2016年山东省日照市中考数学试卷(解析版)
山东省日照市中考数学试卷
山东省日照市中考数学试卷参考答案与试题解析一、选择题(共大题共12小题,其中1-8题每小题3分,9-12题每小题3分,满分40分.每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)(2014•日照)在已知实数:﹣1,0,,﹣2中,最小的一个实数是()..C.4.(3分)(2014•日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均没千克比第一季度又上升了20%,则第6.(3分)(2014•日照)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获7.(3分)(2014•日照)关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2BD8.(3分)(2014•日照)如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点,在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为()运动的路径长为:++++(解方程组得,两直线的交点坐标为(,>10.(4分)(2014•日照)如图,已知△ABC的面积是12,点E、I分别在边AB、AC上,在BC边上依次作了n个全等的小正方形DEFG,GFMN,…,KHIJ,则每个小正方形的边长为().C.x=,11.(4分)(2014•日照)如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).有下列结论:①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是(5,0);⑤点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2.其中正确的是()=212.(4分)(2014•日照)下面是按照一定规律排列的一列数:第1个数:﹣(1+);第2个数:﹣(1+)×(1+)×(1+);第3个数:﹣(1+)×(1+)×(1+)×(1+)×(1+);…﹣,由)1+)1+)))1+﹣)][1+﹣,个数分别为﹣,﹣,﹣,﹣,其中最大的数为﹣,即第二、填空题(共4小题,每小题4分,满分16分,不需写出解答过程,请将答案直接写在答题卡相应的位置上)13.(4分)(2014•日照)分解因式:x3﹣xy2=x(x+y)(x﹣y).14.(4分)(2014•日照)小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为优的扇形的圆心角的度数为108°.=30×15.(4分)(2014•日照)已知a>b,如果+=,ab=2,那么a﹣b的值为1.+=16.(4分)(2014•日照)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.=.三、解答题(本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)(2014•日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?﹣18.(8分)(2014•日照)在某班“讲故事”比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.(2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由.;===19.(10分)(2014•日照)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC 边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.×.,20.(10分)(2014•日照)如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(Ⅰ)求直线AB的解析式.(Ⅱ)若设点P的横坐标为x,矩形PKDH的面积为S.(1)用x表示S;(2)当x为何值时,S取最大值,并求出这个最大值.,+=21.(14分)(2014•日照)阅读资料:小明是一个爱动脑筋的学生,他在学习了有关圆的切线性质后,意犹未尽,又查阅到了与圆的切线相关的一个问题:如图1,已知PC是⊙O的切线,AB是⊙O的直径,延长BA交切线PC与P,连接AC、BC、OC.因为PC是⊙O的切线,AB是⊙O的直径,所以∠OCP=∠ACB=90°,所以∠B=∠2.在△PAC与△PCB中,又因为:∠P=∠P,所以△PAC∽△PCB,所以=,即PC2=PA•PB.问题拓展:(Ⅰ)如果PB不经过⊙O的圆心O(如图2)等式PC2=PA•PB,还成立吗?请证明你的结论;综合应用:(Ⅱ)如图3,⊙O是△ABC的外接圆,PC是⊙O的切线,C是切点,BA的延长线交PC于点P;(1)当AB=PA,且PC=12时,求PA的值;(2)D是BC的中点,PD交AC于点E.求证:=.由平行线分线段成比例定理即可求得=,=,由平行线分线段成比例定理即可求得==6.=,=.=,=.==,.=,=.=,=.==,.22.(14分)(2014•日照)如图1,在菱形OABC中,已知OA=2,∠AOC=60°,抛物线y=ax2+bx+c (a≠0)经过O,C,B三点.(Ⅰ)求出点B、C的坐标并求抛物线的解析式.(Ⅱ)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG 上.(1)当OP+PC的最小值时,求出点P的坐标;(2)在(1)的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PEF相似?若存在,请求出点M的坐标;若不存在,请说明理由.OC=BC=BD=2,,,所以,BGQ=,即∠,∠2,=32点的坐标为(3+,顶点为,,,,x=2×,,∠,,,BGQ==,2。
2016年山东中考数学试卷(含答案)
山东中考数学试卷一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 45 16 17 18 19 20 答案一、选择题:(本大题共20题,每小题3分,共60分.在每小题给出的代号为ABCD 四个选项中,只有一项是符合题目要求的) 1.3--的值为 A. 3B. -3C.31D. -31 2.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是AB CD3.在电子显微镜下测得一个圆球体细胞的直径是5×105-cm ,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310-D .cm 410-4.将右图所示的直角梯形绕直线l 旋转一周,得到的立体图形是A B C D5.自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 A.61049.1⨯ B.810149.0⨯ C.7109.14⨯D.71049.1⨯6.下列运算正确的是 A .22a a a =⋅B .33)(ab ab =C .632)(a a = D .5210a a a=÷7.如图,将一副三角板按图中的方式叠放,则角α等于 A .75B .60C .45D .30 8.如果33-=-b a ,那么代数式b a 35+-的值是 A .0 B .2 C .5 D .89.计算2(3)-的结果是 A .3 B .3- C .3± D .910.右图是由五个完全相同的小正方体组合成的一个立体图形,则它的俯视图...是11.不等式组32>2(4)x xx +⎧⎨--⎩≥1 的解集在数轴上表示正确的是12.方程(5)x x x -=的解是 A .0x =B .0x =或5x =C .6x =D .0x =或6x = 13.如图,正六边形螺帽的边长是2cm ,这个扳手的 开口a 的值应是A .23 cmB .3cmC .23cm D .1cmA .92B .94 C .95 D .32 15.已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是A .(-2,1)B .(1,-2)C .(-2,-2)D .(1,2)16.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB CD = B .AD BC = C .AB BC =D .AC BD =17.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A .7B .8C .9D .1018.手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相同,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是A B C D 19.右图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么关于 该班40名同学一周参加体育锻炼时间 的说法错误..的是 A .极差是3 B .中位数为8 C .众数是8D .锻炼时间超过8小时的有21人20.如右图是夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距 离x 的变化而变化,那么表示y 与x 之间的函数关 系的图像大致为二、填空题(每小题3分,满分12分请将答案直接填在题中横线上)21.已知抛物线2y x bx c=++的对称轴为2x=,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为.22.如图,AB切⊙O于点A,BO交⊙O于点C,点D是CmA异于点C、A的一点,若∠ABO=°32,则∠ADC的度数是.23.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为.24.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,可列出的方程组应为.三、解答题(本大题共5个小题)25.(本题满分8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:你们是用9天完成4800米长的大坝加固任务的?我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.26.(本题满分10分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)当△ABC满足什么条件时,四边形BFCE是菱形?27.(本题满分10分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.28.(本题满分10分)如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?29.(本题满分10分)我市是世界有机蔬菜基地,数10种蔬菜在国际市场上颇具竞争力.某种有机蔬菜上市时,某经销商按市场价格10元/千克在我市收购了2000千克某种蔬菜存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批蔬菜时每天需要支出各种费用合计340元,而且这种蔬菜在冷库中最多保存110天,同时,平均每天将会有6千克的蔬菜损坏不能出售.(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.(2)经销商想获得利润22500元,需将这批蔬菜存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?参考答案一、选择题:1-5BCBCD6-10CADAD11-15BDABD16-20DCDBA二、填空题:21.(4,3)22.°2923.524.20, 4372 x yx y+=⎧⎨+=⎩三、解答题926004800600=-+xx ……………………………………………………4分 去分母,得 1200+4200=18x (或18x =5400)解得 300x =检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.………………………………………8分 26.解:(1)证明:∵D 是BC 的中点,∴BD =CD∵CE ∥BF ,∴∠DBF =∠DCE又∵∠BDF =∠CDE ,∴△BDF ≌△CDE ………………………………3分(2)当△ABC 是等腰三角形,即AB =AC 时,四边形BFCE 是菱形………4分证明:∵△CDE ≌△BDF ,∴DE =D F∵BD =CD ,∴四边形BFCE 是平行四边形…………………………………7分 在△ABC 中,∵AB =AC ,BD =CD ,∴AD ⊥BC ,即EF ⊥BC ∴四边形BFCE 是菱形……………………………………………………10分27.解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--解得:5x =∴35355175x =⨯=(人)答:该校八年级参加社会实践活动的人数为175人.………4分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175,320400(4)1500y y y y +-⎧⎨+-⎩≥≤………………………………………7分 解这个不等式组,得11144y ≤≤2.∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.………………10分28.(1)证明:∵AD =CD ∴∠DAC =∠DCA∴∠BDC =2∠DAC又∵DE 是∠BDC 的平分线 ∴∠DAC =∠BDE∴DE ∥AC ………………………………………………………………3分(2)解:分两种情况:①若△BME ∽△CNE ,必有∠MBE =∠NCE 此时BD =DC ∵DE 平分∠BDC ∴DE ⊥BC ,BE =EC 又∠ACB =90° ∴DE ∥AC ∴BE BD BC AB =即2211522BD AB AC BC =+=∴AD=5…………………………………………………………………7分②若△BME ∽△ENC ,必有∠EBM =∠CEN 此时NE ∥MC∴8cos 6 4.810BC AD AC A AC AB =⋅=⋅=⨯= ∴当AD =5或AD =4.8时,以B ,M ,E 为顶点的三角形与以C ,E ,N 为顶点的三角形相似…………………………………………………………………………10分 29.解:(1)由题意得y 与x 之间的函数关系式为y =()()100.520006x x +-=2394020000x x -++(1≤x ≤110)……………………………………3分(2)由题意得:2394020000x x -++-10×2000-340x =22500解方程得:1x =50;2x =150(不合题意,舍去)经销商想获得利润2250元需将这批蔬菜存放50天后出售. ………………6分 (3)设最大利润为W ,由题意得W =2394020000x x -++-10 ×2000-340x23(100)30000x =--+∴当100x =时,30000W 最大=100天<110天∴存放100天后出售这批香菇可获得最大利润30000元.………………10分。
2016学年山东省日照中考数学年试题
四川省遂宁市2016年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷 一、选择题1.【答案】B【解析】3的相反数为3-,故选B 。
【提示】只有符号不同的两个数互为相反数,0的相反数为0。
【考点】相反数的概念2.【答案】D【解析】本题121-=-,A 错误;3(2)6⨯-=-,B 错误;42428()⨯==a a a ,C 错误;3(21)323163⨯-=⨯-⨯=-y y y ,D 正确,故选D 。
【考点】实数、整式的运算3.【答案】C【解析】观察各选项,选项A ,B ,D 中的图形折叠后都能构成正方体,C 选项中的图形不能构成正方体,故选C 。
【考点】正方体的展开图4.【答案】A【解析】审查书稿有哪些科学性错误工作量不大且有必要全面调查,适合普查,选项B ,C ,D 中的事件工作量大且并不十分有必要进行全面调查,故选A 。
【提示】了解普查的使用范围是解题的关键。
【考点】普查的概念5.【答案】A【解析】点(2,3)A 向左平移2个单位得到(22,3)-,即'(0,3)A ,点'(0,3)A 关于x 轴的对称点为''(0,3)-A ,故选A 。
【提示】关于x 轴对称的两点的横坐标相等,纵坐标互为相反数;关于y 轴对称的两点的纵坐标相等,横坐标互为相反数;关于原点对称的两点的横坐标互为相反数,纵坐标也互为相反数。
【考点】点的平移和对称13-++n -133+++n【答案】证明:四边形=AE CF 证明:四边形∴∥AB CD =AE CF 【考点】平行四边形的性质,三角形全等的判定19.【答案】解:246, 34, +=+-=+①②x y a x y a +①②得55102=+=+,x a x a ,把2=+x a 代入①得22=+y a .0>x ,4<y ,{20224∴+>, ③+<,④a a 由③得2>-a ,由④得1<a , 21∴-<<a .【提示】解二元一次方程组,结合题中的条件得到关于a 的一元一次不等式组求解。
【中考数学试题及答案】日照中考数学试题及答案2016
【中考数学试题及答案】日照中考数学试题及答案2016
不相信奇迹的人永远都不会创造奇迹。加油吧!相信你一定能战胜中考!日照中考数学试题及答案频道的小编会及时为广大考生提供2016年日照中考数学试题及答案,有需要的考生可以在考题公布后刷新本页面(按ctrl F5),希望对大家有所帮助。
历年中考数学模拟试题(含答案) (229)
2016年山东省日照市中考数学试卷一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.(3分)(2016•日照)以下选项中比|﹣|小的数是()A.1 B.2 C.D.2.(3分)(2016•日照)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.3.(3分)(2016•日照)下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a64.(3分)(2016•日照)小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°5.(3分)(2016•日照)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣76.(3分)(2016•日照)正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.7.(3分)(2016•日照)积极行动起来,共建节约型社会!我市某居民小区200户居民参加A.240吨B.360吨C.180吨D.200吨8.(3分)(2016•日照)2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%9.(4分)(2016•日照)下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个10.(4分)(2016•日照)如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC (靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.411.(4分)(2016•日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①② B.②③ C.②④ D.①③④12.(4分)(2016•日照)一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.(4分)(2016•日照)关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.14.(4分)(2016•日照)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.15.(4分)(2016•日照)如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.16.(4分)(2016•日照)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ 的最小是.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(9分)(2016•日照)(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.18.(9分)(2016•日照)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.19.(10分)(2016•日照)未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)20.(10分)(2016•日照)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?21.(13分)(2016•日照)阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC 的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.22.(13分)(2016•日照)如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.2016年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.(3分)(2016•日照)以下选项中比|﹣|小的数是()A.1 B.2 C.D.【分析】先求出|﹣|的值,再根据有理数的大小比较法则比较即可.【解答】解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选D.【点评】本题考查了有理数的大小比较法则的应用,能熟记有理数的大小比较法则内容是解此题的关键.2.(3分)(2016•日照)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选B.【点评】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.3.(3分)(2016•日照)下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a6【分析】A选项中分子分母同时约去公因式a可得a2,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得B错误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得C错误;根据幂的乘方法则:底数不变,指数相乘可得D错误.【解答】解:A、=a2,故原题计算错误;B、a2和a不是同类项,不能合并,故原题计算错误;C、(﹣2a)2=4a4,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.【点评】此题主要考查了分式的约分、合并同类项、积的乘方、幂的乘方,关键是熟练掌握各运算法则.4.(3分)(2016•日照)小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=48°,∴∠3=90°﹣∠1=90°﹣48°=42°.∵直尺的两边互相平行,∴∠2=∠3=42°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.(3分)(2016•日照)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000105=1.05×10﹣5,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3分)(2016•日照)正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.【分析】由图象可以知道,当x=﹣2或x=2时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1x的解集,即可得出结论.【解答】解:两个函数图象的另一个交点坐标为(﹣2,﹣1),当﹣2<x<0或x>2时,直线y=k1x在y2=图象的上方,故不等式k1x的解集为x<﹣1或x>2.故选:B.【点评】此题主要考查了一次函数与一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.7.(3分)(2016•日照)积极行动起来,共建节约型社会!我市某居民小区200户居民参加A.240吨B.360吨C.180吨D.200吨【分析】先根据10户家庭一个月的节水情况,求得平均每户节水量,再计算200户家庭这个月节约用水的总量即可.【解答】解:根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨)∴200户家庭这个月节约用水的总量是:200×1.2=240(吨)故选(A)【点评】本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(3分)(2016•日照)2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%【分析】设该县这两年GDP总量的平均增长率为x,根据:2015年某县GDP总量×(1+增长百分率)2=2017年全县GDP总量,列一元二次方程求解可得.【解答】解:设该县这两年GDP总量的平均增长率为x,根据题意,得:1000(1+x)2=1210,解得:x1=﹣2.1(舍),x2=0.1=10%,即该县这两年GDP总量的平均增长率为10%,故选:C.【点评】本题主要考查一元二次方程的应用,关于增长率问题:若原数是a,每次增长的百分率为a,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即:原数×(1+增长百分率)2=后来数.9.(4分)(2016•日照)下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个【分析】分别根据平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系对各小题进行逐一判断即可.【解答】解:①∵a<1,1﹣a>0,∴(a﹣1)=﹣,故本小题正确;②平行四边形既是中心对称图形但不是轴对称图形,故本小题错误;③的算术平方根是,故本小题错误;④∵方程ax2+2x+1=0有两个不相等的实数根,∴△=4﹣4a>0,解得a<1且a≠0,故本小题错误.故选A.【点评】本题考查的是命题与定理,熟知平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系是解答此题的关键.10.(4分)(2016•日照)如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC (靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.4【分析】先作辅助线DH⊥AB于点D,然后根据特殊角的三角函数值可以求得DH的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S1+S2+S3的值.【解答】解:作DH⊥AB于点H,如右图所示,∵AD=2,AB=2,∠A=60°,∴DH=AD•sin60°=2×=,∴S▱ABCD=AB•DH=2=6,∴S2+S3=S△PBC=3,又∵E、F分别是PB、PC(靠近点P)的三等分点,∴,∴S△PEF=×3=,即S1=,∴S1+S2+S3=+3=,故选A.【点评】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,画出合适的辅助线,利用数形结合的思想解答问题.11.(4分)(2016•日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①② B.②③ C.②④ D.①③④【分析】由抛物线开口方向得到a<0,有对称轴方程得到b=﹣2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=﹣2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(﹣)与点()到对称轴的距离可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(4分)(2016•日照)一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=23×52,可得200的所有正约数之和为(1+2+22+23)(1+5+52),即可得出答案.【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故选(D).【点评】本题属于类比推理的问题,类比推理的一般方法是:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的猜想.解决问题的关键是认真观察、仔细思考、善用联想,探寻变化规律.二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.(4分)(2016•日照)关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.【分析】设方程的另一个根为t,根据根与系数的关系得到1•t=,然后解关于t的方程即可.【解答】解:设方程的另一个根为t,根据题意得1•t=,解得t=.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.(4分)(2016•日照)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为2米.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.(4分)(2016•日照)如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.【分析】根据题意可以求得CE的长,从而可以求得tan∠CAE的值.【解答】解:设CE=x,则BE=AE=8﹣x,∵∠C=90°,AC=6,∴62+x2=(8﹣x)2,解得,x=,∴tan∠CAE===,故答案为:.【点评】本题考查翻折变换、解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数值解答问题.16.(4分)(2016•日照)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,由点到直线的距离求出CP的长度,再根据勾股定理即可求出PQ的长度.【解答】解:过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线AB的解析式为y=﹣,即3x+4y﹣12=0,∴CP==.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案为:.【点评】本题考查了切线的性质、点到直线的距离以及勾股定理,解题的关键是确定P、Q 点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ 取最小值时点P、Q的位置是关键.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(9分)(2016•日照)(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.【分析】(1)根据同类项的定义可以得到关于m、n的二元一次方程组,从而可以解答m、n的值;(2)先对原式化简,再将a=代入化简后的式子即可解答本题.【解答】解:(1)∵﹣与x n y m+n是同类项,∴,解得,,即m的值是2,n的值是3;(2)()==,当a=时,原式==.【点评】本题考查分式的化简求值、同类项、解二元一次方程组,解题的关键是明确它们各自的计算方法.18.(9分)(2016•日照)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【分析】(1)直接利用旋转的性质得出对应线段关系进而得出答案;(2)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而利用勾股定理得出答案.【解答】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴∠QAF=90°,∵∠EAF=45°,∴∠QAE=45°,∴EA是∠QED的平分线;(2)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确得出△AQE≌△AFE(SAS)是解题关键.19.(10分)(2016•日照)未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)【分析】(1)先利用第1组的频数除以它的频率得到样本容量,再计算出第4组的频数,则用样本容量分别减去其它各组的频数得到a的值,接着用第5组的频数除一样本容量得到b 的值,用b的值除以组距10得到y的值,然后计算第2组的频率,再把第2组的频率除以组距得到x的值;(2)根据中位数的定义求解;(3)画树状图(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)展示所有20种等可能的结果数,再找出小明、小敏同时被选中的结果数,然后根据概率公式求解.【解答】解:(1)9÷0.18=50,50×0.08=4,所以a=50﹣9﹣20﹣4﹣2=15,b=2÷50=0.04,x=15÷50÷10=0.03,y=0.04÷10=0.004;(2)小王的测试成绩在70≤x≤80范围内;(3)画树状图为:(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)共有20种等可能的结果数,其中小明、小敏同时被选中的结果数为2,所以小明、小敏同时被选中的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.20.(10分)(2016•日照)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y最大=30000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.21.(13分)(2016•日照)阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:线段EF.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC 的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.【分析】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,利用弧长公式即可解决.【解答】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.故答案为线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′∵△ABC是等边三角形,MN是中位线,∴AM=BM=AN=CN,∵AF=BE,∴EM=FN,∵MN∥BC,∴∠AMN=∠B=∠GME=60°,∵∠A=∠GEM=60°,∴△GEM是等边三角形,∴EM=EG=FN,在△GQ′E和△NQ′F中,,∴△GQ′E≌△NQ′F,∴EQ′=FQ′,∵EQ=QF,′点Q、Q′重合,∴点Q在线段MN上,∴段EF中点Q的运动轨迹是线段MN,MN=BC=×8=4.∴线段EF中点Q的运动轨迹的长为4.拓展提高:如图2中,(1)∵△APC,△PBD都是等边三角形,∴AP=PC,PD=PB,∠APC=∠DPB=60°,∴∠APD=∠CPB,在△APD和△CPB中,,∴△APD≌△CPB,∴∠ADP=∠CBP,设BC与PD交于点G,∵∠QGD=∠PGB,∴∠DQG=∠BPG=60°,∴∠AQB=180°﹣∠DQG=120°(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,∴弧AB的长==π.∴动点Q运动轨迹的长π.【点评】本题考查三角形综合题、全等三角形的判定和性质、圆的有关性质、弧长公式等知识,解题的关键是理解轨迹的意义,学会添加常用辅助线,学会探究找到轨迹的方法,属于中考压轴题.22.(13分)(2016•日照)如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣[(x﹣2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣x2+x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出BC=,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC 为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.。
山东省日照市中考数学真题试题(解析版)
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题每小题得3分,第9~12小题每小题得4分,选错、不选或选出的答案超过一个均记零分.1、(2011•日照)(﹣2)2的算术平方根是()A、2B、±2C、﹣2D、考点:算术平方根;有理数的乘方。
分析:首先求得(﹣2)2的值,然后由4的算术平方根为2,即可求得答案.解答:解:∵(﹣2)2=4,4的算术平方根为2,∴(﹣2)2的算术平方根是2.故选A.点评:此题考查了平方与算术平方根的定义.题目比较简单,解题要细心.2、(2011•日照)下列等式一定成立的是()A、a2+a3=a5B、(a+b)2=a2+b2C、(2ab2)3=6a3b6D、(x﹣a)(x﹣b)=x2﹣(a+b)x+ab考点:多项式乘多项式;合并同类项;幂的乘方与积的乘方;完全平方公式。
专题:综合题。
分析:根据合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则解答.解答:解:A、不是同类项,不能合并,故本选项错误;B、(a+b)2=a2+2ab+b2,故本选项错误;C、(2ab2)3=8a3b6,故本选项错误;D、(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,故本选项正确.故选D.点评:本题综合考查合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则,是基础题型,需要熟练掌握.3、(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A、70°B、80°C、90°D、100°考点:三角形内角和定理;平行线的性质。
专题:计算题。
分析:根据两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同位角相等;三角形内角和定理.4、(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A、54盏B、55盏C、56盏D、57盏考点:一元一次方程的应用。
2013-2018年山东省日照市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2018年山东省日照市中考数学试题汇编(含参考答案与解析)1、2013年山东省日照市中考数学试题及参考答案与解析 (2)2、2014年山东省日照市中考数学试题及参考答案与解析 (23)3、2015年山东省日照市中考数学试题及参考答案与解析 (46)4、2016年山东省日照市中考数学试题及参考答案与解析 (70)5、2017年山东省日照市中考数学试题及参考答案与解析 (94)6、2018年山东省日照市中考数学试题及参考答案与解析 (112)2013年山东省日照市中考数学试题及参考答案与解析一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.计算﹣22+3的结果是()A.7 B.5 C.﹣1 D.﹣52.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.3.如图,H7N9病毒直径为30纳米(1纳米=10﹣9米),用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣9米4.下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a25.如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组6.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.7.四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.其中正确的是()A.①②B.①③C.②③D.③④8.已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<09.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8 B.7 C.6 D.510.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC2=2AB•AE C.△ADE是等腰三角形D.BC=2AD11.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()A.M=mn B.M=n(m+1)C.M=mn+1 D.M=m(n+1)12.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A .1个B .2个C .3个D .4个二、填空题:本大题共4小题,每小题4分,满分16分.不需写出解答过程.13x 的取值范围是 .14.已知m 2﹣m =6,则1﹣2m 2+2m = .15.如右图,直线AB 交双曲线k y x=于A 、B ,交x 轴于点C ,B 为线段AC 的中点,过点B 作BM ⊥x 轴于M ,连结OA .若OM =2MC ,S △OAC =12.则k 的值为 .16.如图(a ),有一张矩形纸片ABCD ,其中AD =6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为 .三、解答题:本大题有6小题,满分64分.解答时应写出必要的文字说明、证明过程或演算步骤.17.(10分)(1()112tan3032π-⎛⎫--︒+-︒ ⎪⎝⎭. (2)已知,关于x 的方程x 2﹣2mx =﹣m 2+2x 的两个实数根x 1、x 2满足|x 1|=x 2,求实数m 的值.18.(10分)如图,已知四边形ABDE 是平行四边形,C 为边BD 延长线上一点,连结AC 、CE ,使AB =AC .(1)求证:△BAD ≌△AEC ;(2)若∠B =30°,∠ADC =45°,BD =10,求平行四边形ABDE 的面积.19.(10分)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为13;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为25.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)20.(10分)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.21.(10分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y (辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.22.(14分)已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,﹣2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE =30°,|x1﹣x2|=8.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似(除去全等这一情况)?若存在,求出P点的坐标;若不存在,说明理由;(3)如图(b),点Q为EBF上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH•AQ 是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案与解析一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.计算﹣22+3的结果是()A.7 B.5 C.﹣1 D.﹣5【知识考点】有理数的加法;有理数的乘方.【思路分析】根据有理数的乘方,以及有理数的加法运算法则进行计算即可得解.【解答过程】解:﹣22+3=﹣4+3=﹣1.故选:C.【总结归纳】本题考查了有理数的乘方,有理数的加法运算,要特别注意﹣22和(﹣2)2的区别.。
山东省日照市莒县2016届中考一模考试数学试题解析(解析版)
一、选择题1.下面四个交通标志分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,在这四个标志中,既是轴对称图形,又是中心对称图形的是()【答案】C.【解析】考点:1.中心对称图形;2.与轴对称图形.2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()【答案】A【解析】试题解析:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A考点:简单几何体的三视图.3.化简(-a2)3的结果是()A .-a 5B .a 5C .-a 6D .a 6 【答案】C . 【解析】试题解析:(-a 2)3=(-1)3(a 2)3=-a 6. 故选C .考点:积的乘方与幂的乘方.4.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是5,平均数是3.6B .众数是5,平均数是4.6C .中位数是4,平均数是3.6D .众数是2,平均数是4.6 【答案】B . 【解析】考点:1.众数;2.中位数;3.平均数. 5.不等式组2120x x -⎩≥⎧⎨<的解集在数轴上表示为( )【答案】B . 【解析】试题解析:2120x x -⎧≥⎨⎩<①②由①得,x <0; 由②得,x≤1,故此不等式组的解集为:x <0, 在数轴上表示为:故选B .考点:在数轴上表示不等式组的解集6.将直线y=-2x+3向上平移2个单位长度,得到一次函数的解析式为( ) A .y=-2x+1 B .y=-2x+5 C .y=4x+3 D .y=-2x+2 【答案】B. 【解析】试题解析:由“上加下减”的原则可知,把直线y=-2x+3向上平移2个单位长度后所得直线的解析式为:y=-2x+3+2,即y=-2x+5. 故选B.考点:一次函数的图象与几何变换.7.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD .若B (2,0),则点C 的坐标为( )A (2, 2)B .(1,2) C,) D .(2,1) 【答案】A . 【解析】试题解析:∵∠OAB=∠OCD=90°,CO=CD ,Rt△OAB 与Rt△OCD 是位似图形,点B 的坐标为(2,0), ∴BO=2,则,∴A(1,1),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(2,2).故选A.考点:位似变换.8.某县为大力推进义务教育均衡发展,加强学校“信息化”建设,计划用三年时间对全县学校的信息化设施和设备进行全面改造和更新.2016年县政府已投资2.5亿元人民币,若每年投资的增长率相同,预设2018年投资3.6亿元人民币,那么每年投资的增长率为()A.20%、-220% B.40% C.-220% D.20%【答案】D.【解析】试题解析:设每年投资的增长率为x,根据题意,得:2.5(1+x)2=3.6,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选D.考点:一元二次方程的实际应用.9.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=1x的图象上.若点B在反比例函数y=kx的图象上,则k的值为()A.-4 B.4 C.-2 D.2【答案】A.【解析】试题解析:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴BD OD OB OC AC OA==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=1x的图象上,则mn=1,∵点B在反比例函数y=kx的图象上,B点的坐标是(-2n,2m),∴k=-2n2m=-4mn=-4.故选A.考点:反比例函数图象上点的坐标特征.10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为aba b+的是()【答案】C.【解析】试题解析:A 、设圆的半径是x ,圆切AC 于E ,切BC 于D ,切AB 于F ,如图(1)同样得到正方形OECD ,AE=AF ,BD=BF ,则a-x+b-x=c ,求出x=2a b c+-,故本选项错误;B 、设圆切AB 于F ,圆的半径是y ,连接OF ,如图(2), 则△BCA∽△OFA,∴OF AOBC AB =, ∴y b y a c -=,解得:y=ab a c+,故本选项错误; C 、连接OE 、OD ,∵AC、BC 分别切圆O 于E 、D , ∴∠OEC=∠ODC=∠C=90°, ∵OE=OD,∴四边形OECD 是正方形, ∴OE=EC=CD=OD, 设圆O 的半径是r , ∵OE∥BC,∴∠AOE=∠B, ∵∠AEO=∠ODB, ∴△ODB∽△AEO,∴OE AEBD OD =, r b r a r r-=-, 解得:r=aba b+,故本选项正确;从上至下三个切点依次为D ,E ,F ;并设圆的半径为x ;容易知道BD=BF ,所以AD=BD-BA=BF-BA=a+x-c ; 又∵b -x=AE=AD=a+x-c ;所以x=2b c a+-,故本选项错误. 故选C .考点:1.正方形的性质和判定,2.切线的性质,3.全等三角形的性质和判定,4.三角形的内切圆与内心 11.在同一平面直角坐标系中,函数y=ax 2+bx (a≠0)与y=bx+a (b≠0)的图象可能是( )【答案】C. 【解析】试题解析:在A 中,由一次函数图象可知,a >0,b >0,由二次函数图象可知,a >0,b <0,故选项A 错误;在B 中,由一次函数图象可知,a <0,b <0,由二次函数图象可知,a >0,b >0,故选项B 错误; 在C 中,由一次函数图象可知,a <0,b >0,由二次函数图象可知,a <0,b >0,故选项C 正确; 在D 中,由一次函数图象可知,a >0,b >0,由二次函数图象可知,a <0,b <0,故选项D 错误; 故选C .考点:1. 二次函数的图象;2.一次函数的图象.12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=13a ,在边A 1B 1、B 1C 1,C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2、B 1B 2、C 1C 2、D 1D 2=13A 1B 1,…,依次规律继续下去,则正方形A n B nC nD n 的面积为( )A .289a B .(49)n a 2 C .(59)n-1a 2 D .(59)n a 2 【答案】D. 【解析】试题解析:在Rt△A 1BB 1中,由勾股定理可知;A 1B 12=A 1B 2+B 1B 2=(23a )2+(13a )2=59a 2,即正方形A 1B 1C 1D 1的面积=59a 2;在Rt△A 2B 1B 2中,由勾股定理可知:A 2B 22=A 2B 12+B 2B 12=(23)2+(13)2=(59)2a 2;即正方形A 2B 2C 2D 2的面积=(59)2a 2; …∴正方形A n B n C n D n 的面积=(59)n a 2. 故选D .考点:规律型:图形变化类.二、填空题13.分解因式:m 2n-2mn+n= . 【答案】n (m-1)2【解析】试题解析:原式=n (m 2-2m+1)=n (m-1)2. 考点:提公因式法与公式法的综合运用. 14.已知13x y =,则x y y+的值为 . 【答案】43. 【解析】试题解析:由和比性质,得43x y y +=. 考点:比例的性质.15.如图,正方形ABCD 位于第二象限,边长为2,点A 在直线y=-x 上,点A 的横坐标为-1,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线y=kx与正方形ABCD 有公共点,则k 的取值范围为 .【答案】-9≤k ≤-1. 【解析】试题解析:点A 在直线y=-x 上,其中A 点的横坐标为-1,则把x=-1代入y=-x 解得y=1,则A 的坐标是(-1,1), ∵AB=BC=2,∴C 点的坐标是(-3,3), ∴当双曲线y=kx经过点(-1,1)时,k=-1; 当双曲线y=kx经过点(-3,3)时,k=-9, 因而-9≤k≤-1. 考点:反比例函数.16.如图,在平面直角坐标系中,抛物线y=212x 2经过平移得到抛物线y=212x -3x ,其对称轴与两段抛物线所围成的阴影部分的面积为 .【答案】272.【解析】 试题解析:如图,∵y=12x 2-3x=12(x-3)2-92, ∴平移后抛物线的顶点坐标为(3,-92),对称轴为直线x=3, 当x=3时,y=12×32=92, ∴平移后阴影部分的面积等于如图三角形的面积,12×(92+92)×3=272. 考点:二次函数图象与几何变换.三、解答题17.(1)计算:2sin45°11()3-+(-2016)0 (2)先化简,再求值:(21a a -++1)÷231a -,其中a 是不等式3a+7>1的负整数解.【答案】(1+2;(2)-2. 【解析】试题分析:(1)原式利用特殊角的三角函数值,二次根式性质,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的负整数解确定出a 的值,代入计算即可求出值.试题解析:(1-2+3+1+2;(2)原式=21(1)(1)13a a a aa-+++-⨯+=3(1)(1)13a aa+-⨯+=a-1,不等式3a+7>1,得到a>-2,∵a为负整数,∴a=-1,则原式=-1-1=-2.考点:1.实数的运算;2.分式的化简;3.解一元一次不等式.18.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.【答案】(1)500;90°;(2)380;(3)C、D两个厂家;(4)16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.19.如图,AB分别是⊙O的直径,AC是弦,DC是⊙O的切线,C为切点,AD⊥DC于点D.(1)已知∠ACD=a,求∠AOC的大小;(2)求证:AC2=AB·AD.【答案】(1)2α;(2)证明见解析.【解析】试题分析:(1)由CD是⊙O的切线得到∠OCD=90°,即∠ACD+∠ACO=90°,利用OC=OA得到∠ACO=∠CAO,然后利用三角形的内角和即可证明题目的结论;(2)如图,连接BC.由AB是直径得到∠ACB=90°,然后利用已知条件可以证明在Rt△ACD∽Rt△ABC,接着利用相似三角形的性质即可解决问题.试题解析:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°,①∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边除以2得:12∠AOC+∠ACO=90°,②由①,②,得:∠ACD-12∠AOC=0,即∠AOC=2∠ACD=2α;(2)如图,连接BC.∵AB是直径,∴∠ACB=90°,在Rt△ACD与Rt△ABC中,∵∠AOC=2∠B,∴∠B=∠ACD,∴Rt△ACD∽Rt△ABC,∴AC ADAB AC,即AC2=AB·AD.考点:切线性质.20.如图,矩形纸片ABCD,,对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B 折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.(1)求证:∠ABM=30°;(2)求证:△BMG是等边三角形;(3)若P为线段BM上一动点,求PN+PG的最小值.【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)由对折,判断出BN垂直平分MG,通过计算即可;(2)由(1)∠ABM=∠NBM=GBN=30°,得出∠MBG=60°,即可;(3)先计算出BG=BM=2,再判断出点N与点A关于直线BM对称,得到PN+PG的最小值为AG,计算即可.试题解析:(1)∵对折AD与BC重合,∴点E是AB的中点,∴点N是MG的中点,∵∠BNM=∠A=90°,∴BN垂直平分MG,∴BM=BG,∴∠GBN=∠MBN,由翻折的性质,∠ABM=∠NBM,∴∠ABM=∠NBM=∠GBN=13×90°=30°,∴∠MBG=60°;(2)由(1)知,∠ABM=∠NBM=GBN=30°,∴∠MBG=60°,∵BM=BG,∴△BMG为等边三角形,(3)如图,连接PN,PA,PG,,∠ABM=30°,∴BM=2,∴BG=BM=2,∴由折叠的性质知,点N与点A关于直线BM对称,∴PN=PA,∴PN+PG的最小值为AG,=,∴PN+PG.考点:四边形综合题21.阅读材料:我们知道|x|=()0(0)(0)x xxx x⎧⎪=⎨⎪-⎩>0<,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值),在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x <-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x<2时,原式=x+1-(x-2)=3;(3)当x≥2时,原式=x+1+x-2=2x-1.综上所述,原式=2(221x x x x x -+⎧⎪≤⎨⎪-≥⎩<<-1)3(-1)21()学以致用:(Ⅰ)分别求出|x+3|和|x-1|的零点值;(Ⅱ)化简代数式|x+3|+|x-1|;拓展应用:(Ⅲ)求函数y=|x+3|+|x-1|(-3≤x≤3)的最大值和最小值.【答案】(1)零点值分别为-3和1;(2)22(21x x x x x --⎧⎪≤⎨⎪+≥⎩<<-3)4(-3)2()1;(3)最大值是8和最小值是4.【解析】试题分析:(Ⅰ)阅读材料,根据零点值的求法,即绝对值里面的代数式等于0,即可解答;(Ⅱ)根据阅读材料中,化简带绝对值的代数式的方法,根据x 的取值范围,分为三种情况,根据绝对值的性质解答即可;(Ⅲ)分x <-3、-3≤x ≤1、x >1分别化简,结合x 的取值范围确定代数式值的范围,从而求出函数的最值.试题解析:(Ⅰ)令x+3=0和x-1=0,分别求得x=-3,x=1,所以|x+3|和|x-1|的零点值分别为-3和1;(Ⅱ)在实范围内,零点值x=-3和x=1可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x <-3时,原式=-(x+3)-(x-1)=-2x-2;(2)当-3≤x<1时,原式=(x+3)-(x-1)=4;(3)当x≥1时,原式=x+3+x-1=2x+2.综上所述,原式=22(21x x x x x --⎧⎪≤⎨⎪+≥⎩<<-3)4(-3)2()1;(Ⅲ)由(Ⅱ)可化简函数为y=4(3x )2x 2(x 113)-≤⎧⎨+≤≤⎩<.该函数的大致图形如图所示:所以函数y=|x+3|+|x-1|(-3≤x≤3)的最大值是8和最小值是4.考点:一次函数综合题.22.如图,直线y=-2x+2与抛物线y=ax2+bx(a<0)相交于点A,B.双曲线y=kx过A、B两点,已知点B的坐标为(2,-2),点A在第二象限内,且tan∠Aoy=14.(1)求双曲线和抛物线的解析式;(2)计算△AOB的面积;(3)在抛物线上是否存在点P,使△AOP的面积等于△AOB的面积?若存在,请你写出点P的坐标;若不存在,请你说明理由.【答案】(1)双曲线解析式为y=-4x,抛物线解析式为y=x2-3x,(2)3,(3)P(-3,18).【解析】试题分析:(1)先用待定系数法求出双曲线解析式,再用待定系数法求出抛物线解析式;(2)先求出△AOB的面积,在求出△BOC的面积即可;(3)先求出直线PB解析式为y=-4x+6,和抛物线解析式为y=x2-3x,联立方程组求解即可.试题解析:(1)∵双曲线经过点B,∴k=-4,∴双曲线解析式为y=-4x,∵tan∠AOy=14,设A(-m,4m),∵点A 过双曲线,∴m=1或m=-1(舍),∴A(-1,4);∵抛物线过点A,B,∴2424a bab-=+⎧⎨=⎩,∴13 ab=⎧⎨=-⎩,∴抛物线解析式为y=x2-3x,(2)设直线y=-2x+2交于x轴于C,令y=0,∴x=1,∴OC=1,∴S△AOB=S△AOC+S△BOC=12×1×4+12×1×2=3,(3)存在点P(-3,18),理由:假设存在点P,使△AOP的面积等于△AOB的面积;∴点P到直线OA的距离等于点B到直线OA的距离,∴PB∥AO,∵直线AO解析式为y=-4x,∴设直线PB的解析式为y=-4x+f,∵直线PB过点B,∴-2=-4×2+f,∴f=6,∴直线PB解析式为y=-4x+6,∴2463y x y x x =-+⎧⎨=-⎩, ∴318x y =-⎧⎨=⎩或22x y =⎧⎨=-⎩(舍), P (-3,18).考点:二次函数综合题.。
2016年山东省日照市中考数学试卷及答案解析完整版
2016年山东省日照市中考数学试卷一、选择题:本大题共12小题,其中1—8小题,每小题3分,9—12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.以下选项中比|﹣|小的数是()A.1 B.2 C.D.2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.3.下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a64.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1。
05×10﹣5D.105×10﹣76.正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.7.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A.240吨B.360吨C.180吨D.200吨8.2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1。
21% B.8% C.10% D.12.1%9.下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个10.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.411.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④12.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.15.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.16.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A 顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.19.未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.组别分组频数频率1 50≤x<60 9 0.182 60≤x<70 a3 70≤x<80 20 0。
日照市中考数学试题及答案
试卷类型:A日照市初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,40分;第Ⅱ卷8页为非选择题,80分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共40分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题每小题得3分,第9~12小题每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.(-2)2的算术平方根是(A )2 (B ) ±2 (C )-2 (D )22.下列等式一定成立的是(A ) a 2+a 3=a 5 (B )(a +b )2=a 2+b 2(C )(2ab 2)3=6a 3b 6 (D )(x -a )(x -b )=x 2-(a +b )x +ab 3. 如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为(A )70° (B )80° (C )90° (D )100°4.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有 (A )54盏 (B )55盏 (C )56盏 (D )57盏5.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为6.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 7. 以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是(A )(3,3) (B )(5,3) (C )(3,5) (D )(5,5)8.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为(A )41 (B )163 (C )43 (D )839.在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 (A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 10.在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =ab.则下列关系式中不成立...的是 (A )tan A ²cot A =1 (B )sin A =tan A ²cos A(C )cos A =cot A ²sin A (D )tan 2A +cot 2A =111.已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab的是12. 观察图中正方形四个顶点所标的数字规律,可知数2011应标在(A )第502个正方形的左下角 (B )第502个正方形的右下角 (C )第503个正方形的左上角 (D )第503个正方形的右下角16试卷类型:A初中学业考试数 学 试 题第Ⅱ卷(非选择题 共80分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.计算sin30°﹣2-= .14. 如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 . 15.已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么x 2011-y 2011=.16.正方形ABCD 的边长为4,M 、N 分别是BC 、CD 上的两个动点, 且始终保持AM ⊥MN .当BM = 时,四边形ABCN 的面积最大. 17.如图,是二次函数 y =ax 2+bx +c (a ≠0)的图象的一部分, 给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0. 其中正确的命题是 .(只要求填写正确命题的序号)得 分评 卷 人三、解答题:本大题共7小题,共60分.解答时要写出必要的文字说明、证明过程或演算步骤.18. (本题满分6分)化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3.19.(本题满分8分)卫生部修订的《公共场所卫生管理条例实施细则》从今年5月1日开始正式实施,这意味着“室内公共场所禁止吸烟”新规正式生效.为配合该项新规的落实,某校组织了部分同学在“城阳社区”开展了“你最支持哪种戒烟方式”的问卷调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人? (2)请你把两种统计图补充完整; (3)求以上五种戒烟方式人数的众数.得 分评 卷 人得 分评 卷 人20.(本题满分8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.21.(本题满分9分如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D . 求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .得 分评 卷 人得 分评 卷 人22.(本题满分9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?23.(本题满分10分)如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ; (2)若点M 在DE 上,且DC=DM, 求证: ME=BD .得 分评 卷 人得 分评 卷 人得 分评 卷 人24.(本题满分10分)如图,抛物线y=ax 2+bx (a 0)与双曲线y =xk相交于点A ,B . 已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOx =4. 过点A 作直线AC ∥x 轴,交抛物线于另一点C .(1)求双曲线和抛物线的解析式;(2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.初中学业考试数学试题参考答案及评分标准评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12小题,第1~8小题每小题3分,第9~12小题每小题4分,共二、填空题:(本大题共5小题,每小题4分,共20分) 13.23-; 14.如:x 2-5x +1=0; 15.-2; 16.2; 17.①③. 三、解答题:(本大题共7小题, 共60分) 18.(本题满分6分)解:原式=1)1()1)(1(11222+--+-÷-+-m m m m m m m =111)1)(1()1(22+--+∙+--m m m m m m ……………………………2分 =m m m m m -+∙+-2111 =mm m --21=)1(1--m m m =m1.………………………………………………5分∴当m =3时,原式=3331=.………………………………6分 19.(本题满分8分)解:(1)这次调查中同学们调查的总人数为20÷10%=200(人);………2分 (2)统计图如图(扇形图与统计图各2分); …………………6分(3)以上五种戒烟方式人数的众数是20.…………………8分 20.(本题满分8分)解:(1)设每年市政府投资的增长率为x , …………………………… 1分 根据题意,得:2+2(1+x )+2(1+x )2=9.5,整理,得:x 2+3x -1.75=0, ………………………………………………3分 解之,得:x =275.1493⨯+±-,∴x 1=0.5 x 2=-0.35(舍去),…………………………………………5分 答:每年市政府投资的增长率为50%;…………………………………6分 (2)到2012年底共建廉租房面积=9.5÷3882=(万平方米).………8分 21.(本题满分9分)证明:(1)∵CD 是⊙O 的切线,∴∠OCD =90°,即∠ACD +∠ACO =90°.…① …………………………………………2分 ∵OC=OA ,∴∠ACO =∠CAO , ∴∠AOC =180°-2∠ACO ,即21∠AOC +∠ACO =90°. …②……………4分 由①,②,得:∠ACD -21∠AOC =0,即∠AOC =2∠ACD ;………………5分 (2)如图,连接BC .∵AB 是直径,∴∠ACB =90°.……………6分 在Rt △ACD 与△Rt ACD 中,∵∠AOC =2∠B ,∴∠B =∠ACD ,∴△ACD ∽△ABC ,………………………8分 ∴ACADAB AC =,即AC 2=AB ²AD . ………9分22.(本题满分9分)解:(1)根据题意知,调配给甲连锁店电冰箱(70-x )台,调配给乙连锁店空调机(40-x )台,电冰箱(x -10)台,……………1分 则y =200x +170(70-x )+160(40-x )+150(x -10),即y =20x +16800.………………………………………………2分∵ ⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥,010,040,070,0x x x x∴10≤x ≤40. ……………………………3分 ∴y =20x +168009 (10≤x ≤40); ………………………………4分 (2)按题意知:y =(200-a )x +170(70-x )+160(40-x )+150(x -10), 即y =(20-a )x +16800. ………………………………………5分 ∵200-a >170,∴a <30. ………………………………………6分当0<a <20时,x =40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同;当20<a <30时,x =10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台; …………………………………9分 23.(本题满分10分)证明:(1)在等腰直角△ABC 中,∵∠CAD =∠CBD =15o ,∴∠BAD =∠ABD =45o -15o =30o ,∴BD=AD ,∴△BDC ≌△ADC ,∴∠DCA =∠DCB =45o .………………2分 由∠BDM =∠ABD+∠BAD =30o +30o =60o , ∠EDC=∠DAC +∠DCA =15o +45o =60o , ∴∠BDM =∠EDC ,∴DE 平分∠BDC ; ……………4分 (2)如图,连接MC ,∵DC=DM ,且∠MDC =60°,∴△MDC 是等边三角形,即CM=CD .又∵∠EMC =180°-∠DMC =180°-60°=120°, ∠ADC =180°-∠MDC =180°-60°=120°,∴∠EMC =∠ADC . …………………………7分 又∵CE=CA ,∴∠DAC =∠CEM =15°,∴△ADC ≌△EMC , ………………………9分 ∴ME=AD=DB . ………………………………10分 24.(本题满分10分)解:(1)把点B (-2,-2)的坐标,代入y =xk , 得:-2=2-k,∴k =4. 即双曲线的解析式为:y =x4. ………………………………2分 设A 点的坐标为(m ,n )。
山东日照中考数学试题及答案(word_版)
7 B. 4
O
B
5cm A
(第 7 题图) B
C. 3
2 D. 7
9. 方程 (k 1)x2 1 k x 1 0 有两个实数根,则 k 的取值范围是(
4
A. k≥1
B. k≤1
C. k>1
D. k&l均匀的小立方体(立方体的每个面上分别标有数字 1,2,
3,4,5,6).记甲立方体朝上一面上的数字为 x 、乙立方体朝上一面朝上的数字为 y ,
DE.有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB∽△FOE;
y D
B
③△DCE≌△CDF;
④ AC BD. 其中准确的结论是( A.①② C.①②③④
) B. ①②③ D. ②③④
A
O
F
x
E
C
(第 12 题图)
试卷类型:A
日照市初中学生学业考试
数学试题
第Ⅱ卷(非选择题 共 84 分)
1. 1 的相反数是 (
)
3
A. 1 3
C. 3
B. - 1 3
D. -3
2. 下列运算准确的是( )
A. x3 x2 x5
B. (x3 )3 x6
C. x5 x5 x10
D. x6 x3 x3
3. 下列图形中,是中心对称图形的是 ( )
A.
B.
C.
D.
4、下图能说明∠1>∠2 的是( )
试卷类型:A
日照市初中学生学业考试
(总分 120 分 考试时间 120 分钟) 注意事项:
1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷 3 页为选择题,36 分;第Ⅱ卷 8 页为非 选择题,84 分;全卷共 11 页.
【初中数学】山东省日照市莒县2016年中考数学一模试卷(解析版) 人教版
山东省日照市莒县2016年中考数学一模试卷(解析版)一、选择题1.下面四个交通标志分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,在这四个标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.3.化简(﹣a2)3的结果是()A.﹣a5B.a5C.﹣a6D.a64.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是5,平均数是3.6B.众数是5,平均数是4.6C.中位数是4,平均数是3.6D.众数是2,平均数是4.65.不等式组的解集在数轴上表示为()A.B.C.D.6.将直线y=﹣2x+3向上平移2个单位长度,得到一次函数的解析式为()A.y=﹣2x+1B.y=﹣2x+5C.y=4x+3D.y=﹣2x+27.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(2,0),则点C的坐标为()A(2,2)B.(1,2)C.(,2)D.(2,1)8.某县为大力推进义务教育均衡发展,加强学校“信息化”建设,计划用三年时间对全县学校的信息化设施和设备进行全面改造和更新.2016年县政府已投资2.5亿元人民币,若每年投资的增长率相同,预设2018年投资3.6亿元人民币,那么每年投资的增长率为()A.20%、﹣220%B.40%C.﹣220%D.20%9.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4B.4C.﹣2D.210.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.11.在同一平面直角坐标系中,函数y=ax2+bx(a≠0)与y=bx+a(b≠0)的图象可能是()A.B.C.D.12.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1,C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2、B1B2、C1C2、D1D2=A1B1,…,依次规律继续下去,则正方形A n B n C n D n的面积为()A.B.()n a2C.()n﹣1a2D.()n a2二、填空题13.分解因式:m2n﹣2mn+n=.14.已知=,则的值为.15.如图,正方形ABCD位于第二象限,边长为2,点A在直线y=﹣x上,点A的横坐标为﹣1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为.16.如图,在平面直角坐标系中,抛物线y=2经过平移得到抛物线y=﹣3x,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题17.(1)计算:2sin45°﹣+(﹣2016)0(2)先化简,再求值:(+1)÷,其中a是不等式3a+7>1的负整数解.18.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.19.如图,AB分别是⊙O的直径,AC是弦,DC是⊙O的切线,C为切点,AD⊥DC于点D.(1)已知∠ACD=a,求∠AOC的大小;(2)求证:AC2=ABAD.20.如图,矩形纸片ABCD,AB=,对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.(1)求证:∠ABM=30°;(2)求证:△BMG是等边三角形;(3)若P为线段BM上一动点,求PN+PG的最小值.21.阅读材料:我们知道|x|=,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值),在实数范围内,零点值x=﹣1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;(3)当x≥2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=学以致用:(Ⅰ)分别求出|x+3|和|x﹣1|的零点值;(Ⅱ)化简代数式|x+3|+|x﹣1|;拓展应用:(Ⅲ)求函数y=|x+3|+|x﹣1|(﹣3≤x≤3)的最大值和最小值.22.如图,直线y=﹣2x+2与抛物线y=ax2+bx(a<0)相交于点A,B.双曲线y=过A、B两点,已知点B的坐标为(2,﹣2),点A在第二象限内,且tan∠Aoy=.(1)求双曲线和抛物线的解析式;(2)计算△AOB的面积;(3)在抛物线上是否存在点P,使△AOP的面积等于△AOB的面积?若存在,请你写出点P 的坐标;若不存在,请你说明理由.2016年山东省日照市莒县中考数学一模试卷参考答案与试题解析一、选择题1.下面四个交通标志分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,在这四个标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念解答.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.【分析】从正面看得到从左往右3列正方形的个数依次为1,1,2,依此判断即可.【解答】解:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A【点评】此题考查三视图,关键是根据三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3.化简(﹣a2)3的结果是()A.﹣a5B.a5C.﹣a6D.a6【分析】根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘,计算后直接选取答案.【解答】解:(﹣a2)3=(﹣1)3(a2)3=﹣a6.故选C.【点评】本题考查积的乘方的性质和幂的乘方的性质,熟练掌握性质是解题的关键.4.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是5,平均数是3.6B.众数是5,平均数是4.6C.中位数是4,平均数是3.6D.众数是2,平均数是4.6【分析】根据众数和中位数的概念和平均数的计算公式分别进行求解即可得出答案.【解答】解:这组数据中5出现的次数最多,则众数为5,∵共有5个人,∴第3个人的劳动时间为中位数,∴中位数为:5,平均数为=4.6;故选B.【点评】本题考查了中位数、平均数、众数,掌握中位数、平均数和众数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5.不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x<0;由②得,x≤1,故此不等式组的解集为:x<0,在数轴上表示为:故选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.将直线y=﹣2x+3向上平移2个单位长度,得到一次函数的解析式为()A.y=﹣2x+1B.y=﹣2x+5C.y=4x+3D.y=﹣2x+2【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x+3向上平移2个单位长度后所得直线的解析式为:y=﹣2x+3+2,即y=﹣2x+5.故选B【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(2,0),则点C的坐标为()A(2,2)B.(1,2)C.(,2)D.(2,1)【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,CO=CD,Rt△OAB与Rt△OCD是位似图形,点B的坐标为(2,0),∴BO=2,则AO=AB=,∴A(1,1),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(2,2).故选:A.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.某县为大力推进义务教育均衡发展,加强学校“信息化”建设,计划用三年时间对全县学校的信息化设施和设备进行全面改造和更新.2016年县政府已投资2.5亿元人民币,若每年投资的增长率相同,预设2018年投资3.6亿元人民币,那么每年投资的增长率为()A.20%、﹣220%B.40%C.﹣220%D.20%【分析】首先设每年投资的增长率为x.根据2016年县政府已投资2.5亿元人民币,若每年投资的增长率相同,预设2018年投资3.6亿元人民币,列方程求解.【解答】解:设每年投资的增长率为x,根据题意,得:2.5(1+x)2=3.6,解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%.故选:D.【点评】此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.9.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4B.4C.﹣2D.2【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n2m=﹣4mn=﹣4.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.【分析】连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a﹣x+b﹣x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出=,代入求出y即可.【解答】解:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴=,∴=,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴=,=,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD﹣BA=BF﹣BA=a+x﹣c;又∵b﹣x=AE=AD=a+x﹣c;所以x=,故本选项错误.故选:C.【点评】本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.11.在同一平面直角坐标系中,函数y=ax2+bx(a≠0)与y=bx+a(b≠0)的图象可能是()A.B.C.D.【分析】根据各个选项中的函数图象可以判断函数y=ax2+bx(a≠0)与y=bx+a(b≠0)中a、b的正负,从而可以得到哪个选项是正确的.【解答】解:在A中,由一次函数图象可知,a>0,b>0,由二次函数图象可知,a>0,b <0,故选项A错误;在B中,由一次函数图象可知,a<0,b<0,由二次函数图象可知,a>0,b>0,故选项B 错误;在C中,由一次函数图象可知,a<0,b>0,由二次函数图象可知,a<0,b>0,故选项C 正确;在D中,由一次函数图象可知,a>0,b>0,由二次函数图象可知,a<0,b<0,故选项D 错误;故选C.【点评】本题考查二次函数的图象,解题的关键是明确函数图象与a、b的关系,注意一次函数y=bx+a(b≠0)中,b是一次项系数.12.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1,C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2、B1B2、C1C2、D1D2=A1B1,…,依次规律继续下去,则正方形A n B n C n D n的面积为()A.B.()n a2C.()n﹣1a2D.()n a2【分析】首先由勾股定理求得A1B12与A2B22,即可求得正方形A1B1C1D1与正方形A2B2C2D2的面积,然后得规律:正方形A n B n C n D n的面积=()n a2.【解答】解:在Rt△A1BB1中,由勾股定理可知;A1B12=A1B2+B1B2=(a)2+(a)2=a2,即正方形A1B1C1D1的面积=a2;在Rt△A2B1B2中,由勾股定理可知:A2B22=A2B12+B2B12=(×a)2+(×a)2=()2a2;即正方形A2B2C2D2的面积=()2a2;…∴正方形A n B n C n D n的面积=()n a2.故选D.【点评】此题考查了正方形的性质以及勾股定理.属于规律性题目,得到规律正方形A n B n C n D n的面积=()n a2是关键.二、填空题13.分解因式:m2n﹣2mn+n=n(m﹣1)2.【分析】原式提取公因式后,利用完全平方公式分解即可.【解答】解:原式=n(m2﹣2m+1)=n(m﹣1)2.故答案为:n(m﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.已知=,则的值为.【分析】根据和比性质,可得答案.【解答】解:由和比性质,得=,故答案为:.【点评】本题考查了比例的性质,利用和比性质是解题关键.15.如图,正方形ABCD位于第二象限,边长为2,点A在直线y=﹣x上,点A的横坐标为﹣1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为﹣9≤k≤﹣1.【分析】先根据题意求出A点的坐标,再根据AB=AC=1,AB、BC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、C两点时k的取值范围即可.【解答】解:点A在直线y=﹣x上,其中A点的横坐标为﹣1,则把x=﹣1代入y=﹣x解得y=1,则A的坐标是(﹣1,1),∵AB=BC=2,∴C点的坐标是(﹣3,3),∴当双曲线y=经过点(﹣1,1)时,k=﹣1;当双曲线y=经过点(﹣3,3)时,k=﹣9,因而﹣9≤k≤﹣1.故答案为:﹣9≤k≤﹣1.【点评】本题主要考查了反比例函数,用待定系数法求一次函数的解析式,解此题的关键是理解题意进而求出k的值.16.如图,在平面直角坐标系中,抛物线y=2经过平移得到抛物线y=﹣3x,其对称轴与两段抛物线所围成的阴影部分的面积为.【分析】确定出抛物线y=x2﹣3x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=x2﹣3x=(x﹣3)2﹣,∴平移后抛物线的顶点坐标为(3,﹣),对称轴为直线x=3,当x=3时,y=×32=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×3=.故答案为:.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.三、解答题17.(1)计算:2sin45°﹣+(﹣2016)0(2)先化简,再求值:(+1)÷,其中a是不等式3a+7>1的负整数解.【分析】(1)原式利用特殊角的三角函数值,二次根式性质,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的负整数解确定出a的值,代入计算即可求出值.【解答】解:(1)原式=2×﹣2+3+1=+2;(2)原式===a﹣1,不等式3a+7>1,得到a>﹣2,∵a为负整数,∴a=﹣1,则原式=﹣1﹣1=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为500件,扇形统计图中D厂家对应的圆心角为90°;(2)抽查C厂家的合格零件为380件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.【分析】(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P (选中C 、D )==.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,AB 分别是⊙O 的直径,AC 是弦,DC 是⊙O 的切线,C 为切点,AD ⊥DC 于点D . (1)已知∠ACD=a ,求∠AOC 的大小; (2)求证:AC 2=ABAD .【分析】(1)由CD 是⊙O 的切线得到∠OCD=90°,即∠ACD+∠ACO=90°,利用OC=OA 得到∠ACO=∠CAO ,然后利用三角形的内角和即可证明题目的结论;(2)如图,连接BC .由AB 是直径得到∠ACB=90°,然后利用已知条件可以证明在Rt △ACD ∽Rt △ABC ,接着利用相似三角形的性质即可解决问题. 【解答】证明:(1)∵CD 是⊙O 的切线, ∴∠OCD=90°,即∠ACD+∠ACO=90°,① ∵OC=OA , ∴∠ACO=∠CAO ,∴∠AOC=180°﹣2∠ACO ,即∠AOC+2∠ACO=180°,两边除以2得:∠AOC+∠ACO=90°,②由①,②,得:∠ACD ﹣∠AOC=0, 即∠AOC=2∠ACD=2α;(2)如图,连接BC . ∵AB 是直径,∴∠ACB=90°,在Rt△ACD与Rt△ABC中,∵∠AOC=2∠B,∴∠B=∠ACD,∴Rt△ACD∽Rt△ABC,∴,即AC2=ABAD,【点评】本题考查了圆的切线性质,及相似三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.20.如图,矩形纸片ABCD,AB=,对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.(1)求证:∠ABM=30°;(2)求证:△BMG是等边三角形;(3)若P为线段BM上一动点,求PN+PG的最小值.【分析】(1)由对折,判断出BN垂直平分MG,通过计算即可;(2)由(1)∠ABM=∠NBM=GBN=30°,得出∠MBG=60°,即可;(3)先计算出BG=BM=2,再判断出点N与点A关于直线BM对称,得到PN+PG的最小值为AG,计算即可.【解答】证明:(1)∵对折AD与BC重合,∴点E是AB的中点,∴点N是MG的中点,∵∠BNM=∠A=90°,∴BN垂直平分MG,∴BM=BG,∴∠GBN=∠MBN,由翻折的性质,∠ABM=∠NBM,∴∠ABM=∠NBM=∠GBN=×90°=30°,∴∠MBG=60°;(2)由(1)知,∠ABM=∠NBM=GBN=30°,∴∠MBG=60°,∵BM=BG,∴△BMG为等边三角形,(3)如图,连接PN,PA,PG,∵AB=,∠ABM=30°,∴BM=2,∴BG=BM=2,∴由折叠的性质知,点N与点A关于直线BM对称,∴PN=PA,∴PN+PG的最小值为AG,∵AG==,∴PN+PG的最小值为.【点评】此题是四边形综合题,主要考查了对折的性质,等边三角形的判定,勾股定理,解本题的关键是计算出相关的角.21.阅读材料:我们知道|x|=,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值),在实数范围内,零点值x=﹣1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;(3)当x≥2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=学以致用:(Ⅰ)分别求出|x+3|和|x﹣1|的零点值;(Ⅱ)化简代数式|x+3|+|x﹣1|;拓展应用:(Ⅲ)求函数y=|x+3|+|x﹣1|(﹣3≤x≤3)的最大值和最小值.【分析】(Ⅰ)阅读材料,根据零点值的求法,即绝对值里面的代数式等于0,即可解答;(Ⅱ)根据阅读材料中,化简带绝对值的代数式的方法,根据x的取值范围,分为三种情况,根据绝对值的性质解答即可;(Ⅲ)分x<﹣3、﹣3≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出函数的最值.【解答】解:(Ⅰ)令x+3=0和x﹣1=0,分别求得x=﹣3,x=1,所以|x+3|和|x﹣1|的零点值分别为﹣3和1;(Ⅱ)在实范围内,零点值x=﹣3和x=1可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x<﹣3时,原式=﹣(x+3)﹣(x﹣1)=﹣2x﹣2;(2)当﹣3≤x<1时,原式=(x+3)﹣(x﹣1)=4;(3)当x≥1时,原式=x+3+x﹣1=2x+2.综上所述,原式=;(Ⅲ)由(Ⅱ)可化简函数为y=.该函数的大致图形如图所示:所以函数y=|x+3|+|x﹣1|(﹣3≤x≤3)的最大值是8和最小值是4.【点评】本题主要考查一次函数综合题,需要熟知绝对值及一元一次方程的解法,此题是阅读型的题目,需要认真阅读材料,理解零点值及化简带绝对值的代数式的方法是解决此题的关键.22.如图,直线y=﹣2x+2与抛物线y=ax2+bx(a<0)相交于点A,B.双曲线y=过A、B两点,已知点B的坐标为(2,﹣2),点A在第二象限内,且tan∠Aoy=.(1)求双曲线和抛物线的解析式;(2)计算△AOB的面积;(3)在抛物线上是否存在点P,使△AOP的面积等于△AOB的面积?若存在,请你写出点P 的坐标;若不存在,请你说明理由.【分析】(1)先用待定系数法求出双曲线解析式,再用待定系数法求出抛物线解析式;(2)先求出△AOB的面积,在求出△BOC的面积即可;(3)先求出直线PB解析式为y=﹣4x+6,和抛物线解析式为y=x2﹣3x,联立方程组求解即可.【解答】解:(1)∵双曲线经过点B,∴k=﹣4,∴双曲线解析式为y=﹣,∵tan∠AOy=,设A(﹣m,4m),∵点A 过双曲线,∴m=1或m=﹣1(舍),∴A(﹣1,4);∵抛物线过点A,B,∴,∴,∴抛物线解析式为y=x2﹣3x,(2)设直线y=﹣2x+2交于x轴于C,令y=0,∴x=1,∴OC=1,∴S△AOB=S△AOC+S△BOC=×1×4+×1×2=3,(3)存在点P(﹣3,18),理由:假设存在点P,使△AOP的面积等于△AOB的面积;∴点P到直线OA的距离等于点B到直线OA的距离,∴PB∥AO,∵直线AO解析式为y=﹣4x,∴设直线PB的解析式为y=﹣4x+f,∵直线PB过点B,∴﹣2=﹣4×2+f,∴f=6,∴直线PB解析式为y=﹣4x+6,∴,∴或(舍),P(﹣3,18).【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,抛物线的性质,双曲线的性质,面积的计算,解本题的关键是求出函数解析式.。
山东省日照市中考数学试卷及答案解析
2020年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求的的选项选出来.1.2020的相反数是( )A .−12020B .12020C .﹣2020D .20202.单项式﹣3ab 的系数是( )A .3B .﹣3C .3aD .﹣3a3.“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( )A .1.02×106B .1.02×105C .10.2×105D .102×1044.下列调查中,适宜采用全面调查的是( )A .调查全国初中学生视力情况B .了解某班同学“三级跳远”的成绩情况C .调查某品牌汽车的抗撞击情况D .调查2019年央视“主持人大赛”节目的收视率5.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( )A .y =2x +3B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)6.下列各式中,运算正确的是( )A .x 3+x 3=x 6B .x 2•x 3=x 5C .(x +3)2=x 2+9D .√5−√3=√27.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为( )A .8√3B .8C .4√3D .2√38.不等式组{x +1≥23(x −5)<−9的解集在数轴上表示为( ) A . B .C .D .9.如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和俯视图10.如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6√3,AE=9,则阴影部分的面积为()A.6π−92√3B.12π﹣9√3C.3π−94√3D.9√311.用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.7112.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题:本大题共4小题,每小题4分,共16分.不需写解答过程,只要求填写最后结果.13.(4分)分解因式:mn +4n = .14.(4分)如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=65°,则∠1的度数是 .15.(4分)《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 人,y 辆车,则可列方程组为 .16.(4分)如图,在平面直角坐标系中,▱ABCD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于x 轴的负半轴上,双曲线y =k x (k <0,x <0)与▱ABCD 的边AB ,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣12,5),把△BOC 沿着BC 所在直线翻折,使原点O 落在点G 处,连接EG ,若EG ∥y 轴,则△BOC 的面积是 .三、解答题:本大题共6小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤.17.(10分)(1)计算:√−83+(23)﹣1−√3×cos30°; (2)解方程:x−3x−2+1=32−x. 18.(10分)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.19.(10分)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.20.(10分)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.21.(14分)阅读理解:如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sin A=ac,sin B=bc,可得asinA=bsinB=c=2R,即:asinA =bsinB=csinC=2R,(规定sin90°=1).探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinAbsinBcsinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度(结果保留小数点后一位).(√3≈1.732,sin15°=√6−√24)22.(14分)如图,函数y=﹣x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2﹣2x﹣3=0的两个实数根,且m<n.(Ⅰ)求m,n的值以及函数的解析式;(Ⅱ)设抛物线y=﹣x2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD.求证:△BCD∽△OBA;(Ⅲ)对于(Ⅰ)中所求的函数y=﹣x2+bx+c,(1)当0≤x≤3时,求函数y的最大值和最小值;(2)设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p﹣q=3,求t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.以下选项中比|﹣|小的数是()A.1 B.2 C.D.【考点】有理数大小比较;绝对值.【分析】先求出|﹣|的值,再根据有理数的大小比较法则比较即可.【解答】解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选D.2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选B.3.下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a6【考点】幂的乘方与积的乘方;合并同类项;约分.【分析】A选项中分子分母同时约去公因式a可得a2,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得B错误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得C错误;根据幂的乘方法则:底数不变,指数相乘可得D错误.【解答】解:A、=a2,故原题计算错误;B、a2和a不是同类项,不能合并,故原题计算错误;C、(﹣2a)2=4a4,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.4.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°【考点】平行线的性质.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=48°,∴∠3=90°﹣∠1=90°﹣48°=42°.∵直尺的两边互相平行,∴∠2=∠3=42°.故选B.5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣7【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000105=1.05×10﹣5,故选:C.6.正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;反比例函数与一次函数的交点问题.【分析】由图象可以知道,当x=﹣2或x=2时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1x的解集,即可得出结论.【解答】解:两个函数图象的另一个交点坐标为(﹣2,﹣1),当﹣2<x<0或x>2时,直线y=k1x在y2=图象的上方,故不等式k1x的解集为x<﹣1或x>2.故选:B.7.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计10A.240吨B.360吨C.180吨D.200吨【考点】用样本估计总体.【分析】先根据10户家庭一个月的节水情况,求得平均每户节水量,再计算200户家庭这个月节约用水的总量即可.【解答】解:根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨)∴200户家庭这个月节约用水的总量是:200×1.2=240(吨)故选(A)8.2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%【考点】一元二次方程的应用.【分析】设该县这两年GDP总量的平均增长率为x,根据:2015年某县GDP总量×(1+增长百分率)2=2017年全县GDP总量,列一元二次方程求解可得.【解答】解:设该县这两年GDP总量的平均增长率为x,根据题意,得:1000(1+x)2=1210,解得:x1=﹣2.1(舍),x2=0.1=10%,即该县这两年GDP总量的平均增长率为10%,故选:C.9.下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别根据平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系对各小题进行逐一判断即可.【解答】解:①∵a<1,1﹣a>0,∴(a﹣1)=﹣,故本小题正确;②平行四边形既是中心对称图形但不是轴对称图形,故本小题错误;③的算术平方根是,故本小题错误;④∵方程ax2+2x+1=0有两个不相等的实数根,∴△=4﹣4a>0,解得a<1且a≠0,故本小题错误.故选A.10.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.4【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先作辅助线DH⊥AB于点D,然后根据特殊角的三角函数值可以求得DH的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S1+S2+S3的值.【解答】解:作DH⊥AB于点H,如右图所示,∵AD=2,AB=2,∠A=60°,∴DH=AD•sin60°=2×=,∴S▱ABCD=AB•DH=2=6,∴S2+S3=S△PBC=3,又∵E、F分别是PB、PC(靠近点P)的三等分点,∴,∴S△PEF=×3=,即S1=,∴S1+S2+S3=+3=,故选A.11.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得到a<0,有对称轴方程得到b=﹣2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=﹣2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(﹣)与点()到对称轴的距离可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.12.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465【考点】规律型:数字的变化类.【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=23×52,可得200的所有正约数之和为(1+2+22+23)(1+5+52),即可得出答案.【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故选(D).二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.【考点】根与系数的关系.【分析】设方程的另一个根为t,根据根与系数的关系得到1•t=,然后解关于t的方程即可.【解答】解:设方程的另一个根为t,根据题意得1•t=,解得t=.故答案为.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为2米.【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.15.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.【考点】翻折变换(折叠问题);解直角三角形.【分析】根据题意可以求得CE的长,从而可以求得tan∠CAE的值.【解答】解:设CE=x,则BE=AE=8﹣x,∵∠C=90°,AC=6,∴62+x2=(8﹣x)2,解得,x=,∴tan∠CAE===,故答案为:.16.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.【考点】切线的性质;一次函数图象上点的坐标特征.【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,由点到直线的距离求出CP的长度,再根据勾股定理即可求出PQ的长度.【解答】解:过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线AB的解析式为y=﹣,即3x+4y﹣12=0,∴CP==.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案为:.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.【考点】分式的化简求值;同类项;解二元一次方程组.【分析】(1)根据同类项的定义可以得到关于m、n的二元一次方程组,从而可以解答m、n的值;(2)先对原式化简,再将a=代入化简后的式子即可解答本题.【解答】解:(1)∵﹣与x n y m+n是同类项,∴,解得,,即m的值是2,n的值是3;(2)()==,当a=时,原式==.18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【考点】旋转的性质;正方形的性质.【分析】(1)直接利用旋转的性质得出对应线段关系进而得出答案;(2)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而利用勾股定理得出答案.【解答】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴∠QAF=90°,∵∠EAF=45°,∴∠QAE=45°,∴EA是∠QED的平分线;(2)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.19.未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图;中位数.【分析】(1)先利用第1组的频数除以它的频率得到样本容量,再计算出第4组的频数,则用样本容量分别减去其它各组的频数得到a的值,接着用第5组的频数除一样本容量得到b 的值,用b的值除以组距10得到y的值,然后计算第2组的频率,再把第2组的频率除以组距得到x的值;(2)根据中位数的定义求解;(3)画树状图(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)展示所有20种等可能的结果数,再找出小明、小敏同时被选中的结果数,然后根据概率公式求解.【解答】解:(1)9÷0.18=50,50×0.08=4,所以a=50﹣9﹣20﹣4﹣2=15,b=2÷50=0.04,x=15÷50÷10=0.03,y=0.04÷10=0.004;(2)小王的测试成绩在70≤x≤80范围内;(3)画树状图为:(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)共有20种等可能的结果数,其中小明、小敏同时被选中的结果数为2,所以小明、小敏同时被选中的概率==.20.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=a+(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.=30000元.∴a=20时,y最大∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.21.阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:线段EF.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC 的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.【考点】三角形综合题.【分析】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,利用弧长公式即可解决.【解答】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.故答案为线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′∵△ABC是等边三角形,MN是中位线,∴AM=BM=AN=CN,∵AF=BE,∴EM=FN,∵MN∥BC,∴∠AMN=∠B=∠GME=60°,∵∠A=∠GEM=60°,∴△GEM是等边三角形,∴EM=EG=FN,在△GQ′E和△NQ′F中,,∴△GQ′E≌△NQ′F,∴EQ′=FQ′,∵EQ=QF,′点Q、Q′重合,∴点Q在线段MN上,∴段EF中点Q的运动轨迹是线段MN,MN=BC=×8=4.∴线段EF中点Q的运动轨迹的长为4.拓展提高:如图2中,(1)∵△APC,△PBD都是等边三角形,∴AP=PC,PD=PB,∠APC=∠DPB=60°,∴∠APD=∠CPB,在△APD和△CPB中,,∴△APD≌△CPB,∴∠ADP=∠CBP,设BC与PD交于点G,∵∠QGD=∠PGB,∴∠DQG=∠BPG=60°,∴∠AQB=180°﹣∠DQG=120°(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,∴弧AB的长==π.∴动点Q运动轨迹的长π.22.如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣ [(x﹣2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣x2+x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出BC=,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.【解答】解:(1)∵抛物线的解析式为y=﹣ [(x﹣2)2+n]=﹣(x﹣2)2﹣n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点,∴2﹣(m﹣2)=2m+3﹣2,解得m=1,∴A (﹣1,0),B (5,0),把A (﹣1,0)代入y=﹣ [(x ﹣2)2+n ]得9+n=0,解得n=﹣9;(2)作ND ∥y 轴交BC 于D ,如图2,抛物线解析式为y=﹣ [(x ﹣2)2﹣9]=﹣x 2+x +3,当x=0时,y=3,则C (0,3),设直线BC 的解析式为y=kx +b ,把B (5,0),C (0,3)代入得,解得,∴直线BC 的解析式为y=﹣x +3,设N (x ,﹣x 2+x +3),则D (x ,﹣x +3),∴ND=﹣x 2+x +3﹣(﹣x +3)=﹣x 2+3x ,∴S △NBC =S △NDC +S △NDB =•5•ND=﹣x 2+x=﹣(x ﹣)2+,当x=时,△NBC 面积最大,最大值为;(3)存在.∵B (5,0),C (0,3),∴BC==, 当∠PMB=90°,则∠PMC=90°,△PMC 为等腰直角三角形,MP=MC ,设PM=t ,则CM=t ,MB=﹣t ,∵∠MBP=∠OBC ,∴△BMP ∽△BOC ,∴==,即==,解得t=,BP=,∴OP=OB ﹣BP=5﹣=,此时P 点坐标为(,0);当∠MPB=90°,则MP=MC ,设PM=t ,则CM=t ,MB=﹣t ,∵∠MBP=∠CBO ,∴△BMP ∽△BCO ,∴==,即==,解得t=,BP=,∴OP=OB ﹣BP=5﹣=,此时P点坐标为(,0);综上所述,P点坐标为(,0)或(,0).2016年8月12日。