中考数学相似综合练习题及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似真题与模拟题分类汇编(难题易错题)

1.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.

(1)求证:DF是⊙O的切线;

(2)连结MN,猜想MN与AB的位置有关系,并给出证明.

【答案】(1)证明:∵直径AB经过弦CD的中点E,

, = ,

是的切线

(2)解:猜想:MN∥AB.

证明:连结CB.

∵直径AB经过弦CD的中点E,

∴ = , = ,

∴MN∥AB.

【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即可。由垂径定理可得AB⊥CD,则∠BOD+∠ODE=,而∠ODF=∠CDF+∠ODE,由已知易得∠BOD=∠CDF,则结论可得证;

(2)猜想:MN∥AB.理由:连结CB,由已知易证△CBN∽△AOM,可得比例式

,于是由已知条件可转化为,∠ODB是公共角,所以可得△MDN∽△ODB,则∠DMN=∠DOB,根据平行线的判定可得MN∥AB。

2.如图,在一间黑屋子里用一盏白炽灯照一个球.

(1)球在地面上的影子是什么形状?

(2)当把白炽灯向上平移时,影子的大小会怎样变化?

(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?

【答案】(1)解:球在地面上的影子的形状是圆.

(2)解:当把白炽灯向上平移时,影子会变小.

(3)解:由已知可作轴截面,如图所示:

依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,

在Rt△OAE中,

∴OA= = = (m),

∵∠AOH=∠EOA,∠AHO=∠EAO=90°,

∴△OAH∽△OEA,

∴,

∴OH= == (m),

又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,

∴△OAE∽△AHE,

∴ = ,

∴AH= ==2625 (m).

依题可得:△AHO∽△CFO,

∴ AHCF=OHOF ,

∴CF= AH⋅OFOH = 2625×32425=64 (m),

∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).

答:球在地面上影子的面积是0.375π m2.

【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.

(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.

(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.

3.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.

(1)求证:D是弧EC的中点;

(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;

(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长

【答案】(1)证明:如图1中,连接OC.

∵AC是⊙O的切线,

∴OC⊥AC,

∴∠ACO=90°,

∴∠A+∠AOC=90°,

∵CA=CB,

∴∠A=∠B,

∵EF⊥BC,

∴∠OGB=90°,

∴∠B+∠BOG=90°,

∴∠BOG=∠AOC,

∵∠BOG=∠DOE,

∴∠DOC=∠DOE,

∴点D是的中点

(2)证明:如图2中,连接OC.

∵EF⊥HC,

∴CG=GH,

∴EF垂直平分HC,

∴FC=FH,

∵∠CFK= ∠COE,

∵∠COD=∠DOE,

∴∠CFK=∠COD,

∵∠CHK= ∠COD,

∴∠CHK= ∠CFK,

∴点K在以F为圆心FC为半径的圆上,

∴FC=FK=FH,

∵DO=OF,

∴DO+OK=OF+OK=FK=CF,

即CF=OK+DO;

(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),

∵CG2=CF2﹣FG2=CO2﹣OG2,

∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,

解得x= ,

∴CF=5,FG=4,CG=3,OG= ,

∵∠CFE=∠BOG,

∴CF∥OB,

∴ = = ,

可得OB= ,BG= ,BH= ,

由△BHM∽△BOG,可得 = = ,

∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=

在Rt△HMQ中,

QH= = =

【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;

(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代

换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;

(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=

﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x

的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。

相关文档
最新文档