矩阵的初等变换与逆矩阵的求法

合集下载

逆矩阵求解方式

逆矩阵求解方式

逆矩阵求解方式简介在线性代数中,逆矩阵是一个非常重要的概念。

一个方阵A的逆矩阵记作A-1,满足A·A-1=I,其中I是单位矩阵。

求解逆矩阵的方法有多种,本文将介绍几种常用的方法。

具体方法1. 初等行变换法初等行变换法是一种常用的求解逆矩阵的方法。

具体步骤如下:1.将待求逆矩阵A和单位矩阵I合并成一个增广矩阵(A|I)。

2.对增广矩阵进行初等行变换,使得(A|I)变为(I|B)。

3.如果A存在逆矩阵,则B就是它的逆矩阵。

初等行变换包括以下三种操作:•交换两行:将第i行与第j行互换。

•数乘某一行:将第i行所有元素都乘以一个非零常数k。

•某一行加上另一行的k倍:将第j行所有元素都加上第i行对应元素的k倍。

通过多次进行这些操作,可以将增广矩阵变为单位矩阵,此时增广矩阵的右半部分就是原矩阵的逆矩阵。

2. 初等变换法初等变换法是一种与初等行变换法类似的方法。

具体步骤如下:1.将待求逆矩阵A和单位矩阵I合并成一个增广矩阵(A|I)。

2.对增广矩阵进行初等变换,使得(A|I)变为(I|B)。

3.如果A存在逆矩阵,则B就是它的逆矩阵。

初等变换包括以下三种操作:•交换两列:将第i列与第j列互换。

•数乘某一列:将第i列所有元素都乘以一个非零常数k。

•某一列加上另一列的k倍:将第j列所有元素都加上第i列对应元素的k倍。

通过多次进行这些操作,可以将增广矩阵变为单位矩阵,此时增广矩阵的左半部分就是原矩阵的逆矩阵。

3. 公式法对于一个二维方阵A,如果其行列式不为零,则可以通过公式求解其逆矩阵。

公式如下:A-1 = (1/|A|)·adj(A)其中,|A|表示A的行列式,adj(A)表示A的伴随矩阵。

伴随矩阵的计算方法如下:•对于A的每个元素aij,计算它的代数余子式Aij。

•将所有的代数余子式按照一定规律填入一个新的矩阵,这个新矩阵就是伴随矩阵adj(A)。

对于高维方阵来说,公式法求解逆矩阵会比较复杂,涉及到更多的行列式和代数余子式的计算。

矩阵求逆方法大全

矩阵求逆方法大全

矩阵求逆方法大全矩阵的逆在线性代数中是一个非常重要且常用的概念。

逆矩阵存在的前提是矩阵必须是方阵且可逆。

逆矩阵的定义可以简单地表述为:对于一个方阵A,如果存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵,那么B就是A的逆矩阵,记作A^-1下面将介绍几种求解矩阵逆的方法。

1.初等变换法:初等变换法是一种最常用的求解矩阵逆的方法。

基本思想是通过一系列初等行变换将原矩阵A转化为单位矩阵I,同时对单位矩阵进行相同的初等变换,得到A的逆矩阵。

具体步骤为:(1)将原矩阵A与单位矩阵I进行横向拼接,形成增广矩阵[A,I];(2)通过初等行变换将增广矩阵[A,I]变换为[I,B],其中B即为矩阵A的逆矩阵。

这种方法比较直观,但计算量较大,特别是对于大型矩阵很不方便。

2.列主元消去法:列主元消去法是一种改进的初等变换法,其目的是选取主元的位置,使得计算量减少。

具体步骤为:(1)将原矩阵A与单位矩阵I进行横向拼接,形成增广矩阵[A,I];(2)选取增广矩阵中当前列中绝对值最大的元素作为主元,通过交换行使主元出现在当前处理行的位置;(3)用主元所在行将其他行消元,使得主元所在列的其他元素都为0;(4)重复以上步骤,直到增广矩阵[A,I]经过一系列的行变换变为[I,B],其中B即为矩阵A的逆矩阵。

列主元消去法相对于初等变换法来说,计算量会更小,但仍然对于大型矩阵的操作不够高效。

3.公式法:对于一个二阶方阵A,其逆矩阵可以通过以下公式求得:A^-1 = (1/,A,) * adj(A),其中,A,为A的行列式,adj(A)为A的伴随矩阵。

对于更高阶的矩阵,也可以通过类似的公式求解,但行列式和伴随矩阵的计算相对较为复杂,不太适用于实际操作。

4.LU分解法:LU分解也是一种常用的矩阵求解方法,其将原矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

逆矩阵的计算可以通过LU分解来完成。

具体步骤为:(1)对原矩阵A进行LU分解,得到下三角矩阵L和上三角矩阵U;(2)分别求解方程LY=I和UX=Y,其中Y为未知矩阵;(3)得到Y后,再将方程UX=Y带入,求解方程UX=I,得到逆矩阵X。

求逆矩阵的四种方法

求逆矩阵的四种方法

求逆矩阵的四种方法逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中的重要概念之一。

但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。

下面介绍四种求逆矩阵的方法:1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵的左下方的元素均为零。

而这样一个变换后得到的矩阵实际上就是原矩阵的逆矩阵。

2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。

伴随矩阵的计算式为:adj(A)= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。

3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。

当矩阵 A 可逆时,可用 LU 分解求解其逆矩阵。

假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。

4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。

当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。

综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适的方法进行求解。

初等变换法适合较小规模的矩阵,伴随矩阵法适用于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。

初等变换法求逆矩阵

初等变换法求逆矩阵

1 0 0 1 3 2 r2 ( 2)
0 0
2 0
0 1
3 1
6 1
5 1
r3
( 1)
r2


2) 1 A01

0 1
10 03
r3

1)
0
0
2 11
13

3 3
2
1
3532 .
2 11

52
说明:(1)将(A E)化为行最简形矩阵; (2)此方法中只能作初等行变换.
一、初等变换法求逆矩阵
例1

1 A 2
2 2
13,求 A1.
3 4 3

A
E



1 2
2 2
3 1
1 0
0 1
0 0
3 4 3 0 0 1
r2 2r1 1 2 3 1 0 0 r1 r2 0 2 5 2 1 0
r3


1)

0 0
0 1 0
0 0 1
3 2 1
23 , 3
3 2 X 2 矩阵[重点 掌握]
初等行变换
(A E)
( E A1).
2.初等变换法的解矩阵方程
初等行变换
(A B)
(E
A 1 B )
初等变换法求逆矩阵
引入:公式法求逆矩阵的缺点 一、初等变换法求逆矩 二、方法推广
引入:公式法求逆矩阵的缺点
逆矩阵的计算公式 A1 1 A A
适用范围:二阶、三阶的方阵.
缺点:当矩阵的阶数比较高时,求伴随矩阵 计算量太大,不易实施.

线性代数2_6初等变换与逆矩阵的初等变换求法 - 副本

线性代数2_6初等变换与逆矩阵的初等变换求法 - 副本

a22
a23
a24
0
0 1 a31
a32
a33
a34

a31
a32
a33
a34
1 0 0 0
AE(1,3(2))=

a11 a21 a31
a12 a22 a32
a13 a23 a33
a14 a24 a34

0 2 0

10 0
0 0
1001
A E 行变换 E A-1
即若 Pm Pm-1 P2P1 A = E ,则 Pm Pm-1 L P2 P1 = A-1, 而 Pm Pm-1 P2 P1 = A-1 ,即 Pm Pm-1 L P2 P1E = A-1,
就是说,当通过初等行变换将矩阵A变成E时,经过同样的变换把E变成
《线性代数》
返回
下页
结束
推论 方阵A可逆的充分必要条件是A可以表示为有限个初等 矩阵的乘积.
证 (必要性)假设A可逆,由定理2,A经有限次初等行变换 可化为单位阵E , 即存在初等矩阵 F1 ,F2 , ,Fs 使 E = Fs F2F1A
A = F1-1F2-1 L
Fs--11Fs-1E = F1-1F2-1 L
0 1 02003 1 2 3 0 0 1 2004 4 5 6

1
0
0


4
5
6


0
1
0

=

1
2
3

0 0 1 7 8 9 1 0 0
7 8 9
《线性代数》
返回
下页
结束

逆矩阵及初等变换

逆矩阵及初等变换

先假设n阶矩阵A, 满足 A ≠ 0, 即 矩阵A是可逆的
则有下列公式: 则有下列公式:
( A | E ) n×2 n ( E | A ) n×2 n →
行初等变换
1
施行初等行变换, 即对 n × 2n 矩阵 ( A E ) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1 .
例3
6 4 2 * 得 A = 3 6 5 , 所以 2 2 2
1 3 2 1 * 3 5 1 . A = A = 3 A 2 2 1 1 1
上页
下页
返回
例2 设
1 2 3 1 3 2 1 A = 2 2 1, B = 5 3, C = 2 0, 3 4 3 3 1
1 1 1
(4).若A可逆 则A 也可逆 且( A ) = ( A ) . , ,
T
T 1
1 T
上页
下页
返回
例1 解
1 2 3 . 求方阵 A = 2 2 1的逆阵 3 4 3 ≠0, 可逆。 经计算可得: |A| = 2 ≠0,知A可逆。 经计算可得: | 可逆
A11= 2,A21= 6,A31=-4, 2, 6, A12=-3,A22=-6,A32=5, =5, A13= 2,A23= 2,A33=-2, 2, 2,
1 * A = A, A
1
A A . 其中 *为方阵 的伴随阵
上页
下页
返回
由定理1和定理2可得:矩阵 由定理1和定理2可得:矩阵A 是可逆方阵的充 分必要条件是 |A| ≠ 0 。 | 称为奇异方阵 否则称为非 奇异方阵, 当 |A| = 0 时,A 称为奇异方阵,否则称为非 | 奇异阵。 奇异阵。 推论 ),则 若 AB = E(或 BA = E),则B = A -1 。 ( ),

线性代数3.2初等矩阵与求逆矩阵的初等变换法

线性代数3.2初等矩阵与求逆矩阵的初等变换法
上两式表明:A 经一系列初等行变换化为 E ,则 E
可经这同一系列初等行变换化为 A1。用分块矩阵形
式,两式可以合并为
Pt Pt1 L P1 ( A, E) (E, A1 )

( A, E) 初等行变换(E, A1)
即对矩阵 ( A, E) 作初等行变换,当把 A 化为 E 时,
E 就化成了 A1 ( A 1
初等矩阵。
1
O
Eij
0
0L M 1L
1 M 0
O
0 第i行 第j行
1
1
M
O
Ei
(k
)
0
M
0
1
M
O
0
Eij
(k
)
M
0 L M
0
k O
1 MO kL M 0L
0
0 第i行
1
1 MO 0
0 第i行 第j行
1
这样,初等矩阵共有三类: Eij , Ei (k ), Eij (k )。
1r3r2
0
1
1
3r2 r3
0
1
1
2r3 r1
1r3r2
0
1
0
0 3 2
0 0 1
0 0 1
0 0 1
E2 (1)E32 (1)E31 (2)E23 (3)E21 (2)E32 (1)E12 (2) AE13 E
A
E 1 12
(2)
E32
1
(1)
E 1 21
(2)
E 1 23
(3)
E 1 31
(2)
E 1 32
(1)
E2
1

矩阵求逆矩阵的方法

矩阵求逆矩阵的方法

矩阵求逆矩阵的方法矩阵求逆矩阵是线性代数中的一个重要问题,对于矩阵的逆的求解方法有多种,下面我们将介绍几种常见的方法。

1. 初等变换法。

对于一个可逆矩阵A,我们可以通过初等变换将其变为单位矩阵I,这时候A经过一系列的初等变换得到I,而I经过同样的一系列初等变换得到A的逆矩阵。

这种方法的优点是简单直观,容易理解,但对于大型矩阵来说计算量较大。

2. 克拉默法则。

对于n阶方阵A,如果A是可逆的,那么它的逆矩阵可以通过克拉默法则来求解。

克拉默法则利用矩阵的行列式和代数余子式的概念,将矩阵A的逆矩阵表示为A的伴随矩阵的转置除以A的行列式。

这种方法的优点是不需要对矩阵进行初等变换,但计算量也比较大。

3. 初等行变换法。

初等行变换法是通过对矩阵进行一系列的初等行变换,将矩阵A变为单位矩阵I,然后将I变为A的逆矩阵。

这种方法与初等变换法类似,但是更加注重矩阵的行变换,适合于对行变换较为熟悉的人来说。

4. 矩阵的分块法。

对于特定结构的矩阵,我们可以通过矩阵的分块来求解逆矩阵。

例如对角矩阵、上三角矩阵、下三角矩阵等,通过分块的方法可以简化逆矩阵的求解过程。

5. LU分解法。

LU分解是将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过LU分解可以求解矩阵的逆。

这种方法适用于对矩阵分解比较熟悉的人来说,可以简化逆矩阵的求解过程。

总结:矩阵求逆矩阵的方法有多种,每种方法都有其适用的场景和计算复杂度。

在实际应用中,我们可以根据矩阵的特点和问题的需求来选择合适的方法。

希望本文介绍的方法可以帮助读者更好地理解矩阵求逆矩阵的过程,提高解决实际问题的能力。

12矩阵的初等变换与逆矩阵的求法

12矩阵的初等变换与逆矩阵的求法
返回
12矩阵的初等变换与逆矩阵的求法
返回
12矩阵的初等变换与逆矩阵的求法
返回
12矩阵的初等变换与逆矩阵的求法
返回
12矩阵的初等变换与逆矩阵的求法
对调I的两行
对调I的两列
返回
12矩阵的初等变换与逆矩阵的求法
非零数乘以I的行
非零数乘以I的列
返回
12矩阵的初等变换与逆矩阵的求法
返回
12矩阵的初等变换与逆矩阵的求法
12矩阵的初等变换与逆矩阵的求法
返回
12矩阵的初等变换与逆矩阵的求法
定义 对换矩阵的两行(或两列);
记为
2. 以任意数
乘以矩阵的某一行(或列)每个元;
记为
3. 某一行(或列)的每个元乘以同一常数加到另一行 (或列)的对应元上去.
记为
矩阵A经过初等变换化为矩阵B表示为A→B。
返回
根据逆矩阵的定义,容易验证以上各式。
同时,上面等式表明:初等矩阵的逆仍然是初等矩阵。
12矩阵的初等变换与逆矩阵的求法
※定理1.2 有限个初等矩阵的乘积必可逆. ※用初等矩阵左乘某矩阵,相当于对该矩阵进行相应
的初等行变换;用初等矩阵右乘矩阵,相当于对该 矩阵进行相应的初等列变换;反之亦然。 ※若矩阵B是矩阵A经过有限次初等变换得到的,那么 可以记为B=PAQ,其中P、Q为初等矩阵的乘积 ※定理1.3 可逆矩阵经过有限次初等变换仍可逆. ※定理1.4 可逆矩阵经过有限次初等行变换可以化为单 位矩阵. ※定理1.5 方阵P为可逆矩阵的充要条件是P可以表示 为有限个初等矩阵的乘积。
1.7(2)(5)
1.10
12矩阵的初等变换与逆矩阵的求法
线性方程组的初等变换有三种: 1. 互换两个方程的位置; 2. 把某个方程两边同乘以一个非零常数; 3. 将某个方程加上另一个方程的k倍.

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法
1.待定系数法
矩阵A=
1, 2
-1,-3
假设所求的逆矩阵为
a,b
c,d

从而可以得出方程组
a + 2c = 1
b + 2d = 0
-a - 3c = 0
-b - 3d = 1
解得
a=3; b=2; c= -1; d= -1
2.伴随矩阵求逆矩阵
伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。

我们先求出伴随矩阵A*=
1 , 1
接下来,求出矩阵A的行列式|A|
=1*(-3) - (-1)* 2
= -3 + 2
= -1
从而逆矩阵A⁻¹=A*/|A| = A*/(-1)= -A*=
3, 2
-1,-1
3.初等变换求逆矩阵
(下面我们介绍如何通过初等(行)变换来求逆矩阵)
首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵。

-1 -3 0 1
然后进行初等行变换。

依次进行第1行加到第2行,得到
1 2 1 0
0 -1 1 1
第2行×2加到第1行,得到
1 0 3 2
0 -1 1 1
第2行×(-1),得到
1 0 3 2
0 1 -1 -1。

3.2初等矩阵与求逆矩阵的初等变换法

3.2初等矩阵与求逆矩阵的初等变换法

1 2
r2
12 r3
1 0
1 1
1 0
0 0 1
1
0
0
r2 r1
1r3 +r1
0
1
0
0 0 1
所以
1 2 A 1 1 2 0
1 0 0
1
0
1
2
2
0
1
1
2 2
1 2
1 2
0
1 2
0
1 2
0
1 2
1 2
1 0
2
0
1 2
1 1
2
2
同样地,也可以利用矩阵的初等列变换方法求矩阵的
即: 初等矩阵都是可逆矩阵,且初等矩阵的逆矩阵 仍是同类的初等矩阵。
二、初等变换法求矩阵的逆矩阵
1.矩阵可逆的两个充分必要条件
在上一章已经得到:n阶矩阵A可逆的充分必要条件是:A的
行列式 A 0 。现再给出两个充分必要条件。 引理 初等变换不改变矩阵的可逆性。
证明 不妨设 n 阶矩阵 A 经过一次初等行变换化成矩阵 B
推论1 m n 阶矩阵 A 与 B等价的充分必要条件是存
n 在m 阶可逆矩阵 P 及 阶可逆矩阵 Q ,使
PAQ B
2.求矩阵逆矩阵的初等变换法
因为 A 可逆,据定理2,有初等矩阵 P1, P2 , , Pt
使 Pt Pt1 P1A E ,即 Pt Pt1 P1E EA1 。于是
Pt Pt1 Pt Pt1
证明:(必要性)因为 A 可逆,则 A 可只通过行(列)
初等变换化为单位矩阵 E。
所以,A E11E21 Et 1。 若记 Ei1 Pi ,则 A P1P2 Pt 是初等矩阵的乘积。

初等矩阵与逆矩阵的求法

初等矩阵与逆矩阵的求法

阵。于是存在优先多个初等矩阵P1 Pr,Q1 Qt
使得 P1 Pr AQ1 Qt =E,从而
A=( P1
Pr)-1E(Q1
Q
)-1
t
=Pr-1
P1-1 • Qt-1
Q1-1 .
推论1方阵A可逆旳充分必要条件是存在有 限个初等方阵 P1, P2 ,, Pl ,使A P1P2 Pl .
19
推论2 方阵A可逆旳充分必要条件是A可经过有限屡 次初等行变换化为单位阵E.
等 矩阵 P(i(k))
1
P(i(k))
1 k 1
第 i 行
1
6
(3)以数 k 0 乘某行(列)加到另一行(列)上去
以 k 乘 E 的第 j 行加到第 i 行上 (ri krj )
或以 k 乘 E 的第 i 列加到第 j 列上 (c j kci )
得到初等矩阵 P(i, j(k))
20
5、利用初等行变换求逆阵旳措施:
当 A 0时,由 A P1P2 Pl,有
Pl1Pl11P11 A E, 及 Pl1Pl11P11E A1,
Pl1Pl11 P11 A , E Pl1Pl11 P11 A , Pl1Pl11 P11E E , A1
即对 n 2n 矩阵 ( A , E) 施行初等行变换 ,
P(i, j)1 P(i, j)
P(i(k ))1 P(i( 1 )) k
P(i, j(k))1 P(i, j(k))
9
初等矩阵旳应用
定理1 设 A 是一种 m n 矩阵 , 对 A 施行一次初等行变换,相当于在 A 旳 左边乘以相应旳 m 阶初等矩阵;对 A 施行一次初等列变换 , 相当于在 A 旳 右边乘以相应旳 n 阶初等矩阵.

矩阵的初等变换与逆矩阵的求法汇总

矩阵的初等变换与逆矩阵的求法汇总
这三种变换都称为初等变换。如上的变换是可逆的。也 就是,如果经过一次变换把方程组 (1.1)变成一个新方 程组,那么,新方程组必可经过一次同类型的变换变为 原方程组(1.1)。
定理1.1 设方程组(1.1)经过某一初等变换后变为另一个 方程组,则新方程组与原方程组同解。
此性质在矩阵中如何体现呢?
2.1.2 矩阵的初等变换

1
12r2
0

1 1
1 1
2
0
1

2
0 3 3 2
0 3 3 2
1 0
1 2
1
2

r1 r2 r3 3r2
0
0
1 0
1 2
3
1
2

7


2 2
1
23 r3
0
0 1

2x2 x3 1
2x1 x2 x3 2
解 将矩阵的增广矩阵作行初等变换
1 1 1 0
1 1 1 0
0
2
1
1

r3 2r1 0
2
1
1

2 1 1 2
0 3 3 2
1 1 1 0 2 1
0 1
1

O


1
Rijຫໍສະໝຸດ ()Cij
(
)


MO
L 1


O

1
初等矩阵是可逆的,并且其逆矩阵也是同一 类型的初等矩阵,容易验证:
Rij-1=Rij (Ri())-1=Ri(1/) (Rij())-1= Rij(-)
初等矩阵与初等变换有什么关系呢?

利用初等变换求逆矩阵

利用初等变换求逆矩阵

利用初等变换求逆矩阵
设要求出nn阶矩阵AA的逆矩阵BB。

对于一个矩阵的初等行变换,有三种:
1.交换两行。

2.将某一行的所有元素乘以一个非零实数kk。

3.将某一行jj,加上某一行i(i≠ji(i≠j)乘以一个非零实数kk,即Aj=Aj+Ai∗kAj=Aj+Ai∗k。

可以发现的是,每种变换其实都可以等价于乘以某个矩阵,事实上称其为初等矩阵。

那么,当我们不停地对AA进行初等变换,并且用另外一个矩阵CC不停地乘上这种变换对应的初等矩阵,那么当AA变为I(单位矩阵)I(单位矩阵)时,CC就是AA的逆矩阵了。

怎么样将AA变为II?我们类似于高斯消元一样,一行一行一列一列地扫过去。

由于最终要保证Ai,i=1Ai,i=1,其他为00。

设当前扫到第ii行,那么对于Ai,1∗i∗1=0Ai,1∗i∗1=0。

但是对于j<i,Aj,ij<i,Aj,i可能不等于0。

但我们初等变换中可以先对第ii行除以Ai,iAi,i,即保证Ai,i=1Ai,i=1,接着用ii整行去消j<ij<i。

那么Aj,iAj,i就等于0了。

那么我们这样一行一行地消下去即可。

我们对AA中做的所有操作,顺便对CC同时做就好了。

反正都是乘上同一个矩阵。

一开始没有操作时CC就是II。

最后我们用O(N3)O(N3)的复杂度求出了逆矩阵。

矩阵的初等变换与逆矩阵

矩阵的初等变换与逆矩阵

取 定 k 行 k 列 [ k m in ( m , n )], 则 位 于 这 k 行 和 k列 交 点 上 的 元 素 , 按 原 顺 序 可 构 成 一 个 k阶 行 列 式 , 称 这 个 k阶 行 列 式 为 矩 阵 A 的 一 个 k 阶 子 式.
k k 注 : n 矩 阵 A 的 k 阶 子 式 共 有 C m C n个 . m
( k c i :数k乘第i列, 0 ) k
(3)将矩阵的某一列乘以数k后加到另一列, ( c i k c j :第j列的k倍加到第i列上)
矩阵的初等行变换和初等列变换统称为初等变换.
当矩阵A经过的初等变换变成矩阵B时,记 作 A B. 注:这是矩阵的演变,A与B一般不相等.
0 例1 利用初等行变换将矩阵 A 1 2 化为单位矩阵. 1 3 0 0 0 0 1
3 2 0
2 1 1
2 3 ,求该矩阵的秩. 5

1 0 2
0.
1 0
3 2
2 0,
1 2 3 2 0 2
计算A的3阶子式,
3 2 2 1 2 2 1 1 2 3 0, 5
3 2 0
2
, 1 00
0 3 2, 1
3 00 , 5
3 例4 3 设 A 2 1 秩. 2 2 0 6 0 3 1 4 5 6 5 1 0 1 ,求矩阵 A的 3 4
1 A 1 0
2 1 3
3 1 , 5
2 B 1 1
1 1 5
1 3 . 11
注: ① 上述方法中只能用初等行变换,不能
用初等列变换. ② 初等行变换过程中若发现虚线左边某 一行的元素全为零时,说明矩阵不可逆.

逆矩阵的计算初等变换法

逆矩阵的计算初等变换法
逆矩阵的计算——初等变换法
如果A ,那么A的逆矩阵A1应当使
A1 .
用一系列的矩阵逐渐把矩阵A变成单位矩阵,就可素为0.
取E2 ,那么
所得矩阵的右上角元素为0.
取E3 ,那么
因此,E3E2E1AE,而A1AE,所以
矩阵A 将单位正方形OABC变为四边形OA'B'C'(图1),则A1应该把OA'B'C'变回到OABC.
E3 ,它把OAPQ变为OABC,重新得到正方形(图4).
图4
E3是伸压变换,沿y轴方向,把OAPQ往x轴上压缩 ,得到正方形OABC.
图1
下面我们将看到,用初等变换(反射、伸压、切变)怎样将OA'B'C'逐步变回到OABC.
E1 ,它把OA'B'C'变为OXYZ(图2).
图2
E1是切变矩阵,它把OA'B'C'往Ox轴上作切变,使OX与OA重合.
E2 ,它把OXYZ变为OAPQ(图3).
图3
E2是切变矩阵,它把OXYZ往Oy轴上作切变.

矩阵的逆的求法

矩阵的逆的求法

矩阵的逆的求法
矩阵的逆的求法主要有以下几种方法:
1.利用定义求逆矩阵:如果矩阵A是可逆的,那么存在一个矩阵B,使得
AB=BA=E,其中E为单位矩阵。

利用这个定义,可以通过特定的算法计算出矩阵A的逆矩阵B。

2.初等变换法:对于元素为具体数字的矩阵,可以利用初等行变换化为单位
矩阵的方法来求逆矩阵。

如果A可逆,则A可通过初等行变换化为单位矩阵I,即存在初等矩阵使(1)式成立。

同时,用右乘上式两端,得到(2)式。

比较(1)、(2)两式,可以看到当A通过初等行变换化为单位处阵的同时,对单位矩阵I作同样的初等行变换,就化为A的逆矩阵。

这种方法在实际应用中比较简单。

3.伴随阵法:如果A是n阶可逆矩阵,那么A的伴随矩阵A也是可逆的,且
(A)-1=A*/|A|。

利用这个公式可以方便地计算出A的逆矩阵。

4.恒等变形法:利用恒等式的变形规律来求逆矩阵。

例如,利用行列式的性
质和展开定理,可以计算出矩阵的行列式值,从而得到逆矩阵。

需要注意的是,不同的方法适用于不同类型的矩阵和问题,因此在选择方法时应根据具体情况进行选择。

同时,在实际应用中还需注意计算的精度和稳定性等问题。

逆矩阵的求法及逆矩阵的应用

逆矩阵的求法及逆矩阵的应用

逆矩阵的求法及逆矩阵的应用1. 前言在矩阵运算中,逆矩阵是一个重要的概念。

一个矩阵的逆矩阵是指,如果一个矩阵A乘上它的逆矩阵A^-1等于单位矩阵I,那么A就有逆矩阵。

逆矩阵经常用于解线性方程组、计算行列式和计算矩阵的特征值等方面。

本文将介绍逆矩阵的求法和逆矩阵的应用。

2. 求逆矩阵的方法要求一个矩阵的逆矩阵,需要满足两个条件:该矩阵是方阵且它的行列式不等于零。

下面介绍两种求逆矩阵的方法。

2.1. 初等变换法采用初等变换法求逆矩阵,需要构造一个n阶矩阵[AB],其中A 为待求矩阵,B为单位矩阵,即:[AB]=[A I_n]然后,对矩阵[AB]进行初等行变换,一直到[AB]变为[IBA']的形式,其中A'为A的逆矩阵。

由于[AB]=[A I_n],所以[IBA']=[I_n A^-1],即A的逆矩阵就构造出来了。

2.2. 公式法另一种求逆矩阵的方法是采用公式法。

设A为一个n阶矩阵,若它的行列式为D,那么它的伴随矩阵记为adj(A),则逆矩阵为A^-1=(1/D)adj(A)。

其中,adj(A)表示矩阵A的伴随矩阵,它的第i行第j列元素A_ij的代数余子式与(-1)^(i+j)的乘积。

3. 逆矩阵的应用逆矩阵在数学中有多种应用,这里只介绍几个典型的应用。

3.1. 解线性方程组逆矩阵可以用于求解线性方程组,解法如下:假设有n个未知数,n个方程,可将方程组表示为AX=B的形式,其中X为未知数向量,B为常数向量,A为系数矩阵。

如果系数矩阵A有逆矩阵,那么可以将方程组A^-1AX=A^-1B简化为X=A^-1B,即可求得未知数向量X。

3.2. 计算行列式和矩阵的特征值逆矩阵还可以用于计算行列式和矩阵的特征值。

设A为n阶方阵,它的逆矩阵为A^-1,则有:det(A)=det(A^-1)^-1λ是A的特征值,那么A的逆矩阵的特征值就是λ^-1。

3.3. 计算数据的逆矩阵逆矩阵也可以用于计算数据的逆矩阵。

初等矩阵的逆矩阵的三个公式

初等矩阵的逆矩阵的三个公式

初等矩阵的逆矩阵的三个公式初等矩阵是指由单位矩阵通过一次初等行变换或初等列变换所得到的矩阵。

在线性代数中,初等矩阵是一类非常重要的矩阵,它们具有许多有用的性质和应用。

在本文中,我们将讨论初等矩阵的逆矩阵的三个公式。

1.初等行变换的逆矩阵公式:设A是一个m×n的矩阵,B是A经过一次初等行变换得到的矩阵,记作B=EA,其中E是一个m×m的初等矩阵。

那么,如果存在一个m×m的初等矩阵E',使得EB=A,我们可以将EB=A写成E'^-1EB=E'^-1A,这就是说,E'^-1E=I,其中I是m×m的单位矩阵。

根据逆矩阵的定义,当且仅当E'^-1E=I时,E'是E的逆矩阵。

因此,初等行变换的逆矩阵是存在的,并且是唯一确定的。

这个逆矩阵可以通过将初等行变换的逆序执行来得到,即先执行初等行变换的逆矩阵E1'^-1,然后执行初等行变换的逆矩阵E2'^-1,依此类推,直到执行初等行变换的逆矩阵Em'^-1、最终的逆矩阵就是E'=Em'^-1*...*E2'^-1*E1'^-12.初等列变换的逆矩阵公式:与初等行变换的逆矩阵类似,设A是一个m×n的矩阵,B是A经过一次初等列变换得到的矩阵,记作B=AE,其中E是一个n×n的初等矩阵。

同样地,如果存在一个n×n的初等矩阵E',使得BA=A,我们可以将BA=A写成A*E'^-1=A,这就是说,E'^-1E=I,其中I是n×n的单位矩阵。

根据逆矩阵的定义,当且仅当E'^-1E=I时,E'是E的逆矩阵。

因此,初等列变换的逆矩阵也是存在的,并且是唯一确定的。

这个逆矩阵可以通过将初等列变换的逆序执行来得到,即先执行初等列变换的逆矩阵E1'^-1,然后执行初等列变换的逆矩阵E2'^-1,依此类推,直到执行初等列变换的逆矩阵En'^-1、最终的逆矩阵就是E'=E1'^-1*E2'^-1*...*En'^-13.矩阵的初等变换公式:矩阵的初等变换可以通过一系列的初等行变换和初等列变换来完成,而初等矩阵可以通过一次初等行变换或初等列变换得到,因此矩阵的初等变换可以用初等矩阵来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的初等行变换的定义,完全对应着方程组的同解 变换。因此,对矩阵进行初等行变换使其成为阶 梯形矩阵的过程,实际上就是对方程组进行同解 变换使其变为阶梯形状的过程。
例:解线性方程组
先将方程组的系数与等式右边的常数组成一个3×4的 矩阵,然后对矩阵进行初等行变换。
变为阶梯型矩阵之后就得到了原方程组的同解方程组。
非零数乘以I的列
返回
某行(或列)的若干倍加到另一行(或列)
返回
初等矩阵左乘相当于行变换 初等矩阵右乘相当于列变换
返回
矩阵的初等变换
定义:以下三种变换称为矩阵的初等变换:
1. 对换矩阵的两行(或两列);
记为
2. 以任意数
乘以矩阵的某一行(或列)每个元;
记为
3. 某一行(或列)的每个元乘以同一常数加到另一行 (或列)的对应元上去.

注意:在对矩阵进行初等变换时,只能进行行变换,不 能进行列变换!因为矩阵列变换对应的并不是线性方程 组的同解变换。
初等矩阵
定义:由单位矩阵I经过一次初等变换的矩阵称为初 等矩阵。 由于初等变换有三种类型,所以对应的初等矩阵就有 三种类型。 (1)对调I的两行(或两列); (2)非零数乘以I中的某行(或某列); (3)某行(或列)的若干倍加到另一行(或列)。 初等矩阵都是可逆的,并且
根据逆矩阵的定义,容易验证以上各式。
同时,上面等式表明:初等矩阵的逆仍然是初等矩阵。
初等矩阵的性质
※定理1.2 有限个初等矩阵的乘积必可逆. ※用初等矩阵左乘某矩阵,相当于对该矩阵进行相应
的初等行变换;用初等矩阵右乘矩阵,相当于对该 矩阵进行相应的初等列变换;反之亦然。 ※若矩阵B是矩阵A经过有限次初等变换得到的,那么 可以记为B=PAQ,其中P、Q为初等矩阵的乘积 ※定理1.3 可逆矩阵经过有限次初等变换仍可逆. ※定理1.4 可逆矩阵经过有限次初等行变换可以化为单 位矩阵. ※定理1.5 方阵P为可逆矩阵的充要条件是P可以表示 为有限个初等矩阵的乘积。
1.2 矩阵的初等变换与 逆矩阵的求法
本节内容
1. 线性方程组的同解变换; 2. 矩阵的初等变换; 3. 初等矩阵; 4. 用初等行变换求逆矩阵.
线性方程组的同解变换
同解变换,就是变换后的线性方程组与原线性方程组 同解。
初等变换就是线性方程组的同解变换。 定理:设方程组经过某一初等变换后变为另一个方程
返回
例题

,求
解:
返回
矩阵A经过初ri等变r换j(c化i 为c矩j)阵B表示为A→B。
习惯上在箭头的上面写出行变换,下面写出列变换。
消元法解线性方程组
消元法的基本思想是:反复利用同解变换将方程组化 为阶梯形状。
在消元法求解过程中,只涉及到对方程组的系数与常 数的运算。因此只考虑对方程组的系数与常数组成的 矩阵进行变换即可。相应的,对矩阵进行类似的变换 叫做矩阵的初等变换。
记为
矩阵A经过初等变换化为矩阵B表示为A→B。
习惯上在箭头的上面写出行变换,下面写出列变换。
返回
初等矩阵的性质
※定理1.2 有限个初等矩阵的乘积必可逆. ※用初等矩阵左乘某矩阵,相当于对该矩阵进行相应
的初等行变换;用初等矩阵右乘矩阵,相当于对该 矩阵进行相应的初等列变换;反之亦然。 ※若矩阵B是矩阵A经过有限次初等变换得到的,那么 可以记为B=PAQ,其中P、Q为初等矩阵的乘积 ※定理1.3 可逆矩阵经过有限次初等变换仍可逆. ※定理1.4 可逆矩阵经过有限次初等行变换可以化为单 位矩阵. ※定理1.5 方阵P为可逆矩阵的充要条件是P可以表示 为有限个初等矩阵的乘积。
组,则新方程组与原方程组同解。(证明看课本第9页)
矩阵的初等变换
定义:以下三种变换称为矩阵的初等变换: 1. 对换矩阵的两行(或两列);
记为 ri rj(ci cj)
2. 以任意数(0)乘以矩阵的某一行(或列)每个元;
记为
3. 某一行(或ri列()ci)的每个元乘以同一常数加到另一行
(或列)的对应元上去. 记为
证明1.3,1.4,1.5
用初等行变换求逆矩阵
原理:可逆矩阵A可以分解为若干初等矩阵的乘积,

AP1P2Pt

Pt1P21P 11AI
P t1P 21P 11IA1
上式表明,对矩阵A与I进行相同的行变换,
在把A化为单位阵的同时,就把I化为了A的逆
矩阵。
做法:将A与I按照行的方向组合成一个大矩阵,对
大矩阵进行行变换,在A部分成为I的时候, 原来的I部分就成为A的逆。
例题

,求
解:
小结
本节要求掌握内容 1. 矩阵初等变换的记号,初等矩阵的记号; 2. 初等矩阵的性质; 3. 用初等行变换求逆矩阵.
作业
P34 1.7(2)(5) 1.10
初等变换
线性方程组的初等变换有三种: 1. 互换两个方程的位置; 2. 把某个方程两边同乘以一个非零常数; 3. 将某个方程加上另一个方程的k倍.
初等变换是可逆的,即用同类型的变换可将新方程组 变为原方程组。
注意:变换过程中方程组中方程的个数不变。
返回
互换两个方程的位置
返回
方程两边同乘以一个非零常数c
返回
一个方程加上另一个方程的k倍
返回
对调I中的两行(或两列)
对调I的以I中的某行(或某列)
非零数乘以I的行
相关文档
最新文档