管道对接焊缝的超声波检测..
浅谈管道对接焊缝超声波检测
浅谈管道对接焊缝超声波检测作者:姚小虎魏红璞王彬来源:《沿海企业与科技》2008年第05期[摘要]文章介绍使用A型超声波检测管道对接焊缝时,对发现的反射体进行性质判定的初步方法,探讨对检测中发现的反射体进行缺陷及伪缺陷判别的方法,其中重点分析两种常见的伪缺陷的波形特点。
从焊接缺陷的成因及反射波的特点着手探讨点状缺陷、线状缺陷及面状缺陷的区别、判定方法,并对线状缺陷和面状缺陷进行细分。
[关键词]对接焊缝;A型超声波;缺陷检测;探讨[作者简介]姚小虎,中国石化河南油田油建工程建设有限责任公司,河南南阳,473132;魏红璞,中国石化河南油田油建工程建设有限责任公司,河南南阳,473132;王彬,中国石化河南油田油建工程建设有限责任公司,河南南阳,473132[中图分类号]TM305.1[文献标识码]A[文章编号]1007-7723(2008)05-0067-0003目前A型超声波检测在管道对接焊缝的检测工作中所占的比重越来越大,超声波检测相对于射线检测具有检测周期短、检测实施方便、无辐射危害、面积状缺陷检出几率高、检测费用低等优点,但也具有缺陷定性难、对检测人员技术水平要求高等缺点。
本文重点介绍管道对接焊缝中主要缺陷的波形判断。
一、缺陷波判定超声波检测在焊接接头中检出缺陷后,缺陷的性质不能直接得出,必须结合缺陷的位置、检出波的波形、焊接工艺等因素进行综合判断。
对于检测中发现的反射体波形,首先应判断是缺陷反射波或是伪缺陷波。
反射波前沿出现在一次波声程内可初步判断为缺陷波,若反射波前沿出现在一次波声程处,在确定不存在错口的情况下,根据探头前沿至反射体的水平距离来判断:如果反射体位于焊缝中心或靠近探头侧的焊缝及热影响区内,则初步判定为缺陷,其余情况均为伪缺陷。
(一)缺陷波当使用二次波探伤时,如反射波位于一次波声程和二次波声程之间,则测量探头前沿至反射体的水平距离,若声束二次波在管子内壁上的转折点在焊缝外位于探头一侧,反射体位于焊缝或热影响区内,则该反射体初步判定为缺陷。
海底管线管中管对接环焊缝的相控阵超声检测
随着相控阵理论在超声波检测领域的应用,超声相控阵检测(PAUT)技术日趋成熟,并以检测速度快、缺陷定量准确、设备使用灵活、故障率低、可交叉作业等优点而逐渐广泛应用于海底管道的焊缝检测中。
海底管道双层管为管中管的形式,两管之间采用保温材料进行填充。
在施工过程中,完成内管焊接检验后需要进行外管焊口的组对焊接,而外管的周向旋转受限,同时受到管体椭圆形状的影响,就存在影响自动超声检测(AUT)精度的风险。
那么,该如何将先进的PAUT技术更好地应用于这类海底双层管外管的检测呢?PAUT检测工艺海洋石油工程股份有限公司的技术人员结合海底管线项目双层管外管检测存在的风险,设计了可靠的PAUT检测工艺及轨道式扫查装置。
依据被检工件的材料、尺寸、批准的焊接工艺及检测区域,选择了合适的设备与探头组合,设置起始晶片和激发晶片的数量、聚焦的类型、聚焦的位置,合适的角度范围及角度步进,生成一个扇形扫描,通过选择合适的步进偏移,实现对检测区域的全覆盖。
相控阵波束覆盖示意同时,该工艺设置了一组TOFD(超声波衍射时差法)探头,用以提高焊缝内部缺陷的高度定量精度,确保该工艺在焊缝各个区域具有良好的检测能力。
由标准DNV-OS-F101-2013《海底管线系统》可知,TOFD波束覆盖示意和PAUT 检测工艺显示视图如下图所示。
TOFD波束覆盖示意PAUT检测工艺显示视图数据采集装置针对海底管线焊缝检测的特点,设计了新型轨道式扫查装置,该扫查装置可同时夹持2组探头,实现电动扫查,最大扫查速度可达100mm/s,探头偏移精度可控制在-1~1mm之内,周向扫查精度在-5~5mm之内。
验证试验焊接缺陷的制备在PAUT检测能力验证时,采用的试验管道管径为323mm,壁厚为11.1mm,在焊缝内部表面及内部不同深度处设置不同的焊接缺陷,缺陷类型包括根部未焊透、坡口未熔合、外表面开口、焊缝中心气孔、夹渣等。
试验数据分析为了验证PAUT检测工艺的缺陷检测能力及可靠性,对加工好的缺陷焊缝分别进行PAUT、AUT和RT(射线检测),采用相同的扫查零点和扫查方向,记录每个缺陷的长度、深度和高度。
不锈钢管道对接焊缝焊接热裂纹超声波检测技术
不锈钢管道对接焊缝焊接热裂纹超声波检测技术发布时间:2022-02-15T02:30:07.686Z 来源:《防护工程》2021年28期作者:占字林[导读] 认为超声通过焊缝后的衰减不一定是正的;也可以推测,即使通过焊缝的超声剪切衰减也不会导致检测失败。
广东省特种设备检测研究院珠海检测院广东珠海519001摘要:由于安装制造工艺,核电站系统辅助的不锈钢焊缝极易引起热焊裂纹。
这些热裂纹的特点是长度短、高度低,主要集中在焊接表面和相邻表面。
同时,由于奥氏体材料的影响,采用该标准的体积试验方法不能获得良好的试验效果。
针对具体设施,介绍了奥地利核支持系统不锈钢焊缝超声波和热熔试验结果,为这种热控制方法提供了基础。
关键词:奥氏体不锈钢;管道焊缝;超声波检测;焊接热裂纹超声波在不锈钢中传播时,其衰减主要由吸收和散射组成。
净吸收主要与探头频率有关.一般来说,通过提高电压和加强发射,以及选择合适的探头,可以减少吸收的影响。
不锈钢焊缝采用纵波、斜入射时主波既有纵波又有横波,在工作场所传播,导致了波型的变换。
四个波从下面反射后在L形制品中传播,给缺陷的确定和识别带来很大困难。
根据94组试验数据,可以初步得出结论:认为超声通过焊缝后的衰减不一定是正的;也可以推测,即使通过焊缝的超声剪切衰减也不会导致检测失败。
1.超声波在不锈钢薄板中的传播特性超声波在不锈钢中进行传播时,不锈钢应为吸收和散射两部分,导致其发生衰减。
纯吸收主要是与运行超声波检测时使用的探针有关。
嗯,一般来说我们可以通过提高发射的电压可增强其增益以及可以通过选择出合适的探头来减小吸收,从而减少衰减所造成的影响。
通常情况下对于散射的影响是很难解决的。
该现象与奥氏体不锈钢的厚度,以及对接焊缝状态柱状组织相比是有着一定关系的。
所以按频率恒定,而且其他的参数也适当的时候,散射衰减不足以影响到博奥氏体,不锈钢对应于对于对接焊缝的超声检查工作。
不锈钢焊缝采用纵波斜入射检测的时候,主波主要有重波以及横波两种波形。
管道对接焊缝的超声波检测..-共11页
管道对接焊缝的超声波检测摘要:针对工艺管道对接焊缝的特点,对焊接方法、焊接位置及易产生的缺陷进行了分析由于工艺管道对接焊缝壁厚范围大,多是直管与直管、直管与弯头、法兰、阀门等管件对接,采用单面焊接双面成型工艺,这种特殊结构型式和焊接工艺,使超声波检测只能进行单面双侧扫查或单面单侧扫查"为了提高缺陷的检出率,对不同规格!不同结构的焊缝在选择扫查面、探头数量、探头型号和探头尺寸时应有针对性"根部缺陷的判定对仪器扫描线调节精度提出了较高要求,对典型缺陷的回波特征进行了分析"通过以上分析和采取的措施,能有效提高工艺管道对接焊缝超声波检测的质量。
石化装置工艺管道对接焊缝超声波检测具有一定的难度"早期的模拟超声波探伤仪由于定位精度不高,对于根部缺陷的识别和判定存在较大难度,每次更换不同角度的探头后时间基线都要重新调节,非常不便,这为在工艺管道对接焊缝领域推广超声波检测技术造成了很大的困难"近些年,超声波检测灵敏测设备发生了巨大改变,且更新很快,数字式探伤仪代替了模拟仪"数字式探伤仪较原先使用的模拟式超声波探伤仪具有显著的优点"首先,其定位精度高,定位精度可达0.1mm,为管道焊缝根部信号的判定提供了可靠依据;第二,可存储多种探头参数及其距离一波幅曲线,为现场采用多种角度的探头进行检测提供了方便,提高了不同角度缺陷的检度,也可方便地变换探头(角度),为辨识真、伪信号提供了方便;第三,可以存储动态波形和缺陷包络线,并可作为电子文件存档备查"数字式超声波探的难题"。
笔者推荐管道焊缝探伤采用数字式超声波探伤仪。
通过专业培训和严格考核,可以筛选出合格的管道对接焊缝超声波检测人员,完全能保证管道焊缝的超声波检测质量。
通过对超声波检测方法、扫查面、探头数量、探头型号和探头尺寸的控制、以及理论分析和实际验证, 表明超声波检测能有效保证管道焊缝的检测质量。
长输管道对接焊缝超声波检测缺陷判析
长输管道对接焊缝超声波检测缺陷判析本文着重论述了执行SY/T4109-2013《石油天然气钢质管道无损检测》标准对长输油气管道对接焊缝进行超声波检测的实际应用,介绍了作者长期从事长输油气管道焊缝超声波检测的一些实践经验和技术见解,通过实践应用,文中针对长输油气管道对接焊缝常见缺陷的产生原因、多发部位、波形的判断分析和评判的注意事项进行了详细论述。
标签:长输管道;超声波检测;检测技术;缺欠评定;应用长输管道是目前国内原油、成品油运输的主要方式,一般以薄壁管采用下向焊的焊接方式焊接而成,超声波检测是其对接焊缝的主要检测手段。
受近场区、曲率半径以及焊接方式和现场检测条件的影响,检测过程中缺陷的判断和定性干扰因素较多,容易引起误判,造成不必要的返修。
笔者在检测过程中积累了一些实际经验,提高了长输管道渡劫焊缝超声波检测的可靠性。
现以日照-濮阳-洛阳原油管道工程(管径762mm,管道壁厚11.9/12.7/15.9mm)的管道为例,对管道焊接中常见缺陷的判断、定性和影响因素进行分析。
1.影响管道对接焊缝超声波检测的因素及解决方法1.1 曲率半径和散射作用的影响由sinα/sinβ=c1/c2(c表示介质中超声波声速)可知,当声束进入有机玻璃/钢界面时会产生折射,随着晶片尺寸的增大,折射角亦增大,折射角越大,散射现象越严重;同时由于管道曲率半径的影响,为保证探头与检测面紧密接触,选择较小的晶片尺寸,一般控制在8mm。
1.2 近场区的影响管道的管径较薄为提高定位的准确性,应尽量在远场条件下检测。
由近场长度N=D2/4λ可知,当频率?一定时,D值越小,N值越小,可实现远场检测。
1.3 焊缝表面无法磨平的影响检测时,焊缝表面无法磨平,焊缝的根部检测有一定影响,宜小前沿探头,探头角度应依据被检管线壁厚,预期探测的缺陷种类选择,尽量使直射波扫查到焊缝根部以上区域。
1.4检测面粗糙度的影响检测面应清除焊缝飞溅、铁屑、油污、以及其他表面杂质,探伤表面应平整光滑,便于探头自由扫查,考虑到曲率半径和表面粗糙度的影响,检测时灵敏度补偿4dB,检测过程中每间隔4小时或检测工作结束后应对时基扫描线比例和灵敏度进行校验,调节探头磨损后的参数变化。
管道对接焊缝相控阵超声检测
管道对接焊缝相控阵超声检测
管道对接焊缝的检测是在工业生产中非常关键的环节之一。
传统的检测方法对于管道
对接焊缝的检测效果并不理想,容易产生漏检漏报的情况。
相控阵超声检测技术是一种非
常有效的管道对接焊缝检测方法。
相控阵超声检测技术是一种通过矩阵阵列传感器对被测物体进行检测的方法。
相控阵
超声检测技术能够通过调节每个传感器发射的超声波的相位和振幅,实现对被测物体不同
方向、不同角度的全方位检测。
相控阵超声检测技术具有检测速度快、灵敏度高、成像效
果好等优点,因此在管道对接焊缝的检测中得到了广泛应用。
需要准备一套相控阵超声检测系统。
该系统由一组矩阵阵列传感器、一台控制器和一
台显示器组成。
传感器可以根据具体的检测需求来选择,常用的有线阵、固化高分子阵等。
控制器负责控制传感器发射超声波的相位和振幅,显示器用于显示检测结果。
然后,需要对管道对接焊缝进行准备工作。
要清洁管道表面,确保没有杂质和腐蚀物等。
然后,需要根据具体需要选择合适的探头,将其固定在管道表面,并进行适当的校
准。
接下来,开始进行相控阵超声检测。
控制器通过调节传感器发射超声波的相位和振幅
来实现所需的检测角度和方向。
传感器发射的超声波经过管道表面的对接焊缝后,会被反
射回来并被传感器接收。
通过分析接收到的信号,可以确定管道对接焊缝的存在和位置。
将检测结果进行显示和记录。
检测结果会显示在显示器上,并可以保存下来,方便进
行后续的分析和比较。
小径薄壁管焊接接头超声波探伤方法探讨
小径薄壁管焊接接头超声波探伤方法探讨摘要:针对小直径薄壁钢管焊缝的超声检测,提出了以焊缝的普通根波和管壁反射波为参照波,对比判断焊缝的缺陷,并对其进行了分析。
关键词:变形波;超声波探伤;比较法1小径管对接焊缝超声波探伤所具有的特点1.1较小直径的管道具有较薄的管壁和较宽的焊缝从电力部发布的工业标准(主要是《电力建设施工及验收技术规范》)的要求可以看出,一般小直径管焊缝比管壁厚宽2-3倍,且常规焊接缝无法实现,如,小直径管壁厚4mm,焊接缝宽12mm。
由于其具有较高的尺寸精度要求,因此必须采用超声波探伤技术来完成对管道焊缝质量的控制。
按常规超声检测方法进行,利用一次波对焊缝根部缺陷进行了探测,那么探头入射角β正切值就会介于2.7-3.2之间,很难在焊缝的中部,中部、上部分缺陷得到了有效鉴定,很容易引起表面波,继而给缺陷定位与量化带来负面影响。
1.2对超声近声场区域进行有效处理的必要性超声检测时,由于声束近场区轴向最大声压较多,在探测中,一定要把近场区最大压力限制在三个或更大,以确保缺陷的发现。
特别适用于管径较小时,因管壁较厚,这个问题就更为严重了。
本文介绍了通过采用适当大小的换能器来减小近场区内的最大声压和利用声波传播理论进行分析计算而得到的解决方法。
该方法可以使近场区的面积达到最小,是比较行之有效的途径。
1.3在管道内部和外部存在较大的表面声能量损耗而小径管因管径小曲率大,其内、外表面超声波均可出现较明显聚束、发散等现象,应格外加以重视。
对于大直径的管子,则需进行特殊处理才能满足探伤要求。
介绍小直径钢管超声检测专用试片DL—1。
该试片由两个相同厚度的钢板焊接而成。
使用对应圆弧形状,增大接触区域。
2小径管超声波探伤过程中较为常见的技术性问题2.1选择测针超声波检测小直径管接焊缝过程中,要尽可能选择较大探针,为了使声束在所有焊缝截面上都能尽量被扫描。
由于采用了适当的探头位置和较长的时间来探测整个焊缝,所以能够准确地发现焊缝中存在的裂纹等微小缺陷。
关于对接焊缝脉冲反射法超声检测缺陷和伪缺陷识别与分析
关于对接焊缝脉冲反射法超声检测缺陷和伪缺陷识别与分析发布时间:2023-01-15T04:38:06.493Z 来源:《当代电力文化》2022年第15期作者:曹伟琪陈德荣[导读] 特种设备承压部件焊缝超声检测,参照NB/T47013.3-2015《承压设备无损检测第3部分超声检测》标准曹伟琪陈德荣广州特种承压设备检测研究院 510663摘要:特种设备承压部件焊缝超声检测,参照NB/T47013.3-2015《承压设备无损检测第3部分超声检测》标准,制定相应的检测工艺和操作指导书,根据工艺或操作指导书中的相应要求实施检测,并依据相应标准中的质量分级进行缺陷级别评定。
由于脉冲反射法超声检测仅依靠抽象了A型回波对于焊缝中的缺陷进识别与判断,需要依靠丰富的现场实践经验,而相关标准并未对缺陷识别与判定方法作详细介绍。
笔者在多年现场检测中积累了一定的实践经验,本文介绍特种设备承压部件对接焊缝脉冲反射法超声检测中缺陷和伪缺陷的识别方法,为现场检测缺陷判定提供指导。
关键词:超声波检测、伪缺陷、变形波1 六种常见的伪缺陷特种设备承压部件对接焊缝超声检测,常见的伪缺陷有六大类,分别为:(1)根部焊瘤反射波,(2)表面波/油波,(3)变形波(纵波),(4)上表面反射波(横波),(5)余高反射波,(6)扩散声束反射波。
根部焊瘤反射波、变形波(纵波)、上表面反射波统称为“山形波”。
1.1 表面波/油波超声波声束具有一定扩散角,当上扩散角一定大时,钢中存在上扩散角为90°的横波,且沿着工件表面传播,即为表面波。
可以简单的理解为,表面波是沿着工件表面传播的横波。
当选用的探头K值较大、晶片尺寸较小、频率较小等条件时,会导致超声波声束扩散角增大,沿着工件表面传播的横波分量越多,表面波愈加明显。
表面波波形较宽,呈三角形状,用手蘸油拍打探头前部,表面波会明显跳动或者完全消失。
油波波形较宽,当探头固定不动,清除探头前部多余的耦合剂,油波消失。
不等厚对接焊接缝的超声波检测
不等厚对接焊接缝的超声波检测在传统的对接焊接中,可以分为两种焊接形式,一种是对接焊缝,另一种是角焊缝。
这两种焊接形式就是在悍件的坡面和另一件焊件的坡面进行焊接,使金属熔化并与之相交融,所形成的不规则的区域叫做焊缝。
在焊接的区域由于施工上的问题,造成了缝隙存在,给以后的使用造成不便,为了解决操作不便带来的问题,我们采取了一种根据不等厚对接焊接的特点进行的检测方式,超声波检测。
这种方式可以有效地检测出零件的问题所在,解决问题,提高效率。
一、进行不等厚对接焊接的特点在一些楼房或者厂房的施工现场,遇到一些特殊的情况时我们需要把两个不同厚度的圆筒或者其他形状的物品焊接在一起,在焊接的过程中由于一些因素会造成一切缺陷,对于这种缺陷我们进行了一系列的检测,及时发现问题所在。
根据不同的对接焊接类型,检测的方式也不尽相同。
首先,我们先根据不等厚的对接焊接的结构分析一下焊接时的特点。
(一)进行焊接的圆筒的结构,焊接的圆筒壁不是很厚,但是筒底的焊接区域比较厚。
(二)在进行焊接的圆筒的筒壁的厚度是不等厚的,筒壁的厚度自左向右逐渐增大,达到2.6mm时是极限,筒壁的厚度不会再增大,而且几何形状比较复杂。
(三)在焊接过程中,由于是利用高温使金属熔化,凝结在一起,凝结在一起的部分比较粗糙,残留着明显的操作痕迹。
(四)在进行焊接的过程中,他们的焊接的金属用料也是有所不同,化学成分有所差异,所以就造成了焊接的部分颜色与筒身颜色的不同。
根据这些特点,我们可以利用这些来进行检测,帮助检测出零件中出现的问题,可以节省很大的时间。
二、在不等厚对接焊接的过程中进行缺陷波的判定在焊接过程中,常常出现的缺陷有很多种,例如由于焊接过程中空气比较充足在焊接的部分,就容易出现气泡,还有就是在焊接的时候由于温度不够,焊接的时间较短,没有到达时间的标准,就容易出现裂缝和未焊透的情况,而且在焊接的过程中没有做好准备,就容易让其他杂质进入焊接的部分,出现杂渣,影响焊接部分的焊接效果。
标准05(超声波检测)
超声波检测工艺标准QB/xxx-C-05-2001 1 适用范围1.1 本标准适用于制作、安装和检修设备时壁厚为15—120mm,公称直径≥159mm的钢制承压管道对接环焊焊缝接头超声波探伤和检验结果的分级。
1.2 本标准不适用于铸钢、奥氏体不锈钢的对接接头超声波探伤。
2 引用标准钢制管道对接环焊缝超声波探伤方法和检验结果的分级 GB/T 158303 检测人员3.1 检测人员必须取得无损检测资格考核委员会颁发的资格证书。
探伤报告必须由Ⅱ级或Ⅱ级以上的超声波探伤人员签发。
3.2 探伤人员应按本标准要求进行探伤,如果采用标准以外的方法探伤时,则事先应得到有关部门批准,并在报告中注明。
3.3 超声波探伤必须遵守现场安全规程和其他有关规定。
3.4 当探伤条件不符合本标准的工艺要求或不具备安全作用条件时,探伤人员有权停止检验,待条件改善符合后再行探伤。
4 试块4.1 试块应采用与被检验工件相同或近似声学性能的材料制成。
4.2 标准试块的形状和尺寸见附录A,对比试块的形状和尺寸见附录B。
4.2.1 试块的探测面及侧面用直探头以2.5MHz以上频率探伤时,不得出现大于距探测面20mm处的φ2mm平底孔反射回放幅度1/4高度的缺陷回放。
4.2.2 锯齿槽对比试块的形状和尺寸见附录C,该试块用被探伤管材制作,用作焊接接头根部缺陷的对比测定。
4.2.3 当探伤面曲率半径R≤W2/4时(W为探头宽度),应采用与探伤面曲率相同的对比试块。
反射体的布置可参照对比试块确定,试块宽度应满足(1)式要求:b>2λS/De (1)式中: b————试块宽度(mm)λ————波长(mm)S————声程(mm)De————声源有效面积(mm)5 工艺要求及探伤准备5.1 探伤前应了解被检件的名称、材质、规格、焊接工艺热处理情况,坡口型式以及焊接接头中心位置的标定。
5.2 焊接接头的外观需质检人员检查合格,焊接接头的两侧应清除飞溅、锈蚀、氧化物及油垢,表面应打磨平滑,打磨宽度至少为探头移动范围。
焊接接头超声检测讲稿5-管座角焊缝的超声检测
五 管座角焊缝超声检测管座角焊缝的结构形式有插入式和安放式两种。
1 检测条件的选择:(1)探头 采用直探头检测时,由于筒体或接管表面为曲面,二者接触面小,为保证耦合,探头的尺寸不宜过大。
(2)试块 直探头检测用试块与锻件检测的平底孔试块相似。
试块材质、曲率半径、表面粗糙度与被检工件相同。
斜探头检测用试块与平板对接接头检测用试块相同。
2 检测原则在选择检测面和探头时应考虑到各种类型缺陷的可能性,并使声束尽可能垂直于该焊接接头结构的主要缺陷。
3 检测方式根据结构形式,管座角焊缝的检测有如下五种检测方式,可选择其中一种或几种方式组合实施检测。
检测方式的选择应由合同双方商定,并应考虑主要检测对象和几何条件的限制。
1) 在接管内壁采用直探头检测,见图1位置1。
2) 在容器内壁采用直探头检测,见图2位置1。
在容器内壁采用斜探头检测,见图1位置4。
3) 在接管外壁采用斜探头检测,见图2位置2。
4) 在接管内壁采用斜探头检测,见图1位置3和图2位置3。
5) 在容器外壁采用斜探头检测,见图1位置2。
图1 插入式管座角焊缝图2 安放式管座角焊缝3 管座角焊缝以直探头检测为主,必要时应增加斜探头检测的内容。
探头频率、尺寸应按标准5.1.4的规定执行,管座角焊缝斜探头的距离—波幅曲线灵敏度按表19的规定,直探头的距离—波幅曲线灵敏度按表1的规定。
表1 管座角焊缝直探头距离—波幅曲线的灵敏度评定线定量线判废线φ2mm平底孔φ3mm平底孔φ6mm平底孔4 几个问题:①标准规定检测方式的选择应由合同双方商定,执行起来是有困难的,有一定的随意性,因此应予以规定。
② 没有检测技术等级的要求,即应该针对不同技术等级有不同的检测方式组合。
③ 没有横向缺陷扫查的要求,这在考试时要注意,很重要。
④ 没有明确规定检测灵敏度所依据的工件厚度,同样也没有明确检测质量等级所依据的工件厚度。
因此这里规定或建议,对插入式接管角焊缝,工件厚度为筒体或封头厚度,对安放式接管角焊缝,工件厚度为接管厚度。
管道对接焊缝相控阵超声检测
管道对接焊缝相控阵超声检测1. 引言1.1 研究背景管道对接焊缝相控阵超声检测是近年来随着工业领域的发展而逐渐兴起的一项重要技术。
管道在工业生产中起着至关重要的作用,而管道对接焊缝则是管道连接中不可或缺的部分。
传统的焊缝检测技术存在着检测精度低、效率低、对焊缝缺陷的检测能力不足等问题,因此急需一种能够高效、准确、全面检测焊缝缺陷的新技术。
目前,随着超声技术的不断发展和改进,管道对接焊缝超声检测成为一种备受瞩目的技术。
相控阵超声检测技术可通过多个超声探头同时发射和接收超声波,实现对焊缝的全面扫描和准确探测,具有高分辨率、高灵敏度、高重复性等优点。
结合管道对接焊缝特点,相控阵超声检测技术被广泛应用于管道对接焊缝的检测领域。
本研究旨在探讨管道对接焊缝相控阵超声检测技术的原理、方法、技术、设备及应用,并研究在实际应用中可能存在的问题,为今后的研究提供借鉴和参考。
通过对该技术进行深入研究和分析,可以为提高管道连接质量、降低安全风险、节约成本、提高生产效率等方面提供有力支撑,具有重要的研究意义和实际应用价值。
1.2 研究目的管道对接焊缝相控阵超声检测是一种非常重要的无损检测技术,可以有效地对管道焊缝进行检测和评估。
本文旨在探讨这一技术在管道工程中的应用和发展。
通过对管道对接焊缝相控阵超声检测的研究,可以深入了解焊缝的结构及缺陷情况,及时发现问题并加以修复,从而保障管道工程的安全运行。
对该检测技术的进一步优化和改进,可以提高检测的准确性和可靠性,为管道工程的施工和维护提供更为可靠的技术支持。
1.3 研究意义管道对接焊缝相控阵超声检测在工业领域扮演着重要的作用,其研究意义主要表现在以下几个方面:管道对接焊缝超声检测技术的发展能够提高工作效率,降低人工成本。
相比于传统的目视检测或X射线检测,超声检测可以实现自动化、高效率的检测,大大减轻了工作人员的劳动强度。
管道对接焊缝超声检测技术的研究还能促进超声检测技术的发展,推动无损检测领域的进步。
热熔焊PE管焊缝超声波检测
热熔焊PE管焊缝超声波检测摘要:在科技发展的带动下,新的技术和材料不断得到开发和应用,为生产效率的提高和社会的发展提供了巨大的便利。
在PE管道的连接中,通常使用热熔焊的方式,其对接焊缝容易出现焊接缺陷,因此需要采用超声波检测的方式,对其缺陷进行检测,以保证焊接的质量。
文章结合管道对接焊缝的特点,对超声波技术在热熔焊PE管对接焊缝中的应用进行了分析和探讨。
关键词:热熔焊PE管;热熔焊缝;超声波检测PE是指聚乙烯塑料,是一种十分常用的塑料材料。
PE材料凭借其自身强度高、耐磨、无毒等特点,其主要应用于城市供水、城市燃气供应及农田灌溉。
可以成为代替普通铁制给水管的理想材料。
在对PE管进行连接时,通常会采用热熔焊的方式,施工便利,设备简单,但是其对接焊缝往往会存在一定的缺陷,可能造成管道的泄露或损伤,因此,需要采用相应的方式,对其进行检测,及时发现并解决问题。
1 PE管道热熔焊缝的特点由于PE材料的特殊性,其焊缝特点主要表现在以下几个方面。
1.1 几种焊接接口形状如图1所示:①标准焊接接头形式:接头中间向下凹陷,且凹陷深度不超过管道表面,焊接接头两边均匀。
②不对称焊接接头:主要是由于加热时间或加热温度不同形成不对称接头。
或由于焊接不同种材料的管道时,加热时间内熔融塑料的流动指数不同所致。
③窄而高的焊接接头:这是由于焊接压力过大而导致的。
④较小的焊接接头:这是由于焊接压力过小而致或油缸行程不足所致。
1.2 工艺条件管道对接热熔焊接工艺,在现场作业,焊接的质量容易受到环境条件的影响。
1.3 检查条件通常情况下,PE热熔焊缝的检查只能针对外表面,进行目视检查。
1.4 缺陷部位PE热熔焊缝的缺陷主要产生于焊缝的中间未熔合和错口。
1.5 超声波信号判断由于PE材料的声学特征,其衰减严重,超声波传播困难,信号不易判断。
2 超声波检测技术超声波是一种频率高于人耳可以听到的频率(20 Hz-20 kHz)的声波,属于声波的一种,因此在传输过程中,需要服从波的传输规律。
厚壁管对接焊缝的超声波探伤
厚壁管对接焊缝的超声波探伤邹县发电厂是一座大型坑口燃煤电站,其三期扩建工程安装两台600MW机组,该机组锅炉是美国FWWC设计生产的亚临界、一次中间再热、自然循环型布置、燃煤汽包炉。
汽轮发电机由东方汽轮机厂和日立公司联合设计制造,汽轮机型式为亚临界、单轴三缸四排汽凝汽式汽轮机。
较以往我公司承建的机组,600MW机组中厚壁管道较多,给焊接及检验带来了一定的困难。
其中高温过热器出口对接焊缝规格为889×144,主蒸汽管道规格见下表。
如何提高无损检测水平,选用适当的探伤方法,来保证对焊缝焊接质量的检验,对于安全生产,延长管道的使用寿命,提高生产效率是一个重要课题。
电力建设施工及验收规范DL5007-92中7.0.2.3中规定厚度>=70mm的管子在焊到20mm时做100%的射线探伤,焊接完成后做100%的超声波探伤。
但由于管道探伤孔外径较小(依ASME标准设计制造),国产源源头无法放入管道中进行中心透照,只能进行双壁单投影透照检验。
在对主蒸汽焊口进行根部探伤时,依照GB/T 12605-90中的规定,环缝AB级透照进度比K值不大于1.1,通过计算至少需要透照8张底片(300×25mm),由于底片规格不标准,只能采用黑纸包装,容易造成先期或后期漏光,且进行探伤时,由于焊缝间隙小,胶片和源头均不易固定,每进行一次透照,40ci的射源需1小时左右,将整个焊口检验完需8个小时,显然劳动强度大,效率也很低。
进行源射线探伤,胶片灰雾度较大,对比反差较小,且发现危险缺陷能力较差。
因此,射线探伤方法不能很好地适应对厚壁对接焊缝进行根部探伤。
随着超声波探伤技术以及仪器性能和探头质量的提高,超声波探伤技术已广泛地应用于电力施工中。
超声波探伤具有以下优点:(a)、探伤灵敏度高,特别是对裂纹之类的危害性缺陷敏感。
(b)、能够准确地对缺陷进行定位。
(c)、成本低,返修周期短,对环境空间要求低,对人体无害。
管道对接焊缝相控阵超声检测
管道对接焊缝相控阵超声检测管道对接焊缝相控阵超声检测技术是一种利用超声波对管道焊缝进行快速、准确检测的先进技术。
在工业生产和施工中,管道对接焊缝是非常重要的一环,其质量直接影响着整个管道系统的安全性和可靠性。
对管道对接焊缝进行有效的检测至关重要。
传统的焊缝检测方法需要借助于X射线或者磁粉探伤等技术,不仅成本高昂,而且存在安全隐患。
而管道对接焊缝相控阵超声检测技术则可以通过超声波的方式对焊缝进行高效、安全、准确的检测,因此备受工程领域的青睐。
管道对接焊缝相控阵超声检测技术是利用超声波的传播特性来实现对管道焊缝缺陷的探测。
其原理是通过超声波传播到管道内部后,由声波探头接收回波信号,根据回波信号的强度和时间来获得管道内部的结构信息,并通过信号处理和成像等技术手段来分析焊缝的质量和缺陷情况。
相控阵超声检测技术是指超声探头上的多个发射元件和接收元件之间的时间分别是不同的,在探测中通过优化这些元件的发射和接收时间差,实现波束的形成和调整,从而实现对焊缝进行高分辨率、高灵敏度、全方位的检测。
1. 高效性:相控阵技术能够实现对管道焊缝的全方位覆盖,无死角检测,大大提高了检测效率。
2. 精准度:相控阵技术通过精确的波束调整和控制,在焊缝内部能够实现对缺陷的精准定位和识别。
3. 安全性:相控阵超声检测技术无需使用放射性同位素,不存在辐射危害,对人体和环境无污染,是一种安全环保的检测方法。
4. 便携性:相控阵超声检测设备体积小,重量轻,便于携带和操作,适用于现场管道施工和维护。
1. 工业管道加工制造过程中的焊缝检测,可以及时发现焊接质量问题,保证产品质量。
2. 管道安装后的现场检测,可以帮助工程人员了解管道内部的结构情况,对管道系统的安全性进行评估。
3. 管道维护、检修期间的焊缝检测,可以发现管道劣化、变形及焊缝断裂等问题,及时进行修复和维护。
1. 智能化:随着计算机技术和人工智能的发展,管道对接焊缝相控阵超声检测技术将向智能化方向发展,实现自动化、智能化的检测,提高检测效率和准确度。
管道焊缝探伤检测标准
管道焊缝探伤检测标准管道焊缝探伤检测标准:一、探伤检测目的和范围1、探伤检测目的:此检测旨在提供关于管道焊接缝的完整性的非破坏性检测。
2、探伤检测的范围:管道连接部位的焊接缝,包括焊缝内、外缘区和焊缝翼板。
二、探伤检测方法1、磁粉探伤检测:此检测方法应用于管子的外表面,便于检测试样表面上的裂纹、空鼓现象及焊接缝的缺陷等。
2、X线图像探伤检测:此检测方法应用于管子内部,可检测不适当的焊接参数、缺陷、未焊接缝等。
3、超声波探伤检测:此检测方法用于检测管子的内部和外部,可检测焊接头、对接表面、管子的平底部和缝隙等。
三、探伤检测用材料1、X线管:采用6.2MV/100KV或7MV/125KVX线管。
2、磁粉:采用经过外科医学认证的无毒颜色磁粉,它能够溶于水或乙醇等混合溶剂,体积稳定且形态不变,能在试样上形成特定的图案。
3、超声波发射棒:应采用0.5∼2.5MHz超声波发射棒,并连接测量仪。
四、探伤检测优点1、快速性:检测可以在几个小时内完成,节省宝贵的时间;2、非破坏性:探伤检测可以保证工件在检测过程中免受破坏;3、灵敏性:可以检测出小于造成破坏的缺陷;4、质量评价:可以按照管道材质、参数、加工等建立一个完整的检测报告,以便进行管道质量评价。
五、质量控制要点1、X线及超声波工作距离:在焊接位置尽量控制探伤检测工作距离,X线探伤检测半径小于500mm,超声波探伤检测半径通常小于300mm;2、X线和超声波功率:在检测工作距离内,确保X线管功率能够满足7MV/125KV,超声波衰减量的功率大于135dB;3、看粉激光对焊:看粉激光对焊有效率高,有利于管道材料探伤检测;4、检测取样原则:针对管道材料检测,检测取样数量不得小于4件,检测站所应取样数量不少于十件;5、不可探测感应器:探伤检测中,应确保无不可探测感应器,因为不可探测感应器的存在会干扰检测效果。
TKY管节点超声波检测作业规程
作业指导书TKY管节点超声波检测作业规程1范围a)本检验程序包含了钢结构焊缝的超声波检验方法技术及验收标准。
b) 本程序应用于对接焊,TKY节点,十字型接头,管对梁及材料厚度大于或等于8mm的接头。
2参考标准AWS D 1.1(2008) TKY级别X验收标准。
API RP 2X(2004)3人员资格所有从事无损检验的工作人员必须持有ASNT 或者PCN 以及等同资格要求颁发的TKY超声波II级人员资格证书。
所有超声波人员必须被业主认可。
4.0超声波检测设备4.1超声波探伤仪。
a) 超声波探伤仪必须是脉冲回波型,适合使用1至6MHz频率的探头。
b) 仪器显示必须是“A”扫描,经调整的显示轨迹。
仪器显示的动态范围要求1dB的波幅变化能够在显示屏上容易探测出来。
c) 探伤仪的水平线性必须被证实能在全声程范围内使用。
d) 探伤仪的垂直线性必须在6%的满屏范围内。
e) 在不小于60dB的范围内,仪器的校正增益控制精确度必须在±1dB范围内。
f) 每一个仪器探头的组合性能须接收到从IIW 校准试块上4英寸半径弧面反射波3/4的情况下,有最小储备的灵敏度余量40dB。
g) 使用的超声波探伤仪型号为。
以及相同类型。
所有的超声波探伤仪必须有独立的识别并附上有校准日期及下次校准标示。
4.2 探头4.2.1 纵波探头作业指导书TKY管节点超声波检测作业规程a) 纵波直探头必须是圆形或方形并须有不小于323mm²及不大于645mm²的有效面积。
b) 频率在2至5MHz之间。
c) 探头能够分辨IIW参考试块上的三个槽型缺口反射。
d) 具备在AWS D1.1描述合格的其他尺寸及频率的探头,并被业主认可也可使用。
4.2.2 横波探头a) 晶片须为近似方形尺寸,产生的声速其低于中心轴线6dB外,与轴线夹角约为15°。
b) 根据AWS D1.1第6.22.7条推荐主要使用探头晶片宽度为15至25mm,高度为15至20mm,频率为2至5MHz。
西气东输管道工程《管道对接环焊缝全自动超声波检测》标准及与国外先进标准的对比
2 本标 准 的技术 特点 本标 准采 用 多通道 、声 聚焦 、分 区扫查 的超 声 波 检 测 系统 ( 下 简 称全 自动超 声 波 检 测 系 统 ) 以 , 其 特点是 : ( )全 自动 超声波 检测 系统 采用 多通道 、声 聚 1 焦 探头 ,将 焊缝 沿厚度 方 向分成 几个 区 ,每个 区用
中应 用 。
西 气东输 工 程 管道 全长 4 0 k 材质 为 X 0 00 i n 7, 规 格 为 D1 1r ( 厚 1 .~ 62 m) 06 m 壁 a 46 2 .m .工 作 压力 1 MP ,是 我 国 “ 五 ” 期 间 规 模 最 大 的管 道 工 O a 十 程 。本 工 程 面 向 国际 招 标 采 用 国际 上 先进 的技 术 、 先进 的设 备 和 先 进 的管 理 方 式 , 在 管道 对 接
本标 准适 用 于壁 厚 等 于或 大 于 6 m 的 西气 东 a r 输管道 工 程线路 环焊缝 检 测 与验收 ;不适 用于站 场
维普资讯
20 0 2年 4月
石
油
_ 程 T :
建
没
第 2 8卷 第 2期
及管 径小 于 l0 m钢 管的环 焊缝 检 测 : 5r a 32 检 洲人 员资质 .
3 1 适 用 范 围 . 1
区 扫查 的 全 自动超 声 波检 测 系统 ,并 在 涩 宁 兰 工 程 中获 得 成功 的演 示 为标 准 的 编制 提 供 了丰 富 有 价值 的 数据 。在 标 准 的整 个编 制过 程 中 ,历 经 了 4次 国 内外 专家 的 研讨 、审查 ,最 后 由石 油 天
焊接接头超声检测讲稿4-管座角焊缝的超声检测
原检测方法
PB
Pf
P0 Fs F f
2 X 2 2
PB / Pf
X 2 2
2 X 1Ff
D d
计算可得: 20 lg( PB / Pf ) 39.8dB 即用直探头在接管内壁把管壁一次底波调到仪器荧光屏满刻度 80%,再提 高 40dB 作为检测灵敏度进行检测。发现缺陷后,可根据深度(声程)判断缺陷 波幅所在区域,需要时测量缺陷的长度。
a
t
b
a) 横截面
b) 俯视
说明: A、B、C、D、E、F、W、X、Y、Z——探头位置; a、b、c、d、e——探头移动区宽度; t——工件厚度; 1——筒体或封头; 2——接管。
表 N.3
插入式接管角接接头超声检测的具体要求
纵向缺陷检测 斜探头检测 横向缺陷检测 斜探头横向扫查 检测面 (X 和 Y)或 (W 和 Z) (X 和 Y)或 (W 和 Z) (X 和 Y)和 (W 和 Z)
焊接接头超声波检测工艺卡
委托单位:
设备名称 检件规格 焊接方法 检测技术等级 合格级别 表面状态 扫查面 探头 探头移动区 人工反射体 表面补偿 评定线 定量线 判废线 XX 容器 手工电弧焊 C级 Ⅰ级 露出金属光泽 产品编号 坡口型式 检测标准 试 块 2014-009
工艺卡编号:XXX-XXXX
四 管座角焊缝超声检测
管座角焊缝的结构形式有插入式和安放式两种。 1 检测条件的选择: (1)探头 采用直探头检测时,由于筒体或接管表面为曲面,二者接触面
小,为保证耦合,探头的尺寸不宜过大。 (2)试块 直探头检测用试块与锻件检测的平底孔试块相似。试块材质、
曲率半径、表面粗糙度与被检工件相同。斜探头检测用试块与平板对接接头检测 用试块相同。 2 检测原则 在选择检测面和探头时应考虑到各种类型缺陷的可能性, 并使声束尽可能 垂直于该焊接接头结构的主要缺陷。 3 检测方式 根据结构形式,管座角焊缝的检测有如下五种检测方式,可选择其中一种 或几种方式组合实施检测。检测方式的选择应由合同双方商定,并应考虑主要检 测对象和几何条件的限制。 1) 在接管内壁采用直探头检测,见图 1 位置 1。 2) 在容器内壁采用直探头检测,见图 2 位置 1。在容器内壁采用斜探头 检测,见图 1 位置 4。 3) 在接管外壁采用斜探头检测,见图 2 位置 2。 4) 在接管内壁采用斜探头检测,见图 1 位置 3 和图 2 位置 3。 5) 在容器外壁采用斜探头检测,见图 1 位置 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道对接焊缝的超声波检测摘要:针对工艺管道对接焊缝的特点,对焊接方法、焊接位置及易产生的缺陷进行了分析由于工艺管道对接焊缝壁厚范围大,多是直管与直管、直管与弯头、法兰、阀门等管件对接,采用单面焊接双面成型工艺,这种特殊结构型式和焊接工艺,使超声波检测只能进行单面双侧扫查或单面单侧扫查"为了提高缺陷的检出率,对不同规格!不同结构的焊缝在选择扫查面、探头数量、探头型号和探头尺寸时应有针对性"根部缺陷的判定对仪器扫描线调节精度提出了较高要求,对典型缺陷的回波特征进行了分析"通过以上分析和采取的措施,能有效提高工艺管道对接焊缝超声波检测的质量。
石化装置工艺管道对接焊缝超声波检测具有一定的难度"早期的模拟超声波探伤仪由于定位精度不高,对于根部缺陷的识别和判定存在较大难度,每次更换不同角度的探头后时间基线都要重新调节,非常不便,这为在工艺管道对接焊缝领域推广超声波检测技术造成了很大的困难"近些年,超声波检测灵敏测设备发生了巨大改变,且更新很快,数字式探伤仪代替了模拟仪"数字式探伤仪较原先使用的模拟式超声波探伤仪具有显著的优点"首先,其定位精度高,定位精度可达0.1mm,为管道焊缝根部信号的判定提供了可靠依据;第二,可存储多种探头参数及其距离一波幅曲线,为现场采用多种角度的探头进行检测提供了方便,提高了不同角度缺陷的检度,也可方便地变换探头(角度),为辨识真、伪信号提供了方便;第三,可以存储动态波形和缺陷包络线,并可作为电子文件存档备查"数字式超声波探的难题"。
笔者推荐管道焊缝探伤采用数字式超声波探伤仪。
通过专业培训和严格考核,可以筛选出合格的管道对接焊缝超声波检测人员,完全能保证管道焊缝的超声波检测质量。
通过对超声波检测方法、扫查面、探头数量、探头型号和探头尺寸的控制、以及理论分析和实际验证, 表明超声波检测能有效保证管道焊缝的检测质量。
超声波检测操作灵活方便,对厚壁管道检测灵敏度和检测效率均高于射线检测,成本低于射线检测,且对人体无害,是一种科学!环保的检测方法。
1 管道对接焊缝与容器对接焊缝的不同点管道对接焊缝较容器对接焊缝从焊接工艺、结构型式!主要缺陷产生的部位、缺陷信号判别、探头扫查面、探头折射角度的选择以及祸合面曲率等都有较大区别"因此从事管道对接焊缝超声波检测的人员必须对比有一定的了解"表1是管道对接焊缝与容器对接焊缝超声波检测不同点的比较。
2 焊接工艺及缺陷分析管道对接焊缝的超声波检测有两个重要环节,一是如何能保证不漏检缺陷,二是如何能正确识别和判定缺陷"以下对管道的接头型式、焊接方法、焊接位置及易产生的缺陷进行了分析,为设计检测工提高缺陷的检出率和信号判定提供参考。
2.1 结构型式与扫查面石化装置工艺管道对接焊缝一般可分为3种型式:直管与直管对接、直管与管件对接、管件与管件对接。
(1) 直管与直管对接焊缝探头可以在焊缝两侧进行扫查。
(2) 直管与管件对接焊缝由于管件侧表面为不规则曲面(如弯头、法兰、阀门或三通等),探头不能良好藕合,因此,只能从直管一侧进行扫查,为了提高缺陷检出率,应选择2种不同角度的探头进行扫查。
(3) 管件与管件对接焊缝由于焊缝两侧均为不规则曲面(如弯头!法兰、阀门或三通等),探头不能良好祸合,因此,这类焊缝不能进行正常的超声波检测"如客户有措施将焊缝余高磨平(与母材平齐), 则可将探头通过磨平的焊缝进行检测"将焊缝打磨至与母材平齐是一件很困难的事,一般不这样做。
2.2 焊接位置了解焊接位置有助于缺陷性质的分析判断。
管道对接焊缝的焊接位置分为水平转动、水平固定、垂直固定和45度斜固定。
(l) 水平转动口焊接时,焊接位置总是处于时钟11点或1点附近的位置,焊接操作最易控制,最不易产生焊接缺陷(图1)"(2)水平固定口焊接时,上半部分处于平焊位置,下半部分处于仰焊位置,两侧处于立焊位置(图2) 。
(3) 垂直固定口焊接时,其位置为横焊,焊接位置示意见图3。
(4)45度斜固定口焊接时,各部分在水平固定的基础上又增加了倾斜角度,加大了焊接难度(图4)。
2.3 各焊接位置易产生的缺陷类型(1) 焊接程序目前石化装置管道对接焊缝均采用氢弧焊打底,焊工在打底结束前留一小段用作检查孔,用手电筒观察根部打底情况,若有不良现象则立即将不良部位用磨光机去除重焊,最终检查良好后将根部最后一小段焊好"氢弧焊打底结束后,对于较厚的焊缝一般采用手工电弧焊或埋弧自动焊填充盖面。
(2) 平焊位置铁水熔化后在重力的作用下会向下淌,因此平焊位置焊接时要控制电流不能过大, 焊接电流和焊接速度要适当,否则易形成焊瘤和烧穿。
焊条接头和焊瘤部位易产生气孔。
(3) 立焊位置在立焊位置因铁水下淌导致焊缝波纹粗糙及内外表面焊缝成型不良,也容易产生未焊透、未熔合!焊瘤及咬边"因此要控制焊接电流不能过大,焊接速度不能过快。
(4) 仰焊位置仰焊位置易产生内凹、未焊透、未熔合及焊瘤(余高过高),仰焊位置电流过大易产生内凹!烧穿和焊瘤,电流过小易产生未焊透和未熔合,因此仰焊部位的焊接难度最大"焊工常采用灭弧焊法进行焊接,即引弧!将焊条熔化一点立即断弧、待片刻熔池凝固、再继续引弧熔化一点焊条立即断弧...这样循环持续,直至铁水成型达到可控为止,在烧第二层焊缝时电流也不能过大,否则将第一层铁水熔化下坠形成内凹,电流越大形成的内凹越深。
(5)横焊位置管子垂直固定,焊工围绕焊缝进行横向焊接。
横焊位置焊接时,铁水受重力作用,上部易出现咬边,坡口易产生未熔合,焊接每层之间如果清理不好易产生夹渣。
焊缝表面横排波纹控制不好会比较粗糙。
3 探头的选择探头选择时要考虑的因素有:(1) 检测厚度检测较薄焊缝应选择大K 值、短前沿探头,一次波尽可能扫查更多的焊缝截面;对于大厚度焊缝应选择晶片尺寸较大、K 值合适、具有足够灵敏度的探头。
根据实际工作经验,笔者推荐壁厚不小于7mm 的焊缝宜采用单斜探头进行检测。
壁厚< 7mm 的焊缝检测时杂波干扰严重,目前多选用聚焦探头或双晶探头。
但聚焦探头和双晶探头一般宽度较大,与小径管藕合时要进行修磨"由于聚焦探头和双晶探头都是在焦点附近灵敏度最高,探测范围受到一定影响,工艺管道壁厚< 7mm 的管道管径一般均较小,因此,对壁厚< 7mm 的管道焊缝不推荐采用超声波检测法进行检测。
(2) 检测面曲率半径R 较小的管道,要选择接触面小的探头,以保证良好藕合;直径较大的管道可以选择尺寸较大的探头,以提高检测效率。
探头与工件接触面尺寸W 应满足下式:R≥W2 /4 (1)目前市场销售的晶片尺寸为6mm x 6mm 的短前沿小晶片探头,其探头宽度一般为12mm 。
由式(l)计算可得管道直径应> 72mm。
为提高藕合效果,笔者推荐采用探头宽度为12mm 的小晶片短前沿探头进行检测时,管道直径下限为100mm。
(3) 扫查面直管与直管对接,探头在焊缝两侧扫查时,可以选择1种K 值的探头;直管与管件对接,探头只能在焊缝一侧进行扫查时,应选择2种折射角相差不少于10度的探头进行扫查,其中较小K值的探头,一次波扫查范围不少于焊缝截面的1/4(4) 探头频率管道探伤宜选择较高频率的探头,以提高指向性和定位精度。
推荐采用频率为5MHz的探头,对于较厚管道(厚度)不小于4 0mm)可以选择2.5M Hz的探头。
对于根部可疑信号,尽可能选择小K 值探头复验"经验表明,小K 值探头定位精度高,误差小。
综合上述条件,不同厚度的管道推荐选择的探头角度和前沿距离见表2,不同曲率的管道推荐选择的探头尺寸见表3。
4 检测灵敏度分析检测标准执行JB/T 4730.3一2005,外径不小于159mm的管子按标准中表19调节检测灵敏度;外径< 159mm 的管子按标准中表30调节灵敏度。
管道对接焊缝中存在的主要缺陷有未焊透、未熔合、内凹、焊瘤、错口、气孔、夹渣和裂纹等。
根部未焊透、未熔合和裂纹属面状缺陷,超声波对其非常敏感。
试验表明,深度为0.5mm 切槽的反射波幅均较高,回波均在判废线上下"因探头的角度不同,回波幅度有所不同,探头折射角度越小,回波幅度越高,因此根部未焊透!未熔合和根部纵向裂纹类面状缺陷一般不会漏检。
5 检测工艺卡编制举例工艺卡的编制原则:工艺卡要能够真正指导检测人员能够看懂,按工艺卡要求可以方便实施"编制检测工艺卡时需重点关注的内容如下:(1) 探头数量和参数能够满足标准和实际检测的需要,能否最大限度地检出危害性缺陷。
(2) 检测面要明确"(3) 试块和检测灵敏度符合标准要求。
下文对管道焊缝超声波检测工艺卡的编制进行举例。
已知某石化装置检修改造工程中有一条规格为219*20mm 的碳钢工艺管道,坡口型式为V型,氩弧焊打底,手工电焊填充、盖面,检测比例为100%。
按按JB/T4730.3一2005标准进行检测,合格级别为一级。
检测工艺卡编制结果见表4。
表4中未对检测技术等级提出要求,这是因为JB/T 4730.3一2005的检测技术等级不适用于直管与管件对接的焊缝检测。
6 典型缺陷信号的识别超声波检测前,应对受检焊缝两侧的壁厚靠近焊缝部位用直探头进行测厚,以确认其真实厚度。
如果测得结果小于标称值的负偏差,则应立即报告委托人;如果测得结果大于或等于标称值,则认为是可以接受的"所测厚度值应在记录中注明,该值即作为判断回波信号的基准。
对回波信号性质的判定要结合材质、坡口和结构型式、焊接工艺和焊接位置、回波位置(包括水平位置和深度位置)、指示长度和取向、最大回波高度、静态和动态波形等进行综合分析"对于可疑信号可更换另一种角度的探头进行验证,以助于缺陷定性和伪信号的识别。
管道焊缝正确判别根部信号的关键是时基线标定要准确,要求深度定位误差不超过0.5mm,否则,根部缺陷信号判断会产生较大误差。
时基线标定完毕后,必须用与所检工件厚度等深或相近的孔进行校验,该孔的最高回波指示值应与深度标称值相当或略小0.1一0.5mm(半孔径),则时基线标定是准确的。
时基线的调节还应考虑试块声速与工件声速的差异,当工件厚度较大时,声速的差别会严重影响定位精度和根部缺陷的判定"如常温测得材质20号钢的横波声速3230m/s,P91的横波声速3301m/s时20号钢的纵波声速5934m/S,P91纵波声速5983m/s。
用KZ探头和20号钢标准试块标定的时基线探测P91钢工件时,由于P91钢的声速较快,其折射角增大,K 值变为K 2.25,探测50mm 厚P91工件其声程增加至123.297mm,较20号钢的声程111.67mm 增加11.62mm,从时基线上观察, 与厚度50mm 的P91钢工件的实际厚度为54mm。