数学建模4-稳定性模型

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模简单13个例子全解

数学建模简单13个例子全解

数学建模简单13个例子全解数学建模是一种将数学方法和技术应用于实际问题解决的过程。

它是数学领域的一个重要分支,具有广泛的应用和重要的研究价值。

数学建模能够帮助我们理解和解决许多复杂的现实问题,对于推动科学研究和技术开发具有重要作用。

在现代科学和工程领域,数学建模被广泛运用于各种领域,包括物理、生物、经济、环境、社会等。

通过数学建模,我们可以通过数学方法对问题进行抽象和化简,然后利用数学工具和技术进行分析和求解。

数学建模的过程通常包括问题定义、模型构建、模型分析和模型验证等步骤,其中数学模型的选择和建立是关键的一步。

数学建模的重要性在于它能够帮助我们更好地理解和解决复杂的现实问题。

通过数学建模,我们可以用精确的数学语言和方法描述问题,通过数学分析和计算实现对问题的量化和定量化,为问题的解决提供科学的依据和方法。

数学建模还能够帮助我们发现问题中的规律和关联,提供新的洞察和预测,促进科学的发展和技术的创新。

本文将介绍数学建模的概念和重要性,并给出简单13个例子的全解。

通过这些例子,我们可以更加深入地了解数学建模的基本方法和技巧,培养和提高自己的数学建模能力,为解决实际问题提供有益的借鉴和参考。

描述如何利用数学建模解决鱼群聚集问题,并阐述模型的步骤和应用在鱼群聚集模型中,我们希望通过数学建模来解释鱼群在水中聚集的现象,并找到一种合适的模型来描述鱼群的行为。

步骤:收集数据:首先,我们需要收集关于鱼群聚集的现实数据。

这些数据可以包括鱼群的数量、鱼群的密度、鱼群的移动速度等。

建立模型:基于收集到的数据,我们可以建立一个数学模型来描述鱼群的聚集行为。

常用的模型包括离散模型和连续模型。

离散模型:离散模型将鱼群视为一组个体,每个个体根据一定的规则进行移动和相互作用。

常见的离散模型包括离散元胞自动机模型和离散粒子模型等。

连续模型:连续模型将鱼群视为一个连续的流体,采用偏微分方程来描述鱼群密度的演化。

常见的连续模型包括Navier-Stokes方程和Birds模型等。

数学建模-第四篇-典型案例分析课件

数学建模-第四篇-典型案例分析课件

问题
☞ (1)请制定一个主管道钢管的订购和运输计 划, 使总费用最小(给出总费用).
☞ (2)请就(1)的模型分析: 哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个 钢厂钢管的产量的上限的变化对购运计划和总 费用的影响最大,并给出相应的数字结果.
☞ (3)如果要铺设的管道不是一条线, 而是一 个树形图, 铁路、公路和管道构成网络, 请就 这种更一般的情形给出一种解决办法, 并对图 二按(1)的要求给出模型和结果.
§2.4 流量估计 1. 拟合水位~时间函数.
2. 确定流量~时间函数.
3. 一天总用水量的估计.
§2.5 算法设计与编程
1.拟合第1.2时段的水位,并导出流量.
2. 拟合供水时段的流量.
3. 一天总用水量的估计. 4. 流量及总用水量的检验.
Watertower.m
32Biblioteka 302826
24
22
20
★ 空气阻力的影响 对不同出手速度和出手高度的出手角度和入射角度
v(m/s)
8.0 8.5 9.0
h (m)
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1度
2度
60.7869 61.6100 62.3017 62.9012
43.5424 41.5693 39.7156 37.9433
§1.2 问题的分析 d
d
球心偏前
0
△x
0 D
篮球入框
D
☞不考虑篮球和篮框大小,讨论球心命中框心的条件 ☞考虑篮球和篮框大小,讨论球心命中框心且入框条件 ☞保证球入框,出手角度和出手速度允许的最大偏差 ☞考虑空气阻力的影响

数学建模培训讲义-建模概论与初等模型

数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

数学建模

数学建模

山西工程技术学院数学建模竞赛垃圾焚烧厂布袋式除尘系统运行稳定性的模型参赛队员:安宁 14电气工程及其自动化4班 140712101张宇豪 14电气工程及其自动化4班 140712107雷添墨 14土木3班 140611069指导老师:刘桃凤2016年4月27日垃圾焚烧厂布袋式除尘系统运行稳定性分析摘要本文对垃圾焚烧厂布袋式式除尘系统的稳定性进行了深入的研究,我们通过对布袋除尘器工作原理的分析,确立袋式除尘器稳定性的表示方法。

可以对除尘效率,过滤速度,压力损失,滤袋寿命定性分析建立模型运用数学的计算公式布袋来体现出布袋除尘器的稳定性。

对于问题一我们运用了数学中的威布尔函数建立了滤袋寿命模型,并对寿命分布进行了验证。

再运用数理模型来分析除尘效率,过滤速度和压力损失。

用多因素分析法借助SPSS软件画出清灰次数与清灰周期的关系图。

通过对附件中所提供数据进行筛选,去除异常数据分析出布袋损坏的原因。

做出总结,向政府提出了环境保护监测方案。

对于问题二我们运用了数理模型计算出超净新型除尘工艺除尘效率的增加。

关键词:滤袋寿命过滤速度威布尔模型数理模型问题的重述与分析今天,以焚烧方法处理生活垃圾已是我国社会维持可持续发展的必由之路。

然而,随着社会对垃圾焚烧技术了解的逐步深入,民众对垃圾焚烧排放污染问题的担忧与日俱增,甚至是最新版的污染排放国标都难以满足民众对二恶英等剧毒物质排放的控制要求(例如国标允许焚烧炉每年有60小时的故障排放时间,而对于焚烧厂附近的居民来说这是难以接受的)。

事实上,许多垃圾焚烧厂都存在“虽然排放达标,但却仍然扰民”的现象。

国标控制排放量与民众环保诉求之间的落差,已成为阻碍新建垃圾焚烧厂选址落地的重要因素。

而阻碍国标进一步提升的主要问题还是现行垃圾焚烧除尘工艺存在缺乏持续稳定性等重大缺陷。

另外,在各地不得不建设大型焚烧厂集中处理垃圾的情况下,采用现行除尘工艺的大型焚烧厂即便其排放浓度不超标,却仍然存在排放总量限额超标的问题,也会给当地的环境带来重大的恶化影响。

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )

数学建模简介word文档-华南师范大学数学科学学院

数学建模简介word文档-华南师范大学数学科学学院

1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。

例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。

模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。

――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。

―――适用于卫星的发射。

二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。

上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。

数学建模——传染病模型

数学建模——传染病模型

传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。

本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。

不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。

本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。

然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。

本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。

同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。

关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。

考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。

1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。

2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。

建立模型求t时刻的感染人数。

3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。

数学模型与数学建模

数学模型与数学建模
下一页 返回
1. 1数学模型与数学建模
• 从而解释或描述某一系统或过程.数学模型对我们其实并不陌生.如牛 顿第二定律F=ma就是一个典型的数学模型;欧姆电路定律I=U/R也是 一个数学模型;历史上著名的七桥问题的答案更是一个巧妙的数学模 型。
• 七桥问题18世纪东普鲁士哥尼斯误被普列格尔河分为四块.它们通 过七座桥相互连接(图1. 2).当时.城里的市民热衷于这样一个游 戏:“一个散步者怎样才能从某块陆地出发.经每座桥一次且仅一次到 出发点?实时控制,其控制过程原理方框图 如图8-1所示。由A/D转换器把由传感器采集来的模拟信号转 换成为数字信号,送计算机处理,当计算机处理完数据后, 把结果或控制信号输出,由D/A转换器转换成模拟信号,送 执行元件,对控制对象进行控制。可见,ADC和DAC是数字 系统和模拟系统相互联系的桥梁,是数字系统的重要组成部 分。
科的专门知识外.还常常需要较广阔的应用数学方面的知识.以开拓思 路.
• N模型求解本环节对建立的模型可以采用解方程、问图形、证明定
理、逻辑运算、数值计算等各种传统的和近代的数学方法.特别是计
算机技术进行求解.确定模型所涉及关键参量的结果.
• V模型分析对模型结果及算法进行理论上的分析.
上一页 下一页 返回
上一页 下一页 返回
1. 1数学模型与数学建模
• 初始状态:x(0)=0,y(0)=h.x‘(0)=vcos0,y'(0)=vsin0.但如果考虑空气 阻力.问题的理解似乎并不那么简单.比如:空气阻力和什么因索有关? 关系如何?阻力对投掷距离的影响怎样?如果考虑这些附加问题会对建 立模型
• 那么.为什么还要再根据实际问题不断去修正、完善数学模型呢?实 际中.建立问题的模型不一定一次就能成功.不成功时自然需要根据实 际问题对模型加以改进、调整.最终让模型接近现实原形.否则.建立不 能反映实际状况的模型又有什么用呢?然而·模型只能近似描述实际问 题.不能苛求与真实事物完全吻合.

《数学建模》教学大纲

《数学建模》教学大纲

《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。

它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。

通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。

学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。

要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。

不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。

2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。

课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。

除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。

上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。

数学建模四大模型归纳

数学建模四大模型归纳

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城ij市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

●车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP问题是VRP问题的特例。

●车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

《数学模型》试题及参考答案

《数学模型》试题及参考答案

A卷2009-2010学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 2010 年7月题号一二三四五六七八总分得分阅卷人数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。

(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。

二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。

(2)简述数学模型的表现形态,并举例说明。

第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。

(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。

四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k r.在每个生产周期T内,开始的一段时间(0 t T0)一边生产一边销售,后来的一段时间(T0t T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t) 的表示式并画出示意图。

(2)以总费用最小为准则确定最优周期T,讨论kr的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。

六(15分)(1)建立一般的战争模型,分析各项所表示的含义。

(2)在假设x0y0,b 9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。

第三页七(15分)设渔场鱼量的自然增长服从模型x rxln N,又单位时间捕捞量为xh Ex.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度E m 和渔场鱼量水平x0.八(10分)假设商品价格y k和供应量x k满足差分方程y k1 y0(xk1x k x0), 02xk1 x0(y k y0) 0求差分方程的平衡点,推导稳定条件第四页A卷2009-2010学年第2学期《数学模型》试题参考答案与评分标准专业班级开课系室数学与计算科学学院考试日期2010年7月数学建模试卷(1007A)参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。

数学建模知识及常用方法

数学建模知识及常用方法

数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

智慧树知到《数学建模与系统仿真》章节测试[完整答案]

智慧树知到《数学建模与系统仿真》章节测试[完整答案]

智慧树知到《数学建模与系统仿真》章节测试[完整答案]智慧树知到《数学建模与系统仿真》章节测试答案第一章单元测试1、数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.A:错B:对答案:【对】2、数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,是对实际问题的完全解答和真实反映,结果真实可靠。

A:对B:错答案:【错】3、数学模型是用数学符号、数学公式、程序、图、表等刻画客观事物的本质属性与内在联系的理想化表述. 数学建模就是建立数学模型的全过程(包括表述、求解、解释、检验).A:对B:错答案:【对】4、数学模型(Mathematical Model):重过程;数学建模(Mathematical Modeling):重结果。

A:错B:对答案:【错】5、人口增长的Logistic模型,人口增长过程是先慢后快。

A:错B:对答案:【错】6、MATLAB的主要功能有A:符号计算B:绘图功能C:与其它程序语言交互的接口D:数值计算答案:【符号计算;绘图功能;与其它程序语言交互的接口;数值计算】7、Mathematica的基本功能有A:语言功能(Programing Language)B:符号运算(Algebric Computation)C:数值运算(Numeric Computation)D:图像处理(Graphics )答案:【语言功能(Programing Language);符号运算(Algebric Computation);数值运算(Numeric Computation);图像处理(Graphics )】8、数值计算是下列哪些软件的一个主要功能 A:MapleB:JavaC:MATLABD:Mathematica答案:【Maple;MATLAB;Mathematica】9、评阅数学建模论文的标准有:A:完全一致的结果B:表述的清晰性C:建模的创造性D:论文假设的合理性答案:【表述的清晰性;建模的创造性;论文假设的合理性】10、关于中国(全国)大学生数学建模竞赛(CUMCM)描述正确的是 A:2年举办一次B:一年举办一次C:开始于70年代初D:一年举办2次答案:【一年举办一次】第二章单元测试1、衡量一个模型的优劣在于它是否使用了高深的数学方法。

数学建模

数学建模

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。

关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。

数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。

一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进.应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法.(2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法.(3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.(4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式.(5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.(1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.①离散系统仿真--有一组状态变量.②连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。

(完整版)数学建模期末考试题

(完整版)数学建模期末考试题

班级:通工13**学号:0313****姓名:***成绩:西安邮电大学理学院2014年12月3日一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:为了一定的目的,人们对原型的一个抽象。

通过抽象和化简,使用数学语言,对实际问题的一个近似描述,以便于人们更深刻的认识所研究的对象。

举例:牛顿定律。

假设:(1)物体为质点,忽略物体的大小和形状。

(2)没有阻力、摩擦力及其他外力。

令x (t )表示在t 时刻物体的位置,则F =ma =m d 2x dt 22.数学模型答:数学模型是架于数学与实际问题之间的桥梁,在数学发展的进程中无时无刻不留下数学模型的印记。

它包括三大特征:1.实践性:有实际背景,有针对性,接受实践的检验。

2.应用性:注意实际问题的要求。

强调模型的实用价值。

3.综合性:数学知识的综合,模型的综合。

举例:管道包扎问题:用带子包扎管道,使带子全部包住管道,且用料最省。

假设:(1)直圆管,粗细一致。

(2)带子无弹性等宽。

(3)带宽小于圆管截面周长。

(4)包扎时不剪断带子且不重叠。

设W 为带宽,C 为截面周长,L 为管长,M 为带长。

则M=+LC W C 2‒W 23.抽象模型答:通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓抽象模型。

举例:如汽车司机对方向盘的操作。

二、简答题(每小题满分8分,共24分)1.模型的分类答:(1) 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩展模型等。

(2) 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

(3) 按是否考虑随机因素分:确定性模型、随机性模型。

(4) 按是否考虑模型的变化分:静态模型、动态模型。

(5) 按应用的离散方法或连续方法分:离散模型、连续模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳定性模型
一、微分方程和差分方程的稳定性理论简介
详见《数学模型》7.7节(Page242-Page247),包括一阶微分方程、二阶微分方程和差分方程的平衡点及稳定性,关键记住结论。

二、捕鱼业的持续收获模型
1.渔场鱼量(x)满足的方程:r固有增长率,E单位时间捕捞率(捕捞强度)。

2.根据F(x)=0,当E<r时有平衡点。

进一步根据图解法(作f(x)=rx(1-x/N)
和h(x)=Ex的图像,求交点)可得最大产量模型:
3.最大效益模型:R单位时间利润,p鱼的销售单价,c单位捕捞率费用
4.捕捞过度模型:令R(E)=0,得E S=r(1-c/pN),为盲目捕捞下的临界强度。

图解法可得,E S存在的必要条件是p>c/N。

三、食饵-捕食者模型
(也首先求微分方程的数值解,然后研究其平衡点和相轨线,得到平衡点为P(,)可以求x(t)和y(t)在一个周期内的平均值)。

得到模型解释如下:
四、差分形式的阻滞增长模型
1.阻滞增长模型的差分形式:(r最大增长率,N最大容量)
2.平衡点及其稳定性
解代数方程x=f(x)=bx(1-x),得非零平衡点x*=1-1/b。

根据|f(x*)|<1,得1<b<3。

图解法:
3.倍周期收敛。

相关文档
最新文档