压力管道局部应力分析[精]
详细版压力管道应力分析.ppt
.精品课件.
16
• 另外,当一次应力超过屈服点时将引起管道 总体范围内的显著变形或破坏,对管道的失 效及破坏影响最大。
• 一次应力还可分为以下三种 :
• a.一次总体薄膜应力 Pm
• 一次总体薄膜应力是指沿厚度方向均匀分布 的应力,等于沿厚度方向的应力平均值。
• 一次总体薄膜应力达到材料的屈服点就意味
• 强度条件为,最大当量应力不超过材料在 工作温度下的基本许用应力
•
σzhl ≤[σ]t
• 该公式的含义为:
• 当以环向应力作为最大应力进行强度设计
后,还应校核与环向应力垂直方向上的轴 向应力是否满足要.精求品课件,. 因轴向应力复杂。30
• (2)二次应力的强度条件
• 二次应力产生的破坏,是在反复加载 及冷热交换作用下引起的疲劳破坏,根据安 定性准则来规定其许用应力值,这是一个防 止结构反复发生正反方向屈服变形的准则。
• 对这类应力限定,并不是限定一个时 期的应力水平,而是控制其交变循环次数
.精品课件.
31
• 强度条件为:
• 内压和持续外载荷产生的一次、二次应力 σe:
• σe 1.25 f ([σ] + [σ]t ) • 单独计算热胀二次应力σe : • σe f (1.25[σ] + 0.25[σ]t ) • 考虑轴向载荷时,单独计算热胀二次应力
• 反之称为厚壁管,应力分布为三向应力状态 或平面应变状态。
.精品课件.
23
• (3)三向应力的计算公式(GB 50316)
•
σθ= PDn / 2te
•
σz= PDn2 / [4te (Dn+te)]
•
σr= - P / 2
压力管道应力分析
压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。
管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。
本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。
压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。
薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。
该方法适用于绝大部分工程中的压力管道计算。
薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。
压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。
轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。
周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。
切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。
在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。
压力管道的应力分析受到多个因素的影响。
首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。
管道的材料特性直接决定了管道的耐压能力和变形能力。
其次是管道的几何形状,包括内径、外径、壁厚等。
几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。
再次是管道的工作条件,包括温度、压力等。
不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。
最后是管道的固定和支撑方式。
固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。
为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。
应力分析主要通过有限元分析和解析方法进行。
有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。
关于压力管道的应力分析
关于压力管道的应力分析【摘要】压力管道的应力问题在管道检验过程中都会涉及到的,由于压力管道应力的分析和计算过程都要求相对高的技术,这对于检验技术人员来说是很难完成的。
因此,本文着重对压力管道应力分析的内容、应力特征、应力分类以及校核准则进行了论述,以便于为分析人员提供了有效的理论依据。
【关键词】压力管道应力分析一次应力二次应力压力管道的应力影响着压力管道在安装后的安全使用,所以进行应力分析是很有必要的,压力管道应力分析的内容相对较多,主要体现在以下几个方面。
2 压力管道应力分析的特征压力管道在应力分析过程中还不够严谨,其中还存在着一些缺陷,其主要原因是因为压力管道应力由历史根源所造成的校核准则存在不足,但压力管道应力分析有着自身的特点,主要体现在以下几个方面:(1)在压力管道的应力分析之中,没有考虑管道的薄膜应力和局部弯曲应力,从而导致一次应力中没有对一次总体薄膜应力、一次局部薄膜应力和一次弯曲应力进行细分;在一次应力校核准则中往往忽视了对一次弯曲应力和一次局部薄膜应力进行校核,而只对一次总体薄膜应力进行了校核。
(2)计算一次应力主要是为了避免管道在安装的时候承受不住压力而塌下来。
计算二次应力是为了防止管道在发生热变形之后是否会出现问题,通过二次应力计算管道是否发生偏移、移位,并防止并排管道所产生的相互影响。
(3)二次应力校核具有着自身的操作方式,最主要是针对其结构的安定性,只需满足结构安定性条件,就可以避免压力管道产生低周疲劳。
(4)一次应力校核主要是校核压力管道的纵向应力,其最主要的特点是不遵循剪应力理论,二次应力校核虽然遵循的是最大剪应力,但其计算应力过程中不会计算管道轴向立,只考虑管道弯矩和扭矩的作用。
3 压力管道的应力分类及校核准则压力管道与压力容器有所不同,对于不同的管道根据管道自身的特点都有着不同的校核准则,由于压力管道的应力分析主要侧重于对管系整体的分析,而压力容器的应力分析主要是对局部进行详细的分析,两者在应力分类的方法和校核准则上都存在着较大的差异。
浅谈压力管道应力分析及计算
浅谈压力管道应力分析及计算摘要:压力管道在工业生产或社会建设中被越来越广泛的使用,以其自身的特殊性和有针对性的特点,成为工业社会的一个重要课题。
管道质量及应力的大小直接影响到工程的质量及安全事故的发生率,应力的分析与计算也显得十分重要。
压力管道应力可分为一次应力、二次应力及峰值应力,三种类型,各种类型应力的特点各有不同,可以通过科学的方法如CAESAR II分析系统及复杂的公式多次计算,得出准确数值。
关键词:压力管道应力分析计算随着我国现代化技术的革新,工业蓬勃发展,国家大力支持公共设施建设项目,油田建设、大兴水利、天然气工程、南水北调工程等,压力管道成为最常见设备之一,其承担着输送易燃易爆能源、放射性及高腐蚀性物资的重大任务。
压力管道的安全与质量问题也成为从设计、安装、维护到使用等各个环所有相关部门都关注的重点防范问题,但其生产和使用过受到各种荷载因素的影响,加之自身应力的原因,使得压力管道事故频频发生,成为重大公共安全隐患,其也是国家相关安全监督管理项目之一[1]。
压力管道的应力分析与计算成为各种建设项的必要课题。
现对当前常用的压力管道应力进行分析及计算,相关报告如下:一、压力管道的特点压力管道在工作过程中所承担的重任和性质的特殊性,使其呈现出与一般管道与压力容器完全不同的特性,按照使用领域来划分,压力管道了分为一般工业压力管道和大跨度的公用管道,具体分以下几点:①工业压力管道构建出现代工业化生产体系,其特点是连接点多,管道的弯曲较多,分布密度大。
各个车间职能不同,使用的压力管道材料、规格要求各不一样,降低了整个系统的均衡质量。
生产过程中影响荷载的因素众多,如温度、运送物资质量、密度、化学性质等[2]。
②大跨度公用管道该类工程均跨越地理、气候各不一样的省市,有以下几个特点即长度极大,压力荷载复杂,性质不稳定,且受自然条件影响较多,如地质压力、风雪天气、地震塌陷等。
各项安全指标的测量准确度不高,维护难度大。
压力管道局部应力分析
I.
采用有限元法对特殊管件进行分析,得到应力集中系数;
II. 应力增大系数等于应力集中系数的一半。
应力增大系数应用的注意事项!
根据GB 50316、ASME B31.1和ASME B31.3的规定,计算二次应力时应 采用应力增大系数。这是由于采用应力增大系数的目的,是考虑局部应力 集中的影响,而局部应力集中主要对管件的疲劳破坏产生作用。因为局部 的高应力循环,将使材料产生裂纹并不断扩展,最终导致破坏。校核二次 应力的目的正是为了防止疲劳破坏,因此在计算二次应力时必须考虑应力 集中的影响,应该采用应力增大系数。另外,根据ASME B31.3的标准释 义,计算一次应力可不考虑应力增大系数。这主要是因为校核一次应力是 为了控制管道的整体破坏,局部的应力集中对管道的整体破坏影响不大。 另外一次应力采用弹性分析方法,认为某一点达到屈服管道失效,已经非 常保守,如果在考虑应力集中的影响将导致过分保守。
l 为了能够表示出WRC107、297计算的误差,使用有 限元分析软件(NozzlePro/FEpipe)来进行对比计算。
l 有限元法严格按照理论分析方法,结合ASME Ⅷ-2 中的应力分类来对特定结构进行应力计算,当满足 理想化假设条件时,其结果与真实应力十分接近, 并且有限元分析法不受任何几何条件的限制,计算 精度与网格划分的疏密程度相关。
可以提高至0.6
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC297应用范围及限制条件
l WRC297继承了WRC107的一些限制条件,另外,当连接区 域的接管壁厚小于补强壁厚时,其局部应力计算值可能过于 保守
压力管道应力分析的内容及典型的案例分析
压力管道应力分析的内容及典型的案例分析摘要:压力管道应力的分析是压力管道设计的重要内容,随着压力管道应用越来越普及,对它的认识也越来越深入,压力管道的重要性也逐渐的凸显出来。
压力管道的应力作用直接关系到管道的正常使用和操作的安全。
本文主要对压力管道应力进行分析,阐述其基本内容,从而更好的掌握压力管道的相关工作内容,促进压力管道应力分析的标准化和规范化。
关键词:压力管道;应力分析;内容;事例引言在压力管道使用的过程中,常常会伴随着一系列的问题,如果得不到很好的解决会严重的影响压力管道正常的使用。
通过阐述管道应力分析内容为维护压力管道应力正常运行提供理论的依据。
经过案例分析进步了解一些压力管道应力分析的机理。
一、压力管道应力分析的内容压力管道应力的分析关系到压力管道安装后的使用情况,所以加强对压力管道应力分析,提高压力管道正常运行的重要依据。
压力管道应力分析的内容主要涉及到以下的几个方面:(一)分析管道系统的载荷来源。
管路系统的载荷主要分为一次应力载荷和二次应力载荷,一次应力载荷通常指管道系统正常生产时的内外压力作用、管道系统自身的重力、设备运行中的压力脉冲对管道系统的作用以及瞬间内承受的载荷(风力、地震,泵瞬时启动的压力载荷等)。
二次应力载荷通常是指管路运行时产生的热膨胀载荷、冷紧是产生的载荷、由于设备沉降产生的管道系统支点位移产生的载荷。
(二)静力分析通过对管路系统内压荷载和持续荷载作用下的一次应力分析计算、管道系统冷热膨胀位移产生的二次应力分析计算、管道系统与相关设备的相互作用及管口校核、管道系统的支吊架的受力分析、可以有效防止管道发生塑性变形、管道疲劳损坏,确保管道系统与设备的安全运行。
(三)动力分析管道系统设计应避免管道振动和管道共振,对振动管线特别是往复式压缩机、往复泵的相关管线要重点进行分析,主要包括管道内气(液)柱的频率分析,使其避开激振频率;压力脉冲不均匀度分析,控制压力脉动值;管道系统固有频率,各个节点的振幅及动应力分析,通过设置管道防震支架和优化配管设计,避免产生共振。
压力管道的应力分析
共七十四页
共七十四页
共七十四页
σⅡ≤σα=f(1.25([σ]L+0.25[σ]h) • 上式即为管道中二次应力(yìnglì)强度条件判定
共七十四页
压力管道 的柔性分析 (guǎndào)
• 管道柔性是反映管道变形难易程度的一个 物理概念,表示管道通过自身变形来吸收 因热胀冷缩及其他位移变形的能力。
1、应力集中:当管道几何形状发生(fāshēng)突变 时,在外力的作业下管道中的局部应力急 剧增大的现象
2、应力集中系数:以同一弯矩值作用在管件 和直管后所产生的最大应力值之比;
补强圈与支管、主管相焊 ② 整体补强━━增加(zēngjiā)主管厚度,或以全熔
透焊缝将厚壁支管或整体补强锻件与主管 相焊
共七十四页
• 采用补强圈补强时应遵守下列规定: ⑴ 采用的钢材标准抗拉强度бb≤540 MPa ⑵ 主管管壁(ɡuǎn bì)的名义厚度小于38 毫米 ⑶ 补强圈的厚度不应大于主管厚度的1.5倍 ⑷ 补强圈一般应与主管材料一致,如补强材
共七十四页
• 除了上述介绍的载荷之外,管道中还常常存 在焊接残余应力、加工残余应力、铸造残余 应力、装配残余应力等
• 重力载荷和支架反力等合起来常称之为持续 外载荷。
• 风载荷、地震载荷、瞬变流冲击载荷等属于 (shǔyú)临时载荷。
• 两相流脉动载荷、压力脉动载荷、机械振动 等属于动载荷。
共七十四页
• 内压力
共七十四页
GB50316对允许跨距的规定:
管道应力分析主要内容及要点
管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。
ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。
它们是子ASME B31 压力管道规范委员会领导下的编制的。
每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列:B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。
B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。
B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。
B31.5 冷冻管道:冷冻和二次冷却器的管道B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。
B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。
B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。
管道应力分析的主要内容一、管道应力分析分为静力分析析1.静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据:5)管道上法兰的受力计算一防止法兰汇漏。
2.动力分析包括:1)管道自振频率分析一一防止管道系统共振:2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。
压力管道应力分析
压力管道应力分析发布时间:2021-06-18T06:46:00.288Z 来源:《中国科技人才》2021年第9期作者:边辉刘健童[导读] 压力管道的应用范围非常广泛并且应用的场所都比较的重要,压力管道主要扮演着运输物质的角色,主要应用在石油化工、天然气体、电力工程、冶金工程等重要的行业,运输或者供给原料满足某种需求。
甘肃华亭煤电股份有限公司煤制甲醇分公司甘肃平凉 744100摘要:现当今,随着我国工业领域的快速发展,很多场合都需要用到各种类型的管道。
由于管道的应力直接影响压力管道的安全稳定运行,为提高压力管道运行质量,需要对压力管道的应力进行相应分析和研究。
研究压力管道应力分析情况,探讨需要分析的内容以及可能采取的措施。
关键词:压力管道;应力分析0.引言压力管道的应用范围非常广泛并且应用的场所都比较的重要,压力管道主要扮演着运输物质的角色,主要应用在石油化工、天然气体、电力工程、冶金工程等重要的行业,运输或者供给原料满足某种需求。
由于压力管道的应力受到整个管道系统和外界环境因素的影响比较大,当然也会受到流体的流动因素影响,这就增加了应力分析的复杂度,压力管道的应力分析必须将管道实际运行的情况尽可能的模拟准确才能得到接近实际的正确的分析结果。
1.压力管道应力分析的重要性压力管道应力指在指定的面积之内压力管道构件所承受的压力。
在外部力量的驱使下,反而会产生更多更大的应力,假设压力管道的应力已经超出了管道材料的承受范围之外,那么就会出现变形、破裂等多种故障。
众所周知,压力管道应力有着很大的作用,特别是在构筑物当中,若压力管道出现了任何的破裂、失衡等现象,并得不到及时改善,随着时间的推移,就会导致构筑物也遭到损坏,影响到装置正常运行。
压力管道应力分析过程当中,应该尽量考虑周全。
有几种管道是平时最常用到的:①连接储罐设备的管道,长度一般都在300mm 以上,而极限温度在100℃以上;②离心式压缩机和往复式压缩机的管道。
压力管道应力分析的内容及特点
压力管道应力分析的内容及特点压力管道的应用范围非常广并且应用场所都比较重要,压力管道主要扮演着运输介质物料的角色,主要应用在石油化工、天然气体、电力工程、冶金工程等重要大型建设工程中,运输或供给原料满足某种需求。
压力管道在整个管道系统和外界环境因素的影响下应具有足够的柔性来克服管道因热胀冷缩、端点位移、管道支承设置不当等原因造成的问题,也会受到流体的流动因素影响,这就增加了应力分析的复杂度,压力管道的应力分析必须将管道实际运行的情况尽可能的模拟准确才能得到接近实际的正确的分析结果。
标签:压力管道;应力;内容;特点一、管道应力分类(一)一次应力所谓一次应力过大是指由于外力荷载,如重力或压力等持续性荷载所引起的危害,它与外加载荷有一个平衡关系,会随着外加载荷的递增而递增,且不会由于达到相应材料的屈服点而自身实施限制,所以有一定的非自限性,除此之外,若是一次应力大于屈服点时其所产生管道的变形也非常明显,因此,需加强一次应力的控制,使一次应力小于许用应力值,以防止过度的塑性变形导致管道的破裂垮塌。
一次总体薄膜应力、一次弯曲应力和一次局部薄膜应力都属于一次应力的分类。
一次总体薄膜应力是指由于内压所引起的管道环向应力和轴向应力,拉伸或者压缩杆件所产生的应力。
一次弯曲应力是指沿厚度线性分布的应力,它在内表面和外表面上大小一样且方向相反。
一次弯曲应力的许用应力可以比总体薄膜应力高。
在管道支撑处或者管道与支管连接处由于外载所产生的薄膜应力可划分为一次局部薄膜应力。
(二)二次应力二次应力由热胀、冷缩和端点位移引起的,是指由于变形和其他相邻部件受到约束所引起的正应力或剪应力。
二次应力的效果通常不是平衡外荷载,而是在结构中受到相应荷载时变形所使得应力获得一定的缓解,因为二次应力自限性的特点,使它比一次应力更危险,受到更严格的限制。
(三)峰值应力峰值应力主要是因为荷载以及结构产生突然变化使得局部应力较为集中的最高值,其主要特点就是不会产生较明显的变形,并且在很短的距离之内其根源衰减,是一种引起疲劳破坏或脆性断裂的可能根源。
压力管道审核管道应力分析和柔性设计
B、动力分析包含的内容 a)管道固有频率分析 — 防止共振。 b)管道强迫振动响应分析 — 控制管道振动及应力。 c)往复式压缩机(泵)气(液)柱频率分析 — 防止气柱 共振。 d)往复式压缩机(泵)压力脉动分析 — 控制压力脉动 值(δ值)。
压力管道审核管道应力分析和柔性设 计
C、动力分析要点
计
三、工程设计阶段管道应力分析专业的任务
1、初步设计、基础设计阶段 ⑴ 编制工程设计规定(应力分析、管架设计) (四级签 署); (2) 参加设备布置工作;
(3) 对主要管线的走向进行应力分析和评定。
压力管道审核管道应力分析和柔性设 计
2、详细设计阶段
⑴ 修订(升版)工程设计规定(应力分析、管架设计)
压力管道审核管道应力分析和柔性设 计
10、ASME/ANSI B31.3 Process Piping 11、ASME/ANSI B31.4 Liquid Transmission and
Distribution piping systems 12、ASME/ANSI B31.8 Gas Transmission and Distribution piping systems 13、API610 -- 离心泵 14、NEMA SM23 -- 透平 15、API617 -- 离心式压缩机 16、API618 -- 往复式压缩机 17、API661 -- 空冷器 18、ANSI/B31.1、APIRP520 -- 安全阀、爆破膜 压力管道审核管道应力分析和柔性设
(6)限位架 2 限制性管架
(7)轴向限位架
用于限制任一方向线位移的场合; 用于限制管道轴向线位移的场合;
(8)导向架 3 减振支架 (9)减振器
用于允许有管道轴向位移,但不允 许有横向位移的场合
压力管道应力分析_图文
管道元件变形的几种基本形式:
⑴ 拉伸和压缩 ⑵ 剪切 • 对于塑性材料:[τ]=(0.6~0.8)[σ] • 对于脆性材料:[τ]=(0.6~1.0)[σ] ⑶ 扭转 • [τ]=(0.5~0.6)[σ] ⑷ 弯曲 • уman≤[f] [f]为工程上规定的许用绕度值
。
承受内压管子的强度计算
1、管子壁厚计算 承受内压管子理论壁厚公式,按管子外径确
• 上式即为管道中二次应力强度条件判定 式,它已被众多的压力管道设计规范如 ANSI B31.3、SHJ41所引用。
压力管道的强度计算:
• 基本概念: ⑴ 设计压力 ⑵ 设计温度 ⑶ 材料的许用应力 ⑷ 厚度附加量 ⑸ 焊缝系数 ⑹ 设计寿命 ⑺ 计算厚度
⑻ 设计厚度 ⑼ 名义厚度 ⑽ 有效厚度
②对简单的L形、∏形、Z形等管道,可采 用表格法、图解法等验算,但所采用的 表和图必须是经过计算验证的;
③无分支管道或管系的局部作为计算机柔 性计算前的初步判断时,可采用简化的 分析方法。
2、SH/T3041《石油化工管道柔性设计规 定》中的规定:
⑴ 操作温度大于400℃或小于-50℃ ⑵ 进出加热炉及蒸汽发生器的高温管道 ⑶ 进出反应器的高温管道; ⑷ 进出汽轮机的蒸汽管道; ⑸ 进出离心式压缩机、往复式压缩机的工
一般连续敷设的管道允许跨距L应按三跨连续梁承受 均布载荷时的刚度条件计算
(1)刚度条件
(装置内)
(装置外)
装置内:管道固有频率不低于4Hz; 装置外:管道固有频率不低于2.55Hz。
(2)强度条件
(不考虑内压)
(考虑内压)
取L1和L2两者之间的小值。
• 为了便于快速直接得到管道的允许跨距一 些书、手册列出了根据上述方法计算得到 的连续敷设管道的允许跨距。如《石油化 工装置工艺管道安装设计手册》。
压力管道强度及应力分析
压力管道强度及应力分析压力管道是指承受流体压力作用的管道系统,常用于输送液体或气体。
压力管道的设计必须考虑到管道系统的强度,以确保管道在工作条件下能够安全运行。
强度分析是对管道系统在受压状态下的力学性能进行评估和计算,包括应力分析和应变分析。
压力管道的强度分析主要涉及以下几个方面:1.管道的内压应力分析:管道容易在受到内部压力作用时发生脆性断裂。
内压应力是指管道承受的内部压力产生的应力,应力分布是管道内径和壁厚决定的。
内压应力的计算可以使用薄壁管道的公式,也可以使用粗壁管道的公式,根据实际情况选择适当的公式进行计算。
2.管道的外压应力分析:外压应力是指管道受到外界压力,如土壤或混凝土的压力而产生的应力。
外压应力会降低管道的承载能力,因此在设计时必须考虑外压应力的影响。
外压应力的计算可以通过考虑管道埋深和周围土壤或混凝土的性质来进行。
3.管道的弯曲应力分析:管道经过弯曲时会产生弯曲应力。
弯曲应力的大小与管道的弯曲半径、管道材料的弹性模量以及弯曲角度有关。
弯曲应力的计算可以通过应变能方法或力平衡方法进行。
4.管道的轴向应力分析:管道在拉伸或压缩作用下会产生轴向应力。
轴向应力与管道的拉伸或压缩变形有关,可以通过应变能方法或力平衡方法进行计算。
5.管道的剪切应力分析:管道在复杂受力状态下,如弯曲、拉伸和压缩同时作用时,会产生剪切应力。
剪切应力的计算可以通过静力平衡方程和应变能方法进行。
在进行强度分析时,需要确定管道的材料性质、管道几何尺寸和外界加载条件。
常用的材料性质包括弹性模量、泊松比和屈服强度等。
管道几何尺寸包括管道内径、壁厚和长度等。
外界加载条件包括内部压力、外部压力和温度等。
强度分析的目的是确定管道是否能够安全承受设计条件下的压力载荷,并提供合适的设计指导。
在进行强度分析时,需要进行应力和应变的计算,并与管道材料的极限强度进行比较,以评估管道的安全性。
综上所述,压力管道的强度分析是一个复杂的过程,涉及多个力学参数和设计标准。
管道的稳定性应力分析及解决方案
管道的稳定性应力分析及解决方案一、失稳的定义失稳定义:轴向受压的细长直杆当压力过大时,可能会突然变弯,失去原来直线形式的平衡状态,而丧失继续承载的能力,称这种现象为丧失稳定,即失稳。
针对管道,下面发生的问题均为管道整体失稳:1、架空管道(左右摆龙):2、埋地管道(顶起,顶出地面,河面,起褶皱)架空或埋地管道发生失稳的原因是管道热胀被两侧锚固,或连续土壤约束给限制住了,导致管道形成挤压作用,如果温差大,挤压力大,架空管道缺少导向架,或埋地管道埋深覆土过浅,就会让管道抵抗挤压能力变弱,容易发生上述失稳。
解决方法:解决上述管道失稳有两个办法,一个是采用补偿设计增大管道柔性,降低轴力;另外一个就是增加导向架密度和埋深,增大管道抗挤压能力。
局部失稳的概念局部失稳指在钢结构中,受压、受弯、受剪或在复杂应力下的板件由于宽厚比过大,板件发生屈曲的现象。
管道局部失稳主要是针对大口径薄壁管道,轴向挤压严重,发生局部褶皱,也有外压影响,管道环向发生失稳,产生压瘪现象:热力直埋管道在轴向挤压作用下发生褶皱(中国热力俗称“起包”),是因为管道被约束住(两端固定,或处在埋地锚固段),热胀产生的轴力挤压管道,管道径厚比r/t过大,壁厚薄,抗挤压能力弱,就容易发生上面局部失稳情况。
解决的方法是增大管道柔性降低轴力或加大壁厚增加抗挤压能力。
针对环向外压压瘪失稳,最好的办法就是在管道外壁增设补强圈,抵抗外压作用,避免发生外压失稳。
还有一种局部失稳,就是管道在轴力推挤和弯曲应力共同作用下,一侧产生褶皱:这种一侧发生管道褶皱,往往都是发生在折角弯管或弯管附近直管上面,直线管道热胀推压弯管,弯管发生弯曲变形,由于直管推压导致大弯曲应力作用,弧段发生失稳,就会进入塑性变形,产生一侧褶皱变形。
这个折角弧段失稳,不同于引发管疲劳破坏的二次应力。
首先,它是重量+温度+压力等全部载荷共同作用下,导致折角弧段或直段发生失稳破坏。
失稳控制是第一位的,这个满足后,我们才会检查弯头,折角和三通的疲劳二次应力。
管道设计中关于管道应力的分析与考虑
管道设计中关于管道应力的分析与考虑摘要:管道应力分析应该保证在设计的条件下有足够的柔性,为的是防止管道因为过度膨胀冷缩、管道自振或者是端点附加位移造成应力问题,在管道设计的时候,一部分管道要求必须进行管道应力分析和相关计算,同时还有一部分管道是不需要进行应力分析的,这种的管道分为两个部分,一种是根据实际的经验或者是已经成功的工程案例,在管道的设计中加上相应的弯管、膨胀节等环节来避免,所以就不需要进行管道应力分析,另一种就是管道的管径比较小,管道比较短,常温常压,不连接设备或者是不会产生振动,所以就不需要进行应力分析,文章就对管道的应力分析进行了详细的介绍说明。
关键词:管道设计应力分析柔性标准一、管道应力分析的主要内容管道应力分析主要分为两个部分,动力分析和静力分析:1、管道应力分析中的动力分析动力分析主要包括了六个方面,第一是管道自振频率的分析,为的是有效的防止管道系统的共振现象;第二是管道强迫振动相应的分析,目的是能够有效的控制管道的振动和应力;第三是往复压缩机(泵)气(液)柱的频率分析,通过对压缩机(泵)气(液)柱的频率的相关分析有效的防止气(液)柱的共振现象发生;第四是往复压缩机(泵)压力脉动的分析,起到控制压力脉动值的作用;第五是冲击荷载作用下的管道应力分析,可以防止管道振动和应力过大;第六是管道地震分析,为防止管道地震应力过大。
2、管道应力分析中的静力分析静力分析包括了六个方面的内容:第一是压力荷载以及持续荷载作用下的一次应力计算,为的是有效的防止塑性变形的破坏;第二是管道热胀冷缩和端点附加位移产生的位移荷载作用下的二次应力计算,通过二次应力分析计算防止疲劳破坏;第三是管道对设备产生的作用力的相应计算,能够防止作用力太大,有效的保证设备的正常运行;第四是对于管道的支吊架的受力分析计算,能够为支吊架的设计提供充足的依据;第五是为了有效的防止法兰的泄漏而对管道法兰进行的受力分析;第六是管系位移计算,防止管道碰撞和支吊点位移过大2、管道应力分析的目的对管道进行应力分析为的就是能够使管道以及管件内的应力不超过许可使用的管道应力值;为了能够使和管道系统相连接的设备的管道荷载保持在制造商或者是国际规定的许可使用范围内;保证和管道系统相连接的设备的管口局部管道应力在ASME Vlll允许的范围内;为了计算管道系统中支架以及约束的设计荷载;为了进行操作的工况碰撞检查而进行确定管道的位移;为了能够尽最大可能的优化管道系统的设计。
管道应力分析-孙学军_图文
裂纹。)
21
材料的力学性能及强度理论 力学性能:
1.强度极限 2.屈服强度 3.断裂 4.强化阶段 5.局部变形阶段
22
最大拉应力理论:
该理论认为:最大拉应力是引起断裂的主要原因 即认为:无论材料处于什么应力状态,只要最大拉应力达到 单向拉伸时的抗拉强度,材料就会发生脆性断裂。
屈服判据:
强度准则:
应力分析报告
应力ISO图
支撑设计、选型
提交业主 提交现场
8
应力分析管线分类:
9
关键管线表:
10
应力ISO图:
在管道单线图的基础 上增加应力分析的节 点号、约束点的位置 及类型、约束点的位 移量及载荷、备注等 信息。
11
管道受到的载荷、变形及失效形式
管道受到的载荷:
压力 操作压力、试验压力; 温度 重量 活荷载:管内输送介质的重量、测试的介质重量、 由于环境或操作条件产生的雪/冰荷载等。 死荷载:管道重量、保温重量及阀门(含执行机构 )、法兰等管道组成件重量。 位移 设备管口热位移; 基础沉降、潮汐运动、风等作用下在管道连接处产 生的位移; 支撑结构的变形; 压力延长效应产生的位移;
管道应力的校核主要是为了防止管壁内应力过大造 成管道自身的破坏。各种不同荷载引起不同类型的 应力,不同类型的应力对损伤破坏的影响各不相同, 如果根据综合应力进行应力校核可能导致过于保守 的结果,因此管道应力的校核采用了将应力分类校 核的方法。 应力分类校核遵循的是等安全裕度原则,也就是说, 对于危险性小的应力,许用值可以放宽;危险性大的 应力,许用值要严格控制。 应力分类是根据应力性质不同人为进行的,它并不 一定是能够实际测量的应力。
24
最大切应力理论(Tresca准则):
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DU
AU
BU
AL
CU BL
DL CL
WRC107
作用在壳壁上附属元件的外加基本载荷有: 压力P、拉力T、剪切力V、沿壳体轴向的弯
矩ML、沿壳体圆周方向作用的弯矩MC、作用 在附属元件上的扭矩MT。
WRC107
外载荷会首先在连接点造成一次局部膜应力; 弯矩可简化为大小相等、方向相反的力偶,而这个力偶则
I.
采用有限元法对特殊管件进行分析,得到应力集中系数;
II. 应力增大系数等于应力集中系数的一半。
应力增大系数应用的注意事项!
根据GB 50316、ASME B31.1和ASME B31.3的规定,计算二次应力时应 采用应力增大系数。这是由于采用应力增大系数的目的,是考虑局部应力 集中的影响,而局部应力集中主要对管件的疲劳破坏产生作用。因为局部 的高应力循环,将使材料产生裂纹并不断扩展,最终导致破坏。校核二次 应力的目的正是为了防止疲劳破坏,因此在计算二次应力时必须考虑应力 集中的影响,应该采用应力增大系数。另外,根据ASME B31.3的标准释 义,计算一次应力可不考虑应力增大系数。这主要是因为校核一次应力是 为了控制管道的整体破坏,局部的应力集中对管道的整体破坏影响不大。 另外一次应力采用弹性分析方法,认为某一点达到屈服管道失效,已经非 常保守,如果在考虑应力集中的影响将导致过分保守。
应力增大系数
弯头的应力增大系数
三通的应力增大系数
应力增大系数的大小 与管件的直径、壁厚 、是否补强、弯曲半 径等因素有关。
管道系统中SIF的局限性
上述针对管道的应力增大系数的研究均是以梁单元 为模型进行实验得到的。换言之,上述SIF的计算公 式及软件的计算过程均针对D/t≤100,当D/t>100时 ,管道进入薄壁系列,其局部失稳特性开始表现出 来,此时再按照管道标准进行计算将引起误差。因 此,应用于大直径薄壁管、管道-设备连接点的局部 应力分析准则应运而生。
应力增大系数
应力增大系数——Stress Intensification Factor,用 于表示弯头、三通等几何变形不光滑(或几何不连 续)处的应力增大现象,其值等于直管应力与相同 条件下弯头、三通等管件的应力之比,其值通常大 于1:
应力增大系数
规范对应力增大系数的考虑: B31.1
管道专业的应用
压力管道应力分析采用的是梁单元有限元法来分析。但是大口径薄壁 管道的应力分析比较特殊,其管道单元属性已经超过梁单元定义范围, 其既具备梁单元属性也具备壳单元属性,此类管道的柔性设计往往只能 保证管道自身强度,对于一些管口、特殊弯头、法兰、变径段、三通、 管道支架……等局部失效无法进行更为精确的强度评定。此外这些管件 在管道应力分析中所使用的SIF也规范中的常规计算方法已不适用。因 此我们需要采取其它手段(规范)来进行局部应力校核。( WRC107/297、有限元)
S直管 /管N 件 nC
式中 S直管/ 管件直管/管件中的循环应力幅,等于破坏点的弯矩幅值除以直管的抗弯的抗弯截面模 量; N ------ 达到破坏时的循环次数; C、n -------- 材料常数。
AECsoft
2019/10/25
2、数值分析法
应用计算机程序进行详细的局部应力分析确定应力增大系数,有限元法是最为有 效的一种方法。一般步骤如下:
WRC107、297概述
WRC107及297——美国焊接研究委员会第107号公报及其增 补297公报,给出了外载作用下壳体局部应力的计算原则及其 计算公式。CAESARII 内置的WRC107/297分析模块能够完 全按照公报的要求,自动进行局部应力的计算,并能出具校 核报告。需要注意的是,WRC107未考虑介质内压的影响, 在计算局部应力时,对于实心附件,一般额外叠加壳体的整 体膜应力PD/2t 。对于空心附件,还需要叠加由结构不连续 引发的附加应力(K-1)PRm/2t。
应力增大系数的确定方法
确定应力增大系数可采用疲劳试验和数值分析两种方法。其中疲劳试验方法是确定应力增大系 数的直接方法,也是基本方法。数值分析方法一般建立在现有疲劳试验基础之上。
1、疲劳试验法 按照一系列不同应力幅对直管和管件进行一系列疲劳试验,并根据试验结果,通过拟合得到直
管和管件疲劳曲线表达式:
CAESAR II 局部应力分析
概述
局部应力分析贯穿于整个管道应力分析及压力容器 的设计分析工作当中。理解局部应力在管道及设备 当中的成因和影响,对分析设计工作至关重要。
概述
Part Ⅰ局部应力的应用 Part Ⅱ局部应力计算方法
一、局部应力的应用
管道专业的应用
设备专业的应用
S S U S 1 S 0 . 7 iA M 5 / Z P o / 4 t d S h
B31.3
S 1 F A / A m X i i M i 2 i o M o 2 1 / 2 / Z P o / 4 t S h d
AECsoft
2019/10/25
会生成局部弯曲应力; 介质压力对壳体产生一次总体膜应力
WRC107
仅由介质压力p所引起的薄膜应力为一次总体薄膜应力Pm; 由外加载荷所引起的薄膜应力的叠加为一次局部膜应力PL; 由外载荷所引起的弯曲应力为二次应力Q; 如果连接处存在过渡圆弧,可能引起附加应力(K-1)PRm/2t
设备专业的应用
压力容器在压力、温度、外部集中力、风载、地震……等载 荷作用下可能导致管口、支撑件与壳体局部连接处失效,这 些问题常规分析方法往往已不适用,应采用 WRC107/297/PD5500或有限元法来进行局部应力分析以确 保局部连接局部失效
压力容器接管处引发的局部失效
WRC107
适用范围: 对球壳或柱壳形式的容器壁上实心附属元件的局部应 力 附属元件可以为圆筒形、方形、矩形
WRC107
计算原理
规范选择附属元件、接管与壳体连接处为分析对象,并在连接部位定义八个 点,Au~Du为外表面点,Al~Dl为内表面点(所有点为壳体上的点),对 该8个点进行应力分类 – 应力合成 – 应力评定