻滞增长模型
1.阻滞增长模型的差分形式:(r最大增长率,N最大容量)
2.平衡点及其稳定性
解代数方程x=f(x)=bx(1-x),得非零平衡点x*=1-1/b。

根据|f(x*)|<1,得1<b<3。

图解法:
3.倍周期收敛。

相关文档
最新文档