测井解释初步
测井方法原理-测井解释基础
充分得了解。循环后效、氯根变化等。
测井资料一次解释- 资料质量检查
1. 刻度检查。 2. 仪器刻度如秤的准星、尺的零点一样,是非常
关键的。 3. 深度控制。 4. 测井响应与邻井及录井图是否一致。 5. 标志层。 6. 曲线有无平头及突变。 7. 重复曲线与主曲线之间进行对比,测后校验是
SW =
1
/
(1Vsh Vsh
/
2)
Rt Rsh
m
a • RW
式中:a —— 岩性系数 m —— 胶结指数 Sw —— 含水饱和度,%; Vsh —— 泥质含量,%; Rsh —— 泥岩深探测电阻率,•m; Rt —— 目的层深探测电阻率,•m。 Rw —— 地层水电阻率,•m
Rw的求取
计算解释;
层界划分 以自然GR半幅点为主,参考Rt、CN、DEN等曲线的变化划分界面;
薄层划分以微电阻率曲线划分界面。
读值 依据岩性、含油性取其代表值或平均值; 各条曲线必须对应取值; 取值时应避开干扰。
自然GR法
泥质含量Vsh的确定
GR = GR GR min GR max GR min
Vsh = 2C*GR 1 2C 1
Rt
40% < Sw < 60% 油(气) +水
测井资料一次解释-渗透层的识别及特征
通常钻遇的渗透层是砂岩,其特征:
1. 自然电位曲线在钻井滤液矿化度低于地层水矿化度条 件下,砂岩层出现负异常;反之则为正异常。两者矿 化度接近,自然电位显示不明显或无异常显示。
2. 自然伽玛曲线对砂岩反映为低值,泥岩反映为高值。 砂岩的自然伽玛值越高,则泥质含量越大。
测井解释基础
数字测井
60年代末 60年代末
数控测井
80年代末 80年代末
成像测井
90年代末 90年代末
பைடு நூலகம்
信息测井
21世纪 21世纪
测井方法分类
按物理方法:电(磁)测井方法 声学测井方法 放射性(核)测井方法 核磁共振测井 其他测井方法(光学、力学等) 按工程应用:裸眼井测井(探井、开发井) 生产井测井(工程测井、饱和度测井、 生产井动态监测)
X井沙二段
X井沙二段
原始状态
特高含水期
正韵律淡水水淹典型曲线图
微电极
2020
感应电导
自然电位
射孔层位
S224+5
2036
试油方式
试油结果 日产液情况 油 水 含水 CL离子 3.6 58.5 94 1985
水分析 矿化度 电阻率 4375
X井81层强水淹测井曲线图
微电极 电阻率
自然伽玛 自然电位
测井基础
简
介
石油勘探和开发过程中工程技术环节:
物探----钻井(录井)----测井---井下(试油)---采油(油建)
• 测井资料解释:利用测井资料分析地层 的岩性,判断油、气、水层,计算孔隙 度、饱和度、渗透率等地质参数。
创新与测井学科的进步 模拟测井
20年代末 20年代末 采集的测井数据用模拟记录方式,测井系列 以电法测井为主,用自然伽马和声速测井作岩性 测井数据采用数字记录方式,相应出现测 指示,测井资料靠人工定性解释,以储层的含油 井数据的计算机处理技术。具有配套完善的裸 计算机技术全面融入测井数据采集和处理技 这阶段测井技术的发展表现为四个特征,即 气评价和地层对比为主要目的。典型的测井系统 眼井和套管井测井系列,阿尔奇理论成熟,为 术。质量控制、组合测井和综合评价技术日趋成 井下传感器阵列化、数据电缆传输高速遥测化、 为西安石油仪器厂的JD581。 成功开发储层含油气的定量解释技术奠定了基 熟,两种主要地质剖面的含油气评价精度更高。 地面采集和处理工作站化、记录和显示成像化。 础。这阶段,发明了地层倾角测井、地层电缆 大量测井新方法已经成熟,测井技术已成为石油 测井数据处理成果以图像形式为主,成像测井不 测试和碳氧比测井等新方法。典型的测井系统 地质学和油藏工程学研究的关键学科。这一阶段 仅兼容传统的常规测井系列,还配备了新型的成 为阿特拉斯的3600测井系统、西安石油仪器厂 测井系统的主要代表为斯伦贝谢的CSU测井系统、 像和特殊测井仪器如声电成像测井仪器、核磁共 的83系列等测井系统。 阿特拉斯的CLS3700测井系统、西安石油仪器厂 振测井仪器、阵列感应测井仪器、多极子阵列声 SKC3700和胜利测井公司的SL3000型数控测井系 波声波测井仪等。这一阶段的测井系统的代表为 统。 阿特拉斯的ECLIPS5700、哈里伯顿的EXCELL2000 斯伦贝谢的MAXIS500,胜利测井公司的SL6000型 高分辨率多任务测井系统和西安石油仪器厂的 ERA2000成像测井系统标志着我国测井行业已进入 了成像测井阶段。
测井基础知识概述
n.航行日志, 原木, 园形木材, 园木
v.把...记入航行日志, 伐木, 把...锯成段
测井的基本原理
测井是用多种专门仪器放入钻开的井内,沿着井身测量钻井 地质剖面上地层的各种物理参数(电阻率、自然电位、中子、密 度、声波等等),然后利用这些物理参数和地质信息(泥质含量 、孔隙度、饱和度、渗透率等等)之间应有的关系,采用特定的 方法把测井信息加工转换成地质信息,从而研究地下岩石物理性 质与渗流特性,寻找和评价油气及其它矿藏资源。
测井资料的采集
测井资料的采集-下井仪器
下井仪器主体是探测器,还有电子线路、机 械部件及钢外壳。探测器将地层的物理性质 转换成电信号。
测井资料的采集-地面记录仪
地面记录仪是在地面给井下仪器供电,对井 下仪器实行测量控制,接受和处理井下仪器传来 的测量信号,并将测量信号转换成测井物理参数 加以记录。 多线记录仪
按照确定的解释模型,选用相应的测井分析程序 ,计算机用测井数据计算出各种地质或工程参数,并 用直观的测井成果图显示出来。
LOG DISPLAY
LOG HEADER 1
LOG DISPLAY
LOG HEADER 2
LOG DISPLAY
LINEAR SCALE
测井资料的处理和解释
采集测井数据的过程是将地质信息变成测井信息的 过程,而处理与解释测井数据的过程则是将测井信息 转换成地质信息的过程。
1、测井数据处理:
测井基础知识讲座
中海油湛江分公司研究院 二零一零年三月
前言
地球物理测井是应用地球物理学 的一个分支,简称测井。它是在勘探 和开发石油、天然气、煤、金属矿等 地下矿藏过程中,利用各种仪器测量 井下地层的各种物理参数和井眼的技 术状况,以解决地质和工程问题的一 门学科。
测井解释基础
识别油、气、水层主要依据
– a、依据四性关系原理,综合利用本井的测井曲线对 储层油、气、水变化进行分析。在岩性、物性一致的 情况下,电阻率越高,储层含油饱和度越高,含油性 越好,油层电阻率一般是岩性、物性相近临近水层的 35倍。岩性越细,地层电阻率越低;反之,则越高。 在岩性、含油性一致情况下,物性越好,电阻率越低。 – b、地层对比。根据地层对比结果,划分油田的油、 气、水层界面深度,从而判定本井的油、气、水层界 面。 – c、录井、井壁取芯等第一性资料,分析储层的含油 性情况。
350 400 450 AC
500 550
测井解释综合分析
• 测井曲线是测井仪器对地层体积内矿物的综合响应, 一般均具有明显的多解性。有时尽管某种仪器原理 较先进,但也有其不足的一面。任何一种仪器对地 层的反映都有相同性,但每一种仪器根据其测量原 理对地层响应又具有独到的特征。根据这一原理, 结合研究地层的地质特征,将多种测井方法综合分 析,将会得到对地层较合理的解释。主要包括: • 1、常规资料间的结合 • 2、将常规测井资料与5700资料结合; • 3、5700新技术资料间的结合; • 4、裸眼井资料与套管井油层监测资料结合。
•
三、完井测井系列的确定
完井井别的划分: 1、按目的划分 探 完 井 井 别 井 资料探井 油气探井 评价探井 滚动探井 初期开发井 开发井 调整开发井
开发评价井
完井井别的划分
2、按地质特征划分 物性划分 低孔、低渗地层
中高孔、渗地层
砂泥岩 剖面井 电阻率特征划分 开发程度划分 低电阻率油层
完 井 井 别
X
:可以是电阻率测井以外的任何测井参数
Archie公式
Archie根据实验得出的含水纯岩石和含油气纯 岩石的电阻率测井解释的关系式统称为Archie 公式,其一般形式归结如下 :
测井原理及解释初步
井壁取心 井壁取心是使用测井电缆将取心器下入井中,用 油气探井 为勘察地下含油气情况所钻的井称油气探井。探
炸药或机械力将岩心筒打入井壁,取下小块岩石以了 解岩石及其中流体性质的方法。
井一般有4大类。⑴参数井:了解一个地区(盆地或凹 陷)生油岩和储集岩存在和分布的情况的井;⑵预探井: 了解一个圈闭中是否含有油气和储集岩分布情况的井; ⑶评价井:在预探井发现含油气储集层后,为探明这 个圈闭(油气藏)含油气面积和地质储量所钻的井;⑷ 资料井:为获得油气藏油层参数(主要是使用特殊工具 在钻进中取出整块,进行检测与分析)所钻的井。
电阻率测井 是在钻孔中采用布置在不同部位的供电电极和测
声速测井 声速测井是利用不同的岩石和流体对声波传播速
度不同的特性进行的一种测井方法。通过在井中放置 发射探头和接收探头,记录声波从发射探头经地层传 播到接收探头的时间差值,所以声速测井也叫时差测 井。用时差测井曲线可以求出储集层的孔隙度,相应 地辨别岩性,特别是易于识别含气的储集层。
估计地层孔隙流体压力和岩石的破裂压力梯度。
采油工程
进行油田射孔; 测量生产剖面和吸水剖面; 判断水淹层及水淹状况;
检查射孔、酸化、压裂效果。
五
沙泥岩剖面 碳酸盐岩剖面 复杂岩性剖面 水平井测井工艺 薄层测井工艺 固井质量检查 其他
测井系列
右图为沙泥岩剖面 探井典型的测井项目设计
二 井眼与施工现场
裸眼井
井眼:充满钻井液(泥浆) 泥饼:泥浆在高压作用下,
失去大量水分。 冲洗带:岩石孔隙受到泥浆 滤液的强烈冲洗,原始流体 被挤走,孔隙中为泥浆滤液 和残余地层水或残余油气。 过渡带:距井壁有一定的距 离,泥浆滤液径向上逐渐减 少,原始流体增加。 未侵入带:未受泥浆侵入的 原状地层 冲洗带和过渡带合称侵入带
测井基础概述(全文)
测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。
简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。
岩石可以导电的。
我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。
地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。
地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。
3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。
常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。
边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。
通常,泥岩GR高,砂岩GR低。
2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。
自然电位就是测量电位的高低,以分辨砂岩还是泥岩。
测井解释基础知识-概述说明以及解释
测井解释基础知识-概述说明以及解释1.引言1.1 概述测井是石油工程中一项重要的技术手段,它通过使用特殊的工具和设备在钻井过程中获取井内的各种数据,以评估地下地层的性质和含油气性能。
这些数据对于油气田的勘探、开发和生产起着至关重要的作用。
测井技术在油气勘探和开发中扮演着关键的角色。
通过测井可以准确地了解油气藏中地层的性质,包括储集层的厚度、孔隙度、渗透率等。
同时,测井数据可以获得地层的物理性质,如密度、声波速度、电阻率等,从而可以计算出地层的含油气饱和度和产能。
测井数据的获取方法包括电测井、声测井、密度测井、核磁共振测井等多种技术手段。
这些测井工具可以通过装备在钻井井筒中的测井仪器进行数据采集。
测井数据的获取主要依靠钻井过程中向井内发送的信号与地层反射或吸收的物理现象产生的信号之间的相互作用。
测井解释是对测井数据进行分析和解释的过程,以得出地层性质和含油气信息,并为油气田的开发提供决策依据。
通过对测井数据的解释,可以确定油气藏的储量、底部流压、裂缝分布等重要参数,为决策者提供合理的勘探和开发方案。
总之,测井是一项通过获取井内数据进行地层评价的重要技术。
它对于优化勘探开发策略,提高油气田的产能和经济效益具有重要意义。
测井解释作为测井技术的核心环节,为油气田的勘探与开发提供科学依据,为石油工程的发展做出了重要贡献。
1.2文章结构1.2 文章结构本文按以下结构进行组织和讨论:(1)引言:首先介绍本文的背景和目的,概述测井解释的基本概念和重要性。
(2)正文:本部分将详细介绍测井的定义和作用,以及获取测井数据的方法。
其中,关于测井的定义和作用部分,将探讨测井在勘探和开发油气田中的重要作用,以及其对油气储层评价和井筒工程的意义。
关于测井数据的获取方法部分,将介绍目前常用的测井工具及其原理,如电测井、声波测井、核子测井等。
(3)结论:在本节中,将强调测井解释的重要性,并讨论其在油气勘探开发、地质研究及工程应用领域的具体应用。
测井解释的基本理论和方法
第一篇测井解释基础与测井方法测井广泛应用于石油地质和油田勘探开发的全过程。
利用测井资料,我们不仅可以划分井孔地层剖面,确定岩层厚度和埋藏深度,确定储层并识别油气水层,进行区域地层对比,而且还可以探测和研究地层主要矿物成分、孔隙度、渗透率、油气饱和度、裂缝、断层、构造特征和沉积环境与砂体的分布等,对于评价地层的储集能力、检测油气藏的开采情况,细致地分析研究油层地质特征等具有重要意义。
随着测井技术及其解释处理方法的飞速发展,测井资料的应用日益深化,其作用也越来越明显。
第一章测井解释的基本理论和方法第一节测井解释的基本任务测井资料解释,就是按照预定的地质任务和评价目标选择几种测井方法采集所需的测井资料,依据已有的测井解释方法,结合地质、钻井、录井、开发等资料,对测井资料进行综合分析,用以解决地层划分、油气层和有用矿藏的评价及其勘探开发中的其它地质、工程问题。
测井解释的基本任务主要有:1.进行产层性质评价。
包括孔隙度、渗透率、有效厚度、孔径分布、粒径大小及分选性、裂缝分布、润湿性等的分析。
2.进行产液性质评价。
包括孔隙流体性质和成分(油、气、水)的确定,可动流体(油、气、水)饱和度、不可动流体(束缚水、残余油)饱和度的计算。
3.进行油藏性质评价。
包括研究构造、断层、沉积相,地层对比,分析油藏和油气水分布规律,计算油气储量、产能和采收率;指导井位部署、制订开发方案和增产措施。
4.进行钻采工程应用。
在钻井工程中,测量井眼的井斜、方位和井径等几何形状,估算地层孔隙流体压力和岩石的破裂压力梯度,指导钻井液密度的合理配制,确定套管下深和水泥上返高度,计算固井水泥用量和检查固井质量等;在采油工程中,进行油气井射孔,生产剖面和吸水剖面测量,识别水淹层位和水淹级别,确定出水层位和串槽层位,检查射孔质量、酸化和压裂效果等。
第二节岩性确定方法储层的岩性评价是指确定储层岩石所属的岩石类别,计算岩石主要矿物成分的含量和泥质含量,进一步确定泥质在岩石中分布的形式和粘土矿物的成分。
测井解释(重要)
按岩性可分为: 碳酸盐岩:主要岩石类型石灰岩、白云岩
储集层的分类及特点
特殊岩性:包括岩浆岩、变质岩、泥岩等 孔隙型
按储集空间结构:
裂缝型
洞穴型
孔隙度:总孔隙度、有效孔隙度、原生孔隙度、次生孔隙度
储集层的基本参数
饱和度:储集层的含油性指示,孔隙中油气所占孔隙的相对体积称含油饱和度。
岩层厚度:指岩层上下界面之距离,以岩性或孔隙度、渗透率的变化为其 特征。
80年代中期开始,由于计算机工业的发展,测井资料采集技术得到极大的提高, 先后问世的CSU、CLS3700、MAX-500等测井系统使测井系列得到极大丰富,测井资 料解释摆脱手工定性解释阶段,开始进入应用计算机的半定量解释阶段。解释评价软 件有:POR、SAND、CRA等,各油田还根据自己的的特点研制开发了自动判别油气 水层程序等多种应用软件,可以定量计算孔、渗、饱、泥质含量、可动油饱和度、束 缚水饱和度等参数,还可以通过地倾角测井,解释地层倾向、倾角、断层等构造问题, 研究沉积相变化等 第三阶段:定量解释和多井评价阶段 从90年代末发展起来的成像测井技术,为测井资料解释展现了广阔平台,现代的
第二部分 测井综合解释评价
测井资料解释技术发展史
第一阶段:60-80年代裸眼井测井系列是横向测井和 声-感测井定性解释阶段
当时用手工方法根据横向测井地层电阻率特征,结合自然电位、井径曲线划分 储层,在根据微梯度与微电位曲线之间的差异,自然电位幅度大小所反映的储 层渗透性的好坏,对储层进行评价,结合录井的岩屑、井壁取芯、钻井取芯的 显示定性判别储层油、气、水性质。 通过区域一些井的试油、试采结果,统计电性与含油性的关系,如:制作 地层真电阻率与纯水层电阻率交会图版;地层真电阻率与自然电位相对值的图 版等,对应用电阻率进行储层油、气、水性质判别起到较大作用。
常见测井解释概论要点课件
核测井
利用放射性测量地层放射性特性的测井方法。
核测井是通过测量地层的放射性强度、半衰期等参数,用于判断地层的岩性、含 油性、含气性等信息。常见的核测井方法有自然伽马测井和密度测井等。
磁力测井
01
声波场理论
用于解释测井中的声波测 井方法,研究声波在岩石 和流体中的传播规律。
弹性波场理论
用于解释测井中的地震测 井方法,研究地震波在岩 石和流体中的传播规律。
04
测井解释应用
油气田勘探
油气识别
通过测井数据识别地层中 的油气层,确定油气藏的 范围和性质。
储层评价
分析储层的岩性、物性、 含油气性等特征,评估油 气储量和产能。
结果应用
将测井解释结果应用于油气田 的勘探开发方案制定、钻井设 计等方面。
02
常见测井方法
电法测井
利用电学原理测量地层电学特性的测井方法。 利用声波测量地层声学特性的测井方法。
电法测井是通过向地层发射电流,测量地层的电 位和电流,从而获取地层的电导率、介电常数等 电学参数,用于判断地层的岩性、孔隙度、含油 性等信息。
随钻测井技术
总结词
随钻测井技术能够实时监测钻井过程 ,有助于提高钻井效率和安全性。
详细描述
随钻测井技术通过在钻头附近安装探 测器,能够实时监测钻井过程中的各 种参数和地层信息,为钻井工程师提 供及时的数据支持,有助于提高钻井 效率和安全性。
THANKS。
测井解释涉及多个学科领域,包括地质学、地球物理学、数学和计算机科学等。
测井解释的重要性
测井解释是油气田勘探开发中的 重要环节,能够提供地层参数和 储层特征,为油气田的发现和开
测井原理与解释
测井原理与解释
测井是一种勘探地下介质的物理和化学性质的方法,主要通过测量井眼周围的压强、温度、压力、化学成分和流量等参数来确定地下介质的类型、孔隙结构、类型和含水量等信息。
测井原理主要有以下几种:
1. 地震测井:利用井壁上的地震波的传播规律和反射特性,通过地震仪记录地震波的反射和回波时间等信息来计算压强和温度。
2. 热测井:利用井底温度和地下介质的热传递特性,通过热仪记录井底和地下介质的温度,通过温度变化来计算孔隙度和含水量。
3. 声波测井:利用声波在地下介质中的传播速度和衰减特性,通过声波仪记录声波的传播时间和频率等信息来计算压强、温度和化学成分。
4. 射电测井:利用射电电场和电磁波在地下介质中的传播规律,通过射电仪记录电磁波的传播时间和衰减特性来计算压强、温度、含水量和岩石类型等。
以上这些方法都具有一定的准确度和局限性,根据不同的地质情况和目的,可以选择不同的方法进行测井。
同时,在测井过程中还需要考虑到井壁稳定、井口振动、地震波传播方向等因素。
测井基础知识概述
测井基础知识概述1. 引言测井是指在钻井过程中利用各种测量方法和设备来获取地层信息的技术手段。
通过测井可以获取地层中的物理、化学和工程性质的参数,对地层进行评价和分析,从而为油气勘探和开发提供重要的参考依据。
本文将概述测井的基础知识,包括测井的意义、测井方法和设备、测井参数解释等内容。
2. 测井的意义测井作为一种获取地层信息的重要手段,具有以下几个方面的意义:2.1. 地层评价通过测井可以获取地层中的物理、化学和工程性质的参数,如孔隙度、渗透率、饱和度等,从而评价地层的含油气能力、储层性质等。
这对于油气勘探和开发来说至关重要,可以指导油气田的选址和开发方案的制定。
2.2. 钻井工艺控制在钻井过程中,测井可以提供有关井眼稳定性、岩石力学性质、井壁质量等信息,指导钻井工艺的控制和井壁的完整性保护,减少钻井事故的发生。
2.3. 油藏管理测井还可以为油气田的开发和管理提供重要的数据支持,如油藏压力分布、水驱效果、油藏动态变化等。
这些数据可以帮助油田管理人员了解油田的生产状况,做出相应的调整和决策。
3. 测井方法和设备测井方法是指测井的具体操作方法,而测井设备是指用于测量的仪器和工具。
常用的测井方法和设备包括:3.1. 电测井电测井是利用测井仪器在井中测量电性参数来获得地层信息的方法。
常用的电测井设备包括电阻率测井、自然电位测井和电导率测井等。
3.2. 孔隙度测井孔隙度测井是利用测井仪器测量地层中的孔隙体积的方法。
常用的孔隙度测井设备包括密度测井和中子测井等。
3.3. 岩性测井岩性测井是通过测井仪器来测量地层岩石的物理性质和组成,从而判断岩石的类型和性质的方法。
常用的岩性测井设备包括声波测井和伽马射线测井等。
3.4. 流体识别测井流体识别测井是用于判断油气层位和识别流体类型的方法。
常用的流体识别测井设备包括声波测井、密度测井和中子测井等。
4. 测井参数解释测井仪器测得的数据需要经过解释和分析,才能得到有意义的地层信息。
测井原理与解释
测井原理与解释
测井原理是石油勘探、开采、利用领域中非常重要的一项技术,
它是用来判断地下各种物质类型、性质、含量等信息的手段。
测井原理的基础是物理学、地质学和工程学,凭借多年的研究和
实践,现代测井技术已经发展成为一门系统化的技术体系。
其基本原
理是通过石油井的井壁和井内测量来解释地层岩石的物理和化学特性,以及油气藏的储量和分布。
其中,最基本的测井原理是利用放射性同位素记录井内物质的密度、自然伽马射线测量地层厚度、电性测井记录地层岩石的孔隙度、
导电率等物理性质的变化。
同时,利用声波并测量它在不同材料中传
播的速度,来判别地层岩石的类型、结构和属性等信息。
除此之外,测井原理还包括测量地层应力和自然放射性,以及废
物管理等方面。
现代测井技术可以计算目标地层储层的物理和化学特性,反映地层不同地带的石油、气等自然资源的分布情况,有助于石
油勘探、开采、利用等各方面的决策。
总的来说,测井原理是石油勘探和开采领域中最重要的技术手段
之一。
借助现代测井技术,我们可以精确地解释地层和岩石的物理、
结构、组成、含量等信息,为石油勘探和开采提供精确的数据依据,
为油气资源开发提供有力的支撑。
同时,也有利于环境保护,精准处
理废物和降低开采过程中的负面影响。
测井 解释
测井解释本文将详细介绍测井解释的四个主要方面:地质分析、地球物理测井、地球化学测井和工程测井。
1.地质分析地质分析是测井解释的基础,主要包括地层对比、地层年龄、地层温度和地层压力等方面的分析。
地层对比主要是根据地层的岩性、电性和声波等特征,对不同地层进行对比和划分。
地层年龄分析主要是利用放射性同位素测定地层的年龄,以确定地层的形成时间和演化过程。
地层温度分析可以通过测量地层的热流或地温梯度来确定地层的温度,进而推断出地层的埋藏深度和岩石热性质。
地层压力分析则是通过测量地层的压力系数或梯度来确定地层的压力状态,以评估地层的稳定性和潜在的工程风险。
2.地球物理测井地球物理测井是通过测量地球物理参数来推断地层特性的方法。
在测井解释中,常用的地球物理测井方法包括电阻率测井、自然电位测井、孔隙度测井和渗透率测井等。
电阻率测井是通过测量地层的电阻率来判断地层的导电性能,进而推断出地层的岩性和孔隙度。
自然电位测井是通过测量地层的自然电位来推断地层的沉积环境和有机质含量。
孔隙度测井是通过测量地层的声波速度和衰减系数等参数,计算出地层的孔隙度,以评估地层的储油气能力。
渗透率测井则是通过测量地层的渗透率来判断地层的流体流动能力和储油气的渗透性。
3.地球化学测井地球化学测井是通过测量地层中的化学成分来推断地层特性的方法。
在测井解释中,常用的地球化学测井方法包括卤素测井、硫化氢测井、二氧化碳测井和氧测井等。
卤素测井是通过测量地层中氯、溴和碘等元素的含量,推断出地层的含盐度和蒸发岩的分布。
硫化氢测井是通过测量地层中硫化氢的含量,判断出地层中有机质的成熟度和储油气能力。
二氧化碳测井是通过测量地层中二氧化碳的含量,推断出地层的碳储存量和地质构造。
氧测井则是通过测量地层中氧的含量,判断出地层的氧化还原环境和有机质的演化程度。
4.工程测井工程测井是通过测量钻孔和井筒的几何参数和物理参数来评估地质钻探工程的施工质量和岩石力学性质的方法。
生产测井解释
生产测井解释目录一、生产测井概述二、吸水剖面测井三、变硬剖面测井资料处置与表述四、生产量剖面测井了解五、井内流体的流动特性六、自喷井(气举井)产出剖面测井七、抽油井环空测井八、产出剖面测井资料的应用一、生产测井详述1、测井概念地球物理测井(缩写测井)就是应用领域地球物理学的一个分支,它就是应用领域物理学方法原理,使用电子仪器测量井筒内信息的技术学科。
它所应用领域至科学知识包含:物理学、电子学、信息学、地质工程、石油工程等。
它的最小特点就是科学知识含量低、技术运用崭新。
测井表述的目的就是把各种测井信息转变为地质或工程信息。
如果把测井的数据采集看作就是一个正出演过程,测井表述就是一个反演过程。
因此,测井表述存有着多解性(容许表述发生相同的结果,容许发生表述犯规!),也就存有着表述符合率的问题。
2、测井分类按照油气勘探开发过程,油田测井可分为两大类:油气勘探阶段的勘探测井(又称为裸眼井测井)和油气开发阶段的开发测井(又称为套管井测井)。
裸眼测井主要是为了发现和评价油气层的储集性质及生产能力。
套管井测井主要是为了监视和分析油气层的开发动态及生产状况。
勘探测井变硬剖面测井测井生产动态测井开发测井油层监视测井产出剖面测井钻采工程测井3、生产测井油田研发测井技术就是由生产动态测井、油层监控测井和岩棉工程测井三部分组成。
我们主要讨论开发测井中的生产测井,也就是两个剖面测井。
在油层投入生产以后,其管理对采收率影响非常大。
如是分层采矿,还是合层采矿?就是分层灌水,还是笼统灌水?油井投产后,各生产层段产量就是多少,与否达至了预期的产量?廖成利须要展开措施改建?这些问题对采收率都有著极其重要的影响。
充分利用不好生产测井资料能够为提升采收率提供更多非常大的协助。
它能化解以下问题:(1)生产井的产出剖面,确定各小层产液性质和产量。
(2)备注水井的变硬剖面,确认各小层的相对变硬和绝对喷水量。
(3)掌握生产井的水浸和漏失情况。
测井词汇解释
测井词汇1.测井:用专门的仪器沿井身测量地层的各种物理参数,根据测量结果及有关资料进行分析解释,找出油、气等储集层的方法称为地球物理测井,简称测井。
2.标准测井:在一个地区,为了进行地层对比,选择几种有效的测井方法,分别对每口井全井段进行该套测井项目的测井,深度比例为1:500,横向比例与综合测井相同。
3.测井仪器:泛指各种测井方法中所使用仪器的总称,每种测井方法的测井仪器应包括测量系统、记录系统和完成这一任务的附属装置。
4.纵波:纵波又称压缩波,它的传播方向与振动方向平行。
5.横波:横波又称剪切波,它的传播方向与振动方向垂直。
6.斯通利波:当井内有声源发射声波时,由于井内流体与地层孔隙流体相互作用,在井壁上产生的一种界面波。
其传播速度低于井内流体速度。
7.杨氏模量:当弹性杆在与轴线垂直的截面上受到均匀分布的应力作用时,所加之力与相对伸长之比。
8.体变模量:当固体均匀受静压时,所加压力与体积相对减小之比。
9.泊松比:侧表面为自由弹性杆,横向相对压缩与纵向相伸长之比。
10.破裂压力:地层岩石原有骨架造成的破坏,超出它的弹性范围的压力。
11.单极声源:单极源只有一个极性在井中形成的波是轴向对称的。
12.偶极声源:偶极源有两个极性的声源,它们的振动相位是相反的、相关180°。
13.核磁共振:对于被磁化后的核自旋系统,在垂直于静磁场方向加一交变电磁场,其频率等于核自旋频率,那么核自旋系统将发生共振吸收能量现象,即处于低能态的核磁距将通过吸收交变电磁场提供的能量,跃迁到高能态,这种现象就是核磁共振。
14.横向驰豫和纵向驰豫:发生核磁共振现象后,撤掉射频脉冲,处于高能态的核磁矩将恢复到共振之前的平衡状态,这个过程叫驰豫,假设静磁场方向为Z轴方向,那么在X—Y平面上核磁矩能量衰减过程叫横向驰豫,驰豫速率为1/T2,T2叫横向驰豫时间,在Z轴方向上核磁矩能量的恢复叫纵向驰豫,驰豫速率为1/T1,T1叫纵向驰豫时间。
测井资料综合解释
测井资料综合解释测井是油田勘探开发中非常重要的技术手段之一。
通过测井可以获取井筒内地层的物理性质和地质信息,帮助油田工程师和地质学家做出准确的解释和预测。
本文将全面介绍测井资料的综合解释方法和技巧。
一、测井资料的分类与应用范围测井资料按测井方法可分为电测井、声测井、核子测井等多种类型。
不同类型的测井方法能提供不同的地层信息。
电测井主要用于测量地层的电性质,如电阻率、自然电位等;声测井则用于测量地层的声学性质,如声波传播速度、衰减系数等;核子测井则用于测量地层的核辐射特性,如自然伽马辐射强度、中子散射截面等。
测井资料的应用范围十分广泛。
在勘探阶段,测井资料可以帮助确定油藏的存在与分布情况;在开发阶段,测井资料可以评价油层的产能、储量和岩石物理性质;在油井改造和采油过程中,测井资料可以指导井筒的完井和油藏的增产措施。
二、测井资料的解释方法1. 初步解释:初步解释是对测井曲线进行质量控制和基本分析的过程。
通过检查测井曲线的合理性、对比相邻测井曲线的关系,可以初步了解地层的特征和可能存在的问题。
初步解释的目的是将测井曲线的主要特征进行定性和定量描述,为后续的综合解释提供基础。
2. 地层分类解释:地层分类解释是根据测井数据中的地层识别信息,将井段划分为不同的地层单元。
通过对测井曲线的综合分析,结合岩心分析结果和模拟数据,确定地层的划分标准和解释模型。
地层分类解释的目的是将复杂的测井数据转化为可操作的地层单元,为后续的油藏评价和井筒设计提供基础。
3. 物性解释:物性解释是根据测井曲线的响应特征,定量计算地层的物理性质。
通过建立地层物性与测井响应之间的关系模型,可以推测地层的孔隙度、饱和度、渗透率等物理性质。
物性解释的目的是为油田工程师提供关键的地层参数,为油藏开发和生产决策提供依据。
4. 地质解释:地质解释是将测井资料与地质模型进行对比和综合,揭示地层的地质特征和构造特征。
通过将测井曲线与地质模型进行匹配,可以推断地质界面的位置、断层的存在以及油藏分布的规律。
测井
地球物理测井概念:测井是用各种专门的仪器设备,沿井身测量井剖面上岩层的各种地球物理参数,并根据测量结果进行综合解释来判断岩性、确定油气层位置及油气含量等的方法石灰岩密度孔隙度单位:无论地层是何种岩性,均按石灰岩参数选取骨架密度参数,由此得到的石灰岩孔隙度单位。
岩石体积物理模型:根据岩石的组成按其物理性质的差异,把单位体积岩石分成相应的几部分,然后研究每一部分对岩石宏观物理量的贡献,并把岩石的宏观物理量看成是各部分贡献之和。
热中子寿命:热中子从生成开始到被俘获吸收为止所经历的平均时间。
相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。
通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。
视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。
周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。
声波时差:声波传播单位距离所用的时间。
绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。
地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。
视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa表示,即Rwa=Rt/F。
含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。
有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。
缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。
储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。
裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、岩性和孔隙度的测井解释模型(适用于AC+DEN+CNL测井) 1)单矿物解释模型
X 基本测井响应: log = ϕ ( X h ⋅ S h + X W ⋅ SW ) + VSh ⋅ X sh + (1 − ϕ − Vsh ) X ma
X ma − X sh ( ) − V sh ( ) Xma − X w Xma − X w ϕ = X ma − X h 1+ Sh ( − 1) Xma − X w X ma − X log
Rt(ohm.m)
360
声波时差(us/m)
1000
辽河油田东部凹陷粗面岩Rt—AC交会图
100 10
1 160
油层 低产油层 干层
测井解释一般步骤
(1) 资料准备:收集整理测井资料以及与解释有关的其它资料; (2) 数据处理:文件组合,深度对齐,曲线处理,环境校正,参数反演等; (3) 定性分析:划分储集层段,判断岩性、物性、含油性; (4) 定量解释:选择确定解释模型,计算储集层参数; (5) 质量检验:检查解释是否正确、可靠,分析解决存在的问题; (6) 总结报告:总结定性分析与定量解释成果,作出测井解释报告。
Δt = ϕΔt f + Δt ma1V1 + Δt ma 2V2 1 = ϕ + V1 + V2
3)三矿物解释模型
⎡Δt ⎢ρ ⎢ b ⎢ϕ N ⎢ ⎣1
⎤ ⎡ Δ t , Δ t ma 1 , Δ t ma 2 , Δ t ma 3 ⎥ ⎢ ⎥ = ρ ,ρ ⎢ f ma 1 , ρ ma 2 , ρ ma 3 ⎥ ⎢ϕ , ϕ ⎥ ⎣ Nf Nma 1 , ϕ Nma 2 , ϕ Nma ⎦
⎤ ⎥ ⎥ ⎥ 3 ⎦
⎡ϕ ⎤ ⎢V ⎥ ⎢ 1⎥ ⋅ ⎢V 2 ⎥ ⎢ ⎥ ⎣V 3 ⎦
应用提示:
• 孔隙度测井探测深度常限于冲洗带; • 声速测井不反映次生孔隙,疏松地层需要进行压实校正; • 热中子测井用于水矿化度较低地层,对低孔隙地层敏感。
三、岩性与孔隙度快速直观解释
1、曲线重叠法:
统一量纲、统一纵横向比例、统一基线绘制重叠图, 根据曲线幅度差判断。
lg Sw = a0 + a1 lg Rw + a2 lg ϕ + a3 lg Rt
根据不同地区、不同层位 建立不同的含水(油)饱和度解释模型
4、泥质地层求含油饱和度公式
分散泥质
aRw q 2 1/2 q Sw = [( 2 + ) − ] / (1 − q ) 4 2 φt R t
Sw
= [ a R w (1 − V l a m
1、Archie公式求含油饱和度(纯地层)
I = Rt / Ro = b / Sw F = Ro / Rw = a / ϕ
n m
a ⋅ b ⋅ R w 1/n ) Sw = ( m ⋅ Rt φ
So = 1 - Sw
一般解释参数:n=2,m=2,a=1,b=1
2、Archie公式求冲洗带含油饱和度(纯地层)
2、骨架岩性识别图:
AC-DEN, CNL-AC, CNL-DEN 用于识别岩性,判断地层是否含泥质、石膏、天然气、次生孔隙。
3、M-N交会图
M、N定义为AC-DEN、CNL-DEN交会图上骨架与流体连线的斜率 用于识别岩性,判断地层是否含泥质、石膏、天然气、次生孔隙。
M=
Δt f − Δt ma
[
c
)
]
lg k = a lg k = a
0 0
+ a 1ϕ + a + a 1ϕ + a
2 2
lg Swi lg Md
3、压力分析模型:电缆地层测试
思考题:
1、利用GR、SP计算泥质含量的方法是什么? 2、怎样利用声波时差、密度测井和中子测井求取地层孔隙度?如何进行泥质校正?
作业题:
在砂泥岩剖面上(老地层),某井两井段测井响应特征如下: 1190~1200米: SP=0mv , GR=100API , AC=500us/m , DEN=2.2g/cm3 , CNL=35% 1200~1210米: SP=-100mv , GR=50API , AC=400us/m , DEN=2.4g/cm3 , CNL=25% 已知基础数据:纯砂岩层 GR=0API,SP=-120mv 纯泥岩层 GR=100API , SP=0mv 岩石骨架 密度=2.6g/cm3,AC=300us/m 流体 (1)指出渗透层段; (2)计算储层的泥质含量; (3)分别利用三孔隙度测井确定孔隙度(含泥质地层应做泥质校正); (4)分析以上储层测井响应存在什么问题。 AC=600us/m , den=0.9g/cm3
层状泥质
V lam − )( ) ]1 / 2 / φ Rt R lam
1
混合泥质
aR w (1 − V sh ) aR wV sh(1 − V sh ) 2 1 / 2 aR wV sh(1 − V sh ) Sw = {( +[ ]} − m m φt Rt 2φt R sh 2φt m R sh
二、测井系列选择
1、泥质指示测井方法选择 一般: SP(Cw<>Cmf的砂泥岩剖面)+ GR(各种岩性剖面) 特殊: 自然伽马能谱测井、岩性密度测井 2、微电阻率测井系列 Rxo: 微侧向(盐水泥浆+高阻剖面) 微球型聚焦(盐水泥浆+高阻剖面) 邻近侧向(泥饼较厚侵入较深) 渗透层:微电极(淡水泥浆+砂泥岩剖面) 3、电阻率测井系列(p172,图11-2) 1)侧向——Rmf与Rw接近时 2)感应——Rmf>3Rw 4、孔隙度测井系列(p175,表11-3) AC、CNL、DEN(Rt、Rxo) 5、裸眼井测井系列(p175,表11-4)
第十三章 含油性解释基本方法
1、定性解释 2、定量解释 3、快速直观解释
一、储集层含油性定性解释
1、油层最小电阻率法 油层电阻率下限 (1)计算法
a ⋅ b ⋅ Rw 1 / n ) Sw = ( m φ ⋅ Rt
(2)统计法
声波时差 (us/m)
辽河油田东部凹陷玄武岩Rt—AC交会图
1000 100 10 1 140 160 180 200 220
IБайду номын сангаас
xo
= Rxo
/ Ro = b / Sxo = a /ϕ
mf
m
n
F xo = Ro / Rmf
Sxo
= (
a ⋅b ⋅ R
φ
m
⋅ Rxo
)1/ n
一般解释参数:n=2,m=2,a=1,b=1 残余油:Sor=1-Sxo 可动油:Som=1-Sw-Sor=Sxo-Sw
3、统计回归法求含油饱和度 Sw = f (Rw、Rt、por、AC、CNL、DEN、K)
三、储集层含油性的快速直观解释
1、测井曲线重叠法
气层:现 象? NGR
AC
DEN
气层
CNL
气层
2、交会图识别法
辽河油田东部凹陷玄武岩Rt—AC交会图
1000 100 10 1 140 160 180 200
AC(us/m)
220 240 260
油层 低产油层 干层
280 300 320 340
ρ ma − ρ f
ϕ Nf − ϕ N N = ρb − ρ f
不同矿物M、N值不同,P197(表12-5),图12-13
4、双孔隙度交会图
• • • 常用CNL-AC或 CNL-DEN, AC-DEN分辨精度差; 必须首先校正泥质、油气、次生孔隙的影响; 适用于求解双矿物岩石。
P201图12-20, P202图12-21
AC(us/m)
240 260
油层 低产油层 干层
280 300 320 340
Rt(ohm.m)
360
声波时差 (us/m)
1000
辽河油田东部凹陷粗面岩Rt—AC交会图
100 10
1 160
油层 低产油层 干层
180
200
AC(us/m)
220
240
260
280
300
Rt(ohm.m)
2、标准水层对比法
新地层=3.7 老地层=2
X − X min Δ sh = X max − X min
4、膏岩剖面渗透层划分 GR、微侧向、CNL、AC、DEN、CAL
5、碳酸岩剖面 渗透层划分
深、浅侧 向、 GR、NGR、 SP、CAL、 AC、 Rt等
二、岩性、孔隙度定量解释
1、岩石体积物理模型
根据物理性质差异把单位体积岩石划分为几个部分, 研究每一部分(骨架、孔隙流体、填充物)对岩石宏观物理量的贡献, 将岩石宏观物理量处理为各部分的贡献之和。
条件:岩性、物性、 地层水性质一致 一般:Rt>3Ro I=Rt/Ro=1/Sw2
油层 油水同层
水层
3、径向电阻率法
Rmf>Rw时:水层—增阻侵入 Rm>Rxo>Rw—负幅度差 Rm<Rxo<Rt—正幅度差 油层(油水同层)—减阻侵入
Rmf<Rw时:水层、油层(油水同层)—减阻侵入 Rm<Rxo<Rt—正幅度差 但 Rt 油层 > Rt水层, 油层幅度差 >水层幅度差 。
**** 渗透率测井解释模型 ****
1、经典实验模型 油层: 气层:
k = 250 ( ϕ
[
3
/ Swi )
]
2
2
k = 79 (ϕ / Swi )
3
[
]
2、统计分析模型(根据不同地区、不同层位进行统计)