等腰三角形证明题

合集下载

等腰三角形证明题

等腰三角形证明题

1.已知:如图,△ABC为正三角形,D是BC延长线上一点,连结AD,以AD为边作等边三角形ADE,连结CE,用你学过的知识探索AC、CD、CE三条线段的长度有何关系?试写出探求过程.2如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于M交AC于点N,连接MN,(1)求证:MN=BM+NC(2)求△AMN的周长3在ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.4如图,在平面直角坐标系中,△AOP为等边三角形,A(0,1),点B为y轴上一动点,以BP为边作等边△PBC.(1)求证:OB=AC;(2)求∠CAP的度数;(3)当B点运动时,AE的长度是否发生变化?5如图,在等腰RtOAB中,∠AOB=90°,等腰RtEOF中,∠EOF=90°,连接AE,EF (1)AE=BF;(2)AE⊥BF6如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD。

求证:AD=CE7在等边三角形ABC中,点P在ABC内,点Q在ABC外,且∠ABP=∠ACQ,BP=CQ,则APQ是什么形状的三角形?试说明理由。

8如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.9如图,在ABC中,AB=AC,D是CB延长线上一点,∠ADB=60°,E是AD上一点,且DE=DB,求证:AE=BE+BC10.如图点B是AC上一点,ABD和DCE都是等边三角形(1)求证:AC=BE;(2)若BE⊥DC,求∠BDC的度数11如图,在ABC中AB=AC,点D在BA的延长线上,E在AC上,且AD=AE,DE的延长线交BC于F,求证:DF⊥BC12如图在ABC中AB=AC,EF交AB于E,交AC延长线于点F,交BC于点D,且BE=CF 求证:DE=EF13如图在ABC中,∠BAC108°,AB=AC,BD平分∠ABC,交AC于点D,求证:BC=AB+CD14如图CE,CB分别是ABC,ADC的中线,且AB=AC,求证:CD=2CE15如图,已知点B,C,D在同一条直线上,ABC和CDE都是等边三角形,BE交AC于F,AD交CE于H。

等腰三角形证明题精选(初中数学)

等腰三角形证明题精选(初中数学)

等腰三角形证明题精选(初中数学)等腰三角形证明题精选1. 等腰三角形内角求和为180°对于任意一个等腰三角形,我们可以通过以下步骤来证明其内角之和为180°:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。

步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。

步骤三:利用三角形内角和定理根据三角形内角和定理,三角形ABC的内角之和等于180°。

又因为∠BAD和∠DAC都是直角,所以∠BAC + ∠BAD + ∠DAC = 180°。

综上所述,等腰三角形的内角之和为180°。

2. 等腰三角形的底角相等对于任意一个等腰三角形,我们可以通过以下步骤来证明其底角相等:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。

步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。

步骤三:利用三角形内角和定理根据三角形内角和定理,三角形ABC的内角之和等于180°。

又因为∠BAD和∠DAC都是直角,所以∠BAD + ∠DAC = 180° - ∠BAC。

步骤四:证明∠BAD = ∠DAC由于AD与BC平行,且∠BAD是直角,所以∠BAD +∠BDA = 180°。

根据角对应定理,∠DAC = ∠BDA。

又因为∠BAD + ∠BDA = 180°,所以∠DAC = ∠BAD。

综上所述,等腰三角形的底角相等。

3. 等腰三角形的腰长相等对于任意一个等腰三角形,我们可以通过以下步骤来证明其腰长相等:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。

步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。

专题 等腰三角形的证明及计算大题

专题 等腰三角形的证明及计算大题

专题2.9等腰三角形的证明及计算大题一.解答题(共50小题)1.(2022秋•开福区校级期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作AF∥BC交CD于F,延长AB、DC交于点E.(1)求证:AC平分∠EAF;(2)求证:∠FAD=∠E;(3)若∠EAD=90°,AE=5,AF=3,求CF的长.2.(2022秋•铁西区期末)如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,延长线交OM于点G.(1)若∠MON=60°,则∠ACG=度;(2)若∠MON=n°,则∠ACG=度;(用含n的代数式表示)(3)如图2,若∠MON=72°,过点C作CF∥OA交AB于点F,求∠BGO与∠ACF的数量关系.3.(2022秋•单县期末)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE 的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.4.(2022秋•巴彦县期末)如图,在△ABC中,点D是边BC上一点,点E在边AC上,且BD=CE,∠BAD =∠CDE,∠ADE=∠C.(1)如图1,求证:△ADE是等腰三角形;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠CDE相等的角(∠CDE 除外).5.(2022秋•石家庄期末)如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.6.(2022秋•思明区校级期末)如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=12(AC﹣AB).(提示:延长BE交AC于点F).7.(2022秋•赛罕区校级期中)如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线分别交AB、AC于点M、N.(1)求证:MO=MB;(2)若AB=7,AC=6,求△AMN的周长.8.(2022秋•建阳区期中)如图所示,已知点A,C分别在∠GBE的边BG,BE上,且AB=AC,AD∥BE,∠GBE的平分线BD与AD交于点D,连接CD.(1)求证:AC=AD;(2)猜想:∠BAC与∠BDC之间有何数量关系,并对你的猜想加以证明.9.(2022秋•微山县期中)已知:如图,在四边形ABCD中,AB∥DC,AC平分∠BAD,AC⊥BC于点C.(1)若∠B=75°,求∠D的度数;(2)求证:AB=2CD.10.(2022秋•高港区期中)如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=75°,求∠BCE的度数.11.(2022秋•播州区期末)已知△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,如果点E是边AC的中点,AC=8,求DE的长;(2)如图2,若DE平分∠ADC,∠ABC=30°,在BC边上取点F使BF=DF,若BC=9,求DF的长.12.(2022春•汉阳区校级期中)如图,已知在△ABC中,CF平分∠ACB,且AF⊥CF于点F,BE平分△ABC 的一个外角,且AE⊥BE于点E.(1)求证:EF∥BC.(2)若BC=5,AC=4,EF=4,求AB的长.13.(2022春•桓台县期末)如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.14.(2022秋•新兴县期中)在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足是D.(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.15.(2022秋•浦城县期中)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD于点E,交BC于F,CM⊥AF于M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.16.(2022春•凤翔县期末)如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD ∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.17.(2022春•宣汉县期末)如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.18.(2022春•未央区校级期末)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.19.(2022秋•雨花区校级月考)已知△ABC中,∠ACB的平分线CD交AB于点D,DE平分∠ADC,DE∥BC.(1)如图1,如果点E是边AC的中点,AC=10,求DE的长;(2)在(1)的条件下,求证:△ADC是等腰三角形.(3)如图2,若∠ABC=30°,在BC边上取点F使BF=DF,若BC=18,求DF的长.20.(2022秋•庄浪县期中)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=10cm,若点M从点B出发以2cm/s的速度向点A运动,点N从点A出发以1cm/s的速度向点C运动,设M、N分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AM、AN的长;(2)当t为何值时,△AMN是以MN为底边的等腰三角形?(3)当t为何值时,MN∥BC?并求出此时CN的长.21.(2022秋•兰陵县期中)如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.22.(2022春•浦东新区期末)已知△ABC中,∠A=70°,BP是∠ABC的平分线,CP是∠ACD的平分线.(1)如图1,求∠P的度数;(2)过点P作EF∥BC与边AB、AC分别交于点E、点F(如图2),判断线段BE、EF、CF之间的数量关系,并说明理由.23.(2022秋•天心区校级期中)如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连接CD.作∠CDE=30°,DE交AC于点E.(1)当DE∥BC时,△ACD的形状按角分类是;(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.24.(2022秋•香坊区校级月考)已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于152的所有三角形.25.(2022春•莱州市期末)已知,如图,在△ABC中,过点A作AD平分∠BAC,交BC于点F,过点C作CD⊥AD,垂足为D,在AC上取一点E,使DE=CE,求证:DE∥AB.26.(2022春•莲池区期中)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作BC平行线交AB、AC于E、F.试说明:EO=BE探究一:请写出图①中线段EF与BE、CF间的关系,并说明理由.探究二:如图②,△ABC若∠ABC的平分线与△ABC的外角平分线交于O,过点O作BC的平行线交AB于E,交AC于F.这时EF与BE、CF的关系又如何?请直接写出关系式,不需要说明理由.27.(2022ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?28.(2022秋•莆田期末)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC 于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.29.(2022秋•黄埔区期末)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF ⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.30.(2022秋•涞水县期末)如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD、△AFD 关于AD所在的直线对称,∠FAC的角平分线交BC边于点G,连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形?31.(2022秋•富源县校级期中)如图所示,在△ABC中,D、E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形.(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形;(3)在上述条件中,若∠A=60°,BE平分∠B,CD平分∠C,则∠BOC的度数?32.如图1,DB为△ABC的角平分线,CE为∠ACB的外角平分线,过点A作AF⊥BD,交射线BD于点F,作AG⊥CE于G,连接EG.(1)求证:FG∥BC;(2)如图2,射线BD与CE相交于点M,若∠M=45°,AB=FG=6,求AD的长.33.(2022秋•平定县期中)如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.(1)请说出AD=BE的理由;(2)试说出△BCH≌△ACG的理由;(3)试猜想:△CGH是什么特殊的三角形,并加以说明.34.(2022秋•海淀区校级期中)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD 和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图①,若∠ACD=60°,则∠AFB=;如图②,若∠ACD=90°,则∠AFB=;如图③,若∠ACD=120°,则∠AFB=;(2)如图④,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图④中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图⑤所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.35.(2022•承德县模拟)已知:在等边△ABC中,点D、E、F分别为边AB、BC、AC的中点,点G为直线BC上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△DGH是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.36.(2022•徐州)如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=12AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=14S,△D1E1F1的面积S1=14S.(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=13AB时如图2,①求证:△D2E2F2是等边三角形;②若用S表示△AD2F2的面积S2,则S2=;若用S表示△D2E2F2的面积S2′,则S2′=.(2)按照上述思路探索下去,并填空:当D n、E n、F n分别是等边△ABC三边上的点,AD n=BE n=CF n=1n+1AB时,(n为正整数)△D n E n F n是三角形;若用S表示△AD n F n的面积S n,则S n=;若用S表示△D n E n F n的面积S n′,则S′n=.37.(2022春•和平县期末)如图,在等边△ABC中,点D,E分别在边BC、AC上,若CD=3,过点D作DE ∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:△CDE为等边三角形;(2)求EF的长.38.(2022秋•韶关期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.39.(2022秋•莱芜区期末)如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD 于Q.求证:①△ADC≌△BEA;②BP=2PQ.40.(2022秋•乌海期末)如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE ∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.41.(2022秋•桐城市期末)如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.42.(2022•阳城县模拟)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB 的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).43.(2022秋•松山区校级月考)如图,点P在等边△ABC内,点D在△ABC外,且∠ABP=∠ACD,BP=CD,问:△APD是什么形状三角形,试说明理由.44.(2022春•江岸区校级期中)(1)如图1,△ADE为等边三角形,AD∥EB,且EB=DC,求证:△ABC 为等边三角形.(2)相信你一定能从(1)中得到启示并在图2中作一个等边△ABC,使三角形的三个定点A、B、C分别在直线l1、l2、l3上,(l1∥l2∥l3且这三条平行线两两之间的距离不相等).请你画出图形,并写出简要作法.(3)①如图3,当所作△ABC的三个定点A、B、C分别在直线l2、l3、l1上时,如图所示,请结合图形填空:a:先作等边△ADE,延长DE交l3于B点,在l1上截取EC=,连AC、BC,则△ABC即为所求.b:证明△ABC为等边三角形时,可先证明≌从而为证明等边三角形创造条件.②若使等边△ABC的三个定点A、B、C分别在直线l3、l1、l2上时,请在图4中用类似的方法作出图形,并将构造的全等三角形用阴影标出.(只需画出图形,不要求写作法及证明过程)45.(2022秋•盘龙区校级月考)如图,在△ABC中,AB=AC,D是三角形外一点,且∠ABD=60°,BD+DC =AB.求证:∠ACD=60°.46.(2022秋•雨城区校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?47.(2022•饶平县校级模拟)已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)48.(2022秋•濠江区校级期中)如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.49.(2022•浙江模拟)如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长?50.(2022秋•东海县校级期中)为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可.如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知:△ABD是三角形;(2)同理由已知条件∠BCD=120°得到∠DCE=,且CE=CD,可知;(3)要证BC+DC=AC,可将问题转化为两条线段相等,即=;(4)要证(3)中所填写的两条线段相等,可以先证明….请你完成证明过程:。

等腰三角形经典练习题及详细答案

等腰三角形经典练习题及详细答案

等腰三角形练习题一、计算题:1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数3、AB 于⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°,求∠AFD 的度数CFDA4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1,求∠ABC 的度数BBDC7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值二、证明题:8. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系9. 如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O求证:AE+CD=ACABCDAD FEABCDE12. 如图,△ABC 中,AB=AC,D 为△ABC 外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线求证:CD=21CE14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC 求证:BD=EDECA BDE1 2 ABCD15. 如图,△ABC 中,AB=AC,BE=CF,EF 交BC 于点G 求证:EG=FG16. 如图,△ABC 中,∠ABC=2∠C ,AD 是BC 边上的高,B 到点E ,使BE=BD求证:AF=FC17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且AE=BE 求证:AH=2BDABDFECBD18. 如图,△ABC 中,AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30° 求证:AD=DC19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE=BD 求证:EC=ED20. 如图,四边形ABCD 中,∠BAD+∠BCD=180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H 求证:EH ⊥FHBCDHADCEF一、计算题:1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45°2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36°3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160°CFDAB4. 如图,△ABC中,AB=AC,BC=BD=ED=EA求∠A的度数设∠A为x∠A=71805. 如图,△ABC中,AB=AC,D在BC上, ∠BAD=30°,在AC上取点E,使AE=AD, 求∠EDC的度数设∠ADE为x∠EDC=∠AED-∠C=15°BB2xx-15°6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1,求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90°在Rt △DBF 中, BD=21,DF=1所以∠F =∠1=30°7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AEDFABCDE由AC=AB+BD,得DE=EC,所以∠AED=2∠C 故∠B :∠C=2:1 二、证明题:8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 证明△PBD 和△PEA 是等腰三角形9. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系 DF+AD=AE在AE 上取点B,使AB=AD10. 如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC 在AC 上取点F,使AF=AE 易证明△AOE ≌△AOF, 得∠AOE=∠AOF由∠B=60°,角平分线AD 、CE,CBAD EPAD FEBOABC DEF得∠AOC=120°所以∠AOE=∠AOF=∠COF=∠COD=60° 故△COD ≌△COF,得CF=CD 所以AE+CD=AC11. 如图,△ABC 中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD延长BD 到点E,使BE=BC,连结CE 在BC 上取点F,使BF=BA 易证△ABD ≌△FBD,得AD=DF 再证△CDE ≌△CDF,得DE=DF 故BE=BC=BD+AD也可:在BC 上取点E,使BF=BD,连结DF 在BF 上取点E,使BF=BA,连结DE先证DE=DC,再由△ABD ≌△EBD,得AD=DE,最后证明DE=DF 即可 12. 如图,△ABC 中,AB=AC,D 为△ABC 外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD在AB 上取点E ,使BE=BD , 在AC 上取点F ,使CF=CD得△BDE 与△CDF 均为等边三角形, 只需证△ADF ≌△AEDACFACEFABC DEF13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线求证:CD=21CE延长CD 到点E,使DE=CD.连结AE 证明△ACE ≌△BCE14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED在CE 上取点F,使AB=AF 易证△ABD ≌△ADF, 得BD=DF,∠B=∠AFD由∠B+∠BAC+∠C=∠DEC+∠EDC+∠C=180° 所以∠B=∠DEC 所以∠DEC=∠AFD 所以DE=DF,故BD=ED15. 如图,△ABC 中,AB=AC,BE=CF,EF 交BC 于点G 求证:EG=FGECA BDE1 2FF16. 如图,△ABC 中,∠ABC=2∠C ,AD 是BC 边上的高,B 到点E ,使BE=BD 求证:AF=FC17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且AE=BE 求证:AH=2BD由△AHE ≌△BCE,得BC=AH18. 如图,△ABC 中,AB=AC, ∠BAC=90°,BD=AB,∠ABD=30° 求证:AD=DC作AF ⊥BD 于F,DE ⊥AC 于E 可证得∠DAF=DAE=15°, 所以△ADE ≌△ADF 得AF=AE,由AB=2AF=2AE=AC, 所以AE=EC,因此DE 是AC 的中垂线,所以AD=DCABDFE CBD19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE=BD 求证:EC=ED延长BD 到点F,使DF=BC, 可得等边△BEF,只需证明△BCE ≌△FDE 即可20. 如图,四边形ABCD 中,∠BAD+∠BCD=180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H 求证:EH ⊥FH 延长EH 交AF 于点G 由∠BAD+∠BCD=180°, ∠DCF+∠BCD=180° 得∠BAD=∠DCF, 由外角定理,得∠1=∠2, 故△FGM 是等腰三角形 由三线合一,得EH ⊥BCDFABDCEFHG 12 M。

等腰三角形证明及答案

等腰三角形证明及答案

等腰三角形证明1.如图,已知:点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE2. 如图:△ABC中,AB=AC,PB=PC.求证:AD⊥BC3. 已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:HB=HC4. 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F. 求证:△AEF为等腰三角形.5. 如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD的中线,CF平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.6.如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.7.已知:如图,△BDE是等边三角形,A在BE延长线上,C在BD的延长线上,且AD=AC。

求证:DE+DC=AE。

等腰三角形练习题答案1. 证:作AM⊥BC于M∵AD=AE,∴DM=EM∵AB=AC,∴BM=CM∴BM-DM=CM-EM∴BD=CE2. 证明:在△ABP和△ACP中∵AB=AC,BP=PC,AP=AP∴△ABP≌△ACP (SSS)∴∠BAP=∠CAP∴AD⊥BC(等腰三角形顶角平分线又是底边的垂线)3. 证明:∵△ABC是等边三角形∴AB=AC,∠BAC=60°在△ABD和△ACE中∵AB=AC,∠1=∠2,BD=CE∴△ABD≌△ACE (SAS)∴AD=AE,∠BAD=∠CAE=60°∴在△ADE中∵AD=AE,∠DAE=60°∴△ADE为等边三角形.4. 证明:连结AC和AD在△ABC和△AED中AB=AE BC=ED ∠B=∠E∴△ABC≌△AED (SAS)∴∠ACB=∠ADE,AC=AD∴△ACD是等腰三角形∴∠ACD=∠ADC;∠BCA=∠CDE∴∠C=∠D5. 证明:∵BE、CF是△ABC的高线.∴∠1=∠2=90°∴△BCF和△CBE都是Rt△.在Rt△BCF和Rt△CBE中∵CF=BE,BC=CB∴Rt△BCF≌Rt△CBE∴∠3=∠4在△HBC中∵∠3=∠4∴HB=HC(同一三角形中,等角对等边)6. 证明:∵AE=AD,∠1=∠2,∠A公共角∴△AEF≌△ADC (AAS)∴AB=AC,EB=DC∴∠ABC=∠ACB∴∠3=∠4,BF=CF∴DF=EF7. 证明:∵AB=AC∴∠B=∠C∵ED⊥BC∴∠B+∠BFD=∠B+∠EFA=90°∠C+∠E=90°。

专题训练等腰三角形中的常见证明思路

专题训练等腰三角形中的常见证明思路
图 3-ZT-5
专题训练(三) 等腰三角形中的常见证明思路
解:(1)证明:∵AE∥BC,∴∠B=∠DAE,∠C=∠CAE. ∵AE 平分∠DAC,∴∠DAE=∠CAE, ∴∠B=∠C,∴△ABC 是等腰三角形. (2)∵F 是 AC 的中点,∴AF=CF.
∠CAE=∠C,
在△AFE 和△CFG 中,AF=FC, ∠AFE=∠CFG,
专题训练(三) 等腰三角形中的常见证明思路
类型之三 利用平行线证等腰三角形
5.如图 3-ZT-5,在△ABC 中,已知点 D 在线段 AB 的反向延 长线上,过 AC 的中点 F 作线段 GE 交∠DAC 的平分线于点 E,交 BC 于点 G,且 AE∥BC.
(1)求证:△ABC 是等腰三角形; (2)若 AE=8,AB=10,GC=2BG,求△ABC 的周长.
专题训练(三) 等腰三角形中的常见证明思路
4.如图 3-ZT-4,在四边形 ABCD 中,AD∥BC,E 为 CD 的 中点,连接 AE,BE,延长 AE 交 BC 的延长线于点 F,AB=BF.求 证:BE⊥AE.
图 3-ZT-4
专题训练(三) 等腰三角形中的常见证明思路
证明: ∵E 是 CD 的中点,∴DE=CE. ∵AD∥BC, ∴∠ADE=∠FCE,∠DAE=∠CFE, ∴△ADE≌△FCE,∴AE=FE. 又∵AB=BF,∴BE⊥AE.
又∵CE=2BC,∴BD=CE. 在 Rt△ABD 和 Rt△ACE 中, AB=AC,BD=CE, ∴Rt△ABD≌Rt△ACE, ∴∠ACE=∠B.
专题训练(三) 等腰三角形中的常见证明思路
类型之二 利用“三线合一”证明两线垂直
3.如图 3-ZT-3 所示,五边形 ABCDE 中,AB=AE,BC=DE, ∠ABC=∠AED,F 是 CD 的中点.

与等腰三角形有关的证明题

与等腰三角形有关的证明题

与等腰三角形有关的证明题例1.如图,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE,DE交BC于F。

求证:DF=EF分析:要证DF=EF,只需设法证明DF与EF所在的三角形全等,但由于DF所在的△DFB 比EF所在的△EFC显然大,故应考虑添加辅助线。

作DG∥AC,交BC于G,则∠DGB=∠ACB 从而∠DGF=∠ECF(等角的补角相等)由AB=AC,得∠B=∠ACB从而∠DGB=∠B,DG=BD=CE在△DFG与△EFC中,∠DGF=∠ECF,∠DFG=∠EFC(对顶角相等)故∠GDF=∠FEC又DG=CE,所以△DFG≌△EFC所以DF=EF例2.如图,等腰△ABC中,AB=AC,D是BC上任一点,DE⊥AB于E,DF⊥AC于F。

求证:为定值。

分析:所谓定值是指不论点D在底边BC的何处,DE+DF的大小总是等于已知的或隐含的某条线段的长,也就是说定值是一个常量。

那么本题的定值究竟是多少呢?我们可以考虑点D所在的特殊位置,当点D与点B重合时,DE的长度为0,DF等于AC边上的高,可见,(DE+DF)的定值是腰上的高,因此,作△ABC的高BG,然后只需证明DE+DF=BG即可。

要证,可在BG上截取GH=DF,然后只需证BH=DE。

连接DH,则只需证明△BDE≌△DBH。

易知四边形DFGH是矩形,从而DH∥AC,∠BDH=∠C,∠BHD=∠DHG=90°=∠BED。

又AB=AC,∠EBD=∠ABC=∠C,所以∠BDH=∠EBD。

所以∠EDB=∠DBH。

又BD为公共边,所以△BDE≌△DBH。

如果注意到高,联想到三角形面积,则可采用如下简单的证法:连接AD则由,得:又AB=AC边上的高=定值例3.如图4,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE。

求证:DE>BC图4分析:要证DE>BC,由于它们不是同一个三角形的两边,故应先考虑通过添加辅助线把它们迁移到同一个三角形中。

八年级三角形的证明题

八年级三角形的证明题

八年级三角形的证明题一、等腰三角形性质相关证明题(8题)1. 已知:在△ABC中,AB = AC,AD是BC边上的中线。

求证:AD⊥BC。

- 证明:- 因为AB = AC,AD是BC边上的中线,所以BD = DC(中线的定义)。

- 在△ABD和△ACD中,AB = AC(已知),BD = CD(已证),AD = AD(公共边)。

- 所以△ABD≌△ACD(SSS)。

- 则∠ADB=∠ADC(全等三角形对应角相等)。

- 又因为∠ADB + ∠ADC = 180°(平角的定义),所以∠ADB = ∠ADC = 90°,即AD⊥BC。

2. 已知:在等腰△ABC中,AB = AC,∠A = 36°,求证:∠B = 72°。

- 证明:- 因为AB = AC,所以∠B = ∠C(等腰三角形两底角相等)。

- 又因为∠A+∠B + ∠C = 180°(三角形内角和定理),∠A = 36°。

- 设∠B = x,则∠C = x,可得方程36°+x + x = 180°。

- 2x=180° - 36°,2x = 144°,解得x = 72°,即∠B = 72°。

3. 已知:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。

求∠A的度数。

- 证明:- 设∠A=x,因为AD = BD,所以∠ABD = ∠A=x(等边对等角)。

- 则∠BDC=∠A + ∠ABD = 2x(三角形外角性质)。

- 因为BD = BC,所以∠C = ∠BDC = 2x。

- 又因为AB = AC,所以∠ABC = ∠C = 2x。

- 根据三角形内角和定理,∠A+∠ABC+∠C = 180°,即x + 2x+2x = 180°。

- 5x = 180°,解得x = 36°,所以∠A = 36°。

解等腰三角形的性质的练习题

解等腰三角形的性质的练习题

解等腰三角形的性质的练习题1. 设等腰三角形ABC中,AB=AC,以点D为底边BC的中点,连接AD。

证明:△ABD≌△ACD。

解析:首先,根据等腰三角形的定义,AB=AC。

其次,由于D为BC的中点,所以BD=DC。

再根据SSS(边边边)对应的性质,我们可以得出△ABD≌△ACD。

也就是说,两个三角形的三边分别对应相等,从而可以得出两个三角形全等。

2. 设等腰三角形ABC中,AB=AC,以AB为底边,且与AC相交于点D的高为AH。

证明:∠HAB=∠HAC。

解析:首先,我们知道等腰三角形ABC的两边AB和AC相等,所以可以得出∠A=∠B=∠C。

又因为AD为高,所以∠HAD=90°,而角HAB是等腰三角形ABC的顶角,所以角HAB也等于∠C。

综上所述,可以得出∠HAB=∠HAC。

3. 设等腰三角形ABC中,AB=AC,以AB为底边,且与AC相交于点D的中线DE。

证明:DE=BC/2。

解析:首先,我们知道等腰三角形ABC的两边AB和AC相等,所以可以得出DE=BC/2。

这是因为DE是底边BC的中线,所以根据中线分割定理,DE等于底边BC的一半,即DE=BC/2。

4. 设等腰三角形ABC中,AB=AC,以角A的平分线AM为旋转轴,将△ABC旋转180°得到△ADE。

证明:△ADE≌△ABC。

解析:首先,我们需要说明如何将△ABC旋转180°得到△ADE。

根据题意,我们以角A的平分线AM为旋转轴,将△ABC旋转180°。

旋转后,点A和点D重合,点B和点E重合,点C不动。

根据旋转的定义,可以得出△ADE≌△ABC。

5. 设等腰三角形ABC中,AB=AC,以角A的平分线AM为旋转轴,将△ABC旋转180°得到△ADE。

证明:BD=DC,BE=EC。

解析:如前一题所述,旋转后,点A和点D重合,点B和点E重合,点C不动。

由等腰三角形的定义可知,BD=DC,BE=EC。

等腰三角形的性质

等腰三角形的性质

∴∠BAD=∠CAD=50°
例2:如图,在△ABC中,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数.
解: ∵AB=AC,BD=BC=AD ∴∠ABC= ∠ C= ∠ BDC, ∠ A= ∠ ABD 设∠A=x,则∠BDC= ∠A+ ∠ABD=2x D B C A
从而∠ABC= ∠C=BDC=2x
A
D
B
C
E
等 腰 三 角 形 的 性 质
1、研究有关等腰三角形 等腰三角形 的问题,顶角平分线、底 三线合一 边中线,底边的高是常用 的辅助线;
等角对等边 2、熟练求解等腰三角形 的顶角、底角的度数;
等边三角形 3、掌握等腰三角形三线合 各角都为60º一的应用。
习题14.3
1 、 4、 7
再 见
作底边的高线 证明:等腰三角形的两个底角相等
A
已知: △ ABC中,AB=AC. 求证: ∠B= ∠C.
证明:作底边高线AD. 在Rt△BAD和△RtCAD中, B D C
AB=AC ( 已知 ),
AD=AD (公共边) , ∴ Rt △BAD ≌ Rt △CAD (HL). ∴ ∠ B= ∠C (全等三角形的对应角相等).
玻璃钢格栅盖板是一种用玻璃纤维作增强材料,不饱和聚酯树脂为基体,经过特殊的加工复合而成的一种带有许多空格的板状材料,它可以作为 结构材料,用作有腐蚀环境的地板、地沟盖板、平台、舰艇甲板、楼梯、栈道等。 ; / 玻璃钢格栅盖板 mgh03nei 格栅通过玻璃纤维交错编织,树脂浇注整体模压而成,制作的带有许多规则分布的矩形、方形空格的玻璃钢格栅板材,具有双向同性的力学特征。 可广泛应用于石油、化工电子、电力、纸业、印染、电镀、

专题04 等腰三角形的证明(解析版)

专题04 等腰三角形的证明(解析版)

专题04 等腰三角形的证明知识对接考点一、怎样解与等腰三角形有关的问题解与等腰三角形的边有关的问题时,常利用三角形的三边关系:确定能否构成三角形.当已知等腰三角形的边不能确定是腰还是底时,要分类讨论,还要考虑三角形的存在性,即两腰之和大于底边.解与等腰三角形的角有关的问题时,常利用三角形的内角和定理,遇到顶角、底角未知或仅知道两角之差但不确定大小关系时,还要注意分类讨论. 考点二、等腰三角形中的分类讨论在解决与等腰三角形的边、角有关的问题时,如果不知道已知的边是腰还是底边或不知道已知的角是顶角还是底角,就需要分类讨论.1.已知等腰三角形的两边长分别为a,b(a≠b),求周长C 时,分两种情况: (1)若腰长为a 且2a>b,则周长C=2a+b; (2)若腰长为b 且2b>a,则周长C=2b+a.2.已知等腰三角形的一个角为α,求顶角或底角的度数时,有三种情况: (1)若α为钝角,则α为顶角,底角的度数为(180°-α).(2)若α为直角,则α为顶角,且该三角形为等腰直角三角形,底角为45°.(3)若α为锐角,则应分两种情况讨论:①当α为顶角时,底角的度数为(180°-α);②当α为底角时,顶角的度数为180°-2α.特别注意:无论哪种情况,都要注意三角形的三边必须满足“任意两边之和大于第三边”,三个角必须满足“三角形的内角和等于180°”.专项训练一、单选题1.(2021·河北九年级一模)求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,CAE ∠是ABC 的外角,12∠=∠,AD ∥BC .求证AB AC =.以下是排乱的证明过程:∥又12∠=∠, ∥∥B C ∠=∠, ∥∥AD ∥BC ,∥∥1B ∠=∠,2C ∠=∠, ∥∥AB AC =.证明步骤正确的顺序是( ) A .∥→∥→∥→∥→∥ B .∥→∥→∥→∥→∥ C .∥→∥→∥→∥→∥ D .∥→∥→∥→∥→∥【答案】B 【分析】根据平行线的性质得出1,2B C ∠=∠∠=∠,再利用12∠=∠等量代换,得出B C ∠=∠,即可判定ABC 是等腰三角形,即可证明. 【详解】 具体步骤为: ∥∥AD ∥BC ,∥∥1B ∠=∠,2C ∠=∠, ∥又12∠=∠, ∥∥B C ∠=∠, ∥∥AB AC =. 故选:B . 【点睛】本题考查平行线的性质,等量代换,等腰三角形的判定与性质,解题关键是熟练掌握平行线的性质与等腰三角形的判定与性质.2.(2021·江西)如图,在∥ABC 中,∥A =36°,AB =AC ,BD 是∥ABC 的角平分线.若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个【答案】D 【详解】试题分析:在∥ABC 中,∥A=36°,AB=AC ,求得∥ABC=∥C=72°,且∥ABC 是等腰三角形;因为CD 是∥ABC 的角平分线,所以∥ACD=∥DCB=36°,所以∥ACD 是等腰三角形;在∥BDC中,由三角形的内角和求出∥BDC=72°,所以∥BDC 是等腰三角形;所以BD=BC=BE ,所以∥BDE 是等腰三角形;所以∥BDE=72°,∥ADE=36°,所以∥ADE 是等腰三角形.共5个. 故选D考点:角平分线,三角形的内角和、外角和,平角3.(2021·河北)已知:如图,ABC 中,B C ∠=∠,求证:AB AC =,在证明该结论时,只添加一条辅助线:∥作BAC ∠的平分线AD 交BC 于点D ,∥过点A 作AD BC ⊥于点D ,∥取BC 中点D ,连接AD ,∥作BC 的垂直平分线AD ,其中作法正确的个数是( )A .1B .2C .3D .4【答案】B 【分析】根据辅助线构造的条件和三角形全等的判定方法结合在一起判断求解. 【详解】∥作BAC ∠的平分线AD 交BC 于点D ,则B CBAD CAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∥∥ABD ∥∥ACD , ∥AB =AC , ∥∥作法正确;∥过点A 作AD BC ⊥于点D ,则B C BDA CDA AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∥∥ABD ∥∥ACD , ∥AB =AC , ∥∥作法正确;∥取BC 中点D ,连接AD , 无法证明∥ABD ∥∥ACD , ∥∥作法不正确;∥作BC 的垂直平分线无法证明点A 在其上,∥∥作法不正确;故选B.【点睛】本题考查了等腰三角形的性质证明,三角形全等的判定,熟练掌握三角形全等的判定定理是解题的关键.4.(2021·云南文山·)若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为()A.30B.60︒C.30或60︒D.15︒或75︒【答案】D【分析】首先根据题意作图,然后分别从等腰三角形一腰上的高在内部与在外部去分析,根据直角三角形中,如果直角边是斜边的一半,则此直角边所对的角是30°角,再由等边对等角的知识,即可求得这个三角形的底角.【详解】解:如图∥:∥CD∥AB,∥∥ADC=90°,∥CD=12AC,∥∥A=30°,∥AB=AC,∥∥B=∥ACB=18030752︒︒︒-=;如图∥:∥CD∥AB,∥∥ADC=90°,AC,∥CD=12∥∥CAD=30°,∥AB=AC,∥∥B=∥ACB∥∥DAC=∥B+∥ACB=2∥B=30°,∥∥B=∥ACB=15°.∥这个三角形的底角为:75°或15°.故选:D.【点睛】此题考查了直角三角形的性质与等腰三角形的性质.解题的关键是注意数形结合思想与分类讨论思想的应用,小心别漏解.5.(2021·广东九年级二模)已知a、b、4分别是等腰三角形三边的长,且a、b是关于x 的一元二次方程2620-++=的两个根,则k的值等于()x x kA.6B.7C.-7或6D.6或7【答案】D【分析】当a=4或b=4时,即x=4,代入方程即可得到结论,当a=b时,即∥=(−6)2−4×(k +2)=0,解方程即可得到结论.【详解】解:∥a、b、4分别是等腰三角形三边的长,∥当a=4或b=4时,即:42−6×4+k+2=0,解得:k=6,此时,2680-+=的两个根为:x1=2,x2=4,符合题意;x x当a=b时,即∥=(−6)2−4×(k+2)=0,解得:k=7,此时,2690-+=的两个根为:x1=x2=3,符合题意;x x综上所述,k的值等于6或7,故选:D.【点睛】本题考查了根的判别式,一元二次方程的解,等腰三角形的性质,熟练掌握一元二次方程的判别式和等腰三角形的性质,进行分类讨论,是解题的关键.6.(2021·甘肃兰州·九年级)如图,等腰三角形ABC中,AB=AC,∥A=46°,CD∥AB于点D,则∥DCB=()A .46°B .67°C .44°D .23°【答案】D 【分析】根据等腰三角形的性质即可求解. 【详解】解:∥等腰三角形ABC 中,AB =AC , ∥∥ABC =∥ACB ∥∥A =46°,∥∥ABC =12×(180°-46°)=12×134°=67°, ∥CD ∥AB 于D ,∥∥DCB =90°-∥ABC =90°-67°=23°, 故选:D . 【点睛】本题考查了等腰三角形的性质,本题的解题关键是求出∥ABC 的度数即可得出答案. 7.(2021·苏州高新区第二中学九年级二模)定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .3【答案】B 【分析】由已知可以写出∥B 和∥C ,再根据三角形内角和定理可以得解. 【详解】解:由已知可得:∥B=∥C=k∥A=(36k )°, 由三角形内角和定理可得:2×36k+36=180, ∥k=2, 故选B . 【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键 .8.(2021·四川成都·九年级一模)在螳螂的示意图中,AB∥DE ,∥ABC 是等腰三角形,∥ABC =124°,∥CDE =72°,则∥ACD =( )A .16°B .28°C .44°D .45°【答案】C 【分析】延长ED ,交AC 于F ,根据等腰三角形的性质得出28A ACB ,根据平行线的性质得出28CFD A,【详解】解:延长ED ,交AC 于F ,ABC ∆是等腰三角形,124ABC ∠=︒,28AACB, //AB DE ,28CFD A,72CDE CFD ACD,722844ACD,故选:C .【点睛】本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.9.(2021·全国九年级专题练习)如图,AD 是等腰三角形ABC 的顶角平分线,5BD =,则CD 等于( )A .10B .5C .4D .3【答案】B 【分析】根据等腰三角形三线合一的性质即可判断CD 的长. 【详解】∥AD 是等腰三角形ABC 的顶角平分线 ∥CD=BD=5. 故选:B . 【点睛】本题考查等腰三角形的三线合一,关键在于熟练掌握基础知识.10.(2021·河北九年级专题练习)已知m 、n 、4分别是等腰三角形(非等边三角形)三边的长,且m 、n 是关于x 的一元二次方程2x ﹣6x +k+2=0的两个根,则k 的值等于( ) A .7 B .7或6 C .6或﹣7 D .6【答案】B 【分析】当m =4或n =4时,即x =4,代入方程即可得到结论,当m =n 时,即∥=(﹣6)2﹣4×(k +2)=0,解方程即可得到结论. 【详解】当m=4或n=4时,即x=4, ∥方程为42﹣6×4+k+2=0, 解得:k=6;当m=n 时,2x ﹣6x +k+2=0 ∥1a =,6b =-,2c k =+,∥()()22464120b ac k =-=--⨯⨯+=⊿, 解得:7k =,综上所述,k 的值等于6或7, 故选:B . 【点睛】本题主要考查了一元二次方程的根、根的判别式以及等腰三角形的性质,由等腰三角形的性质得出方程有一个实数根为2或方程有两个相等的实数根是解题的关键. 二、填空题11.(2021·江苏九年级)若一条长为32cm 的细线能围成一边长等于8cm 的等腰三角形,则该等腰三角形的腰长为___cm . 【答案】12 【分析】根据题意,分腰长为8cm 和底边为8cm 两种情况并结合三角形的构成条件分类讨论即可. 【详解】解:若腰长为8cm ,则此三角形的另一边长为32-8-8=16(cm ), 而8+8=16,无法构成三角形, ∥此情形舍去;若底边为8cm ,则腰长为(32-8)÷2=12(cm ), 此时12+12>8,12+8>8,可以构成三角形. 故答案为:12. 【点睛】本题考查了三角形的构成条件、等腰三角形的性质、分类讨论的数学思想,根据题意结合三角形构成条件进行分类讨论是解题的关键.12.(2021·江苏九年级二模)顶角是36︒的等腰三角形叫做黄金三角形.如图,AC AD BE 、、是正五边形ABCDE 的3条对角线,图中黄金三角形的个数是_________.【答案】6 【分析】根据正五边形的内角和和黄金三角形的定义进行判断即可. 【详解】解:设BE 与AC 、AD 交于M 、N ,ABCDE 是正五边形,内角和为5218540(0)-⨯︒=︒,每一个内角为5405108︒÷=︒,∥∥ABC=∥BAE=∥AED=∥BCD=∥CDE=108°,∥AB=BC=AE=ED,∥∥BAC=∥BCA=36°,∥EAD=∥ADE=36°,∥∥CAD=36°,∥ACD=∥ADC=72°,∥AC=AD,∥∥ACD是黄金三角形,同理可求:∥BAN=∥ANB=∥AME=∥EAM=72°,∥CBM=∥BMC=∥DNE=∥DEN=72°,∥∥AMN、∥DEN、∥EAM、∥CMB,∥ABN也是黄金三角形.则图中黄金三角形的个数有6个.故答案为:6.13.(2021·浙江九年级期末)ABC中,∥A=36°,∥B是锐角.当∥B=72°时,我们可以如图作线段BD将ABC分成两个小等腰三角形如果存在一条线段将ABC分成两个小三角形,这两个小三角形都是等腰三角形,则∥B的角度还可以取到的有____________.【答案】54°,36°,18°,12°【分析】直线从A、B、C出发分三种情况讨论,利用等边对对角、三角形的外角性质、三角形的内角和建立方程求解,再结合题干看是否存在即可得出答案.【详解】∠=解:这条直线从A、B、C出发皆可,设B x()I假设从A出发,如下图:∥当BD=AD,AD=DC时,B BAD DAC C∴∠=∠∠=∠∴︒-︒-=︒-1803636x x此时x的值不存在;∥当BD=AD,AC=DC时∠=∠,ADC DACB BAD∠=∠ADC B BAD BAC BAD∠=∠+∠=∠-∠∴=︒-236x xx=︒;解得:12∥当BD=AD,AD=AC时∠=∠∠=∠,ADC CB BADC x x∠=︒--︒=︒-ADC B BAD x∠=∠+∠=,180361442x x∴=︒-2144解得:48x=︒︒>︒,此种情况不存在;此时4836∥当AB=AD,AD=DC时,∠=∠∠=∠,ADC CB ADBC x∠=︒-,18036∠=--︒BAD x1802()∴︒-=︒---︒x x180********x=︒(不符合题意)解得:96()II假设从B出发,如下图:∥当AD =BD ,BD =BC 时36272BDC A ABD ∠=∠+∠=︒⨯=︒72,72C B ∴∠=︒∠=︒,此情况成立;∥AD =BD ,BD =DC 时7236BDC DBC x ∠=︒∠=-︒, 3618036x x ∴-︒=︒-︒-解得:90x =︒,此时不成立;()III 假设从C 出发,如下图:∥BD =DC ,AC =DC 时362ADC A B DCB x ∠=∠=︒=∠+∠=解得:18x =︒,此时成立; ∥BD =DC ,AD =DC180362108ADC ∠=︒-︒⨯=︒,2108ADC B DCB x ∠=∠+∠==︒解得:54x =︒,此时成立; ∥BD =BC ,AD =DC 1802xBDC BCD ︒-∠=∠=,36A ACD ∠=∠=︒,BDC A ACD ∠=∠+∠ 18036362x︒-∴=︒+︒x=︒;解得:36综上所述,∥B的角度还可以取到的有54︒、36︒、12︒、18︒.故答案为:54°,36°,18°,12°.【点睛】本题考查了等腰三角形的性质、三角形内角和、三角形外角的性质,解题的关键是分情况讨论,注意不要漏掉.14.(2021·黑龙江牡丹江·中考真题)过等腰三角形顶角顶点的一条直线,将该等腰三角形分成的两个三角形均为等腰三角形,则原等腰三角形的底角度数为____.【答案】45°或36°【分析】根据等腰三角形的性质和三角形内角和定理即可得出答案.【详解】解:∥如图1,当过顶角的顶点的直线把它分成了两个等腰三角形,则AC=BC,AD=CD=BD,设∥A=x°,则∥ACD=∥A=x°,∥B=∥A=x°,∥∥BCD=∥B=x°,∥∥A+∥ACB+∥B=180°,∥x+x+x+x=180,解得x=45,∥原等腰三角形的底角是45°;∥如图2,∥ABC 中,AB =AC ,BD =AD ,AC =CD , ∥AB =AC ,BD =AD ,AC =CD , ∥∥B =∥C =∥BAD ,∥CDA =∥CAD , ∥∥CDA =2∥B , ∥∥CAB =3∥B , ∥∥BAC +∥B +∥C =180°, ∥5∥B =180°, ∥∥B =36°,∥原等腰三角形的底角为36°; 故答案为45°或36° 【点睛】本题考查了等腰三角形的性质及其判定.作此题的时候,首先大致画出符合条件的图形,然后根据等腰三角形的性质、三角形的内角和定理及其推论找到角之间的关系,列方程求解. 15.(2021·江苏盐城·中考真题)如图,在矩形ABCD 中,3AB =,4=AD ,E 、F 分别是边BC 、CD 上一点,EF AE ⊥,将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC '是以AE 为腰的等腰三角形.【答案】78或43【分析】对AEC '是以AE 为腰的等腰三角形分类讨论,当=AE EC '时,设BE x =,可得到4EC x =-,再根据折叠可得到=4EC EC x '=-,然后在Rt∥ABE 中利用勾股定理列方程计算即可;当=AE AC '时,过A 作AH 垂直于EC '于点H ,然后根据折叠可得到=C EF FEC '∠∠,在结合EF AE ⊥,利用互余性质可得到BEA AEH =∠∠,然后证得∥ABE ∥∥AHE ,进而得到BE HE =,然后再利用等腰三角形三线合一性质得到EH C H '=,然后在根据数量关系得到14=33BE BC =.【详解】解:当=AE EC '时,设BE x =,则4EC x =-, ∥ECF △沿EF 翻折得EC F '△,∥=4EC EC x '=-,在Rt∥ABE 中由勾股定理可得:222AE BE AB =+即222(4)3x x -=+, 解得:7=8x ; 当=AE AC '时,如图所示,过A 作AH 垂直于EC '于点H ,∥AH ∥EC ',=AE AC ', ∥EH C H '=, ∥EF AE ⊥,∥=90C EF AEC ''+︒∠∠,90BEA FEC +=︒∠∠ ∥ECF △沿EF 翻折得EC F '△, ∥=C EF FEC '∠∠, ∥BEA AEH =∠∠,在∥ABE 和∥AHE 中B AHE AEB AEH AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥ABE ∥∥AHE (AAS ), ∥BE HE =, ∥=BE HE HC '=, ∥12BE EC '=∥EC EC '=, ∥12BE EC =, ∥14=33BE BC =,综上所述,7483BE =或,故答案为:7483或【点睛】本题主要考查等腰三角形性质,勾股定理和折叠性质,解题的关键是分类讨论等腰三角形的腰,然后结合勾股定理计算即可. 三、解答题16.(2021·江苏徐州·中考真题)如图,将一张长方形纸片ABCD 沿E 折叠,使,C A 两点重合.点D 落在点G 处.已知=4AB ,8BC =. (1)求证:AEF ∆是等腰三角形; (2)求线段FD 的长.【答案】(1)见解析;(2)3 【分析】(1)根据矩形的性质可得//AD BC ,则FEC AFE ∠=∠,因为折叠,FEC AEF ∠=∠,即可得证;(2)设FD x =用含x 的代数式表示AF ,由折叠,AG DC =,再用勾股定理求解即可 【详解】(1)四边形ABCD 是矩形∴//AD BC∴FEC AFE ∠=∠因为折叠,则FEC AEF ∠=∠AEF AFE ∴∠=∠∴AEF ∆是等腰三角形(2)四边形ABCD 是矩形8,4AD BC CD AB ∴====,90D ∠=︒设FD x =,则8AF AD x x =-=-因为折叠,则FG x =,4AG CD ==,90G D ∠=∠=︒ 在Rt AGF △中222FG AF AG =-即222(8)4x x =-- 解得:3x =∴3FD =【点睛】本题考查了矩形的性质,等腰三角形的判定定理,图像的折叠,勾股定理,熟悉以上知识点是解题的关键.17.(2021·湖南郴州市·)如图1,在等腰直角三角形ABC 中,90BAC ∠=︒.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90︒得到AG ,连接GC ,HB .(1)证明:AHB AGC ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q . ∥证明:在点H 的运动过程中,总有90HFG ∠=︒;∥若4AB AC ==,当EH 的长度为多少时,AQG 为等腰三角形?【答案】(1)见详解;(2)∥见详解;∥当EH 的长度为2AQG 为等腰三角形 【分析】(1)由旋转的性质得AH =AG ,∥HAG =90°,从而得∥BAH =∥CAG ,进而即可得到结论; (2)∥由AHB AGC ≌,得AH =AG ,再证明AEH AFG ≌,进而即可得到结论;∥AQG 为等腰三角形,分3种情况:(a )当∥QAG =∥QGA =45°时,(b )当∥GAQ =∥GQA =67.5°时,(c )当∥AQG =∥AGQ =45°时,分别画出图形求解,即可. 【详解】解:(1)∥线段AH 绕点A 逆时针方向旋转90︒得到AG , ∥AH =AG ,∥HAG =90°,∥在等腰直角三角形ABC 中,90BAC ∠=︒,AB =AC , ∥∥BAH =90°-∥CAH =∥CAG , ∥AHB AGC ≌;(2)∥∥在等腰直角三角形ABC 中,AB =AC ,点E ,F 分别为AB ,AC 的中点, ∥AE =AF ,AEF 是等腰直角三角形, ∥AH =AG ,∥BAH =∥CAG , ∥AEH AFG ≌, ∥∥AEH =∥AFG =45°,∥∥HFG =∥AFG +∥AFE =45°+45°=90°,即:90HFG ∠=︒; ∥∥4AB AC ==,点E ,F 分别为AB ,AC 的中点, ∥AE =AF =2,∥∥AGH =45°,AQG 为等腰三角形,分3种情况:(a )当∥QAG =∥QGA =45°时,如图,则∥HAF =90°-45°=45°, ∥AH 平分∥EAF , ∥点H 是EF 的中点,∥EH 12=(b )当∥GAQ =∥GQA =(180°-45°)÷2=67.5°时,如图,则∥EAH =∥GAQ =67.5°, ∥∥EHA =180°-45°-67.5°=67.5°, ∥∥EHA =∥EAH , ∥EH =EA =2;(c )当∥AQG =∥AGQ =45°时,点H 与点F 重合,不符合题意,舍去,综上所述:当EH 的长度为2时,AQG 为等腰三角形.【点睛】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.18.(2021·江苏九年级二模)如图(1),已知矩形ABCD 中,6cm AB BC ==,,点E 为对角线AC 上的动点.连接BE ,过E 作EB 的垂线交CD 于点F .(1)探索BE 与EF 的数量关系,并说明理由.(2)如图(2),过F 作AC 垂线交AC 于点G ,交EB 于点H ,连接CH .若点E 从A 出发沿AC 方向以/s 的速度向终点C 运动,设E 的运动时间为s t . ∥是否存在t ,使得H 与B 重合?若存在,求出t 的值;若不存在,说明理由; ∥t 为何值时,CFH △是等腰三角形; ∥当CG GH =时,求CGH 的面积.【答案】(1)BE =;(2)∥t=1,∥t =; 【分析】(1)连接BF ,易证B. C. F. E 四点共圆,,AD EFtan ACD tan EBF CD BE∠==∠=即可求证出BE = ;(2)∥存在,当H 、B 重合时,如图所示,结合(1)知可得BG =3,CG =,同理可知CF =2,FG =1,EG CG ==CE =,由此可得t=1,∥先得出60CFH ∠=︒ ,再由△FHC 为等腰三角形,推出△FHC 为等边三角形进而得出45CEB ∠=︒ ,△ABE =15°,△EBC =75°,根据△BCH =30°得出CH=CB=CF ,根据题意列等式64t -=求出t =,∥过点E 作MN 垂直AB ,设AE =,求证出 ~FEM EBN ∆∆ ,根据相似的性质结合4DF t =,64CF t =- ,32FG t =- 得出EG =-=,再结合EGH FGE ∽得出()232t -=进而表示出CG ,代入面积公式()21CG 2CGH S ∆==即可; 【详解】解:(1)连接BF ,如图:已知矩形ABCD 中,BE EF ⊥ , ∥∥BEF =∥BCF =90°,∥点B , C ,F , E 四点共圆,∥∥EBF =∥ACD (同圆中同弧所对圆周角相等),∥,AD EFtan ACD tan EBF CD BE∠==∠=∥BE =(2) ∥存在,当H 、B 重合时,如图所示:由(1)知,∥EBF =30°, ∥∥ACD =∥EBF =30°, 则∥ACB =60°,∥FH AC ⊥ 即∥BGC =90°,BC =∥BG =3,CG =,同理可得CF=2,FG=1,EG CG ==∥CE =, ∥AE AC CE =- ,又∥已知矩形ABCD 中,6cm AB BC ==,,∥AC =,∥AE =∥点E 从A 出发沿AC 方向以/s 的速度向终点C 运动, ∥t=1; ∥∥∥CFH 为等腰三角形, 又∥∥ACD =30°, ∥60CFH ∠=︒ , ∥∥CFH 为等边三角形, ∥FG =GH ,又由(1)知90BEF ∠=︒, ∥FG =GH =EG , ∥45CEB ∠=︒ , ∥∥ABE =15°, ∥∥EBC =75°, ∥∥BCH =30°,∥∥CHB 为等腰三角形, ∥CH =CB =CF ,∥3CE CG EG =+=,∥3AE CE == ,即3= ,解得:t =, ∥由题意知:过点E 作MN 垂直AB ,设AE =,则由(1)得EN =,3t AN =,∥∥FME =∥ENB ,∥FEM +∥BEN=∥BEN +∥EBN=90°, ∥∥FEM =∥EBN , ∥FEM EBN ∆~∆ , ∥ME MFBN EN= ,,∥MF =t ,∥4DF DM MF AN MF t =+=+=,则64CF t =- , ∥32FG t =- ,∥CG = ,EG AC AE CG =--=-=,在t R EFH ∆中,EG FH ⊥ ,,EGH FGE ∴∽ ,EG GH FG EG∴= ∥2EG GH FG =⨯ ,∥()()232t =⨯-,∥()232t -∥CG GH =,∥()()221122CGH S CG ∆===; 【点睛】此题属于四边形综合试题,考查动点问题,涉及到圆周角,三角形相似,特殊角的直角三角形各边的关系及等边三角形的证明,有一定难度.19.(2021·苏州市胥江实验中学校九年级)如图,在ABC 中,以AB 为直径的O 交BC 边于点D ,交AC 边于点E .过点D 作O 的切线,交AC 于点F ,交AB 的延长线于点G ,且DF AC ⊥,连接DE .(1)求证:ABC 是等腰三角形; (2)求证:2DE EF AC =⋅;(3)若6BG =,2CF =,求O 的半径. 【答案】(1)见解析;(2)见解析;(3)3 【分析】(1)DF 是△O 的切线,得到∥ODF =90°,再求出∥C +∥FDC =90° ,∥C =∥BDO ,由OB =OD ,得∥BDO =∥ABC .∥C =∥ABC ,即可求解.(2)因为AB 是直径,得到90ADB ∠=︒,知道AB AC =,BAD CAD ∠=∠,BD DE =,推出,ABD DEF ∽,得到AC DEDE EF=即可求解; (3)求出∥ODG∥∥AFG ,得出比例式,即可求出圆的半径. 【详解】(1)证明: ∥DF 是△O 的切线, ∥OD ∥DF . ∥∥ODF =90°.又∥∥BDO +∥ODF +∥FDC =180°, ∥∥BDO +∥FDC =90°. ∥DF ∥AC , ∥∥DFC =90°, ∥∥C +∥FDC =90°. ∥∥C =∥BDO . ∥OB =OD , ∥∥BDO =∥ABC . ∥∥C =∥ABC . ∥AB =AC .∥∥ABC 是等腰三角形; (2)连接AD ,∥AB 是直径 90ADB ∴∠=︒, AB AC =,BAD CAD ∴∠=∠,BD DE ∴=,在ABD △和DEF 中90ADB DFE ABD DEF∠=∠=︒⎧⎨∠=∠⎩ ABD DEF ∴∽,AB BDDE EF∴= ,AB AC BD DE ==AC DEDE EF∴= 2DE EF AC ∴=⋅ (3)解:∥AB =AC , ∥∥ABC =∥C , ∥OB =OD , ∥∥ABC =∥ODB , ∥∥ODB =∥C , ∥OD ∥AC , ∥∥GOD ∥∥GAF , ,OD GOAF GA∴= ∥设△O 的半径是r ,则AB =AC =2r , ∥AF =2r -2, 6,2262r rr r+∴=-+ ∥r =3,经检验:3r =是原方程的根,且符合题意, 即△O 的半径是3.【点睛】本题考查了切线的性质,圆内接四边形,相似三角形的性质和判定,圆周角定理,等腰三角形的性质等知识点,能综合运用知识点进行推理是解此题的关键. 20.(2021·广东中山·)如图,已知等腰ABC ∆的顶角36A ∠=︒.(1)根据要求用尺规作图:作ABC ∠的平分线交AC 于点D ;(不写作法,只保留作图痕迹.)(2)在(1)的条件下,证明:BDC ∆是等腰三角形. 【答案】(1)见解析;(2)见解析 【分析】(1)以点B 为圆心,适当长为半径画弧,交AB 、BC 于点M 、N ,然后以点M 、N 为圆心,大于MN 长的一半为半径画弧,交于点O ,连接BO ,交AC 于点D ,则问题可求解; (2)由题意易得72ABC C ∠=∠=︒,然后可得72C CDB ∠=∠=︒,则问题可求证. 【详解】.解:(1)如图所示:BD 即为所求;(2)∥36A ∠=︒,∥()18036272ABC C ∠=∠=︒-︒÷=︒, ∥BD 平分ABC ∠,∥72236ABD DBC ∠=∠=︒÷=︒, ∥1803672872CDB ∠=︒-︒-=︒, ∥72C CDB ∠=∠=︒, ∥BD BC =,∥BDC都是等腰三角形.【点睛】本题主要考查角平分线的尺规作图及等腰三角形的性质与判定,熟练掌握角平分线的尺规作图及等腰三角形的性质与判定是解题的关键.21.(2021·浙江)如图,矩形ABCD中,点E为BC边上一点,把ABE△沿着AE折叠得到AEF,点F落在AD边的上方,线段EF与AD边交于点G.(1)求证:AGE是等腰三角形(2)试写出线段FG,GD,EC三者之间的数量关系式(用同一个等式表示),并证明.【答案】(1)证明见解析;(2)GD=GF+EC,证明见解析.【分析】(1)根据矩形性质、折叠性质及等角对等边可以得到证明;(2)根据折叠性质及(1)可得AG+GD=FG+GA+EC,从而得到GD=GF+EC.【详解】解:(1)证明:在矩形ABCD中,有:AD∥BC且AD=BC.∥∥DAE=∥BEA.∥∥ABE沿着AE折叠得到∥AEF.∥∥AEB= ∥AEG.∥∥GAE=∥GEA.∥GA=GE.∥∥AGE是等腰三角形.(2)GD=GF+EC.证明:根据折叠的性质:BE=EF.∥GE=GA、AG+GD=BE+EC.∥AG+GD=EF+EC.∥EF=FG+GE=FG+GA.∥AG+GD=FG+GA+EC.∥GD=GF+EC.【点睛】本题考查矩形的折叠问题,熟练掌握矩形的性质、折叠的性质、等腰三角形的判定与性质是解题关键.22.(2021·安徽)如图,AB为半圆O的直径,点C为半圆上不与A,B重合的一动点,AC =CD,连接AC,CD,AD,BC,延长BC交AD于F,交半圆O的切线AE于E.(1)求证:∥AEF是等腰三角形;(2)填空:∥若AE BE=5,则BF的长为;∥当∥E的度数为时,四边形OACD为菱形.【答案】(1)见详解;(2)∥3;∥60°【分析】(1)由AB为半圆O的直径,AE是切线,可得∥EAC=∥ABC,结合圆周角定理的推论可得∥EAC=∥CAD,从而得ACE≌ACF,,进而即可得到结论;(2)∥由等腰三角形的性质得EF=2CE,再利用勾股定理求出AB的值,然后利用面积法求出AC的值,进而即可求解;∥利用菱形的性质和圆的性质,可得ACO是等边三角形,结合圆周角定理,即可求得答案.【详解】(1)证明:∥AB为半圆O的直径,AE是切线,∥∥ACB=90°,∥EAB=90°,∥∥EAC+∥CAB=∥CAB+∥ABC=90°,∥∥EAC=∥ABC,∥AC=CD,∥∥ABC =∥CAD,∥∥EAC=∥CAD,又∥∥ACE=∥ACF=90°,AC=AC,∥ACE≌ACF,∥AE=AF,∥∥AEF是等腰三角形;(2)∥∥∥AEF是等腰三角形,AE=AF,AC∥BE,∥点C是EF的中点,即:EF=2CE,∥AE ∥AB ,∥AB∥1122AEBSAE AB BE AC =⋅=⋅,∥2AE AB AC BE ⋅===,∥1CE =, ∥EF =2CE =2, ∥BF =BE -EF =5-2=3, 故答案是:3; ∥连接OC ,∥四边形OACD 为菱形, ∥OA =OD =CD =AC =OC , ∥ACO 是等边三角形, ∥∥AOC =60°, ∥∥ABE =30°, ∥∥E =90°-30°=60°. 故答案是:60°.【点睛】本题主要考查圆周角定理,切线的性质,菱形的性质,等腰三角形的判定和性质,熟练掌握圆周角定理及其推论,是解题的关键.23.(2021·广东)如图,已知等腰三角形ABC 的顶角∥A =108°.(1)在BC 上作一点D ,使AD =CD (要求:尺规作图,保留作图痕迹,不必写作法和证明).(2)求证:∥ABD 是等腰三角形.【答案】(1)见解析;(2)见解析【分析】(1)根据线段垂直平分线的尺规作图直接进行求解即可;(2)由题意易得∥B=∥C=36°,然后根据三角形内角和与外角的性质及等腰三角形的判定可进行求解.【详解】解:(1)如图,点D即为所求;(2)连接AD,∥AB=AC,∥A=108°,∥∥B=∥C=36°,由(1)得:AD=CD,∥∥DAC=∥C=36°,∥∥ADB=∥DAC+∥C=72°,∥BAD=∥BAC﹣∥DAC=108°﹣36°=72°,∥∥BAD=∥BDA,∥AB=BD,∥∥ABD是等腰三角形.【点睛】本题主要考查线段垂直平分线及等腰三角形的判定与性质,熟练掌握各个知识点是解题的关键.。

直角等腰三角形证明题

直角等腰三角形证明题

直角等腰三角形证明题直角等腰三角形证明题直角等腰三角形是指有两条边相等且与第三边成90度角的三角形。

证明一下,在一个直角三角形中,两条直角边相等。

1. 假设三角形ABC是一个直角等腰三角形,其中∠C = 90度,且AC= BC;2. 从顶点C,向AB边上的点D引一条垂线,使CD与AB垂直相交于点D;3. 我们可以得出CD = AD,CB = BD,因为∠CAD = ∠CBD = 90度,所以AC与BC是CD与BD的斜边;4. 由于AC = BC,CD = AD,则三角形ACD与三角形BCD是相等的;5. 由于∠ACD = ∠BCD,所以∠A = ∠B。

综上所述,由等腰三角形的性质可以得知,直角三角形的两条直角边相等。

在上述证明中,我们使用了垂足定理来证明。

垂足定理指出,从点到一条直线的垂直距离,是到该直线上任何一点的最短距离。

在三角形ABC中,因为CD是从垂足到斜边的距离,所以AC与BC作为斜边的长度是最短的,因此CD等于AD以及CB等于BD。

在数学中,证明是非常重要的一项技能。

证明可以让我们更深入地理解一个问题,也可以让我们训练自己的逻辑思维能力。

直角等腰三角形的证明,也可以锻炼我们的证明能力。

在证明中,我们需要能够理清思路,提取关键信息,分析现有的定理,使用正确的推理方法,以及表述清晰,简洁明了。

这些技能不仅对数学有用,也会在其它学科以及职场中有帮助。

虽然本文证明了一个看似简单的定理,但是其中的技能和方法,是我们在学习数学中时常需要掌握的。

我们需要不断地练习,以便掌握这些技能和方法,提高我们的证明能力。

《等腰三角形》证明题题型归类训练(十二种题型)

《等腰三角形》证明题题型归类训练(十二种题型)

《等腰三角形》证明题题型归类训练(十二种题型)等腰三角形证明题题型归类训练(十二种题型)1. 等腰三角形的定义题型题目:定义等腰三角形并给出一个例子。

解析:等腰三角形是指具有两条边长度相等的三角形。

例如,三角形ABC中AB=AC,那么三角形ABC就是一个等腰三角形。

2. 根据等腰三角形的性质题型题目:已知三角形ABC是等腰三角形,AB=AC,角A=40°,求角B和角C的度数。

解析:由于三角形ABC是等腰三角形,所以AB=AC。

又因为角A=40°,所以角B=角C=(180°-40°)/2=70°。

3. 等腰三角形的边长关系题型题目:在等腰三角形ABC中,AB=5cm,AC=5cm,BC=8cm,求角B和角C的度数。

解析:由于三角形ABC是等腰三角形,所以AB=AC。

又因为BC=8cm,所以角B和角C是等角,可以使用余弦定理来求解。

根据余弦定理,设角B和角C的度数为x°,则BC² = AB² + AC² - 2 * AB * AC * cos(x°)8² = 5² + 5² - 2 * 5 * 5 * cos(x°)64 = 50 - 50 * cos(x°)50 * cos(x°) = -14cos(x°) = -14/50x ≈ 120°所以角B和角C的度数约为120°。

4. 等腰三角形的高题型题目:在等腰三角形ABC中,AB=5cm,AC=5cm,BC=8cm,求高的长度。

解析:由于三角形ABC是等腰三角形,所以AB=AC。

又因为BC=8cm,所以角B和角C是等角,可以使用正弦定理来求解。

根据正弦定理,设等腰三角形ABC的高为h,角B和角C的度数为x°,则h/sin(x°) = BC/sin(90°)h/sin(x°) = 8/sin(90°)h/sin(x°) = 8/1h/sin(x°) = 8所以等腰三角形ABC的高的长度为8cm。

等腰三角形的判定与性质证明题

等腰三角形的判定与性质证明题

等腰三角形的判定与性质证明题等腰三角形是指两边长度相等的三角形。

判定一个三角形是否为等腰三角形可以通过观察其边长或角度来确定。

以下是等腰三角形的判定方法和性质证明。

判定方法1. 观察边长:如果一个三角形的两条边的长度相等,则它是一个等腰三角形。

2. 观察角度:如果一个三角形的两个角度相等,则它是一个等腰三角形。

性质证明对于一个等腰三角形 ABC:1. 边长性质证明:等腰三角形的两边长度相等,即 AB = AC。

证明步骤:- 假设 AB = AC。

- 通过使用三角形内角和公式可得到:∠B + ∠C + ∠A = 180°。

- 由于∠B = ∠C(等腰三角形的性质),可以将∠B + ∠B +∠A = 180°重写为:2∠B + ∠A = 180°。

- 由于∠B = ∠C,所以∠A = 180° - 2∠B。

- 将∠A 的度数代入等腰三角形 ABC 中的∠A + ∠B + ∠C = 180°可得到:180° - 2∠B + ∠B + ∠B = 180°,即∠B = ∠B。

- 因此,∠B = ∠C, AB = AC 成立。

所以 AB = AC。

2. 角度性质证明:等腰三角形的两个底角(底边两边所对的角)相等,即∠B = ∠C。

证明步骤:- 假设∠B = ∠C。

- 通过使用三角形内角和公式可得到:∠B + ∠C + ∠A = 180°。

- 将∠B = ∠C 代入该等式中可得到:2∠B + ∠A = 180°。

- 由于∠B = ∠C,可以将上述等式重写为:2∠C + ∠A = 180°。

- 通过简单的计算得到:∠A = ∠B。

- 因此,∠B = ∠C 成立。

综上所述,等腰三角形的判定方法是观察边长或角度是否相等。

等腰三角形具有边长相等和底角相等的性质。

以上是对等腰三角形判定与性质的完整证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

求证:M 是BE 的中点。

A
D
1
B
M C E
2. 如图,已知:AB C ∆中,AC AB =,D 是BC 上一点,且
CA DC DB AD ==,,求BAC ∠的度数。

A
B
C
D
3. 已知:如图,AB C ∆中,AB CD AC AB ⊥=,于D 。

求证:
DCB 2B AC ∠=∠。

A 1 2
D B
C
E
3
4.已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。

求证:AE =AF 。

A
E F
B
D
C
5. 如图,AB C ∆是等边三角形,BC BD 90CBD ==∠,
,求1∠的度数
C
A 1
D
B
2 3
6.已知:如图, △ABC 中, ∠ABC=2∠ACB, AD ⊥BC 于D . 求证:DC=AB+BD .
7. 已知:如图,AD 平分∠BAC ,EF 垂直平分AD 交BC 延长线于F ,连结AF . 求证:∠B=∠CAF.
已知:如图, △ABC 是等边三角形, D 是BC 的中点, DF
⊥AC 于F, 延长DF 到E, 使EF=DF, 连结AE,
求:∠E 的度数.
一、选择题:
1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒
,∠CAD=65︒
,则∠ACD 等于
( )
A .50︒
B .65︒
C .80︒
D .95︒
2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆=
( ) A .3:4 B .4:3 C .16:19 D .不能确定 3.如图3,在△ABC 中,∠C=90︒
,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:
①AD 平分∠CDE ;
②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。

其中正确的有
( )
A .2个
B .3个
C .4个
D .1个
4.如图4,AD ∥BC ,∠D=90︒
,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD
上,则PD 与PC 的大小关系是 ( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( ) A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点; C 、三角形三条中线的交点;D 、三角形三条高的交点。

6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( ) A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定
7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB
=∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( )
A 、①②③④
B 、①③
C 、②④
D 、②③④
7题图 8题图 9题图 8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC
交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )
A 、3㎝
B 、4㎝
C 、5㎝
D 、不能确定
9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在
本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的
距离相等,这样可供选择的地址有( )处。

A 、1B 、2 C 、3 D 、4 二、填空题:
1、已知:线段AB 及一点P ,PA=PB ,则点P 在 上。

2、已知:如图,∠BAC=1200
,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= 。

3、△ABC 中,∠A=500
,AB=AC,AB 的垂直平分线交AC 于D 则∠DBC 的度数 。

4、如图,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B ∠BAE ,∠C ∠GAF ,若∠BAC=1260
,则∠EAG= 。

第2题 第4题 第5题 5、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 。

F D
E C B A
D
E C B A P D C
B
A E
D C
B A D
C
B A
E D C
B A
图3 图4
图1 图2 c
b a
6、在△ABC 中,AB 、AC 的垂直平分线相交于点P ,则PA 、PB 、PC 的大小关系
是 。

7、在△ABC 中,AB=AC, ∠B=580
,AB 的垂直平分线交AC 于N,则∠NBC= 8.如图,已知AB ∥CD ,O 是∠ACD 和∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE =2,则两平行线AB 、CD 间的距离为______。

9.如图所示,已知PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB ,∠MON =50°,∠OPC =30°,则∠PCA =_____。

10.如图所示,在ABC ∆中,∠C =90°,折叠后,使A 、B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则∠A 等于____度。

8题图 9题图 10题图 三、解答题
1、如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E
求证:(1)∠EAD=∠EDA ;
(2)DF ∥AC (3)∠EAC=∠B
2.如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线MN 分别交BC 、
AB 于点M 、N .求证:CM =2BM .
3、如图12,PA=PB ,∠1+∠2=180︒。

求证:OP 平分∠AOB 。

2
1)
O
P
B
A
4、如图13,△ABC 中,P 、Q 分别是BC 、AC 上的点,PR ⊥AB 于R ,PS ⊥AC 于S ,
若AQ=PQ ,RP=PS 。

则PQ 与AB 是否平行?请说明理由。

S Q R
P
C
B A
E
O
D
C
B
A N
O
P
M
C
B
A E
D
C
B
A。

相关文档
最新文档