利用导数判断函数的单调性

合集下载

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。

利用导数判断函数的单调性

利用导数判断函数的单调性

课前探究学习
课堂讲练互动
练习
求证: 函数 f
(x) 2 x 6 x 7
3 2
在 ( 0 , 2 ) 内是减函数.
解: f ( x ) 2 x 3 6 x 2 7
f ( x ) 6 x 2 1 2 x .
( x ) 0 , 解得 0 x 2 , 所以函数 f ( x ) 的递减区间是 ( 0 , 2 ) , 即函数 f ( x ) 在 ( 0 , 2 ) 内是减
' ' ' 2). f x g x f x g x f x g x; 3).
g x 0.
' ' f x f x g x f x g x 2 g x g x '
课堂讲练互动
【变式 2】 求函数 y=x2-ln x2 的单调区间. 解 ∵函数 y=f(x)=x2-ln x2 的定义域为(-∞,0)∪(0,+
2 2x2-1 2x-1x+1 ∞),又 f′(x)=2x-x = = , x x ∴f′(x),f(x)的取值变化情况如下表:
x
f′(x) f ( x)
附近几乎没有升降
试画出函数 f ( x ) 图象的大致形状。
y f ( x)
变化,切线平行x轴
y f ( x)
y A B
y A B
o
2
3 x
o
2
3 x
练习2:
函数 y f 的大致形状
( x ) 的图象如图所示, 试画出导函数 f ( x )图象
y
y f x
O
a
b

判断单调性的5种方法

判断单调性的5种方法

判断单调性的5种方法要判断一个函数的单调性,我们需要先了解什么是单调函数。

单调函数是指在定义域上递增或递减的函数。

递增函数是指当自变量增大时,函数值也相应增大;递减函数则是指当自变量增大时,函数值相应减小。

判断函数的单调性通常有以下5种方法:导数法、变量替换法、数列判断法、二阶导数法和作图法。

下面我将分别进行详细介绍。

一、导数法导数法是一种常用的判断函数单调性的方法,通过计算函数的导数来分析函数的变化趋势。

如果导数在定义域上始终大于0,则函数递增;如果导数在定义域上始终小于0,则函数递减。

具体步骤如下:1. 计算函数的导数,得到导函数。

2. 判断导函数的正负性,如果导函数恒大于0,则函数递增;如果导函数恒小于0,则函数递减;如果导函数的正负性不一致,则函数既不递增也不递减。

如果导函数有零点,则需要进一步进行分析。

二、变量替换法变量替换法是一种通过变量替换来判断函数单调性的方法。

该方法适用于一些无法直接通过导数法判断的函数。

具体步骤如下:1. 根据函数的形式,进行合适的变量替换,将函数化简。

2. 判断新的函数形式是否递增或递减,如果是,则原函数在相应的定义域上是单调的。

三、数列判断法数列判断法是一种适用于连续函数的判断方法,通过构造数列来判断函数的单调性。

具体步骤如下:1. 选择定义域上的一组数列,如递增、递减或交替递增递减等。

2. 将数列代入函数中,观察函数值的变化。

3. 如果函数值是递增的,则函数在这个定义域上是递增的;如果函数值是递减的,则函数在这个定义域上是递减的;如果函数值在数列中无明显的变化趋势,则函数既不递增也不递减。

四、二阶导数法二阶导数法是一种通过计算函数的二阶导数来判断函数的单调性的方法。

该方法适用于一些无法直接通过导数法判断的函数。

具体步骤如下:1. 计算函数的二阶导数。

2. 判断二阶导数的正负性,如果二阶导数恒大于0,则函数在定义域上是凹函数,且递增;如果二阶导数恒小于0,则函数在定义域上是凸函数,且递减;如果二阶导数的正负性不一致,则函数在相应定义域上既不递增也不递减。

函数的单调区间的方法

函数的单调区间的方法

函数的单调区间的方法
判断函数的单调区间有以下几种方法:
1.利用导数的符号判断函数的单调性。

如果函数的导数恒大于零(或者恒小于零),则函数单调递增(或递减)。

2. 利用函数的图像判断函数的单调性。

根据函数的图像,我们可以直观地看出函数在哪些区间上单调递增或递减。

3. 利用函数的二阶导数判断函数的单调性。

如果函数的二阶导数恒大于零(或者恒小于零),则函数单调递增(或递减)。

需要注意的是,这些方法并不是绝对可靠的,因为函数也可能在某些点处发生断点或拐点等特殊情况,从而导致函数在某些区间不单调。

因此,在判断函数的单调性时,需要综合考虑多种因素,并在必要时进行详细的分析。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

判断函数单调性的常用方法

判断函数单调性的常用方法

判断函数单调性的常用方法判断函数的单调性是数学中常见的一个问题。

在解决这个问题时,有一些常用的方法和技巧可以帮助我们确定函数的单调性。

下面将就这些方法和技巧进行详细介绍。

1.用导数判断函数的单调性:常数函数:常数函数不会随自变量的变化而变化,因此常数函数在定义域上是单调的。

一次函数:一次函数的导数为常数,若导数大于零,则函数单调递增;若导数小于零,则函数单调递减。

幂函数:幂函数的导数根据指数、底数的不同具有不同的形式,通过求导后的符号进行判断函数的单调性。

指数函数:指数函数的导数为指数函数本身的常数倍,若底数大于1且指数函数变量在定义域上递增时,函数单调递增;若底数小于1且指数函数变量在定义域上递减时,函数单调递增。

对数函数:对数函数的导数为自变量在底数为e的自然对数函数中的导数,根据求导后的符号进行判断函数的单调性。

2.利用函数的一阶和二阶导数进行判断:函数的一阶导数描述了函数图像的斜率,可以通过判断一阶导数的符号确定函数的单调性。

若一阶导数始终大于零,则函数单调递增;若一阶导数始终小于零,则函数单调递减。

函数的二阶导数描述了函数图像的曲率,若二阶导数始终大于零,则函数图像为凹函数,函数单调递增;若二阶导数始终小于零,则函数图像为凸函数,函数单调递减。

3.利用函数的性质进行判断:常用的函数性质包括函数的奇偶性、周期性、对称性等。

若函数具有奇函数的性质,则在定义域的相对称点上具有相反的函数值,可以通过判断奇函数在其中一区间内的正负性得出函数在该区间的单调性。

若函数具有周期性,则可以通过观察一个周期内的变化趋势来判断函数的单调性。

4.利用图像进行判断:通过观察函数图像可以直观地判断函数的单调性。

若函数图像始终上升,则函数单调递增;若函数图像始终下降,则函数单调递减。

这些是常用的判断函数单调性的方法和技巧。

在实际问题中,有时候需要结合多个方法和技巧来确定函数的单调性。

同时,还可以利用函数的单调性来解决一些实际问题,例如在优化问题中,我们可以通过判断目标函数的单调性来确定最优解的存在性和位置。

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案一、教学目标1. 理解导数的定义和几何意义;2. 掌握利用导数判断函数单调性的方法;3. 能够运用导数解决实际问题。

二、教学内容1. 导数的定义与几何意义2. 导数的计算公式3. 利用导数判断函数单调性4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义,导数的几何意义,利用导数判断函数单调性;2. 难点:导数的计算,利用导数解决实际问题。

四、教学方法1. 采用讲授法讲解导数的定义、几何意义及计算公式;2. 利用例题讲解利用导数判断函数单调性的方法;3. 结合实际问题,运用导数进行求解;4. 引导学生进行小组讨论和探究,提高学生的动手能力和解决问题的能力。

五、教学过程1. 导入:回顾初中阶段学习的函数单调性概念,引导学生思考如何判断函数的单调性。

2. 讲解导数的定义与几何意义:结合图形,解释导数的定义,说明导数的几何意义。

3. 讲解导数的计算公式:列出常见函数的导数公式,引导学生理解导数计算的方法。

4. 利用导数判断函数单调性:讲解如何利用导数判断函数的单调性,给出判断标准。

5. 例题讲解:选择具有代表性的例题,讲解利用导数判断函数单调性的步骤。

6. 小组讨论:让学生分组讨论实际问题,引导他们运用导数进行求解。

7. 总结:对本节课的内容进行总结,强调导数在判断函数单调性及解决实际问题中的应用。

8. 作业布置:布置相关练习题,巩固所学知识。

9. 课后反思:教师对本节课的教学进行反思,针对学生的掌握情况,调整教学策略。

10. 课堂评价:根据学生的课堂表现、作业完成情况等方面进行评价,鼓励学生积极参与课堂活动。

六、教学拓展1. 引入拉格朗日中值定理和柯西中值定理,解释它们与导数的关系。

2. 探讨导数在求解函数极值、最大值和最小值问题中的应用。

3. 介绍导数在微分方程求解中的作用。

七、课堂互动1. 提问:请学生解释导数的概念及其在几何上的意义。

2. 示例:让学生上台演示如何计算给定函数的导数。

如何利用导数解决函数的单调性问题

如何利用导数解决函数的单调性问题

如何利用导数解决函数的单调性问题
利用导数解决函数的单调性问题,是近几年高考考查的重点和热点之一,也是学生感到比较棘手的一类问题.
类型一利用导数判断函数的单调性
依据是:若函数f(x)在某
个区间(a,b)内的导数为f ‘(x),则
(1)若f ‘(x)>0,则函数f(x)在区间(a,b)内递增;
(2)若f ‘(x)0得x>1;由f ‘(x
0得x>1或01时,由f ‘(x)>0得x>a 或00 即a0 得x>
x2;由f ‘(x)0得0x2;由f ‘(x)—.
变式2:已知函数f(x)=x3+ax2+
x+1(a∈R)在区间(-—,-—)内存在单调递减区间,求实数a的取值范围.
解析:f ‘(x)=3x2+2ax+1
因为f(x)在区间(-—,-—)内存在单调递减区间,以f ‘(x)=3x2+
2ax+1-—x-—对x∈(-—,-—)有解.
令g(x)=-—x-—,x∈(-—,
-—),则g ‘(x)=-—x+—=—
所以g(x)在区间(-—,-—)内递减,在区间(-—,-—)内递增,故g (x)min=g(-—)=√3,所以实数a的取值范围是a>√3.
由函数在某区间上的单调性,求参数的取值范围问题,可以利用转化与化归的思想,将其转化为“不等式恒成立”问题,也可以利用函数与方程的思想及数形结合的思想,将其转化为“函数图像的交点”问题.。

利用导数判断函数的单调性(不含参)

利用导数判断函数的单调性(不含参)

做对了吗
【例3解析】[答案] D [解析] 由图可知,当b>x>a时,f′(x)>0,故在[a,b]上,f(x)为 增函数.且又由图知f′(x)在区间[a,b]上先增大后减小,即曲线 上每一点处切线的斜率先增大再减小,故选D. [点评] 本题的关键是正确理解导函数与函数之间的关系,
即:函数看增减,导数看正负.
变式训练
如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所 围成的弓形面积的2倍,则函数y=f(x)的图象是( )
变式训练
[答案] D
[解析] 由题意可知,当 0≤x<π 时, f(x)=2(12x-S△AOB)=x-sinx; 当 π≤x≤2π 时,f(x)=212x+S△AOB =x+sin(2π-x)=x-sinx. 因此,当 0≤x≤2π 时,f(x)=x-sinx.
小试牛刀
[例 1] 求下列函数的单调区间: f(x)=x3-3x+1
做对了吗
【例1解析】(1)函数f(x)的定义域为R 导数f′(x)=3x2-3,令f′(x)>0,则3x2-3>0. 即3(x+1)(x-1)>0,解得x>1或x<-1. ∴函数f(x)的单调递增区间为(-∞,-1)和(1,+∞) 令f′(x)<0,则3(x+1)(x-1)<0, 解得-1<x<1. ∴函数f(x)的单调递减区间为(-1,1).
D.(-∞,-1]和[1,+∞)
[答案] A
[解析] y′=4x3-4x
令y′<0,即4x3-4x<0
解得x<-1或0<x<1,所以函数的单调减区间为(-∞,-1)和
(0,1),故应选A.
随堂演练
2.若在区间(a,b)内有f′(x)>0,且f(a)≥0,则在(a,b)内

利用导数判断函数的单调性的方法

利用导数判断函数的单调性的方法

利用导数判断函数的单调性的方法利用导数判断函数的单调性,其理论依据如下:设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数。

如果0)(='x f ,则)(x f 为常数。

要用导数判断好函数的单调性除掌握以上依据外还须把握好以下两点: 一. 导数与函数的单调性的三个关系我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。

以下以增函数为例作简单的分析,前提条件都是函数)(x f y =在某个区间内可导。

1.0)(>'x f 与)(x f 为增函数的关系。

由前知,0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

2.0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。

若将0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,此时)(x f 为增函数,就一定有0)(>'x f 。

∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。

3.0)(≥'x f 与)(x f 为增函数的关系。

由前分析,)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。

当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。

∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。

判断单调性的5种方法

判断单调性的5种方法

判断单调性的5种方法单调性是数学中一个非常重要的概念,它描述了函数在定义域内的增减规律。

在学习数学的过程中,我们经常需要判断一个函数的单调性,因此掌握判断单调性的方法是十分必要的。

在本文中,我将介绍判断单调性的5种方法,希望能够帮助大家更好地理解和掌握这一概念。

方法一,利用导数。

判断函数的单调性最直接的方法之一就是利用导数。

对于函数f(x),如果在定义域内f'(x)>0,那么函数f(x)在该区间上是单调递增的;如果f'(x)<0,那么函数f(x)在该区间上是单调递减的。

当f'(x)=0时,需要额外考虑临界点处的单调性。

利用导数判断单调性是一种非常常用也非常有效的方法。

方法二,利用一阶导数的符号变化。

除了直接利用导数的大小来判断单调性外,我们还可以通过观察一阶导数的符号变化来判断函数的单调性。

具体来说,我们可以找到函数f(x)的一阶导数f'(x),然后观察f'(x)在定义域内的符号变化。

如果f'(x)在某一区间内始终大于0,则说明函数f(x)在该区间上是单调递增的;如果f'(x)在某一区间内始终小于0,则说明函数f(x)在该区间上是单调递减的。

方法三,利用二阶导数。

除了一阶导数外,我们还可以通过观察函数的二阶导数来判断单调性。

对于函数f(x),如果f''(x)>0,那么函数f(x)在该区间上是凹的,也就是说在该区间上是单调递增的;如果f''(x)<0,那么函数f(x)在该区间上是凹的,也就是说在该区间上是单调递减的。

利用二阶导数判断单调性在一些特定的函数中会更加方便和直观。

方法四,利用函数图像。

观察函数的图像也是判断单调性的一种方法。

通过观察函数的图像,我们可以直观地了解函数在定义域内的增减规律。

当然,这种方法对于一些复杂的函数可能并不太方便,但在一些简单的情况下,利用函数图像来判断单调性是非常直接和有效的。

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案一、教学目标1. 让学生理解导数的定义和几何意义;2. 学会利用导数判断函数的单调性;3. 能够运用单调性解决实际问题。

二、教学重难点1. 导数的定义和几何意义;2. 利用导数判断函数的单调性。

三、教学方法1. 讲解法:讲解导数的定义、几何意义和判断函数单调性的方法;2. 示例法:通过典型例题演示和分析,让学生掌握判断函数单调性的技巧;3. 练习法:让学生在练习中巩固所学知识,提高解题能力。

四、教学准备1. 导数的定义和几何意义的相关资料;2. 典型例题及解题思路;3. 练习题。

五、教学过程1. 导入:回顾导数的定义和几何意义,引导学生思考如何利用导数判断函数的单调性。

2. 新课讲解:讲解如何利用导数判断函数的单调性,并举例说明。

3. 示例分析:分析典型例题,引导学生掌握判断函数单调性的方法和技巧。

4. 练习巩固:让学生独立完成练习题,检验对导数判断函数单调性的掌握程度。

5. 课堂小结:总结本节课的主要内容和知识点,强调重点和难点。

6. 布置作业:布置相关练习题,让学生进一步巩固所学知识。

六、教学反思在课后对教学效果进行反思,看学生是否掌握了利用导数判断函数单调性的方法,及时调整教学策略,提高教学效果。

七、课时安排本节课安排2课时,共计45分钟。

八、教学评价通过课堂讲解、练习题和课后作业,评价学生对利用导数判断函数单调性的掌握程度。

九、教学拓展引导学生思考如何利用导数判断函数的极值和拐点,为后续课程做铺垫。

十、教学资源1. 导数的定义和几何意义的相关教材和资料;2. 典型例题及解题思路的PPT;3. 练习题及答案。

六、教学活动设计1. 课堂导入:通过回顾上一节课的内容,引导学生思考如何利用导数来判断函数的单调性。

2. 新课讲解:详细讲解利用导数判断函数单调性的方法和步骤,并通过示例进行说明。

3. 小组讨论:让学生分成小组,讨论如何解决一些复杂的函数单调性问题,并分享各自的解题思路。

利用导数判断函数的单调性的方法

利用导数判断函数的单调性的方法

利用导数判断函数的单调性的方法利用导数判定函数的单调性,其理论依据如下:设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数。

如果0)(='x f ,则)(x f 为常数。

要用导数判定好函数的单调性除把握以上依据外还须把握好以下两点:导数与函数的单调性的三个关系我们在应用导数判定函数的单调性时一定要搞清以下三个关系,才能准确无误地判定函数的单调性。

以下以增函数为例作简单的分析,前提条件差不多上函数)(x f y =在某个区间内可导。

1.0)(>'x f 与)(x f 为增函数的关系。

由前知,0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

2.0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。

若将0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,现在)(x f 为增函数,就一定有0)(>'x f 。

∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。

3.0)(≥'x f 与)(x f 为增函数的关系。

由前分析,)(x f 为增函数,一定能够推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。

当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。

∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。

原创1:3.3.1 利用导数判断函数的单调性

原创1:3.3.1 利用导数判断函数的单调性
数 f(x)的单调区间,实质 上是转化为解不等式 f′(x)>0 或 f′(x)<0,不等式的解集就 是函数的单调区间.
(2)如果函数的单调区间不止一个时,应用“及”、 “和”等连接,而不能写成并集的形式.如本例(2)中的单调 减区间不能写成(0,π)∪32π,2π.
1-3x2<0,解得
x<-
33或
x>
3 3.
因此,函数
f(x)







-∞,-
3 3

33,+∞.
(2)f′(x)=cos x+sin x+1= 2sinx+4π+1. 令 2sinx+4π+1>0,得 0<x<π 或32π<x<2π. 因此函数的单调增区间为(0,π)与32π,2π. 令 2sinx+4π+1<0,得 π<x<32π, 因此函数的单调减区间为π,32π.
第三章 导数及其应用
§3.3 导数的应用
3.3.1 利用导数判断函数的单调性
1.通过实例了解函数导数的符号与函数单调性之间的关系; 2.能够利用导数研究函数的单调性; 3.会求函数的单调区间.
1.利用导数研究函数的单调性,求函数的单调区间.(重点) 2.利用数形结合思想理解导函数与函数单调性之间的关系.(难点) 3.常与方程、不等式等结合命题.
题目类型三、由单调性求参数的取值范围
例3.若函数f(x)=ax3-x2+x-5在R上单调递增,求实数a的 取值范围.
[题后感悟] (1)一般地,已知函数的单调性,如何求参数的取值范 围?
函数在区间[a,b] 上单调递增减
―→
f′x≥0f′x≤0在 区间[a,b]上恒成立

利用导数判断函数的单调性和凹凸性的步骤

利用导数判断函数的单调性和凹凸性的步骤

利用导数判断函数的单调性和凹凸性的步

函数的单调性和凹凸性是非常重要的概念,可以用来帮助我们理解函数的行为。

为了判断函数的单调性和凹凸性,我们可以利用导数。

下面就来详细介绍如何利用导数判断函数的单调性和凹凸性。

第一步,我们需要对函数求一阶导数,即求函数的导数,这可以通过计算函数的导数的方法实现。

第二步,我们需要观察函数的一阶导数,即函数的斜率,以判断函数的单调性。

如果函数的斜率一直为正,则表明函数是单调递增的;如果函数的斜率一直为负,则表明函数是单调递减的;如果函数的斜率先正后负,则表明函数先递增后递减;如果函数的斜率先负后正,则表明函数先递减后递增。

第三步,我们需要观察函数的二阶导数,以判断函数的凹凸性。

如果函数的二阶导数一直为正,则表明函数的曲线是向上凸的;如果函数的二阶导数一直为负,则表明函数的曲线是向下凹的;如果函数的二阶导数先正后负,则表明函数的曲线先凸后凹;如果函数的二阶导数先负后正,则表明函数的曲线先凹后凸。

以上就是利用导数判断函数的单调性和凹凸性的步骤,它可以帮助我们更好地理解函数的行为。

但需要指出的是,要利
用导数判断函数的单调性和凹凸性,我们需要先掌握一些基础的微积分知识,因为导数涉及到微积分的概念。

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案一、教学目标1. 理解导数的定义和几何意义2. 学会利用导数判断函数的单调性3. 能够运用单调性解决实际问题二、教学内容1. 导数的定义和几何意义2. 导数与函数单调性的关系3. 利用导数判断函数单调性的方法4. 单调性在实际问题中的应用三、教学重点与难点1. 重点:导数的定义,导数与函数单调性的关系,利用导数判断函数单调性2. 难点:导数的几何意义,利用导数判断函数单调性的方法四、教学方法与手段1. 讲授法:讲解导数的定义和几何意义,引导学生理解导数与函数单调性的关系2. 案例分析法:分析实际问题,让学生学会运用单调性解决实际问题3. 练习法:让学生通过练习,巩固利用导数判断函数单调性的方法4. 教学手段:多媒体课件,黑板,粉笔五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考导数与函数单调性的关系2. 新课:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数单调性3. 案例分析:分析实际问题,让学生学会运用单调性解决实际问题4. 练习:让学生通过练习,巩固利用导数判断函数单调性的方法六、教学设计1. 教学流程:a. 导入:复习导数的基本概念和几何意义b. 新课:讲解导数与函数单调性的关系c. 案例分析:分析实际问题,让学生学会运用单调性解决实际问题d. 练习:让学生通过练习,巩固利用导数判断函数单调性的方法2. 教学时间安排:45分钟七、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性2. 练习完成情况:检查学生完成的练习情况,评估学生对利用导数判断函数单调性的掌握程度3. 案例分析:评估学生在案例分析中的表现,判断学生能否运用单调性解决实际问题八、教学反思1. 课堂讲解:反思导数与函数单调性关系的讲解是否清晰易懂,是否引导学生充分理解2. 案例分析:反思案例分析环节是否有效地引导学生运用单调性解决实际问题3. 练习环节:反思练习题的设计是否合理,是否有助于巩固学生对导数判断函数单调性的掌握九、课后作业1. 复习导数的基本概念和几何意义2. 复习导数与函数单调性的关系3. 完成课后练习题,巩固利用导数判断函数单调性的方法十、拓展学习建议1. 深入学习导数的应用,如求函数的极值、最值等2. 研究导数在其他数学领域中的应用,如微分方程、微积分等3. 了解导数在实际问题中的应用,如物理学、经济学等领域重点和难点解析六、教学设计补充和说明:案例分析环节是学生将理论知识应用于实际问题的重要环节。

导数与函数单调性的关系

导数与函数单调性的关系
导数与函数单调性的关系
一、利用导数判断函数的单调性
函数 y=f(x)在某个区间内可导,则 (1)若 f′(x)>0,则 f(x)在这个区间内单调递增. (2)若 f′(x)<0,则 f(x)在这个区间内单调递减. (3)若 f′(x)=0,则 f(x)在这个区间内是常数函数.
例1、已知函数f(x)=x-kln x,常数k>0. (1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间; (2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取 值范围.
值点,f'(1)=0⇒k=1,经检验k=1为所求,∴f'(x)=1- 1 .令f'(x)>0⇒x∈(1,+
x
∞),再令f'(x)<0⇒x∈(0,1),∴函数f(x)的单调递增区间是(1,+∞),单调 递减区间是(0,1).
名师诊断
专案突破
对点集训
决胜高考
(2)∵函数g(x)=xf(x)在区间(1,2)上是增函数,∴g'(x)=2x-k(1+ln x)≥0
三、解答题
17.已知函数f(x)=x-kln x,常数k>0. (1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间;
(2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取值范围.
【解析】(1)定义域为(0,+∞),f'(x)=1- k ,因为x=1是函数f(x)的一个极
x
变式训练 2、(2014·兰州模拟)已知函数 f(x)=-x2+ax-ln x(a∈R). (1)当 a=3 时,求函数 f(x)在21,2上的最大值和最小值; (2)当函数 f(x)在21,2上单调时,求 a 的取值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
3.函数 y=4x2+1x的单调递增区间是
()
A.(0,+ ∞)
B.(-∞,1)
解C.析(:12,由+y∞′)=8x-x12=D.8x(3x1-2,1+>0∞,)得 x>12,
即函数的单调递增区间为(12,+∞).
答案:C
返回
4.求下列函数的单调区间. (1)y=xex;(2)y=x3-x. 解:(1)y′=ex+xex=ex(1+x), 令y′>0得x>-1. 令y′<0得x<-1, 因此y=xex的单调递增区间为(-1,+∞), 递减区间为(-∞,-1).

三 3.3

3.3.1
导 利用
数 及
导数 判断 函数
其 的单
应 调性

理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
3.3.1 利用导数判断函数的单调性
返回
我们知道正弦曲线是上、下起伏 的波浪线,实际上多数函数的图象都 是如此,它们的单调性交替变化.有 些函数的单调性通过我们所学的基本方法能够判断,多 数函数非常困难甚至无法解决.
返回
(2)函数的定义域为 R,
令 y′=3x2-1>0,得 x<- 33或 x> 33;

y′=3x2-1<0,得-
3 3 <x<
3 3.
∴y=x3-x 的单调递增区间为(-∞,- 33)和( 33,
+∞),单调递减区间为(-
33,
3 3 ).
返回
[例 3] 已知函数 f(x)=x2+ax(x≠0,常数 a∈R).若函 数 f(x)在[2,+∞)上单调递增,求 a 的取值范围.
返回
(2)∵f(x)的单调递增区间是(0,1), ∴f′(x)=2a+x23>0 的解集是(0,1). 即ax3x+3 1>0 的解集是(0,1).
∴ 3 -1a=1, 解得 a=-1.
返回
1.利用导数求函数f(x)单调区间的方法如下: (1)求f(x)的定义域; (2)求出f′(x); (3)解不等式f′(x)>0(或f′(x)<0)可得函数的增区间(或减 区间). 2.当函数f(x)的单调性相同的区间不止一个时,不 能用“∪”连接,要用“,”分开或用“和”连接. 3.应用函数的单调性求参数的范围或参数的值时, 要注意单调性与区间的对应.一般地,函数f(x)在区间(a, b)上单调递增,求出的一般是参数的范围.函数f(x)的单 调递增区间是(a,b),求出的一般是参数的值.
问题1:如果一条曲线是逐渐上升的,那么曲线上各 点的切线的斜率有何特点?
提示:从直观上看切线是上升的,切线的斜率都为 正数.
返回
问题2:切线斜率的正负,能说明导数的符号吗? 提示:根据导数的几何意义,切线斜率的符号就是 导数的符号. 问题3:可以用导数来研究较为复杂的函数的单调 性吗? 提示:可以.
B.a<1
C.a<2
D.a≤13
解析:f′(x)=3ax2-1,∵f(x)在R上为减函数,
∴3ax2-1≤0在R上恒成立,∴a≤0.
答案:A
返回
6.已知函数 f(x)=2ax-x12. (1)若 f(x)在(0,1]上是增函数,求 a 的取值范围; (2)若 f(x)的单调增区间是(0,1),求 a 的值. 解:(1)f′(x)=2a+x23,且 f(x)在(0,1]上是增函数, 故 f′(x)≥0 恒成立,所以 a≥-x13恒成立, 又 y=-x13在(0,1]上的最大值是-1,故 a≥-1. a 的取值范围为[-1,+∞).
3.如果在某个区间内恒有f′(x)=0,那么函数y=f(x) 是常函数,不具有单调性.
返回
返回
[例1] 判断y=ax3-1(a∈R)在(-∞,+∞)上的单 调性.
[思路点拨] 求导数 → 对a进行分类讨论 → 每种情况下确定函数在-∞2,又x2≥0. (1)当a>0时,y′≥0,函数在R上单调递增; (2)当a<0时,y′≤0,函数在R上单调递减; (3)当a=0时, y′=0,函数在R上不具备单调性. [一点通] 判断函数单调性的方法有两种: (1)利用函数单调性的定义,在定义域内任取x1,x2,且 x1<x2,通过判断f(x1)-f(x2)的符号确定函数的单调性; (2)利用导数判断可导函数f(x)在(a,b)内的单调性,步骤 是:①求f′(x);②确定f′(x)在(a,b)内的符号;③得出结论.
返回
[一点通] 已知函数的单调性求参数,可转化为不等 式恒成立问题.一般地,函数f(x)在区间Ⅰ上单调递增(递 减),转化为不等式f′(x)≥0(f′(x)≤0)在区间Ⅰ上恒成立,然 后可借助分离参数等方法求出参数的取值范围.
返回
5.函数 f(x)=ax3-x 在 R 上为减函数,则
()
A.a≤0
∴f′(x)<0,f(x)为减函数.
返回
[例 2] 求下列函数的单调区间: (1)f(x)=12x+sin x,(x∈(0,2π)); (2)f(x)=2x-ln x. [思路点拨] 求定义域 → 求导数f′x → 解f′x>0得增区间 → 解f′x<0得减区间
返回
[精解详析] (1)∵f′(x)=12+cos x, ∴令 f′(x)>0 得12+cos x>0,即 cos x>-12, 又∵x∈(0,2π),∴0<x<23π,或43π<x<2π. 同理,令 f′(x)<0 得,23π<x<43π. ∴该函数的增区间为(0,23π),(43π,2π); 减区间为(23π,43π).
返回
(2)函数的定义域为(0,+∞), 其导函数为 f′(x)=2-1x. 令 2-1x>0,解得 x>12; 令 2-1x<0,解得 0<x<12, ∴函数 f(x)=2x-ln x 的增区间为(12,+∞),减区间 为(0,12).
返回
[一点通] (1)在利用导数求函数的单调区间时,首先要确定函数 的定义域,然后在定义域内通过解不等式f′(x)>0或f′(x)<0, 来确定函数的单调区间. (2)当单调区间有多个时,不要写成并集.
返回
点击下图进入“应用创新演练” 返回
返回
设函数y=f(x)在区间(a,b)内可导, (1)如果在(a,b)内 f′(x)>0 ,则f(x)在此区间是增 函数; (2)如果在(a,b)内, f′(x)<0 ,则f(x)在此区间 是减函数.
返回
1.区间(a,b)也可以是(-∞,+∞),(a,+∞),(-∞, b).
2.在某个区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间内 为增(减)函数的充分不必要条件.如果出现个别点使f′(x)=0, 不会影响函数f(x)在包含这些特殊点的某个区间内的单调 性.例如函数f(x)=x3在定义域 (-∞,+∞)上是增函数,但由f′(x)=3x2知,f′(0)=0,即并 不是在定义域内的任意一点处都满足f′(x)>0.
返回
1.下列函数中,在(0,+∞)内为增函数的是
()
A.f(x)=sin x
B.f(x)=xex
C.f(x)=x3-x
D.f(x)=ln x-x
解析:∵x>0,∴(x·ex)′=x′·ex+x·(ex)′
=ex+x·ex=ex(x+1)>0,
∴f(x)=x·ex 在(0,+∞)内为增函数.
答案:B
返回
2.判断函数 f(x)=lnxx-1 在(0,e)及(e,+∞)上的单调性.
解:f′(x)=1x·x-x2ln
x=1-xl2n
x .
当 x∈(0,e)时,ln x<ln e=1,1-ln x>0,x2>0,
∴f′(x)>0,f(x)为增函数.
当 x∈(e,+∞)时,ln x>ln e=1,1-ln x<0,x2>0,
[思路点拨] 函数在区间[2,+∞上单调递增 → f′x≥0在区间[2,+∞上恒成立 → 利用分离参数或函数性质求解恒成立问题 → 对等号单独验证说明 .
返回
[精解详析] f′(x)=2x-xa2=2x3x-2 a. 要使 f(x)在[2,+∞)上单调递增, 则 f′(x)≥0 在 x∈[2,+∞)时恒成立, 即2x3x-2 a≥0 在 x∈[2,+∞)时恒成立. ∵x2>0,∴a≤2x3 在 x∈[2,+∞)上恒成立. ∴a≤(2x3)min. ∵x∈[2,+∞)时,y=2x3 是单调递增的, ∴(2x3)min=16,∴a≤16. 当 a=16 时,只有 f′(2)=0, ∴a 的取值范围是(-∞,16].
相关文档
最新文档