镁合金变形加工.
铸造工艺必然造成镁合金内部变形原因-概述说明以及解释
铸造工艺必然造成镁合金内部变形原因-概述说明以及解释1.引言1.1 概述镁合金作为一种重要的结构材料,在航空、汽车和电子等领域有广泛的应用。
然而,在镁合金的铸造过程中,不可避免地会产生一定的内部变形。
这种内部变形可能会对材料的性能和使用寿命产生负面影响,因此了解造成镁合金内部变形的原因显得尤为重要。
铸造工艺是造成镁合金内部变形的主要原因之一。
在铸造过程中,温度的变化可能会导致热应力的产生。
当镁合金在冷却过程中迅速从高温状态转变为低温状态时,由于不同部分的冷却速度不一致,会在材料内部产生应力,从而导致变形现象的发生。
此外,快速冷却也是导致镁合金内部变形的一个重要原因。
快速冷却会使镁合金迅速凝固收缩,并且由于凝固过程中的体积变化不一致,可能会引起材料的内部应力,导致材料发生变形。
在浇注过程中,气孔和缩孔的存在也会对镁合金的内部变形产生影响。
气孔和缩孔是由于气体在浇注过程中被困在材料内部或者材料受到收缩作用而形成的。
这些孔隙会导致材料的局部应力集中,从而引起变形。
除了铸造工艺外,材料本身的性质也会对镁合金的内部变形起到重要的影响。
首先,镁合金具有较低的熔点和较高的热膨胀系数,使得在铸造过程中容易出现热应力和热收缩引起的变形。
其次,材料的非均匀性和晶粒结构也会导致内部变形的发生。
这些因素会使得材料的内部应力不均匀分布,从而引起变形。
此外,化学成分的变化和杂质的存在也可能对镁合金的内部变形产生影响。
化学成分的改变可能改变材料的热膨胀系数和熔点,导致变形问题的发生。
而存在于合金中的杂质则可能影响材料的晶粒结构和力学性能,从而导致变形的发生。
总结而言,铸造工艺必然会对镁合金的内部产生一定程度的变形。
这种变形主要是由于温度变化导致的热应力、快速冷却引起的凝固收缩以及浇注过程中的气孔和缩孔等因素所致。
此外,材料本身的性质如低熔点、高热膨胀系数、非均匀性和晶粒结构,以及化学成分的变化和杂质的存在也会对变形问题产生影响。
镁合金的冲压成形工艺
镁合金的冲压成形工艺近年来镁合金发展速度很快,每年都以20%~30%的速度增长。
镁合金广泛用于汽车、摩托车、自行车等一些交通工具领域内,采用最多的加工方法是模具冲压成形。
冲压生产相比其它成形加工方法来说,具有生产率高,操作简单,零件表面光洁,尺寸精度高,强度和刚度大等优点。
因此,特别适合于车辆的内外壳板、承载零件、散热片、挡泥板等之类零件。
它的冲压性能和成形方法有别于钢板和铝板的成型工艺。
要扩大镁合金的应用范围,研究镁合金板材冲压技术具有重要义。
镁合金的冲压成形冲压加工是借助于常规或专用冲压设备的动力,使板料在模具里直接受到变形力并进行变形,从而获得一定形状,尺寸和性能的产品零件的生产技术。
板料,模具和设备是冲压加工的三要素。
冲压加工是一种金属冷变形加工方法。
所以,被称之为冷冲压或板料冲压,简称冲压。
它是金属塑性加工(或压力加工)的主要方法之一,也隶属于材料成型工程技术。
冲压所使用的模具称为冲压模具,简称冲模。
冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。
冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。
冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。
与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点。
主要表现如下。
(1)冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。
这是因为冲压是依靠冲模和冲压设备来完成加工,普通压力机的行程次数为每分钟可达几十次,高速压力要每分钟可达数百次甚至千次以上,而且每次冲压行程就可能得到一个冲件。
(2)冲压时由于模具保证了冲压件的尺寸与形状精度,且一般不破坏冲压件的表面质量,而模具的寿命一般较长,所以冲压的质量稳定,互换性好,具有“一模一样”的特征。
(3)冲压可加工出尺寸范围较大、形状较复杂的零件,如小到钟表的秒表,大到汽车纵梁、覆盖件等,加上冲压时材料的冷变形硬化效应,冲压的强度和刚度均较高。
变形镁合金的分类、强化机制以及塑性加工
从 而 降耗 节 能 ,减 少 污 染 ,增 加舒 适 度 ;采用 镁 合 金 制造 移 动 电话 、笔 记 本 电脑 、数码 相 机 等“ 3 C ”( 即 C o mmu n i c a t i o n s通 信 、 C o m p u t e r 计 算机 和 C o n s u me r E l e c t r o n i c s消 费类 电子 ) 产 品 ,能够 显 著 增 强产 品的抗 震 能 力 ,并 能有 效 地 减 轻对 人 体 和周 围环境 的 电磁辐 射 。镁 被 誉
MB 3 、MB5等 。Mg — A1 一 Z n系合 金是 发展 最早 , 应 用 也 很 广泛 的一 类镁 合 金 。它 的主 要 特点 是 具 有 较好 的室 温 力学 性 能 ,能 够进 行 热 处理 强 化 ,并有 良好 的焊 接 性 能和 铸造 性 能 ,能够 制 成 复 杂 形状 的锻 件 和 模锻 件 。但 其 屈 服 强度 和 耐 热性 不 够 高 。铝 是 该合 金 系 中 的主 要合 金 化 元 素 ,其 主 要作 用 是 提 高合 金 的 室温 强 度 ,赋 予 热处 理 强化效 果 。从 Mg — A1 二元 合金相 图上 可 以看 出¨ J ,铝 在镁 中的 溶解 度很 大 ,在 共 晶
变形镁 合金 的分类 \强化机 制 以及塑性加工
郭菲菲
( 北 京有 色金 属与稀 土 应 用研 究所 ,北 京 1 0 0 0 1 2 )
摘 要 :变形 镁合 金 具有 更低 成 本 、更 高强 度 、延 展性 以及 更 高 力学性 能 的特 点 ,变形 镁 合金主要可以分为镁- 锂系合金、镁- 锰系合金、镁一 铝一 锌系合金、镁一 锌一 锆系合金等。 镁合
镁合金的塑性变形及再结晶热处理对其组织性能的影响
4
轧制前的平均晶粒尺寸约40um, 15%压下量轧制并退火后平均晶粒
3.3 EX-AZ31B: tensile properties on different directions
TD 45
TD
orientation
σb/ MPa
σ0.2/ MPa
δ/ %
ED
280.0
200.4
13.2
ED
45°
258.0
125.2
19.0
TD
276.0
107.4
16.2
ED
350
➢ 有色金属材料制品中70%以上是板、带材,轧制变形 镁合金板材的研究和加工技术的突破对开发变形镁合 金产品有重要促进作用。
2、变形镁合金塑性变形原理
➢ 镁合金的塑性变形特征:HCP晶体结构及c/a轴比值造成镁的 塑性变形困难。
➢ 塑性变形机制:滑移、孪生、超塑性; ➢ 板材塑性加工方法:热加工、温加工、冷(常温)加工;
压下量
14
退火工艺
15%
30%
45%
55%
12
200度退火1h
8.9um
6.9um
5.8um
4.9um
10
400度退火5min
12.1um
8.2um
7.5umum
9.2um
7.8um
7.0um
6
annealing1h at 2000c annealing1h at 3500c
0.01 s-1
0.1 s-1
1 s-1
5s-1
10s-1
1
σ
1 0.0227
l 82
n
Z 5.5 5 1 01 2
镁合金塑性变形机制概述
使 扩 展 位 错 容 易 束 集 , 上的临界切应力与温度的关系
容易发生非基面滑移,
如 Ag、Al、Li 等元素降低 c/a 值,提高层错能,激活潜在 晶向为 < 112ˉ3 > 的潜在锥面滑移系,从而影响镁合金
的塑性变形模式;晶粒细化可以降低非基面滑移系的
临界切应力,容易激活镁合金的棱柱面和锥面滑移系。
轴施加压应力分量才能发生孪生,当 c/a> 3 时,外加
载荷方向与上面相反,当 c/a= 3 时,任何外加载荷都 不能发生 {101ˉ2} 孪生;变形温度越低越有利于孪晶的 发生,由于孪生是一个应力激活过程,低温时镁合金各 滑移系难以启动,晶界附近容易发生位错塞积产生应 力集中,温度越低,应力集中越严重,越有利于孪晶的 发生来协调变形。变形温度对孪生模式和孪生形貌都 有影响,Myshlyaev 等人[8]通过对 AZ31 镁合金扭转实验 发现,在 453~513 K 范围内孪晶呈钻石状分布,在 573~ 633 K 时,孪晶成多边形而且取向杂乱;应变速率越快 越有利于孪生发生,而且当应变速率不同时产生的孪 晶也不同,B.H.Yoshinaga 等人[6]发现在低应变速率条 件下 {101ˉ5} 孪生为主要塑性变形模式,在高应变速率 下主要为 {112ˉ4} 孪生;晶粒尺寸对孪生也有很大影响, 晶粒尺寸越小越容易启动非基面滑移和增加动态回复 来释放晶界处应力集中,使应力集中难以达到孪晶形 核的要求。
25.2× 10-6
155.5
44.5
38.6I ACS
由于很多金属矿产资源逐渐枯竭,而镁资源比较 丰富,特别是近年来结构轻量化的技术要求和环保要 求的不断提高,因此,镁合金的需求量日益增加,镁合 金工业迅速发展,这也促进了镁合金技术的显著提高, 并在镁合金熔炼、成型、净化、表面处理和防腐及高性 能镁合金材料研发等技术取得了很大研究成果。与其 他金属结构材料相比,镁及其合金具有密度低、比强度 和刚度高、弹性模量小、抗电磁干扰及屏蔽性强、阻尼 减震性 好 、导 热 性 好 、机 加 工 性 能 好 、容 易 回 收 等 优 异性能[5],因而在航空工业、汽车工业、电子产品、纺织 和印刷业都有广泛应用。特别是近几年,随着高纯镁 合金技术制备成熟及 SF6等气体保护的熔炼技术的成 功运用,镁合金耐蚀性能的问题也基本解决,因而在国 内外市场上数码相机、笔记本电脑、摄像机等电子产品 应用逐渐扩大。随着镁合金制备技术和成型技术日益完 善,镁合金在航空领域和汽车工业都有更好的发展前景。
变形镁合金标准
变形镁合金标准变形镁合金标准1.概述2.变形镁合金是一种轻质、高强、耐腐蚀的金属材料,具有优异的力学性能和良好的加工性能。
变形镁合金广泛应用于航空、航天、汽车、电子、通讯等领域。
本标准主要规定了变形镁合金的化学成分、机械性能、制造工艺、物理性能、耐腐蚀性、使用寿命、安全性和环保要求以及质量控制等方面的要求。
3.化学成分4.变形镁合金的化学成分应符合相关国家标准或行业标准的规定。
其中,主要元素包括镁、铝、锌、锆等,辅助元素包括铁、硅、锰等。
在化学成分方面,变形镁合金应具有合适的合金元素含量和良好的杂质控制,以确保其优异的力学性能和耐腐蚀性。
5.机械性能6.变形镁合金应具有良好的机械性能,包括抗拉强度、屈服强度、延伸率和硬度等。
这些指标应符合相关国家标准或行业标准的规定。
在机械性能方面,变形镁合金应具有高强度、高刚性和良好的塑性,以满足各种工程应用的需求。
7.制造工艺8.变形镁合金的制造工艺主要包括熔炼、铸造、挤压、轧制、锻造等环节。
在制造工艺方面,应控制好各个环节的参数,以确保变形镁合金的尺寸精度、表面质量和加工性能。
此外,应采用适当的热处理工艺,以优化变形镁合金的力学性能和耐腐蚀性。
9.物理性能10.变形镁合金应具有良好的物理性能,包括密度、热导率、比热容、线膨胀系数等。
这些指标应符合相关国家标准或行业标准的规定。
在物理性能方面,变形镁合金应具有轻质、高比强度、优良的热导率和良好的尺寸稳定性等特点。
11.耐腐蚀性12.变形镁合金应具有良好的耐腐蚀性,能够在各种腐蚀环境下长期稳定工作。
耐腐蚀性主要包括化学耐腐蚀性和电化学耐腐蚀性两个方面。
在耐腐蚀性方面,变形镁合金应具有较好的抗大气腐蚀、抗海洋腐蚀和抗化工腐蚀等能力。
13.使用寿命14.变形镁合金的使用寿命应满足工程应用的要求。
在正常工作条件下,变形镁合金应具有较长的使用寿命和良好的抗疲劳性能。
在使用寿命方面,应对变形镁合金的耐磨性、抗疲劳性和耐久性等进行评估和优化。
镁合金的热处理工艺与力学性能改善
镁合金的热处理工艺与力学性能改善镁合金作为一种轻量化材料,在航空航天、汽车制造等领域有着广泛的应用。
然而,镁合金在实际应用中存在一些问题,如低强度、低韧性和不良的耐腐蚀性能。
因此,研究镁合金的热处理工艺,以提高其力学性能,具有重要意义。
本文将介绍镁合金的热处理工艺以及力学性能改善的方法。
热处理是一种通过控制材料的加热和冷却过程,改变其晶体结构和性能的方法。
对于镁合金的热处理,主要包括固溶处理、时效处理和变形加工。
首先,固溶处理是指将镁合金加热到高温区,使合金中的固态溶质元素溶解在镁基体中,然后快速冷却。
这一步骤能够消除合金中的析出相和晶界相,提高合金的强度和塑性。
同时,通过调节固溶温度和时间,还可以控制合金的晶粒尺寸,从而进一步提高其力学性能。
其次,时效处理是在固溶处理后将镁合金再次加热到较低的温度,保持一定的时间,使合金中的溶质元素重新析出形成弥散的析出相。
时效处理可以提高镁合金的强度和硬度,同时还能增加合金的韧性和耐腐蚀性能。
不同类型的镁合金需要在不同的时效温度和时间下进行处理,以获得最佳的力学性能。
最后,变形加工是通过机械或热加工使镁合金发生塑性变形,从而改变其晶体结构和力学性能。
常用的变形加工方式包括挤压、拉伸、压缩等。
通过变形加工,可以使晶粒细化,提高材料的塑性,并改善其力学性能。
除了热处理工艺,还有其他一些方法可以改善镁合金的力学性能。
例如,合金化是通过添加适量的合金元素,如锆、铝、锡等,来改善镁合金的强度和韧性。
同时,采用纳米颗粒强化技术和表面改性技术,也可有效增强镁合金的力学性能和耐腐蚀性能。
总结起来,镁合金的热处理工艺和力学性能改善涉及到固溶处理、时效处理、变形加工以及其他一些方法的综合应用。
通过合理选择和控制这些工艺参数,可以显著提高镁合金的强度、塑性和耐腐蚀性能,满足实际工程应用的需求。
进一步的研究和探索,将有助于推动镁合金材料的发展与应用。
变形镁合金的熔炼技术_夏德宏
中国有色金属报/2011年/7月/21日/第008版镁业变形镁合金的熔炼技术夏德宏变形镁合金是一种优越的金属材料。
变形镁合金材料的生产主要通过挤压、轧制和锻造等工艺手段实现。
变形镁合金优异的性能以及在不同领域的特殊用途使其成为镁合金材料研究与开发领域中不可缺少的一个重要组成部分。
但限制镁合金广泛应用的主要问题之一是,镁合金在熔炼和加工过程中极容易氧化燃烧,使镁合金的生产难度增大。
镁合金熔炼技术研究在很大程度上是防氧化研究,这包括对熔炼所使用的溶剂的研究和气体保护防燃研究。
镁熔体性质很活泼,容易和周围介质中的氧气、氮气和水分反应,其中在镁合金熔炼过程中最常见、危害最大的是镁与氧的反应,因此,在镁合金熔炼技术中可以采用熔剂保护熔炼,利用低熔点的无机化合物在较低的温度下熔化成液态,在镁合金液面铺开,阻止镁液与空气接触,从而起到保护液态镁熔体,防止镁与氧等反应气进行反应的作用。
目前国内常使用的保护熔剂是商品化的RJ系列熔剂。
其中,用得最为广泛的是RJ22熔剂。
一种新的溶剂JDMF,此覆盖剂能够长时间静置而不破碎下沉,延长熔剂的保护时间、减少熔剂的用量、减少有害气体的产生。
但是氯盐和氟盐的使用会造成环境污染,寻找合适的替代品是开发镁合金液保护熔剂的努力目标。
惰性气体保护是利用Ar、N2、He等无色、无味的惰性稀有气体,覆盖于熔体表面形成惰性气体层,防止镁的氧化。
等惰性气体主要用于不需经常开启的密闭系统作为保护气体,一般情况下需混人少量的SO2等反应性气体,以阻止镁的蒸发,提高其防燃效果。
在密闭条件下可起到良好的保护作用。
但在高压下存在一定的风险。
反应性气体保护是利用与镁反应的气体在消耗掉少量金属镁后,在表面形成致密膜层防止进一步氧化的方法。
在高温下CO2可与镁反应生成无定型C、MgO,无定型C填充到疏松多孔的夕膜的MgO空隙中,在熔体表面形成致密度系数大于由其组成的复合膜。
抑制镁穿过表面膜扩散的作用,降低了镁的蒸发,有效防止熔体的氧化。
镁合金加工工艺流程以及切削加工要点
镁合金加工工艺流程1. 认识镁合金一.重量轻,强度佳。
镁合金的强度是塑胶的二倍,因此以超薄型(厚度在2。
54mm以下)笔记本电脑为例,要让外壳达到一定的强度,镁合金的厚只要1mm,但是塑胶壳则必须做成2mm厚。
因此以同样强度的机壳而言,镁合金的重量不但不比塑胶重,甚至可能更轻;二.散热佳,防电磁波。
镁合金的耐热性,散热性及电磁波遮蔽效果,三者俱佳,可减少资讯产品因过热而死机的频率。
不仅如此,它耐腐蚀的能力也居所有轻金属材料(铝,镁,钛)之首;三.可回收,符合环保趋势。
塑胶无法回收,但镁合金是可回收后再后的轻金属。
近年来许多先进国家已对资讯产品制定一定的回收率的法规,由此可见,未来将会有更多的3C产品采用镁合金材料。
当“轻薄短小”变成资讯及3C产品的发展趋势时,镁合金产业也成了当红原子弹,将来也极有可能取代塑胶原料,成为资讯产品的标准机壳原材料。
镁合金应用于3C产品起始于日本。
1998年,日本厂商开始在各种可携式产品(如PDA,NB,手机)采用镁合金材质。
2.产品特性一.镁合金材料简介:根据美国金属协会(ASM)定义轻金属材料为铝、镁、钛三种金属及其合金。
而根据这三种轻金属的材料特性来分析,可发现轻合金材料具有制震性强、机械加工性优,且具回收性、轻量化/省能化、防EMI、耐蚀性佳、工程作业性佳、设计弹性化(一体型零件/快速制造、组装、拆解回收;具多样性之制程及表面处理应用技术)、高质感/时尚感等,而广泛用于运输工具、航天、国防、石化、能源、包装、信息电子与营建业等;特别是镁合金方面,由于比重低(质轻,镁合金比重仅1.8,已经接近工程塑料1.2-1.7)且强度足(质硬),加上加工性优、质感佳与热传导快(散热佳优于铝、钛),不仅已经逐渐取代工程塑料,同时且替代原有铝合金产品,而广泛应用于笔记性计算机、PDA、手机等携带式装置(Hand-Held),据了解2000年已有1/3左右笔记型计算机改用镁合金背板与框架,显示该产品所具有的潜力。
变形镁合金及其成形工艺
变形镁合金及其成形工艺镁合金具有密度低、比强度和比刚度高、电磁屏蔽效果好、抗震减震能力强、易于机加工成形和易于回收再利用等优点,在航空、航天、汽车、3C产品以及军工等领域的具有广泛的应用前景和巨大的应用潜力。
目前,镁合金的应用大多数是以模铸、压铸以及半固态成形等工艺来生产产品。
这些工艺生产的产品,存在着组织部太致密、成分偏析,最小厚度偏大、力学性能偏低等缺憾,不能充分发挥镁合金的性能优势。
研究和实践表明,塑性变形能够改善镁合金的组织和力学性能,大大提高镁合金的强度和塑性,同时,很多领域重要结构材料需要用的板材、棒材、管材和型材等只能用塑性成形工艺来制取,而不能利用铸造等工艺来生产,所以,变形镁合金及其成形工艺的研究越来越受到重视。
但是,由于镁合金晶体结构是密排六方(Hcp),塑性较差,成形困难,成材率低,加之人们对镁合金易燃、不耐腐蚀等缺点的过分夸张甚至是错误的认识,导致变形镁合金没有得到大规模应用,变形镁合金及成形工艺的研究没有引起足够的重视和深入的开展。
目前变形镁合金的板材、型材以及锻件等生产仍集中在航空航天及军事等高端领域或部门,没有普及到一般民用领域。
在当今社会节约资源和减少污染成为社会可持续发展战略的要求的背景下,急需加快研究步伐,转变观念,以推动变形镁合金镁在民用领域的应用。
本文旨在总结变形镁合金及成形工艺的成果,探讨变形镁合金及其成形工艺的研究方向。
变形镁合金的合金系变形镁合金主要分为四个系列(美国标准):AZ系列(Mg-Al-Zn),AM系列(Mg-Al-Mn),AS系列(Mg-Al-Si),AE系列(Mg-Al-Re)。
中国变形镁合金牌号为MB系列。
几个主要工业发达国家的变形镁合金标准及牌号见表1所示。
变形镁合金以AZ系应用最为普遍,其中又以MB2应用最为广泛。
需要指出的是变形镁合金中MB2的合金成分与AZ31B不同,其力学和成形性能比AZ31B稍差些,介于AZ31B和AZ31C二者之间。
变形镁合金的成形工艺(一)
变形镁合金的成形工艺(一)镁合金与其他易成形金属一样,变形镁合金几乎可以用所有的金属塑性成形工艺来实现成形。
成形原理相同,不同的是具体工艺参数的变化。
1、镁合金挤压成形工艺典型的挤压成形工艺流程为:挤压坯生产→加热→挤压→矫直→热处理。
变形镁合金的加热温度一般不超过4000C,可用电炉加热挤压坯,一般不需要保护气氛。
挤压温度为300~4000C之间。
挤压截面收缩范围在10:1~100:1之间。
在挤压过程中,由于大变形而产生大量的热量,需要采取冷却措施,以避免温度过高,出现热裂纹。
坯料挤压成型后进行热处理,可以获得细小而均匀的合金组织,去除残余应力,稳定形状和尺寸,改善其使用性能。
金属挤压工艺生产变形镁合金型材和管材目前在国内正趋向成熟,主要缺陷如裂纹、皱纹和扭曲等已经得到了很大的改善。
福建坤孚股份有限公司拥有先进的大型镁合金挤压成套设备,可以生产出符合中国国家标准和国际标准的镁合金板材、镁合金棒材和镁合金型材。
目前,福建坤孚股份有限公司可以生产的挤压镁合金棒材型号是AZ31B、AZ91D、AZ61A、ZK60、ZK61等,直径Ø8mm-Ø130mm. 可以生产的型材合金牌号是AZ40M,AZ31B,ME20M,ZK61M。
2、镁合金板轧制工艺变形镁合金板材的生产主要是通过轧制工艺来完成,铸造工艺已经被淘汰。
轧制工艺流程如下:铸锭铣面→铸锭均匀化→加热→开坯→板坯剪切→板坯加热→粗轧→酸洗→加热→中轧→中断或下料→加热→精轧→产品退火→精整→氧化上色→涂油包装。
福建坤孚股份有限公司生产的镁合金板材的轧制采用热轧方式,必要时进行中间退火。
采用多道次、小压下量工艺进行轧制。
一般厚度6.3-200mm的板材为厚板,厚度6.3mm以下为薄板。
(1)镁合金厚板轧制工艺镁合金板坯在轧制前要在轧制面或侧面铣面并经过探伤检查。
要求板坯内部组织均匀,晶粒细小,第二相分布均匀。
采用带有空气循环的电阻链式加热炉加热,加热温度一般为450-5000C,加热过程中要使炉膛内温度分布均匀,避免局部高温。
镁合金加工注意事项
镁合金加工注意事项镁合金是一种具有优良的物理性能和机械性能的金属材料。
它具有比重小、强度高、导热性好等特点,因此被广泛应用于航空航天、汽车制造等领域。
然而,由于镁合金的特殊性,其加工过程需要注意一些事项。
首先,镁合金具有较高的活性,易于与氧气、水蒸气等物质发生化学反应,产生腐蚀现象。
因此,在镁合金加工过程中应尽量避免与空气接触,保持干燥的环境。
同时,在切削、铣削等过程中应用冷却剂,降低温度,减少氧化反应的发生。
其次,镁合金的塑性较好,容易造成工件变形。
因此,在加工镁合金时需谨慎控制切削力和切削速度,避免过度切削造成变形。
同时,应根据不同工件形状和尺寸,调整刀具的合适角度和切削深度,确保加工精度。
此外,镁合金的燃点较低,易于燃烧,所以在加工过程中应特别注意防火安全。
使用防火液和防火器材等设备,预防火灾的发生。
另外,在切削加工中产生的切屑和切削液要及时清理,防止积累引发火灾。
与其他金属材料相比,镁合金的热导性较好,散热快。
因此,在加工镁合金时需加强对切削区域的冷却,防止材料受热过高引起形变或毛刺。
此外,切削过程中产生的高温可能会导致刀具快速磨损,应定期检查和更换刀具。
值得注意的是,由于镁合金的低熔点和高热膨胀系数,加工时应尽量避免过度加热,以免影响材料的性能和工件的尺寸精度。
在高温加工过程中要控制加热时间和温度,并采取适当的冷却措施,防止金属疲劳和热裂纹的发生。
总结起来,加工镁合金需要注意以下事项:保持干燥环境,控制切削力和速度,防火防爆措施,加强对切削区域的冷却,选用合适的刀具和冷却剂,控制加热时间和温度等。
只有严格遵守这些注意事项,才能确保镁合金加工的安全和质量,并有效提高生产效率。
镁合金冲压成型
镁合金冲压成型一、引言镁合金冲压成型是一种常用的金属加工技术,通过将镁合金板材放入冲压模具中,并施加力量,使板材发生塑性变形,最终得到所需的零件形状。
本文将从材料选择、成型工艺、应用领域等方面对镁合金冲压成型进行全面、详细、完整且深入地探讨。
二、材料选择镁合金是一种重要的结构材料,具有优良的物理和化学性能,因此在冲压成型中得到了广泛应用。
在选择镁合金材料时,需要考虑以下几个因素:2.1 强度和韧性镁合金具有较高的比强度和比刚度,可以满足一些对材料强度要求较高的应用场景。
同时,镁合金还具有较好的韧性,可以在冲压过程中避免过早断裂。
2.2 可加工性镁合金的可加工性是选择材料时需要考虑的重要因素之一。
可加工性包括冲压性能、可焊性、可铆性等。
在冲压成型中,需要选择具有良好可加工性的镁合金材料,以确保成型质量。
2.3 耐腐蚀性镁合金具有较好的耐腐蚀性,可以在一些特殊环境下使用。
在选择材料时,需要根据具体的应用场景考虑镁合金的耐腐蚀性能。
三、成型工艺镁合金冲压成型的工艺流程主要包括模具设计、板材切割、冲压、弯曲、冲孔等步骤。
3.1 模具设计模具是冲压成型的关键设备,模具设计直接影响到成型质量。
在模具设计中,需要考虑以下几个因素:•镁合金板材的厚度和尺寸•成型零件的形状和尺寸•模具材料的选择•模具结构的设计3.2 板材切割在冲压成型前,需要将镁合金板材切割成适当的尺寸。
板材切割可以采用机械切割、激光切割或水切割等方法。
3.3 冲压冲压是镁合金冲压成型的核心步骤。
在冲压过程中,需要将镁合金板材放入模具中,并施加力量进行成型。
冲压过程中需要控制冲压速度、冲压力度等参数,以确保成型质量。
3.4 弯曲在冲压成型中,有时还需要对镁合金板材进行弯曲处理,以得到所需的形状。
弯曲可以采用机械弯曲、液压弯曲或热弯曲等方法。
3.5 冲孔冲孔是冲压成型中常用的一种操作。
通过在镁合金板材上冲出所需的孔洞,可以满足不同应用场景的需求。
铸造镁合金和变形镁合金_概述说明以及解释
铸造镁合金和变形镁合金概述说明以及解释1. 引言1.1 概述镁合金作为一种重要的轻质结构材料,在工业生产和科学研究领域得到了广泛应用。
其中,铸造镁合金和变形镁合金是常见的两种镁合金品种。
本文将对铸造镁合金和变形镁合金进行概述、说明以及解释,探讨它们的加工方法、特性与应用、优缺点,并对两者进行对比分析,包括异同点、应用领域的区别,同时展望其发展趋势与前景。
1.2 文章结构本文主要分为五个部分。
引言部分概述了文章内容,并介绍了铸造镁合金和变形镁合金的研究背景和意义。
第二部分讲述了铸造镁合金,包括其铸造工艺、特性与应用以及优缺点。
第三部分则关注于变形镁合金,详细介绍了它的加工方法、特性与应用以及优缺点。
在第四部分中,我们将对铸造镁合金和变形镁合金进行比较分析,着重探讨它们的异同点和在不同领域中的应用差异,并展望其发展趋势与前景。
最后一部分是结论,对整篇文章的主要观点进行总结。
1.3 目的本文的目的在于全面介绍铸造镁合金和变形镁合金,在阐释它们的工艺、特性、应用和优缺点的基础上,比较两者的异同点,并探讨它们在不同领域中的应用区别。
通过对这些内容的详细介绍和分析,旨在为读者提供关于铸造镁合金和变形镁合金方面知识和研究帮助,并对其未来发展趋势做出一定预测。
2. 铸造镁合金2.1 铸造工艺铸造是制备镁合金最常用的工艺之一。
铸造镁合金可以采用砂型铸造、压力铸造和连续铸造等不同的方法。
在砂型铸造中,首先根据所需产品的形状和尺寸制作出沙模,然后将加热至适宜温度的镁合金液体倒入模具中,待其冷却凝固后取出成品。
这种方法生产成本较低,但表面质量一般较差。
压力铸造是指将加热至一定温度的镁合金注入高压下的模具中,通过快速凝固来制备零件。
该方法能够获得更高密度、更均匀组织和更好性能的零件。
常见的压力铸造方法包括压力浇注、低压浇注和真空浇注等。
连续铸造是指通过恒定输送速度将溶化状态的镁合金连续浇注到定型装置中进行凝固形成连续性材料坯料。
镁合金的热变形行为及力学性能研究
镁合金的热变形行为及力学性能研究镁合金是一种轻质高强度的金属材料,因其重量轻、强度高、耐腐蚀等优点,在航空航天、汽车、电子通讯、运动器材等领域得到广泛应用。
然而,由于其在高温下易于软化和破坏,热变形行为及力学性能的研究对于镁合金的发展至关重要。
1.热变形行为的研究热变形行为是指材料在热加工过程中的变形行为,包括变形应力、应变、应变速率等指标。
镁合金的热变形行为与其微观组织有着密切的联系。
研究表明,在温度为200℃~400℃范围内,镁合金的应变硬化效应较强,变形应力与应变率之间呈现出显著的正比关系。
随着温度的升高,镁合金中的细晶粒首先发生动态再结晶,从而导致材料的变形应力和应变率的降低。
当温度进一步升高时,材料会出现粗大晶粒的再生变形,其剪切带和孪晶的形成则可导致应变增大,导致材料的流动性能下降。
2.力学性能的研究力学性能是指材料在载荷作用下的力学特性,对于实际工程应用有着至关重要的影响。
针对镁合金的力学性能研究,主要包括硬度、韧性、塑性等方面。
研究发现,在一定的应变速率下,镁合金的硬度随温度升高而降低,这与材料的动态再结晶机制有着密切的关系。
此外,镁合金的韧性和塑性也受到温度的影响。
随着温度的升高,镁合金的塑性越来越强,断裂韧性也逐渐提高。
3.应用前景随着工业技术的不断进步和对材料强度重量比要求的提高,镁合金在航空航天、汽车、电子通讯等领域的应用前景越来越广阔。
而研究镁合金的热变形行为及力学性能则能够为材料的开发和应用提供重要的理论依据。
总之,镁合金的热变形行为及力学性能研究是镁合金发展和应用的重要基础研究之一。
通过深入研究材料的微观组织和宏观力学性能,可以为镁合金的优化设计、改良和应用提供重要的科学依据。
镁及镁合金挤压工艺工艺流程与主要特点
镁及镁合金挤压工艺工艺流程与主要特点
目前热挤压是镁合金最主要的塑性加工方法。
与变形铝合金的挤压加工一样,变形镁合金也可采用正向挤压、反向挤压、单动挤压机、双动挤压机、卧式挤压机、立式挤压机、Confrom 连续挤压法、静液挤压法来挤压棒、管、型、线材。
一般来说,凡是用于挤压铝合金制品的挤压机和挤压方法基本上都适用于挤压镁合金制品。
典型镁合金挤压生产工艺流程为:铸锭加热→一次挤压→切中间坯料→加热→二次挤压→人工时效→拉伸矫直→切头尾、取试样→辊式矫直→手工矫直→检查→切成品打印→氧化上色→成品检查→包装→入库。
镁及镁合金挤压工艺与铝合金的挤压工艺大致相同,主要的区别有以下几点:
(1)加热方式:镁合金只允许在空气电阻炉中加热;而铝合金可在空气电阻炉或感应炉中加热。
(2)挤压温度:镁合金挤压温度稍低,为防止镁锭燃烧,各种镁合金允许加热的最高温度为470℃;而铝合金的最高加热温度可达到550℃。
(3)挤压速度:镁合金挤压速度最高可达20m/min,比硬铝合金的快,但仅为软铝合金挤压速度的1/3左右。
(4)模具尺寸:镁合金热挤压材的收缩率比铝合金的大,而且模具承受的变形抗力大,模具设计时要求承受更大的挤压力,并千方百计减少金属挤压时的变形抗力。
(5)张力拉矫:镁合金挤压材要在加热到100℃~200℃条件下拉矫,这需要专用设备;而铝合金挤压材可在室温拉矫。
镁合金压铸件出现变形的原因
镁合金压铸件出现变形的原因可能有以下几种:
模具温度:镁合金的成型过程通常在一定温度下进行。
如果模具温度不适当,可能会导致压铸件在冷却和凝固过程中产生不均匀的收缩,从而引起变形。
压射速度:压射速度对镁合金压铸件的质量有很大影响。
如果压射速度不够,可能会导致压铸件内部的组织不致密,从而产生变形。
熔体温度:熔体温度也是影响压铸件质量的重要因素。
如果熔体温度过低,可能会导致压铸件在凝固过程中产生收缩缺陷,如缩孔和缩松,这也可能导致变形。
铸件结构设计:铸件的结构设计也会影响其变形情况。
如果铸件的结构不合理,例如壁厚不均匀或存在尖角等,可能会在压铸过程中产生应力集中,从而导致变形。
脱模过早:在镁合金压铸过程中,如果脱模过早,由于压铸件尚未完全冷却和凝固,其内部可能仍存在残余应力。
这些残余应力可能在脱模后释放,导致压铸件变形。
为了避免镁合金压铸件出现变形,可以采取以下措施:
合理控制模具温度、压射速度和熔体温度等工艺参数。
优化铸件结构设计,避免壁厚不均匀和尖角等问题。
在合适的时机进行脱模,避免过早脱模导致残余应力释放。
对压铸件进行适当的热处理,以消除残余应力和改善组织结构。
请注意,以上只是一些可能的原因和相应的解决措施。
在实际生产过程中,还需要根据具体情况进行细致的分析和调整。
铝镁合金加工工艺
铝镁合金加工工艺
铝镁合金加工工艺
铝镁合金是一种重要的加工材料,具有较高的强度、可塑性和耐蚀性,在航空、汽车、电子等领域广泛应用。
铝镁合金加工工艺是实现铝镁
合金高效加工和优良性能的关键,下面简要介绍几种常见的铝镁合金
加工工艺。
1. 热加工
热加工是铝镁合金加工的常见方法之一,包括锻造、轧制和挤压等。
锻造是通过将坯料经过预热和成形处理而获得所需形状和尺寸的加工
方法。
轧制是指将坯料经过多次轧制变形,最终获得所需的板材、带
材和型材等。
挤压是将坯料通过模具而成为所需截面形状与尺寸的加
工方式。
这些热加工的方法可以提高铝镁合金的力学性能和综合性能。
2. 冷加工
冷加工是通过对铝镁合金进行冷加工,使其产生塑性变形,并在其中
加入适当的热处理工艺,来达到所需的性能要求。
冷加工包括铣削、
拉伸、剪切和压力加工等方式。
冷加工不仅可以提高铝镁合金的机械
性能和表面质量,还能改善其结构、提高其延展性和疲劳寿命。
3. 焊接加工
铝镁合金的焊接加工是通过加入适当的气氛或涂剂,加强焊接接头的
耐蚀性和耐久性。
焊接加工分为氩弧焊接、激光焊接、点焊接和电阻
焊接等方式。
焊接加工不仅可以提高铝镁合金的结构强度,还能改善
其表面质量和工艺性能。
总之,铝镁合金加工工艺是决定铝镁合金加工质量和性能的关键,通
过选择合适的加工方法和工艺,可以提高铝镁合金的机械性能、表面
质量和工艺性能,从而实现铝镁合金加工的高效、优质和经济的生产。
粗、细晶镁合金塑性变形及断裂的微观结构机理研究
粗、细晶镁合金塑性变形及断裂的微观结构机理研究镁合金塑性成型能力差,变形加工中常出现破裂、失效等问题,其根源是相关的微结构机制模糊不清。
本文运用基于平面弹性复势方法的局部应变位错核模型及晶体旋转缺陷模型,采用光学金相表征及电子背散射衍射检测技术(EBSD),针对粗、细晶镁合金的塑性变形及断裂微观机制,进行了理论分析和实验验证。
粗晶镁合金中断裂主要起源于晶粒内孪晶交叉等位置的位错塞积所导致的应力集中。
本文运用应变核位错模型和格林积分的方法模拟并计算了孪晶变形域的局部应力场和裂纹尖端的应力强度因子。
结果表明:孪晶交叉是脆性裂纹的主要起源(相应的EBSD证据可支持此结论),裂纹成核的临界载荷随晶粒直径尺寸(d)的减小而增大,其对d的依赖与经典的Hall-Petch关系相似;裂纹成核的临界载荷和临界尺寸随障碍孪晶厚长比(q)增大分别增大和减小;裂纹会沿着孪晶界扩展,在高密度孪晶区域和孪晶交叉处易发生偏折(相应的金相表征可支持此结论)。
细晶镁合金中断裂主要基于析出相破裂和三叉晶界处的空洞成核。
本文运用晶体旋转向错模型模拟了析出相/基体界面裂纹尖端应力集中诱导的纳米孪晶对细晶镁合金的韧化效应。
研究发现:在纳米孪晶的韧化作用下,界面断裂韧度很大程度上取决于析出相的尺寸和分布,最佳的析出相尺寸和分布规律可以显著增强界面,该结论与已知的实验结果相符,纳米孪晶韧化效应的研究可从根本上弥补经典模型对断裂韧度的低估。
此外,本文还探讨了晶体超塑性变形的协调机制之间的竞争和干涉机理,理论模拟并分析了细晶镁合金超塑性变形过程中晶界滑移协同迁移对析出相自身开裂的影响。
结果表明:析出相破裂和晶界迁移是两种典型的协调机制,可分别协调晶界滑移在析出相界面和三叉晶界处的应力集中,延续塑性变形;较大半径析出相周围应变累积易导致析出相自身的断裂;随着析出相和镁基体剪切模量比的增加,析出相的断裂韧度显著提高;除了析出相的硬化及细化,基于晶界迁移的再结晶过程也可弱化建立在析出相开裂基础上的协调机制,提高细晶镁合金的断裂韧度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镁合金变形加工技术
镁合金的挤压成形 镁合金的轧制成形 镁合金的锻造成形 镁合金的板料成形 镁合金的超塑性成形
1.1镁合金的挤压成形
目前热挤压是镁合金最主要的塑 性加工方法。变形镁合金一般可采用 正向挤压、反向挤压、单动挤压机、 双动挤压机、卧式挤压机、立式挤压 机、Confrom连续挤压法、静液挤压 法来挤压棒、管、型、线材。
1.2镁合金的轧制成形
镁合金铸锭热轧开坯工艺流程
1.2镁合金的轧制成形
该工艺的优点能够生产出宽幅中厚板,组织性能比 较好,可以大规模连续化生产几乎所有品种镁合金; 缺点是生产流程长,投资和生产成本高。
热轧开坯的镁合金板
AZ40M镁合金板
1.2镁合金的轧制成形
300℃退火1h后的轧制态Mg-9Li-1Al合金的显微组织 (a)50倍 (b)100倍 (c)200倍
1.1镁合金的挤压成形
镁合金挤压工艺流程
铸锭加热 一次挤压 切中间坯料
加热
二次挤压
人工时效
矫直
氧化上色
包装
入库
1.1镁合金的挤压成形
1.1镁合金的挤压成形
300℃退火1h后的挤压态Mg-9Li-1Al合金的显微组织 (a)50倍 (b)100倍 (c)200倍
1.1镁合金的挤压成形
镁合金挤压工艺参数
锻造ZKA镁合金板
锻镁轮毂
1.3镁合金的锻造成形
镁合金模锻工艺流程
铸锭或 机加工清除表面 挤压毛坯 缺陷,注意防燃
坯料准备
锻前加热
润滑
模锻
锻件冷却
锻件氧化处理
切边
1.3镁合金的锻造成形
镁合金锻造工艺特点
导热性系数大 对应变速率敏感 流动性差
锻造温度范围窄(70-150K之间) 加热过程中易发生软化
1.4镁合金的板料成形
板料成形又称二次成形或深度加 工。镁合金在常温下不易冲压,一 般冲压温度应在150℃。
镁合金冲压件
1.4镁合金的板料成形
冲压成形工艺
拉伸 弯曲 翻边 缩口 扩口 胀形 特种成形
1.4镁合金的板料成形
镁合金冲压成形优点
生产效率高,且操作方便。 质量稳定,互换性好,“一模一样” 可加工尺寸范围较大、形状较复杂的零件
省镁合金超塑性成形的核心在 于晶粒的微细化。通过如等径角 挤压(ECPA)、大挤压比热挤压等 技术细化晶粒获得具有优良变形 性能的材料。
均匀化处理 挤压温度 再结晶温度 < 挤压温度 < 固相线,573-723K 严格控制,防止燃烧和爆炸 挤压速度
不宜太快,同一合金的中空型材为实心的1/3~1/5
润滑:动物油或植物油 挤压比: 10-100
1.1镁合金的挤压成形
镁合金挤压工艺优势
具有比锻造、轧制更为强烈的三向压应力 具有极大灵活性,在通一台设备上通过更换模具, 即可生产各种板、管、棒、型材 产品精度高
镁合金挤压工艺缺点
由于压余和缩尾,废料损失大
由于摩擦,变形抗力大,模具磨损严重
1.2镁合金的轧制成形
轧制一般分为冷轧与热轧,但镁 合金冷轧困难。一般其变形率只有 10%-15%,若再高会产生裂边甚至 无法轧制。故镁合金板材的轧制多 选用热轧方式,采用多道次、小压下 量工艺进行轧制,必要时进行中间 退火。
1.2镁合金的轧制成形
镁合金轧制制度
压下制度 压下制度是板材轧制制度最核心的内容,直接关系着 生产效率和产品质量。 速度制度 镁合金热轧时的轧制速度要远小于钢铁及铜、铝合金。
温度制度
辊型制度 张力制度
1.3镁合金的锻造成形
镁合金的锻造的方法与设备和铝 合金的基本相同,有自由锻造和模 锻;可用开式模锻或闭式模锻。