2020年陕西省西安市雁塔区中考数学模拟试卷含解析版

合集下载

2020届陕西省中考数学模拟试卷(一)(含解析)

2020届陕西省中考数学模拟试卷(一)(含解析)

2020届陕西省中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分)1.下列说法中错误的是()A. (3.14−π)0=1B. 若x2+1x2=9,则x+1x=±3C. a−n(a≠0)是a n的倒数D. 若a m=2,a n=3,则a m+n=62.如图所示,一只纸杯放置在一个长方体盒子上,则其主视图是()A.B.C.D.3.下列四个数中,最大的是()A. −1B. 0C. 52D. √54.直线l1和l2在同一直角坐标系中的位置如图所示,点P1(x1,y1)在直线l1上,点P2(x2,y2)在直线l2上,点P3(x3,y3)为直线l1、l2的交点,其中x3<x1,x3<x2,则()A. y1<y3<y2B. y2<y1<y3C. y2<y3<y1D. y3<y1<y25.如图,有一条直的等宽纸带按图折叠时,则图中∠α是()A. 40°B. 140°C. 70°D. 80°6.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A. 1cm<AB<4cmB. 5cm<AB<10cmC. 4cm<AB<8cmD. 4cm<AB<10cm7.将一次函数y=−2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为()A. y=−2x+3B. y=−2x−3C. y=−12x−32D. y=12x−328.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A. 2√2B. √2C. 2√3D. 3√39.如图,在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水,看不清所印的字,请问被墨迹遮盖了的文字应是()A. 四边形B. 梯形C. 矩形D. 菱形10.已知二次函数y=−(x−b)2+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A. b≥−1B. b≤−1C. b≥1D. b≤1二、填空题(本大题共4小题,共12.0分)11.分解因式:2a2−2=______.12.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则旋转角的度数为______.(k>0)图象上的三点,则y1,y2,y3的大小13.若A(−3,y1),B(1,y2),C(2,y3)是反比例函数y=kx关系是______ (用“<”号连接).14.如图,在矩形ABCD中,AD=13,AB=12,点F在边BC上且AF=AD,∠DAF的平分线交边DC于点E,则DE=______.三、解答题(本大题共11小题,共88.0分)15.计算题(1)(−1)2019−(3.14−π)0+(1)−2;2(2)(−2x3y)2⋅(3xy2)÷(6x4y3);(3)(2x+3)2−(2x+1)(2x−1).16.(1)计算:√82(π−2009)0−4sin45∘(−1)3;(2)解方程:1x−21−x2−x=2.17.利用三角板也能画出一个角的平分线,画法如下:①利用三角板在∠AOB的两边上分别取OM=ON;②分别过点M、N画OM、ON的垂线,交点为P;③画射线OP,所以射线OP为∠AOB的角平分线.请你评判这种作法是否正确,并说明理由.18.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,求证:AD+AB=AC;(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?如果成立,请证明这个结论.(3)如图3,若∠DAB=90°,请直接写出AD、AB与对角线AC的数量关系.19.南宁市某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图.已经知A、B两组发言人数直方图高度比为1∶5.发言次数nA0≤n<5B5≤n<10C10≤n<15D15≤n<20E20≤n<25F25≤n<30请结合图中相关的数据回答下列问题:(1)A组的人数是多少?本次调查的样本容量是多少?(2)求出C组的人数并补全直方图.(3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.20.向阳中学校园内有一条林荫道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°,路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D,E两处测得路灯A的仰角分别为α和45°,且tanα=6,求灯杆AB的长度.21.某种黄金饰品在A.B两个金店销售,A商店标价420元/克,按标价出售,不优惠,B商店标价450元/克,但若购买的黄金饰品重量超过3克,则;超出部分可打八折出售,若购买的黄金饰品重量为x克.(1)分别列出到A、B商店购买该种黄金饰品所需的费用(用含式的代数式表示);(2)王阿姨要买一条重量11克的此种黄金饰品,到哪个商店购买最合算?22.一个不透明的口袋里装着分别标有数字−2,−1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为______;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数y=−2图x 象上的概率.23.(1)如图1,AC和BD相交于点O,OA=OC,OB=OD,求证:DC//AB.(2)如图2,在⊙O中,直径AB=6,AB与弦CD相交于点E,连接AC、BD,若AC=2,求cos D的值.x+1与抛物线y=ax2+bx−3交于A,B两点,点A 24.如图,在平面直角坐标系中,直线y=12在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P 作x轴的垂线交直线AB与点C,作PD⊥AB于点D.(1)①求抛物线的解析式;②求sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,求出当这两个三角形面积之比为9:10时的m值;③是否存在适合的m值,使△PCD与△PBD相似?若存在,直接写出m值;若不存在,说明理由.25.如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).(1)求证:AC是⊙O的切线;(2)若点E恰好是AO的中点,求BF⏜的长;(3)若CF的长为34①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.【答案与解析】1.答案:B解析:解:任何不为0的0次幂均等于1,因此选项A正确;当x2+1x2=9时,x+1x=±√11,因此选项B不正确;因为a−n=1a n,因此选项C正确;因为a m+n=a m⋅a n=3×2=6,因此选项D正确;故选:B.根据0次幂的意义,负指数次幂的意义以及同底数幂的乘法分别进行判断即可.考查0次幂的意义,负指数次幂的意义以及同底数幂的乘法的计算方法等知识,掌握这些运算性质是正确判断的前提.2.答案:C解析:解:从正面看下面是个矩形,上面是一个上底在下的梯形,故选:C.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,把从正面看到的图形画出来是解题关键.3.答案:C解析:解:∵52>√5>0>−1,∴四个数中,最大的是52.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.答案:A解析:解:根据题意把P1(x1,y1)、点P2(x2,y2)、点P3(x3,y3)表示到图象上,如图所示:故y1<y3<y2,故选:A.根据题意把三个点都表示到图象上,可以直观的得到y1、y2、y3的大小.此题主要考查了一次函数图象上点的坐标特征,凡是图象经过的点必能满足解析式.5.答案:C解析:解:∵AD//BC,∴∠CBF=∠DEF=40°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+40°=180°,解得∠α=70°.故选:C.由图形可得AD//BC,可得∠CBF=40°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.本题考查了图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.6.答案:B解析:本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.设AB=AC=xcm,则BC=(20−2x)cm,根据三角形的三边关系即可得出结论.解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=xcm,则BC=(20−2x)cm,∴{2x>20−2x20−2x>0,解得5<x<10,即5cm<AB<10cm.故选B.7.答案:D解析:解:∵将一次函数y=−2x的图象绕点A(2,3)逆时针方向旋转90°,∴得到的直线与直线y=−2x垂直,∴设旋转后的点O的对应点为B,过A作AD⊥x轴于D,过B作BD⊥AD于E,∴∠OAB=∠ADO=∠AEB=90°,∴∠ABE=∠OAD,∵AO=AB,∴△AOD≌△ABE(AAS),∴AE=OD=2,BE=AD=3,∴DE=1,则B(5,1),设函数解析式为y=12x+b,把点(2,3)代入得b=−32,则所求函数解析式为y=12x−32.故选:D.将一次函数y=−2x的图象绕点A(2,3)逆时针方向旋转90°,得到的直线与直线y=−2x垂直,设旋转后的点O的对应点为B,过A作AD⊥x轴于D,过B作BD⊥AD于E,根据全等三角形的性质得到AE=OD=2,BE=AD=3,得到B(5,1),于是得到结论.此题考查了一次函数图象与几何变换,全等三角形的判定和性质,掌握旋转的性质是解本题的关键.8.答案:D解析:解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE⋅DE,即AE2=3x2,∴AE=√3x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(√3x)2+(3x)2,解得x=√3,∴AE=3,DE=3√3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3√3,故选D.在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.9.答案:C解析:解:被墨迹遮盖了的文字应是菱矩形.故选:C.有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形,图中已有菱形,那么另一个圈中应是菱矩形.本题主要考查梯形,矩形,菱形,正方形的两个判定:有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.10.答案:D解析:解:∵二次函数y=−(x−b)2+c,∴当x>b时,y的值随x值的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1,故选:D.根据题目中的函数解析式和二次函数的性质,可以得到b的取值范围,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答.11.答案:2(a+1)(a−1)解析:解:2a2−2,=2(a2−1),=2(a+1)(a−1).先提取公因式2,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.答案:84°解析:解:∵AB′=CB′,∴∠C=∠CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°−108°,∴∠C=24°,∴∠CAB′=∠C=24°,∴旋转角的度数=∠BAB′=∠BAC−∠CAB′=84°,故答案为84°.由旋转的性质可得∠C=∠C′,AB=AB′,由等腰三角形的性质可得∠C=∠CAB′,∠B=∠AB′B,由三角形的外角性质和三角形内角和定理可求解.本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键. 13.答案:y 1<y 3<y 2解析:解:∵k >0,故反比例函数图象的两个分支在一三象限,且在每个象限内y 随x 的增大而减小.∴A(−3,y 1)在第三象限,B(1,y 2),C(2,y 3)在第二象限,且1<2,∴y 1<0,0<y 3<y 2,故y 1,y 2,y 3的大小关系为y 1<y 3<y 2.故答案为y 1<y 3<y 2.根据反比例函数的增减性解答即可.本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键. 14.答案:263解析:解:∵四边形ABCD 是矩形,∴CD =AB =12,BC =AD =13,∠B =∠D =∠C =90°,∵AF =AD =13,∴BF =√AF 2−AB 2=√132−122=5,∴CF =BC −BF =13−5=8,∵∠DAF 的平分线交边DC 于点E ,∴∠FAE =∠DAE ,在△AFE 和△ADE 中,{AF =AD∠FAE =∠DAE AE =AE,∴△AFE≌△ADE(SAS),∴FE =DE ,设FE =DE =x ,则CE =12−x ,在Rt △CEF 中,由勾股定理得:82+(12−x)2=x 2,解得:x =263,即DE =263;故答案为:263.由勾股定理求出BF =5,得出CF =8,证明△AFE≌△ADE(SAS),得出FE =DE ,设FE =DE =x ,则CE=12−x,在Rt△CEF中,由勾股定理得出方程,解方程即可.本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.15.答案:解:(1)原式=−1−1+4=2;(2)原式=4x6y2⋅3xy2÷(6x4y3)=2x3y;(3)原式=4x2+12x+9−4x2+1=12x+10.解析:(1)先根据有理数的乘方,零指数幂,负整数指数幂进行计算,再求出即可;(2)先算乘方,再算乘除即可;(3)先根据平方差公式和完全平方公式进行计算,再合并同类项即可.本题考查了乘法公式,零指数幂,实数的混合运算和整式的混合运算等知识点,能正确运用整式的运算法则和实数的运算法则进行化简和计算是解此题的关键.16.答案:解:(1))原式=2√2+2×1−4×√2+(−1)=2√2+2−2√2−1=1;2(2)去分母得:1+x−1=2(x−2),去括号得:1+x−1=2x−4,移项合并得:x=4,经检验x=4是分式方程的解.解析:(1)原式第一项利用平方根的定义化简,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项表示三个−1的乘积,计算即可得到结果;(2)方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.17.答案:解:这种作法的正确.理由如下:由作图得∠PMO=∠PNO=90°,在Rt△PMO和Rt△PNO中∵{OP=OPOM=ON,∴Rt△PMO≌Rt△PNO(HL),∴∠POM=∠PON,即射线OP为∠AOB的角平分线.解析:由作图得∠PMO=∠PNO=90°,则可根据“HL”可证明Rt△PMO≌Rt△PNO,所以∠POM=∠PON,从而可判断射线OP为∠AOB的角平分线.此题主要考查了复杂作图以及全等三角形的判定与性质,得出Rt△MOP≌Rt△NOP是解题关键.18.答案:(1)证明:在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴∠ACB=30°,AC,∴AB=12AC.同理AD=12∴AD+AB=AC;(2)解:(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,在△CDA和△CBE中,{∠D=∠CBE∠DCA=∠BCEAC=EC,∴△CDA≌△CEB(AAS),∴AD=BE,∴AD+AB=AC;(3)解:结论:AD+AB=√2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠ABC=180°,∠DAB=90°,∴∠DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠CBE+∠ABC=180°,∴∠D=∠CBE,在△CDA和△CBE中,{∠D=∠CBE∠DCA=∠BCEAC=EC,∴△CDA≌△CBE(AAS),∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴△ACE是等腰直角三角形,∴AE=√2AC,∴AD+AB=√2AC.解析:(1)由直角三角形的性质得出AD=12AC,AB=12AC即可解决问题;(2)以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△CDA≌△CBE即可解决问题;(3)过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△CDA≌△CBE即可解决问题.本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.19.答案:解:(1)∵B组有10人,A组发言人数:B发言人数=1:5,则A组发言人数为:2人.本次调查的样本容量为:2÷4%=50人;(2)c组的人数有:50×40%=20人;直方图如图所示(3)全年级每天发言次数不少于15次的发言的人数有:250×(1−4%−40%−20%)=90(人).解析:略20.答案:解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.由题意得∠ADE=α,∠E=45°,设AF=x米∵∠E=45°,∴EF=AF=x米,在Rt△ADF中,∵tan∠ADF=AFDF,∴DF=AFtan∠ADF =x6,∵DE=13.3米,∴x+x6=13.3,∴x=11.4,∴AG=AF−GF=11.4−10=1.4(米),∵∠ABC=120°,∴∠ABG=∠ABC−∠CBG=120°−90°=30°,∴AB=2AG=2.8(米),答:灯杆AB的长度为2.8米.解析:本题主要考查解直角三角形−仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.设AF=x知EF=AF=x、DF=AFtan∠ADF =x6,由DE=13.3求得x=11.4,据此知AG=AF−GF=1.4,再求得∠ABG=∠ABC−∠CBG=30°可得AB=2AG=2.8.21.答案:解:(1)到A商店购买所需费用y和重量x之间的函数关系为:y A=420x(x≥0),到B商店购买所需费用y和重量x之间的函数关系:当0≤x≤3时,y B=450x,当x>3时,y B=450×3+450×0.8×(x−3)=360x+270;(2)当x=11时,y A=420×11=4620;y B=360×11+270=3960+270=4230;∵4620>4230,∴到B商店购买最合算.解析:(1))根据等量关系“去A商店购买所需费用=标价×重量”“去B商店购买所需费用=标价×3+标价×0.8×超出3克的重量(x>3);当x≤3时,y B=530x,”列出函数关系式;(2)通过比较A、B两商店费用的大小,得到购买一定重量的黄金饰品去最合算的商店.此题考查了一次函数与一元一次不等式的应用,关键是读懂题意,列出函数关系式和不等式,再根据实际情况进行讨论,不要漏解.22.答案:12解析:解:(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率为24=12;故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(x,y)在反比例函数y=−2x图象上的有4种,因此点(x,y)在反比例函数y=−2x 图象上的概率P=412=13.(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率;(2)用列表法表示所有可能出现的结果情况,得出点(x,y)在反比例函数y=−2x图象上的情况,进而求出概率.本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.23.答案:(1)证明:在△AOB和△COD中,{OA=OC∠AOB=∠COD OB=OD,∴△AOB≌△COD,∴∠A=∠ACD,∴DC//AB;(2)解:连接BC , ∵AB 为直径, ∴∠ACB =90°, ∴cosA =ACAB =13,由圆周角定理得,∠D =∠A , ∴cosD =13.解析:(1)证明△AOB≌△COD ,根据全等三角形的性质得到∠A =∠C ,根据平行线的判定定理证明; (2)连接BC ,根据余弦的定义、圆周角定理解答.本题考查的是圆周角定理、全等三角形的判定和性质,掌握直径所对的圆周角是直角、余弦的概念是解题的关键.24.答案:解:(1)①当y =0时,12x +1=0,解得x =−2,则A(−2,0),当y =3时,12x +1=3,解得x =4,则B(4,3),把A(−2,0),B(4,3)代入y =ax 2+bx −3得{4a −2b −3=016a +4b −3=3,解得{a =12b =−12, ∴抛物线的解析式为y =12x 2−12x −3;②过B 作BE ⊥x 轴于点E ,如图1,AE =4−(−2)=6,AB =√32+62=3√5, 在Rt △ABE 中,sin∠ABE =AEAB =3√5=2√55, ∵PC//BE ,∴sin∠ACP =sin∠ABE =2√55;(2)设P(m,12m 2−12m −3),则C(m,12m +1),BM =4−m , ∴PC =12m +1−(12m 2−12m −3)=−12m 2+m +4, ∵sin∠ACP =PD PC=2√55, ∴PD =−√55m 2+2√55m +8√55=−√55(m −1)2+9√55,当m =1时,线段PD 长的最大值为9√55;②作BM ⊥PC ,交PC 的延长线于点M ,作DN ⊥PC 于点N ,如图,∵sin∠P =sin∠BAE =BEAB =√55, ∴DN PD=√55, ∴DN =√55(√55m 2+2√55m +8√55)=−15m 2+25m +85,∵DN//BM , ∴DC CB =DNBM ,∵线段PC 把△PDB 分成两个三角形的面积之比为9:10, ∴当DCCB =DNBM =910,即−15m 2+25m+854−m=910,整理得2m 2−13m +20=0,解得m 1=52,m 2=4(舍去); 当DCCB =DNBM =109,即−15m 2+25m+854−m=109,整理得9m 2−68m +128=0,解得m 1=329,m 2=4(舍去);综上所述,m 的值为52或329; ③存在.如图2,连接PB 交x 轴于Q , ∵∠PDC =∠BDP ,∴当∠DPC =∠DBP 时,△DPC∽△DBP , 而∠DPC =∠BAE , ∴∠BAE =∠ABP , ∴QA =QB ,设Q(t,0),则QA =QB =t +2,EQ =4−t ,在Rt △BQE 中,(4−t)2+32=t 2,解得t =74,则Q(74,0), 设直线BQ 的解析式为y =px +q ,把B(4,3),Q(74,0)代入得{4p +q =374p +q =0,解得{p =43q =−73,∴直线BQ 的解析式为y =43x −73,解方程组{y =43x −73y =12x 2−12x −3得{x =4y =3或{x =−13y =−259, ∴P(−13,−259), ∴m =−13.解析:(1)①由直线解析式可求得A 、B 两点的坐标,代入抛物线解析式可求得a 、b 的值,则可求得抛物线解析式;②过B 作BE ⊥x 轴于点E ,在Rt △ABE 中可求得sin∠ABE ,则可求得sin∠ACP ;(2)①用m 可表示出C 点坐标,则可表示出PC 的长,利用其正弦值可表示出PD 的长,利用二次函数的性质可求得其最大值;②作BM ⊥PC ,交PC 的延长线于点M ,作DN ⊥PC 于点N ,则可用m 表示DN 和BM ,由面积的比得到DC 与BC 的比,然后利用相似比可得到m 的方程,可求得m 的值;③如图2,连接PB 交x 轴于Q ,只有当∠DPC =∠DBP 时,△DPC∽△DBP ,于是可证明QA =QB ,设Q(t,0),则QA =QB =t +2,EQ =4−t ,利用勾股定理得到(4−t)2+32=t 2,解得t =74,则Q(74,0),再利用待定系数法求出直线BQ 的解析式为y =43x −73,然后解方程组{y =43x −73y =12x 2−12x −3得P 点坐标,从而得到m 的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数的解析式,会通过解方程或方程组求函数与坐标轴的交点坐标和两个函数图象的交点坐标;会运用勾股定理、锐角三角函数和相似比进行几何计算;理解坐标与图形性质.25.答案:解:(1)连结DO ,∵BD 平分∠ABC ,∵DO=BO,∴∠ODB=∠OBD,∴∠CBD=∠ODB.∴DO//BC,∵∠C=90°,∴∠ADO=90°,∴AC是⊙O的切线;(2)∵E是AO中点,∴AE=EO=DO=BO=53,∴sin∠A=12,∴∠A=30°,∠B=60°,连结FO,则∠BOF=60°,∴BF⏜=60180×π×53=59π.(3)①如图3,连结OD,过O作OM⊥BC于M,则BM=FM,四边形CDOM是矩形设圆的半径为r,则OA=5−r.BM=FM=r−34,∵DO//BC,而∠ADO=90°=∠OMB,∴△ADO∽△OMB,∴OAOD =OBBM,即5−rr=rr−34,解之得r1=1,r2=158.②∵在(1)中∠CBD=∠ABD,∴DE=DF,∵BE是⊙O的直径,∴∠BDE=90°,而F、F′关于BD轴对称,∴BD⊥FF′,BF=BF′,∴DE//FF′,∴∠DEF′=∠BF′F,∴△DEF′∽∠BFF′,当r=1时,AO=4,DO=1,BO=1,由①知ODBC =OAAB,∴1BC =45,∴BC=54,∵CF=34,∴BF=12,∴CD =√12−(14)2=√154, ∴DF =DF′=(34)(√154)=√62, ∴△BFF′与△DEF′的面积之比=(12√62)2=16, 同理可得,当r =158时.时,△BFF′与△DEF′的面积比=95. ∴△BFF′与△DEF′的面积比为16或95.解析:(1)连结DO ,证明DO//BC ,得出∠ADO =90°,则结论得证;(2)求出∠A =30°,∠B =60°,连结FO ,则∠BOF =60°,由弧长公式可得出答案;(3)①如图3,过O 作OM ⊥BC 于M ,则BM =FM ,四边形CDOM 是矩形,设圆的半径为r ,则OA =5−r.BM =FM =r −34,证明△ADO∽△OMB ,由比例线段可得出r 的方程,解方程即可得出答案; ②证明△DEF′∽∠BFF′,当r =1或r =158时,根据相似三角形的性质可得出答案.本题是圆的综合题,考查了直角三角形30度角的性质,切线的判定和性质,等腰三角形的判定,圆周角定理,勾股定理,轴对称的性质,相似三角形的判定和性质等知识,正确作出辅助线,熟练运用圆的相关性质定理是解题的关键.。

陕西省西安市雁塔区部分中学2020年数学中考模拟试卷

陕西省西安市雁塔区部分中学2020年数学中考模拟试卷

陕西省西安市雁塔区部分中学2020年数学中考模拟试卷一、选择题(满分30分,每小题3分)(共10题;共30分)1.若(x﹣1)0=1成立,则x的取值范围是()A. x=﹣1B. x=1C. x≠0D. x≠12.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是()A. y1 =y2B. y1 <y2C. y1 >y2D. y1 ≥y23.关于二次函数y=2x2﹣mx+m﹣2,以下结论:①抛物线交x轴有交点;②不论m取何值,抛物线总经过点(1,0);③若m>6,抛物线交x轴于A,B两点,则AB>1;④抛物线的顶点在y=﹣2(x﹣1)2图象上.其中正确的序号是()A. ①②③④B. ①②③C. ①②④D. ②③④二、填空题(满分12分,每小题3分)(共4题;共12分)4.在﹣,﹣0.2020020002…(两个非零数之间依次多一个0),其中无理数有________个.5.正六边形的边长为10m,那么它的边心距等于________.6.如图,A点是y轴正半轴上一点,过点A作x轴的平行线交反比例函数的图象于点B,交反比例函数的图象于点C,若AB:AC=3:2,则k的值是________.7.如图,边长为12的正方形ABCD,点P是对角线BD上一动点,E在边CD上,EC=3,则PC+PE的最小值是________.三、解答题(共11题;共63分)8.先化简,再求值:(2﹣)÷ ,其中x=﹣3.9.计算:﹣2× +|1﹣|﹣()﹣210.如图,已知⊙O和弦AB请你利用尺规作⊙O的内接△ABC,使AC=BC,(作出一个即可,不写作法,保留作图痕迹)11.证明:对角线互相垂直的平行四边形是菱形.12.某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是________(选填:A,B,C,D,E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?13.如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面1.5m,竹标顶端离地面2.4m,小明到竹杆的距离DF=2m,竹杆到塔底的距离DB=32m,求这座古塔的高度.14.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.15.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.16.如图,AB是⊙O的直径,C点在⊙O上,AD平分角∠BAC交⊙O于D,过D作直线AC的垂线,交AC 的延长线于E,连接BD,CD.(1)求证:BD=CD;(2)求证:直线DE是⊙O的切线;(3)若DE=,AB=4,求AD的长.17.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM,①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b与图象P,图象Q都相交,且只有两个交点,求b的取值范围.18.如图1,在矩形纸片ABCD中,AB=12cm,AD=20cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.答案解析部分一、选择题(满分30分,每小题3分)1.【答案】D【解析】【解答】解:由题意可知:x﹣1≠0,解得x≠1.故答案为:D.【分析】根据非零底数的零次冥等于1,可得出x-1为零,解出x的值。

2020届陕西省西安市雁塔区益新中学中考数学一模试卷(含解析)

2020届陕西省西安市雁塔区益新中学中考数学一模试卷(含解析)

2020届陕西省西安市雁塔区益新中学中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列运算中正确的是()A. π0=1B. √x2=xC. 2−2=−4D. −|−2|=22.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A. 圆锥,三棱锥,圆柱,正方体B. 圆锥,四棱锥,圆柱,正方体C. 圆锥,四棱柱,圆柱,正方体D. 圆锥,三棱柱,圆柱,正方体3.下列运算中,正确的是()A. x2⋅x3=x6B. (x3)2=x5C. x+x2=2x3D. −x3÷x2=−x4.具备下列条件的三角形中,不是直角三角形的是()∠AA. ∠A+∠B=∠CB. ∠B=∠C=12C. ∠A−∠B=90°D. ∠A=90°−∠B5.将直线y=x平移,使得它经过点(−2,0),则平移后的直线为()A. y=x−2B. y=x+1C. y=−x−2D. y=x+26.在下列的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与相似的三角形所在的网格图形是()A.B.C.D.7.点A的坐标是(1,1),若点B在坐标轴上,且△ABO是等腰三角形,则点B的坐标不可能是()A. (2,0)B. (0.5,0)C. (1,0)D. (0,1)8.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A. 80°B. 75°C. 70°D. 65°9.如图,CD是⊙O的直径,AB是弦,∠CAB=20°,则∠DCB的度数为?()A. 70°B. 50°C. 40°D. 20°10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(−1,0),与y轴的交点B在(0,−2)和(0,−1)之间(不包括这两点),对称轴为直线x=1,下列结论()①abc>0②4a+2b+c>0③2a+b=0④4ac−b2<8a⑤b>cA. ①③B. ①③④C. ②④⑤D. ①③④⑤二、填空题(本大题共4小题,共12.0分)11. 分解因式:m 2n −4mn −4n =______.12. 根椐要求回答:①正十二边形的每个外角是 °. ②如图,小亮从A 点出发前进10m ,向右转15°,再前进10m ,又向右转15°,……,这样一直走下去,当他第一次回到出发点A 时,一共走了 m.13. 如图,平行四边形ABCD 的周长为18cm ,AE 平分∠BAD ,若CE =1cm ,则AB 的长度是______cm .14. 如图,矩形ABCD 中,AD =6,E 为AD 中点,点P 为对角线AC 上的一个动点,当∠DAC =30°时,则PE +PD 的最小值是______.三、计算题(本大题共1小题,共5.0分)15. 先化简:再求值:(a −2−5a+2)÷a−32a+4,其中a =(3−π)0+(13)−1四、解答题(本大题共10小题,共73.0分)16.化简:(1)4y(y−x)−(x−2y)2(2)a−1a−2÷(a+1a−2)+117.如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为______.18.我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛.为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,请根据图表信息解答以下问题.组别成绩x/分频数A组60⩽x<70aB组70⩽x<808C组80⩽x<9012D组90⩽x<10014(1)一共抽取了______名参赛学生的成绩;表中a=______;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优秀”,该市共有学生120万人,那么该市学生中能获得“优秀”的有多少人?19.如图,正方形ABCD中,E,F是正方形内两点,BE//DF,EF⊥BE,为探索研究这个图形的特殊性质,某数学学习小组经历力如下过程初步体验如图1,连接BD,若BE=DF,求证:EF与BD互相平分规律探究(1)如图1中,(BE+DF)2+EF2=______AB2(2)如图2,若BE≠DF,其他条件不变,(1)中的数量关系是否会发生变化?如果不会,请证明你的结论;如果会发生变化,请说明理由拓展应用如图3,若AB=4,∠DPB=135°,√2BP+2PD=4√6,求PD的长20.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为39.7°,塔底B的仰角为28.8°.已知塔高BC=40米,塔所在的山高OB=110米,OA=100米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin28.8°≈0.45,tan28.8°≈0.50;sin39.7°≈0.60,tan39.7°≈0.75)21.2020年12月7日,成都市郫都区新增1例本土新冠肺炎确诊病例,让全体市民再次加强了疫情防范意识.某单位准备用3000元购买医用口罩和洗手液发放给全体职工,若医用口罩购买500个,洗手液购买100瓶,则剩余200元;若医用口罩购买800个,洗手液购买80瓶,则还差40元.(1)求医用口罩和洗手液的单价;(2)根据疫情防控实际需要,单位决定购买医用口罩500个,洗手液和酒精消毒喷雾共90瓶,若需购买洗手液的瓶数最多为75瓶且购买酒精消毒喷雾的瓶数不超过洗手液瓶数的1,酒精消4毒喷雾每瓶的单价是32元,请你设计一种购买方案,要求所花的费用最少,并求出最少费用.22.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有三张纸牌,牌面数字分别是2、3、4.将纸牌背面朝上充分洗匀,小明和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人摸出一张纸牌,如果所摸球上的数字与纸牌上的数字之和小于5,那么小明去;否则小亮去.(1)求出小明参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.23.如图,⊙O中,点A为B^C中点,BD为直径,过A作AP//BC交DB的延长线于点P.(Ⅰ)求证:PA是⊙O的切线;(Ⅱ)若BC=2√5,AB=2√2,求sin∠ABD的值.24.如图,已知二次函数的图象经过点A(4,4)、B(5,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.25.(14分)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)在图1中,∠AOC=度,∠NOC=度.(2)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(3)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(4)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,①求∠COM+∠NOA的度数;②求∠AOM−∠NOC的度数.【答案与解析】1.答案:A解析:解:A、非零的零次幂等于1,故A正确;B、√x2=|x|,故B错误;C、负整数指数幂与正整数指数幂互为倒数,故C错误;D、−|−2|=−2,故D错误;故选:A.根据非零的零次幂等于1,二次根式的性质,负整数指数幂与正整数指数幂互为倒数,只有符号不同的两个数互为相反数,可得答案.本题考查了零指数幂,利用非零的零次幂等于1是解题关键,注意√x2=|x|.2.答案:D解析:【试题解析】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.根据常见的几何体的展开图进行判断,即可得出结果.解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,三棱柱,圆柱,正方体.故选D.3.答案:D解析:解:A、x2⋅x3=x2+3=x5,故本选项错误;B、(x3)2=x3×2=x6,故本选项错误;C、x与x2不是同类项,不能计算,故本选项错误;D、−x3÷x2=−x3−2=−x,故本选项正确.故选D.根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则,同底数幂相除,底数不变指数相减对各选项分析判断即可得解.本题考查了同底数幂的乘法,幂的乘方的性质,合并同类项,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.答案:C解析:解:A、∵∠A+∠B=∠C,∠A+∠B+∠C=180°∴2∠C=180°,解得∠C=90°,∴此三角形是直角三角形,故本选项错误;∠C,B、∵∠A=∠B=12∴设∠A=∠B=x,则∠C=2x.∵∠A+∠B+∠C=180°,∴x+x+2x=180°,解得x=45°,∴∠C=2x=90°,∴此三角形是直角三角形,故本选项错误;C、∵∠A−∠B=90°∴∠A=90°+∠B>90°∴此三角形是钝角三角形,故本选项正确;D、∵∠A=90°−∠B,∴∠A+∠B=90°,∴∠C=90°,∴此三角形是直角三角形,故本选项错误.故选:C.根据三角形内角和定理对各选项进行逐一判断即可.本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.5.答案:D解析:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线y=kx+b(k≠0)平移后的解析式时要注意平移时k的值不变.根据平移不改变k的值可设y=x+b,然后将点(−2,0)代入即可得出直线的函数解析式.解:设平移后直线的解析式为y=x+b.把(−2,0)代入直线解析式得0=−2+b,解得b=2,所以平移后直线的解析式为y=x+2.故选D.6.答案:B解析:根据三边对应成比例的两个三角形相似分别判定各选项的正误即可解答.解析:根据勾股定理,BC==2,AC==,AB==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.本题主要考查了勾股定理以及相似三角形的判定.7.答案:B解析:解:如图,点B的坐标不可能是可以是(2,0),(√2,0),(1,0),(−√2,0),(0,−√2),(0,1),(0,√2),(0,2),不可能是(0.5,0).故选B.作出图形,然后根据等腰三角形的两边相等分别确定出点B的位置,即可得解.本题考查了等腰三角形的判定,坐标与图形性质,作出图形,利用数形结合的思想求解更形象直观.8.答案:B解析:解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°−15°=75°,故选:B.根据正方形的性质得到∠BAD=∠ABC=90°,AB=AD,根据等边三角形的性质得到∠EAD=60°,AE=AD,求得∠BAE=150°,AB=AE,根据等腰三角形的性质得到∠ABE=∠AEB=15°,于是得到结论.本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠AEB的度数,难度适中.9.答案:A解析:解:连接BD,如图,∵CD是⊙O的直径,∴∠CBD=90°,∵∠D=∠CAB=20°,∴∠DCB=90°−20°=70°.故选:A.连接BD,如图,利用圆周角定理得到∠CBD=90°,∠D=∠CAB=20°,然后利用互余得到∠DCB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.答案:D解析:解:①由抛物线开口向上,则a>0,对称轴为x=1,因此b<0,且2a+b=0,−2<c<−1,因此abc>0,①是正确的;②当x=2时,y=4a+2b+c<0,因此②错误,③−b=1,故−b=2a,2a即2a+b=0,故③正确;④由b2−4ac>0,推出4ac−b2<0,∵8a>0,4ac−b2<8a,因此④正确;⑤抛物线过(−1,0),a−b+c=0,即,b=a+c,因为a>0,所以b>c,因此⑤错误;故选:D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行分别推理,进而对所得结论进行判断.此题主要考查了二次函数图象与系数之间的关系.解题关键是注意掌握数形结合思想的应用.11.答案:n(m2−4m−4)解析:解:m2n−4mn−4n=n(m2−4m−4).故答案为n(m2−4m−4).提取公因式n即可.本题考查了提公因式法分解因式,要求学生灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.答案:①30②240解析:本题主要考查多边形的外有和定理.注意多边形的外角和等于360°是解题的关键.①根据多边形的外角和等于360度除以边数即可得结果;②根据多边形外角和与每个外角的度数,求出边数,即可求出走的路程.解:①360°÷12=30°.故答案为30;②360°÷15°=24,24×10=240(m).故答案为240.13.答案:9解析:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD//BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+1)cm,∵▱ABCD的周长为18cm,∴x+x+1=9,解得:x=4,即AB=4cm.故答案为:9.根据平行四边形的性质得出AB=CD,AD=BC,AD//BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB =BE ,设AB =CD =xcm ,则AD =BC =(x +1)cm ,得出方程x +x +1=9,求出方程的解即可.本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB =BE ,题目比较好,难度适中.14.答案:3√3 解析:解:如图所示,作点D 关于AC 的对称点D′,连接AD′,PD′,则AD =AD′,∠DAC =∠D′AC =30°,PD =PD′,∴△ADD′是等边三角形,∵PD +PE =PD′+PE ,∴当E ,P ,D′在同一直线上时,PE +PD 的最小值等于D′E 的长,∵AD =6,E 为AD 中点,∴DE =3,∠DD′E =30°,∴DD′=6,∴Rt △DED′中,D′E =3√3,∴PE +PD 的最小值等于3√3,故答案为:3√3.作点D 关于AC 的对称点D′,连接AD′,PD′,当E ,P ,D′在同一直线上时,PE +PD 的最小值等于D′E 的长,依据勾股定理求得D′E 的长,即可得到PE +PD 的最小值.本题考查轴对称最短问题以及矩形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.15.答案:解:(a −2−5a+2)÷a−32a+4=(a −2)(a +2)−5a +2⋅2(a +2)a −3 =(a +3)(a −3)a +2⋅2(a +2)a −3 =2(a +3)=2a +6,当a =(3−π)0+(13)−1=1+3=4时,原式=2×4+6=8+6=14.解析:根据分式的减法和除法可以化简题目中的式子,然后根据a的值即可解答本题.本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.16.答案:解:(1)4y(y−x)−(x−2y)2=4y2−4xy−(x2+4y2−4xy)=4y2−4xy−x2−4y2+4xy=−x2;(2)a−1a−2÷(a+1a−2)+1=a−1a−2÷a(a−2)+1a−2+1=a−1a−2⋅a−2(a−1)2+1=1a−1+1=1a−1+a−1a−1=aa−1.解析:(1)直接利用单项式乘以多项式以及完全平方公式分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的混合运算以及整式的混合运算,正确掌握相关运算法则是解题关键.17.答案:(1)如图所示:(2)3 4解析:解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE=√AE2−AB2=6,在△DAF和△EAF中,∵{AD=AE∠DAF=∠EAF AF=AF,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE=BEAB =68=34,故答案为:34.(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=BEAB可得答案.本题主要考查作图−基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.18.答案:40 6解析:解:(1)本次抽取的学生有:14÷35%=40(名),a=40−8−12−14=6,故答案为:40,6;(2)由(1)知,a=6,补全的频数分布直方图如右图所示;=72°,(3)360°×840即扇形统计图中“B”对应的圆心角度数是72°;=78(万人),(4)120×12+1440即该市学生中能获得“优秀”的有78万人.(1)根据D组的频数和所占的百分比,可以求得本次调查的人数,然后即可得a的值;(2)根据(1)中a的值和频数分布表,可以将频数分布直方图补充完整;(3)根据频数分布表中B组的频数和(1)中的结果,可以计算出扇形统计图中“B”对应的圆心角度数;(4)根据频数分布表中的数据,可以计算出该市学生中能获得“优秀”的有多少人.本题考查频数分布直方图、频数分布表、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.19.答案:2解析:初步体验证明:如图1,连接ED、BF,∵BE=DF,BE//DF,∴四边形EBFD是平行四边形,∴EF与BD互相平分;规律探究(1)如图2,过D作DG⊥BE,交BE的延长线于G,∴∠EGD=∠GEF=∠EFD=90°,∴四边形GEFD是矩形,∴EF=GD,EG=DF,在Rt△BGD中,BG2+DG2=BD2,∴(BE+EG)2+EF2=BD2,∵△ABD是等腰直角三角形,∴BD2=2AB2,∴(BE+DF)2+EF2=2AB2,故答案为:2;(2)不会发生变化,如图3,(BE+DF)2+EF2=2AB2仍然成立,理由是:过D作DG⊥BE,交BE的延长线于G,∴∠EGD=∠GEF=∠EFD=90°,∴四边形GEFD是矩形,∴EF=GD,EG=DF,在Rt△BGD中,BG2+DG2=BD2,∴(BE+EG)2+EF2=BD2,∵△ABD是等腰直角三角形,∴BD2=2AB2,∴(BE+DF)2+EF2=2AB2,拓展应用如图4,过P作PE⊥PD,过B作BE⊥PE,过D作DG⊥BE,得矩形GEPD,∴GD=EP,EG=PD,设BE=EG=x,PD=EG=y,则BP=√2x∵AB=4,∴BD=4√2,在Rt△BGD中,由勾股定理得:BG2+DG2=BD2,∴(x+y)2+x2=(4√2)2,∴2x2+2xy+y2=32①,∵√2BP+2PD=4√6,∴2x+2y=4√6②,解①和②得:{x=2√2y=2√6−2√2,∴PD=2√6−2√2.初步体验:根据一组对边平行且相等的四边形是平行四边形得:四边形EBFD是平行四边形,再由平行四边形的对角线互相平分得结论;规律探究:(1)如图2,作辅助线,构建矩形GEFD,利用勾股定理列方程并与矩形的对边相等相结合可得结论;(2)如图3,同理可得结论;拓展应用:如图4,类比如图2,构建矩形GEPD,设BE=EG=x,PD=EG=y,则BP=√2x由勾股定理得:BG2+DG2=BD2,则(x+y)2+x2=(4√2)2,由已知得:√2BP+2PD=4√6,则2x+2y=4√6②,解①和②可得结论.本题是四边形的综合题,考查了平行四边形和矩形的性质和判定,并根据勾股定理列方程解决问题,本题的关键是作辅助线,构建矩形和直角三角形,并运用了类比的思想,使问题得以解决.20.答案:解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=28.8°,∴BD=PD⋅tan∠BPD=PD⋅tan28.8°;在Rt△CPD中,∵∠CDP=90°,∠CPD=39.7°,∴CD=PD⋅tan∠CPD=PD⋅tan39.7°;∵CD−BD=BC,∴PD⋅tan39.7°−PD⋅tan28.8°=40,∴0.75PD−0.50PD=40,解得PD=160(米),∴BD=PD⋅tan28.8°≈160×0.50=80(米),∵OB=110米,∴PE=OD=OB−BD=30米,∵OE=PD=160米,∴AE=OE−OA=160−100=60(米),∴tanα=PEAE =3060=0.5,∴坡度为1:2.解析:过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD= PD⋅tan28.8°;解Rt△CPD,得出CD=PD⋅tan39.7°;再根据CD−BD=BC,列出方程,求出PD= 160,进而求出PE=30,AE=60,然后在△APE中利用三角函数的定义即可求解.本题考查了解直角三角形的应用−仰角俯角问题、坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.21.答案:解:(1)设医用口罩的单价为x 元,洗手液的单价为y 元,依题意得:{500x +100y =3000−200800x +80y =3000+40, 解得:{x =2y =18. 答:医用口罩的单价为2元,洗手液的单价为18元.(2)设购买洗手液m 瓶,则购买酒精消毒喷雾(90−m)瓶,依题意得:{90−m ≤14m m ≤75, 解得:72≤m ≤75.设购买医用口罩、洗手液和酒精消毒喷雾的总费用为w 元,则w =2×500+18m +32(90−m)=−14m +3880.∵−14<0,∴w 随m 的增大而减小,∴当m =75时,w 取得最小值,最小值=−14×75+3880=2830,此时90−m =15. 答:当购进75瓶洗手液,15瓶酒精消毒喷雾时,所花的费用最少,最少费用为2830元.解析:(1)设医用口罩的单价为x 元,洗手液的单价为y 元,根据“若医用口罩购买500个,洗手液购买100瓶,则剩余200元;若医用口罩购买800个,洗手液购买80瓶,则还差40元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买洗手液m 瓶,则购买酒精消毒喷雾(90−m)瓶,根据购买洗手液的瓶数最多为75瓶且购买酒精消毒喷雾的瓶数不超过洗手液瓶数的14,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,设购买医用口罩、洗手液和酒精消毒喷雾的总费用为w 元,根据总价=单价×数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.本题考查了二元一次方程组的应用、一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 与m 之间的函数关系式. 22.答案:解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于5的有3种情况,∴P(和小于5)=312=14,∴小明参加比赛的概率为:14;(2)不公平,∵P(小明)=14,P(小亮)=34.∴P(和小于5)≠P(和大于等于5),∴游戏不公平;可改为:若两个数字之和小于6,则小明去参赛;否则,小亮去参赛.解析:(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和小于5的情况,则可求得小明参加比赛的概率;(2)根据小明获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.答案:(Ⅰ)证明:连结AO,交BC于点E.∵点A是BC⏜的中点,∴AO⊥BC,又∵AP//BC,∴AP⊥AO,∴AP是⊙O的切线;(Ⅱ)解:∵AO⊥BC,BC=2√5,∴BE=12BC=√5,又∵AB=2√2,∴sin∠BAE=BEAB =√104,∵OA=OB,∴∠ABD=∠BAO,∴sin∠ABD=sin∠BAE=√104.解析:此题主要考查了切线的判定、垂径定理的应用和等腰三角形的性质以及锐角三角函数关系,正确转化角度得出sin∠ABD=sin∠BAE=√104是解题的关键.(Ⅰ)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(Ⅱ)根据垂径定理得出BE=√5,在Rt△ABE中,利用锐角三角函数关系得出sin∠BAE=√104,再根据等腰三角形的性质得出∠ABD=∠BAE,即可求得求sin∠ABD=sin∠BAE=√104.24.答案:解:(1)设y=ax(x−5),把A点坐标(4,4)代入得:4a(4−5)=4,解得a=−1,函数的解析式为y=−x2+5x,答:二次函数的解析式是y=−x2+5x.(2)解:0<m<4,PC=PD−CD,∵D(m,0),PD⊥x轴,P在y=−x2+5x上,C在直线OA上,A(4,4),∴P(m,−m2+5m),C(m,m)∴PC=PD−CD=−m2+5m−m=−m2+4m,=−(m−2)2+4,∵a=−1<0,开口向下,∴有最大值,当D(2,0)时,PC max=4,答:当点P在直线OA的上方时,线段PC的最大值是4.(3)当0<m<4时,仅有OC=PC,∴−m2+4m=√2m,解得m=4−√2,∴P(4−√2,2+3√2);当m≥4时,PC=CD−PD=m2−4m,OC=√2m,由勾股定理得:OP2=OD2+DP2=m2+m2(m−5)2,①当OC=PC时,m2−4m=√2m,解得:m=4+√2或m=0(舍去),∴P(4+√2,2−3√2);②当OC=OP时,(√2m)2=m2+m2(m−5)2,解得:m1=6,m2=4,∵m=4时,P和A重合,即P和C重合,不能组成△POC,∴m=4舍去,∴P(6,−6);③当PC=OP时,m2(m−4)2=m2+m2(m−5)2,解得:m=5,∴P(5,0),答:存在,P的坐标是(4−√2,2+3√2)或(4+√2,2−3√2)或(6,−6)或(5,0).解析:(1)设y=ax(x−5),把A点坐标代入即可求出答案;(2)根据点的坐标求出PC=−m2+4m,化成顶点式即可求出线段PC的最大值;(3)当0<m<4时,仅有OC=PC,列出方程,求出方程的解即可;当m≥4时,PC=CD−PD= m2−4m,OC=√2m,分为三种情况:①当OC=PC时,m2−4m=√2m,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.本题主要考查对用待定系数法求二次函数的解析式,等腰三角形的性质,勾股定理,二次函数的最值等知识点的理解和掌握,用的数学思想是分类讨论思想,此题是一个综合性比较强的题目,(3)小题有一定的难度.25.答案:解:(1)∠AOC=60°,∠NOC=150°;(2)直线ON平分∠AOC.理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON(对顶角相等),∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC.(3)∵∠BOC=120°∴∠AOC=60°,∴∠BON=∠COD=30°,即旋转60°时ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40;(4)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°−∠AON、∠NOC=60°−∠AON,∴∠AOM−∠NOC=(90°−∠AON)−(60°−∠AON)=30°.解析:本题主要考查了角平分线的定义及旋转的性质,旋转的基本性质有三点:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前后的图形相等.仔细观察图形,(1)由平角的定义可得∠AOC=60º,由直角可得∠NOC度数;(2)由角的平分线的定义和等角的余角相等求解;(3)由∠BOC=120°可得∠AOC=60°,则∠BON=∠COD=30°,由题意得,6t=60°或240°,据此求解;(4)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°−∠AON、∠NOC=60°−∠AON,然后作差即可.找到各个角之间的关系,即可解答出来.。

2020年陕西省西安中考数学模拟试卷解析版

2020年陕西省西安中考数学模拟试卷解析版

2020年陕西省西安中考数学模拟试卷一、选择题(每小题3分,共10小题,计30分)1.(3分)下列各数是无理数的是()A.﹣2013B.0C.D.2.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)正比例函数y=kx的图象过点A(2,3),则此函数的图象还经过点()A.(﹣2,﹣3)B.(﹣2,3)C.(3,2)D.(﹣3,﹣2)4.(3分)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°5.(3分)不等式组:的最大整数解为()A.1B.﹣3C.0D.﹣16.(3分)如图,在Rt△ABC中,∠C=90°,以A为圆心,以任意长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,以大于MN的长为半径画弧,两弧相交于点P,作射线AP交BC于点D,若AC=4,BC=3,则CD的长为()A.B.C.D.7.(3分)若一次函数y=kx﹣3与y=﹣x+b图象的交点在第一象限,则一次函数y=kx+b 的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连接DF,则下列四个结论中,错误的是()A.△AEF∽△CAB B.CF=2AF C.DF=DC D.tan∠CAD=9.(3分)如图,点A、B、C在半径为2的圆O上,且∠BAC=60°,作OM⊥AB于点M,ON⊥AC于点N,连接MN,则MN的长为()A.1B.C.2D.210.(3分)已知a,b,c满足a+c=b,4a+c=﹣2b,抛物线y=ax2+bx+c(a>0)过点A(﹣,y1),B(,y2,)C(3,y3),则y1,y2,y3的大小关系为()A.y2<y1<y3 B.y3<y1<y2 C.y2<y3<y1D.y1<y2<y3二、填空题(每小题3分,共4小题,计12分)11.(3分)十九大报告指出:十八大以来,我国就业状况持续改善,城镇新增就业年均一千三百万人以上,一千三百万人用科学记数法表示为人.12.(3分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=.13.(3分)如图,在直角坐标系中,四边形OACB为菱形,OB在x轴的正半轴上,∠AOB=60°,过点A的反比例函数y=的图象与BC交于点F,则△AOF的面积为.14.(3分)如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为.三、解答题(共11小题,计78分)15.(5分)计算:﹣12018+﹣(π﹣3)0﹣|tan60°﹣2|.16.(5分)先化简,后求值:•﹣,其中a=3+.17.(5分)已知点P是△ABC边AC上的一点,请你在AC边上求作点Q,使得=(要求:尺规作图,保留作图痕迹,不写作法)18.中华民族,源远流长:中华诗词,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校学生参加的“中国诗词大会”海选比赛,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了部分学生的海选比赛成绩(满分100分,成绩m均为整数分),并按测试成绩(单位:分)分成四类:A类(85≤m≤100),B类(70≤m≤84),C类(60≤m≤69),D类(m≤59)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求本次抽取的学生人数,并补全条形统计图;(2)所抽取学生的海选比赛成绩的中位数落在类;(3)若该学校学生有1500名,请估计该学校本次海选比赛成绩为D类的学生人数,并请你给这些学生提出一条与学习诗词有关的合理化建议.19.(7分)如图,在▱ABCD的边DC上截取DE=AD,延长AD至F,使得AF=AB,连接EB,求证:EF=EB.20.(7分)周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳蓬的宽度,如图,由于无法直接测量,小凯便在楼前面的地面上选择了一条直线EF,通过在直线EF上选点观测,发现当他位于N点时,他的视线从M点通过露台D点正好落在遮阳蓬A点处:当他位于Q点时,视线从P点通过露台D点正好落在遮阳蓬B点处,这样观测到两个点A,B间的距离即为遮阳蓬的宽.已知AB∥CD∥EF,点C在AG上,AG、DE、PQ、MN均为垂直于EF,MN=PQ,露台的宽CD=GE,测得GE=5米,EN=13.2米,QN=6.2,请你根据以上信息,求出遮阳蓬的宽AB是多少米?(结果精确到0.01米)21.(7分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)求甲采摘园所需总费用小于乙采摘园所需总费用时草莓采摘量x的范围.22.(7分)某校为庆祝国庆节举办游园活动,小军来到摸球兑奖活动场地,李老师对小军说:“这里有甲、乙两个盒子,里面都装有一些乒乓球,你只能选择在其中一个盒子中摸球.”获奖规则如下:甲盒中有白色乒乓球4个,黄色乒乓球1个,一人只能摸一次且一次摸出一个球,若这个球为黄色球,则可获得玩具熊一个,否则不得奖;乙盒中有白色乒乓球2个,黄色乒乓球3个,一人只能摸一次且一次摸出两个球,若两个球均为黄色球,则可获得玩具熊一个,否则不得奖;请问小军在哪个盒子内摸球获得玩具熊的机会更大?请用概率知识说明理由.23.如图,点C在AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O 于点E.(1)求证:AC平分∠DAB;(2)连接BE,若BE=6,sin∠CAD=,求⊙O的半径.24.已知抛物线W:y=x2﹣4x+2的顶点为A,与x轴交于点B、C.(1)求∠ABC的正切值;(2)若点P是抛物线W上的一点,过P作直线PQ垂直x轴,将抛物线W关于直线PQ 对称,得到抛物线W′,设抛物线W′的顶点A′,问:是否存在这样的点P,使得△AP A′为直角三角形?若存在,求出对称所得的抛物线W′的表达式;若不存在,请说明理由.25.(12分)问题探究(1)如图①,在正方形ABCD内,请画出使∠BPC=90°的所有点P;(2)如图②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD内画出使∠BPC=60°的所有点P,并求出△APD面积的最小值;(3)随着社会发展,农业观光园走进了我们的生活.某农业观光园的平面示意图如图3所示的四边形ABCD,其中∠A=120°,∠B=∠C=90°,AB=km,BC=6km,观光园的设计者想在园中找一点P,使得点P与点A、B、C、D所连接的线段将整个观光园分成四个区域,用来进行不同的设计与规划,从实用和美观的角度他们还要求在△BPC 的区域内∠BPC=120°,且△APD的区域面积最小,试问在四边形ABCD内是否存在这样的点P,使得∠BPC=120°,且△APD面积最小?若存在,请你在图中画出点P点的位置,并求出△APD的最小面积.若不存在,说明理由.参考答案与试题解析一、选择题(每小题3分,共10小题,计30分)1.(3分)下列各数是无理数的是()A.﹣2013B.0C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、B、D中﹣2013、0、都是有理数,C、是无理数.故选:C.2.(3分)如图所示的几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.3.(3分)正比例函数y=kx的图象过点A(2,3),则此函数的图象还经过点()A.(﹣2,﹣3)B.(﹣2,3)C.(3,2)D.(﹣3,﹣2)【分析】先求出函数的解析式,再逐个判断即可.【解答】解:∵正比例函数y=kx的图象过点A(2,3),∴代入得:3=2k,解得:k=1.5,即y=1.5x,A、把(﹣2,﹣3)代入y=1.5x得:左边=﹣3,右边=﹣3,左边=右边,所以此函数的图象经过点(﹣2,﹣3),故本选项符合题意;B、把(﹣2,3)代入y=1.5x得:左边=3,右边=﹣3,左边≠右边,所以此函数的图象不经过点(﹣2,3),故本选项不符合题意;C、把(3,2)代入y=1.5x得:左边=2,右边=4.5,左边≠右边,所以此函数的图象不经过点(3,2),故本选项不符合题意;D、把(﹣3,﹣2)代入y=1.5x得:左边=﹣2,右边=﹣4.5,左边≠右边,所以此函数的图象不经过点(﹣3,﹣2),故本选项不符合题意;故选:A.4.(3分)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【分析】根据两直线平行,同旁内角互补,求得∠EF A=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:如图所示,∵AB∥CD,∠C=125°,∴∠C=∠EFB=125°,∴∠EF A=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EF A=180°﹣45°﹣55°=80°.故选:B.5.(3分)不等式组:的最大整数解为()A.1B.﹣3C.0D.﹣1【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在解集内找到最大整数即可.【解答】解:解不等式3x﹣1<x+1,得:x<1,解不等式2(2x﹣1)≤5x+1,得:x≥﹣3,则不等式组的解集为:﹣3≤x<1,则不等式组的最大整数解为0,故选:C.6.(3分)如图,在Rt△ABC中,∠C=90°,以A为圆心,以任意长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,以大于MN的长为半径画弧,两弧相交于点P,作射线AP交BC于点D,若AC=4,BC=3,则CD的长为()A.B.C.D.【分析】过点D作DE⊥AB于点E,由作法可知AP是∠BAC的平分线,故可得出CD =DE,设DC=DE=x,在Rt△DEB中,利用勾股定理构建方程即可解决问题.【解答】解:过点D作DE⊥AB于点E,∵∠C=90°,由作法可知AP是∠BAC的平分线,∴CD=DE,设CD=DE=x,在Rt△ABC中,∵AC=4,BC=3,∴AB==5,∵∠C=∠AED=90°,AD=AD,DC=DE,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE=4,∴EB=1,在Rt△DEB中,∵BD2=DE2+BE2,∴(3﹣x)2=x2+12,∴x=,故选:B.7.(3分)若一次函数y=kx﹣3与y=﹣x+b图象的交点在第一象限,则一次函数y=kx+b 的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由于若一次函数y=kx﹣3与y=﹣x+b图象的交点在第一象限,可求出k和b 的范围,根据解析式即可判断不经过的象限.【解答】解:∵一次函数y=kx﹣3与y=﹣x+b图象的交点在第一象限,∴k>0,b>0.∵一次函数y=kx+b,且k>0,b>0,∴y=kx+b经过第一,二,三象限,不经过第四象限.故选:D.8.(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连接DF,则下列四个结论中,错误的是()A.△AEF∽△CAB B.CF=2AF C.DF=DC D.tan∠CAD=【分析】如图,作DK∥BE交BC于K,交AC于H.根据两角对应相等两三角形相似,可以证明A正确,利用平行线等分线段定理,可以证明B正确,利用线段的垂直平分线的性质可以证明C正确.【解答】解:如图,作DK∥BE交BC于K,交AC于H.∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∴∠EAF=∠ACB,∵BE⊥AC,∴∠AFE=∠ABC=90°,∴△AEF∽△CAB,故A正确,∵BE∥DK,∵DE∥BK,∴四边形BEDK是平行四边形,∴DE=BK,∵AE=DE,AD=BC,∴BK=KC,∵KH∥BF,∴CH=FH,∵AE=DE,EF∥DH,∴AF=FH,∴CF=2AF,故B正确,∵FH=CH,DH⊥CF,∴DF=DC,故C正确,故选:D.9.(3分)如图,点A、B、C在半径为2的圆O上,且∠BAC=60°,作OM⊥AB于点M,ON⊥AC于点N,连接MN,则MN的长为()A.1B.C.2D.2【分析】连接OB.OC,BC,作OH⊥BC于H.求出BC,再利用三角形的中位线定理即可解决问题.【解答】解:连接OB.OC,BC,作OH⊥BC于H.∵∠BOC=2∠A=120°,OB=OC,OH⊥BC,∴BH=HC,∠BOH=∠COH=60°,∵OB=2,∴BH=OB•sin60°=,∴BC=2BH=2,∵OM⊥AB,ON⊥AC,∴AM=MB,AN=NC,∴MN=BC=.故选:B.10.(3分)已知a,b,c满足a+c=b,4a+c=﹣2b,抛物线y=ax2+bx+c(a>0)过点A(﹣,y1),B(,y2,)C(3,y3),则y1,y2,y3的大小关系为()A.y2<y1<y3 B.y3<y1<y2 C.y2<y3<y1D.y1<y2<y3【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:a+c=b,4a+c=﹣2b,∴a﹣b+c=0,4a+2b+c=0,即抛物线过点(﹣1,0)与(2,0),∴抛物线的对称轴为:x=,由于a>0,∴抛物线的开口向上,∴x>时,y随着x的增大而增大,∴(,y1)关于直线x=的对称点为(,y1),∵<3,∴y1<y2<y3,故选:D.二、填空题(每小题3分,共4小题,计12分)11.(3分)十九大报告指出:十八大以来,我国就业状况持续改善,城镇新增就业年均一千三百万人以上,一千三百万人用科学记数法表示为 1.3×107人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:一千三百万=1.3×107.故答案为:1.3×107.12.(3分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.13.(3分)如图,在直角坐标系中,四边形OACB为菱形,OB在x轴的正半轴上,∠AOB =60°,过点A的反比例函数y=的图象与BC交于点F,则△AOF的面积为4.【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示,设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,∠AOB=60°,sin∠AOB==,∴AM=a,OM=a,∴点A的坐标为(a,a),∵点A在反比例函数y=的图象上,∴4=a×a,∵四边形AOBC是菱形,∴OB=OA=a,∴△AOF的面积为S菱形AOBC=×BC×AM=a×a=4,故答案为:4.14.(3分)如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为.【分析】以AO为边作等腰直角△AOF,且∠AOF=90°,由题意可证△AOB≌△FOC,可得AB=CF=4,根据三角形的三边关系可求AF的最大值,即可得AO的最大值.【解答】解:如图:以AO为边作等腰直角△AOF,且∠AOF=90°∵四边形BCDE是正方形∴BO=CO,∠BOC=90°∵△AOF是等腰直角三角形∴AO=FO,AF=AO∵∠BOC=∠AOF=90°∴∠AOB=∠COF,且BO=CO,AO=FO∴△AOB≌△FOC(SAS)∴AB=CF=4若点A,点C,点F三点不共线时,AF<AC+CF;若点A,点C,点F三点共线时,AF=AC+CF∴AF≤AC+CF=3+4=7∴AF的最大值为7∵AF=AO∴AO的最大值为.故答案为:三、解答题(共11小题,计78分)15.(5分)计算:﹣12018+﹣(π﹣3)0﹣|tan60°﹣2|.【分析】直接利用特殊角的三角函数值以及指数幂的性质和绝对值的性质分别化简得出答案.【解答】解:原式===3.16.(5分)先化简,后求值:•﹣,其中a=3+.【分析】原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•+=+==,当a=3+时,原式=.17.(5分)已知点P是△ABC边AC上的一点,请你在AC边上求作点Q,使得=(要求:尺规作图,保留作图痕迹,不写作法)【分析】由=知PQ∥BC,据此以P A为边、点P为顶点,作一个角等于∠B,角的另外一边与AC的交点即为所求.【解答】解:如图所示,点Q即为所求.18.中华民族,源远流长:中华诗词,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校学生参加的“中国诗词大会”海选比赛,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了部分学生的海选比赛成绩(满分100分,成绩m均为整数分),并按测试成绩(单位:分)分成四类:A类(85≤m≤100),B类(70≤m≤84),C类(60≤m≤69),D类(m≤59)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求本次抽取的学生人数,并补全条形统计图;(2)所抽取学生的海选比赛成绩的中位数落在类;(3)若该学校学生有1500名,请估计该学校本次海选比赛成绩为D类的学生人数,并请你给这些学生提出一条与学习诗词有关的合理化建议.【分析】(1)根据频数÷百分比=数据总数得出总人数,再计算C的人数;(2)根据中位数的概念解答即可;(3)用总人数乘以D类的学生人数所占的百分比解答即可.【解答】解:(1)本次抽取的学生人数为:=50,如图所示:C类的学生人数=50﹣22﹣10﹣3=15;(2)中位数为第50÷2=25个的成绩,故所抽取学生的海选比赛成绩的中位数落在B类;(3)=90,根据统计图提供的信息发现:中国诗词大会的成绩并不理想,建议多背诵诗词.19.(7分)如图,在▱ABCD的边DC上截取DE=AD,延长AD至F,使得AF=AB,连接EB,求证:EF=EB.【分析】先根据平行四边形的性质得到AD=BC,AB=CD,AD∥BC,再证明DE=BC,DF=CE,∠FDE=∠C,然后根据”SAS“判断△DEF≌△CBE,从而得到结论.【解答】证明:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,AD∥BC,∵DE=AD,∴DE=BC,∵AF=AB,∴AF=CD,即AD+DF=DE+CE,∴DF=CE,∵AF∥BC,∴∠FDE=∠C,在△DEF和△CBE中,∴△DEF≌△CBE(SAS),∴EF=BE.20.(7分)周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳蓬的宽度,如图,由于无法直接测量,小凯便在楼前面的地面上选择了一条直线EF,通过在直线EF上选点观测,发现当他位于N点时,他的视线从M点通过露台D点正好落在遮阳蓬A点处:当他位于Q点时,视线从P点通过露台D点正好落在遮阳蓬B点处,这样观测到两个点A,B间的距离即为遮阳蓬的宽.已知AB∥CD∥EF,点C在AG上,AG、DE、PQ、MN均为垂直于EF,MN=PQ,露台的宽CD=GE,测得GE=5米,EN=13.2米,QN=6.2,请你根据以上信息,求出遮阳蓬的宽AB是多少米?(结果精确到0.01米)【分析】直接利用相似三角形的判定方法得出Rt△ACD∽Rt△DHM,△ABD∽△MPD,进而得出AB的值,求出答案即可.【解答】解:延长MP交DE于H,如图,则HM=EN=13.2米,CD=GE=5米,MP=NQ=6.2米,∵CD∥HM,∴∠ADC=∠DMH,∴Rt△ACD∽Rt△DHM,∴==,∵AB∥MP,∴△ABD∽△MPD,∴==,即=,解得AB=2.35(米).答:遮阳篷的宽AB是2.35米.21.(7分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;(2)求y1、y2与x的函数表达式;(3)求甲采摘园所需总费用小于乙采摘园所需总费用时草莓采摘量x的范围.【分析】(1)根据单价=总价÷数量,即可解决问题.(2)y1函数表达式=50+单价×数量,y2与x的函数表达式是分段函数,结合图象利用待定系数法即可解决.(3)画出函数图象后y1在y2下面即可解决问题.【解答】解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克,故答案为:30;(2)由题意y1=30×0.6x+50=18x+50,由图可得,当0≤x≤10时,y2=30x;当x>10时,设y2=kx+b,将(10,300)和(20,450)代入y2=kx+b,解得,解得y2=15x+150,所以;(3)函数y1的图象如图所示,由,解得:,所以点E坐标(10,300),由图象可知甲采摘园所需总费用较少时,x<10.22.(7分)某校为庆祝国庆节举办游园活动,小军来到摸球兑奖活动场地,李老师对小军说:“这里有甲、乙两个盒子,里面都装有一些乒乓球,你只能选择在其中一个盒子中摸球.”获奖规则如下:甲盒中有白色乒乓球4个,黄色乒乓球1个,一人只能摸一次且一次摸出一个球,若这个球为黄色球,则可获得玩具熊一个,否则不得奖;乙盒中有白色乒乓球2个,黄色乒乓球3个,一人只能摸一次且一次摸出两个球,若两个球均为黄色球,则可获得玩具熊一个,否则不得奖;请问小军在哪个盒子内摸球获得玩具熊的机会更大?请用概率知识说明理由.【分析】小军在甲盒子内摸球获得玩具熊的概率可直接利用概率公式计算,小军在乙盒子内摸球获得玩具熊的概率利用画树状图的办法列出所有等可能结果,再利用概率公式计算,继而比较大小即可得.【解答】解:根据题意知,小军在甲盒子内摸球获得玩具熊的概率为,画树状图如下:由树状图知,小军从乙盒子中摸出两个球共有20种等可能结果,其中两个球为黄色球的有6种结果,所以小军在乙盒子内摸球获得玩具熊的概率为=,由P甲=<P乙=,所以乙盒几率更大23.如图,点C在AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O 于点E.(1)求证:AC平分∠DAB;(2)连接BE,若BE=6,sin∠CAD=,求⊙O的半径.【分析】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案;(2)连接BE、BC、OC,BE交AC于F交OC于H,根据sin∠CAD==,设CD=3a,AC=5a,则AD=4a,tan∠CAD==,cos∠CAD=,根据tan∠CAB==,求出BC,再根据勾股定理求出AB,根据tan∠FBC==,求得CF=,进而求得AF,然后根据cos∠CAD==,求得AE=,利用勾股定理得出关于a 的方程,解方程求得a,由此即可解决问题.【解答】(1)证明:如图1,连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:如图2,连接BE、BC、OC,BE交AC于F,交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵sin∠CAD==,设CD=3a,AC=5a,则AD=4a,∴tan∠CAD==,cos∠CAD=,由(1)知,∠CAD=∠CAB,∴tan∠CAB==,∴BC=,∴AB2=AC2+BC2=25a2+=,∵∠FBC=∠DAC,∴tan∠FBC==,∴CF=,∴AF=AC﹣CF=5a﹣=,∵cos∠CAD==,∴AE=,∵AB2=AE2+BE2,∴=+36,解得a=1,∴AB2=,∴AB=,∴⊙O的半径为.24.已知抛物线W:y=x2﹣4x+2的顶点为A,与x轴交于点B、C.(1)求∠ABC的正切值;(2)若点P是抛物线W上的一点,过P作直线PQ垂直x轴,将抛物线W关于直线PQ 对称,得到抛物线W′,设抛物线W′的顶点A′,问:是否存在这样的点P,使得△AP A′为直角三角形?若存在,求出对称所得的抛物线W′的表达式;若不存在,请说明理由.【分析】(1)将二次函数的表达式由一般式变形为顶点式,由此可得出点A的坐标,利用一次函数图象上点的坐标特征可求出点B,C的坐标,过点A作AD⊥x轴于点D,由点A,B的坐标可得出AD,BD的长度,再结合正切的定义即可求出∠ABC的正切值;(2)连接AA′,延长QP交AA′于点E,由对称的性质可得出AP=A′P,进而可得出△AP A′为等腰直角三角形,利用等腰直角三角形的性质可得出AE=PE,设点P的坐标为(x,x2﹣4x+2),则AE=|x﹣2|,PE=(x﹣2)2,设AE=a,则a=a2,解之即可得出a的值,取其正值结合点A的坐标可得出点A′的坐标,再由抛物线W′的顶点坐标可得出对称所得的抛物线W′的表达式.【解答】解:(1)∵y=x2﹣4x+2=(x﹣2)2﹣2,∴点A的坐标为(2,﹣2).当y=0时,x2﹣4x+2=0,解得:x1=2﹣,x2=2+,∴点B的坐标为(2﹣,0),点C的坐标为(2+,0).过点A作AD⊥x轴于点D,如图1所示.∵点A(2,﹣2),点B(2﹣,0),∴AD=2,BD=,∴tan∠ABC==.(2)连接AA′,延长QP交AA′于点E,如图2所示.由对称,可知:AP=A′P,∴△AP A′为等腰直角三角形,∴AE=PE.设点P的坐标为(x,x2﹣4x+2),则AE=|x﹣2|,PE=(x﹣2)2.设AE=a,则a=a2,解得:a1=1,a2=0(舍去),∴AA′=2a=2.又∵点A的坐标为(2,﹣2),∴点A′的坐标为(4,﹣2)或(0,﹣2),∴对称所得的抛物线W′的表达式为y=(x﹣4)2﹣2或y=x2﹣2.25.(12分)问题探究(1)如图①,在正方形ABCD内,请画出使∠BPC=90°的所有点P;(2)如图②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD内画出使∠BPC=60°的所有点P,并求出△APD面积的最小值;(3)随着社会发展,农业观光园走进了我们的生活.某农业观光园的平面示意图如图3所示的四边形ABCD,其中∠A=120°,∠B=∠C=90°,AB=km,BC=6km,观光园的设计者想在园中找一点P,使得点P与点A、B、C、D所连接的线段将整个观光园分成四个区域,用来进行不同的设计与规划,从实用和美观的角度他们还要求在△BPC 的区域内∠BPC=120°,且△APD的区域面积最小,试问在四边形ABCD内是否存在这样的点P,使得∠BPC=120°,且△APD面积最小?若存在,请你在图中画出点P点的位置,并求出△APD的最小面积.若不存在,说明理由.【分析】(1)如图1中,以BC为直径作⊙O,点P的轨迹是(不包括B,C).(2)如图2中,以BC为边向上作等边三角形△BCP,作△BCP的外接圆,交AB于E,交CD于F,点P轨迹是(不包括E,F),当点P是的中点时,△ADP的面积最小.(3)如图3中,以BC为边向下作等边三角形△BCE,作△BCE的外接圆,点P轨迹是(不包括B,C),作OJ⊥BC于J,交AD于K,作AT⊥OK于T.延长OP交AD于H,当OH⊥AD时,PH的值最小,此时△P AD的面积最小.【解答】解:(1)如图1中,以BC为直径作⊙O,点P的轨迹是(不包括B,C).(2)如图2中,以BC为边向上作等边三角形△BCP,作△BCP的外接圆,交AB于E,交CD于F,点P轨迹是(不包括E,F),当点P是的中点时,△ADP的面积最小.此时S△APD=×10×(9﹣5)=45﹣25.(3)如图3中,以BC为边向下作等边三角形△BCE,作△BCE的外接圆,点P轨迹是(不包括B,C),作OJ⊥BC于J,交AD于K,作AT⊥OK于T.延长OP交AD于H,当OH⊥AD时,PH的值最小,此时△P AD的面积最小.由题意BJ=JC=3,OJ=,∵四边形ABJT是矩形,∴∠BAT=90°,AT=BJ=3,AB=TJ=,∵∠DAB=120°,∴∠KAT=30°,∴KT=,AK=2,∴OK=OJ+JT+TK=3,∵∠OKH=60°,∴OH=OK•sin60°=,∴PH=OH﹣OP=﹣2,∵AB∥JK∥CD,BJ=CJ,∴AK=KD=2,∴AD=4,∴△P AD的面积的最小值=×(﹣2)=9﹣12.。

最新2020年陕西省西安市中考数学模拟试卷(4月份)含解析

最新2020年陕西省西安市中考数学模拟试卷(4月份)含解析

绝密★启用前2020年陕西省西安市中考数学模拟试卷(4月份)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的))1.(3分)计算:(﹣3)×(﹣)=()A.﹣1B.1C.﹣9D.92.(3分)如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是()A.B.C.D.3.(3分)计算(﹣2x2y)3的结果是()A.﹣8x6y3B.6x6y3C.﹣8x5y3D.﹣6x5y34.(3分)如图,AB∥CD,若∠1=40°,∠2=65°,则∠CAD=()A.50°B.65°C.75°D.85°5.(3分)设点A(﹣3,a),B(b,)在同一个正比例函数的图象上,则ab的值为()A.﹣B.﹣C.﹣6D.6.(3分)如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF 交于点E,则的值为()A.B.C.D.7.(3分)已知两个一次函数y=3x+b1和y=﹣3x+b2,若b1<b2<0,则它们图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在三边互不相等的△ABC中,D、E、F分别是AB、AC、BC边的中点,连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有()A.3对B.4对C.5对D.6对9.(3分)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若点P是⊙O上异于点A、B的任意一点,则∠APB=()A.30°或60°B.60°或150°C.30°或150°D.60°或120°10.(3分)将抛物线M:y=﹣x2+2向左平移2个单位,再向上平移1个单位,得到抛物线M′,若抛物线M′与x轴交于A、B两点,M′的顶点记为C,则∠ACB=()A.45°B.60°C.90°D.120°二、填空题(共4小题,每小题3分,计12分)11.(3分)不等式﹣2x+1>﹣5的最大整数解是.12.(3分)如图,五边形ABCDE的对角线共有条.13.(3分)如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=.14.(3分)如图,在正方形ABCD中,AB=4,E是BC边的中点,F是CD边上的一点,且DF=1,若M、N分别是线段AD、AE上的动点,则MN+MF的最小值为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:(﹣3)2+|2﹣|﹣.16.(5分)化简:(﹣)÷.17.(5分)如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.(5分)2016年4月23日是我国第一个“全民阅读日”.某校开展了“建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?19.(7分)如图,在菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连接BE、CF.求证:BE=CF.20.(7分)某市为了创建绿色生态城市,在城东建了“东州湖”景区,小明和小亮想测量“东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算“东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,≈1.414.)21.(7分)上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?22.(7分)孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:“如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答,小芳认为6的可能性最大,小超认为7的可能性最大,你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)23.(8分)如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.24.(10分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的))1.(3分)计算:(﹣3)×(﹣)=()A.﹣1B.1C.﹣9D.9【解答】解:(﹣3)×(﹣)=1;故选:B.2.(3分)如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是()A.B.C.D.【解答】解:从左边看上下都是正方形,故选:D.3.(3分)计算(﹣2x2y)3的结果是()A.﹣8x6y3B.6x6y3C.﹣8x5y3D.﹣6x5y3【解答】解:(﹣2x2y)3=﹣8x6y3.故选:A.4.(3分)如图,AB∥CD,若∠1=40°,∠2=65°,则∠CAD=()A.50°B.65°C.75°D.85°【解答】解:∵AB∥CD,∠2=65°,∴∠BAC=180°﹣65°=115°,又∵∠1=∠BAD=40°,∴∠CAD=115°﹣40°=75°,故选:C.5.(3分)设点A(﹣3,a),B(b,)在同一个正比例函数的图象上,则ab的值为()A.﹣B.﹣C.﹣6D.【解答】解:设解析式为:y=kx,将点(﹣3,a)代入可得:﹣3k=a,把点(b,)代入可得,bk=,解得ab=﹣故选:B.6.(3分)如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF 交于点E,则的值为()A.B.C.D.【解答】解:∵∠BAC=90°,AB=20,AC=15,∴BC==25,∵AB•AC=BC•AD,∴AD==12,则CD==9,∵CF平分∠ACB,∴∠ACF=∠DCE,又∵∠CAF=∠CDE=90°,∴△CAF∽△CDE,∴===,故选:A.7.(3分)已知两个一次函数y=3x+b1和y=﹣3x+b2,若b1<b2<0,则它们图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由可得,∵b1<b2<0,∴x>0,y<0时,交点的横坐标为正,纵坐标为负,即交点在第四象限;故选:D.8.(3分)如图,在三边互不相等的△ABC中,D、E、F分别是AB、AC、BC边的中点,连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有()A.3对B.4对C.5对D.6对【解答】解:∵D、E分别是AB、AC边的中点,∴DE∥BC,DE=BC,∴∠EDC=∠FCD,∵F是BC边的中点,∴CF=BC,∴DE=CF,在△DNE和△CNF中,∴△DNE≌△CNF(AAS),同理△AED≌△CEM,∵E、F分别是AC、BC边的中点,∴EF∥AB,又CM∥AB,∴CM∥EF,∵DE∥BC,CM∥EF,∴四边形EFCM是平行四边形,∴△EFC≌△CME,△BCD≌△MDC,∴△EFC≌△ADE,∴图中全等三角形共有5对故选:C.9.(3分)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若点P是⊙O上异于点A、B的任意一点,则∠APB=()A.30°或60°B.60°或150°C.30°或150°D.60°或120°【解答】解:连接OA,∵弦AB垂直平分半径OC,∴2OD=OA,∵∠ODA=90°,∴∠OAD=30°,∴∠AOC=60°,∴所对的圆心角=120°,∴所对的圆周角=60°或120°,故选:D.10.(3分)将抛物线M:y=﹣x2+2向左平移2个单位,再向上平移1个单位,得到抛物线M′,若抛物线M′与x轴交于A、B两点,M′的顶点记为C,则∠ACB=()A.45°B.60°C.90°D.120°【解答】解:由题意抛物线M′的解析式为y=﹣(x+2)2+3,顶点C(﹣2,3),令y=0,则﹣(x+2)2+3=0,解得x=1或﹣5,不妨设A(﹣5,0),B(1,0),则AC=3,BC=3,AB=6,∴AC2+BC2=18+18=36=62,∵AB2=62,∴AC2+BC2=AB2,∴∠ACB=90°,故选:C.二、填空题(共4小题,每小题3分,计12分)11.(3分)不等式﹣2x+1>﹣5的最大整数解是2.【解答】解:移项,得:﹣2x>﹣5﹣1,合并同类项,得:﹣2x>﹣6,系数化为1,得:x<3,则不等式的最大整数解为2,故答案为:2.12.(3分)如图,五边形ABCDE的对角线共有5条.【解答】解:五边形ABCDE的对角线共有=5(条).故答案为:5.13.(3分)如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=﹣12.【解答】解:∵AB∥x轴,∴设A(x,),B(,)∴AB=﹣x,∵△AOB的面积为6,∴(﹣x)•=6,∴k1﹣k2=﹣12,故答案为:﹣12.14.(3分)如图,在正方形ABCD中,AB=4,E是BC边的中点,F是CD边上的一点,且DF=1,若M、N分别是线段AD、AE上的动点,则MN+MF的最小值为.【解答】解:作点F关于AD的对称点G,过G作GN⊥AE与N,交AD于M,则GN的长度等于MN+MF的最小值,∵△DGM≌△DGF,∴∠DMF=∠GMD,∵∠GMD=∠AMN,∵∠AMN+∠MAN=∠MAN+∠BAE=90°,∴∠FMD=∠BAE=∠AMN,∴△ABE∽△DMF∽△AMN,∴,∵AB=4,∴BE=2,∵DF=1,∴DM=2,∴AM=2,∵=,∴MN=,∵GM==,∴GN=GM+MN=MN+MF=.∴MN+MF的最小值为,故答案为:.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:(﹣3)2+|2﹣|﹣.【解答】解:原式=9+﹣2﹣2=7﹣.16.(5分)化简:(﹣)÷.【解答】解:原式=[﹣]×=﹣=17.(5分)如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)【解答】解:如图,点E即为所求作的点.18.(5分)2016年4月23日是我国第一个“全民阅读日”.某校开展了“建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?【解答】解:(1)全班捐赠图书的总数为24÷8%=300(本),则捐赠工具类书有300×20%=60(本),文学类百分比为×100%=40%,科普类百分比为×100%=32%,完成统计图如下:(2)八年级5班平均每人捐赠了=6本书;(3)∵800×6=4800,∴估算这个年级学生共可捐赠4800本书.19.(7分)如图,在菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连接BE、CF.求证:BE=CF.【解答】证明:∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠A=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴BE=CF.20.(7分)某市为了创建绿色生态城市,在城东建了“东州湖”景区,小明和小亮想测量“东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算“东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,≈1.414.)【解答】解:∵∠BCD=45°,CD⊥AB,∴△BCD是等腰直角三角形,∴CD=BD.∵BC=350米,∴CD=BD=350×=175≈175×1.414=247.45米,∴AD=CD•tan73°≈247.45×3.2709≈809.38米,∴AB=AD+BD=809.38+247.45≈1057(米).答:“东州湖”东西两端之间AB的长为1057米.21.(7分)上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?【解答】解:(1)设直线AB所对应的函数关系式为y=kx+b,把(0,320)和(2,120)代入y=kx+b得:,解得:,∴直线AB所对应的函数关系式为:y=﹣100x+320;(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:,解得:,∴直线CD所对应的函数关系式为y=﹣80x+320,当y=0时,x=4,∴小颖一家当天12点到达姥姥家.22.(7分)孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:“如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答,小芳认为6的可能性最大,小超认为7的可能性最大,你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)【解答】解:列表如下:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等可能的结果数,其中点数之和等于6占5种,点数之和等于7的占6种,∴点数之和为6的概率为,点数之和为7的概率为=,故小超的回答正确.23.(8分)如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.【解答】证明:(1)∵BD为⊙O的切线,∴∠C=∠ABD,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠C+∠BAD=90°,(2)连接OB,过O作OE⊥AB于E,∴AE=BE=AB=4,由勾股定理得:OE===3,∵BD为⊙O的切线,∴OB⊥BD,∴∠OBD=90°,∵∠ADB=90°,∴AD∥OB,∴∠DAB=∠ABO,∵∠D=∠OEB=90°,∴△OEB∽△BDA,∴,∴,∴AD=;则线段AD的长为.24.(10分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB为等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(﹣1,2);(2)∵抛物线过O点,∴可设抛物线解析式为y=ax2+bx,把A、B两点坐标代入可得,解得,∴经过A、B、O原点的抛物线解析式为y=x2﹣x;(3)∵四边形ABOP,∴可知点P在线段OA的下方,过P作PE∥y轴交AO于点E,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=,∴直线AO解析式为y=x,设P点坐标为(t,t2﹣t),则E(t,t),∴PE=t﹣(t2﹣t)=﹣t2+t=﹣(t﹣1)2+,∴S△AOP=PE×2=PE═﹣(t﹣1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO•BO=,∴S四边形ABOP=S△AOB+S△AOP=﹣(t﹣1)2++=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,﹣),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,﹣).25.(12分)问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是12.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.【解答】解:(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=×6×4=12.故答案为12.(2)如图②中,∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O为圆心,OA长为半径画⊙O,∵∠ADC=60°,∴点D在优弧ADC上运动,当点D是优弧ADC的中点时,四边形ABCD面积取得最大值,设D′是优弧ADC上任意一点,连接AD′,CD′,延长CD′到F,使得D′F=D′A,连接AF,则∠AFC=30°=∠ADC,∴点F在D为圆心DA为半径的圆上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此时四边形ADCB的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).。

【2020年】陕西省中考数学模拟试题(解析版)

【2020年】陕西省中考数学模拟试题(解析版)

2020年陕西省中考数学模拟试卷含答案一、选择题:(本大题共10题,每题3分,满分30分)1. -的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2. 如图,是一个几何体的表面展开图,则该几何体是A. 正方体B. 长方体C. 三棱柱D. 四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。

【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4. 如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A. -B.C. -2D. 2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k. 【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.5. 下列计算正确的是A. a2·a2=2a4B. (-a2)3=-a6C. 3a2-6a2=3a2D. (a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4 ,故A选项错误;B. (-a2)3=-a6 ,正确;C. 3a2-6a2=-3a2 ,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.6. 如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A. B. 2 C. D. 3【答案】C【分析】由已知可知△ADC是等腰直角三角形,根据斜边AC=8可得AD=4,在Rt△ABD中,由∠B=60°,【解析】可得BD==,再由BE平分∠ABC,可得∠EBD=30°,从而可求得DE长,再根据AE=AD-DE即可【详解】∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD===,∵BE平分∠ABC,∴∠EBD=30°,∴DE=BD•tan30°==,∴AE=AD-DE=,故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.7. 若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A. (-2,0)B. (2,0)C. (-6,0)D. (6,0)【答案】B【解析】【分析】根据l1与l2关于x轴对称,可知l2必经过(0,-4),l1必经过点(3,-2),然后根据待定系数法分别求出l1、l2的解析式后,再联立解方程组即可得.【详解】由题意可知l1经过点(3,-2),(0,4),设l1的解析式为y=kx+b,则有,解得,所以l1的解析式为y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l1的解析式为y=mx+n,则有,解得,所以l2的解析式为y=2x-4,联立,解得:,所以交点坐标为(2,0),故选B.【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8. 如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A. AB=EFB. AB=2EFC. AB=EFD. AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA=AC,OB=BD,AC⊥BD,由中位线定理可得EH=BD,EF=AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB=EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH=BD,EF=AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB==EF,故选D.【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题的关键.9. 如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为A. 15°B. 35°C. 25°D. 45°【答案】A【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.10. 对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1,∴2a-1>0,∴<0,,∴抛物线的顶点在第三象限,故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键.二、填空题:(本大题共4题,每题3分,满分12分)11. 比较大小:3_________ (填<,>或=).【答案】<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12. 如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________【答案】72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13. 若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.14. 点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H分别是BC 边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是______________ 【答案】2S1=3S2【解析】【分析】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,根据点O是平行四边形ABCD的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM,再根据S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,则可得到答案.【详解】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,∵点O是平行四边形ABCD的对称中心,∴S平行四边形ABCD=AB•2ON, S平行四边形ABCD=BC•2OM,∴AB•ON=BC•OM,∵S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,∴S1=AB•ON,S2=BC•OM,∴2S1=3S2,故答案为:2S1=3S2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.三、解答题(共11小题,计78分.解答应写出过程)15. 计算:(-)×(-)+|-1|+(5-2π)0【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.【详解】(-)×(-)+|-1|+(5-2π)0=3+-1+1=4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.16. 化简:【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得.【详解】===.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17. 如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18. 如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG =DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在∆ABH和∆DCG中,,∴∆ABH≌∆DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19. 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=,n= ;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1)30;19%;(2)B;(3)80.1分.【解析】【分析】(1)根据B组的频数以及频率可求得样本容量,然后用样本容量乘以D组的百分比可求得m的值,用A的频数除以样本容量即可求得n的值;(2)根据中位数的定义进行解答即可得解;(3)根据平均数的定义进行求解即可得.【详解】(1)72÷36%=200,m=200×15%=30,n==19%,故答案为:30,19%;(2)一共有200个数据,从小到大排序后中位数是第100个、第101个数据的平均数,观察可知中位数落在B组,故答案为:B;(3)本次全部测试的平均成绩==80.1分.【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键.20. 周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【答案】河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21. 经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)40 38售价(元/袋)60 54根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【答案】(1)前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据等量关系:①销售红枣和小米共3000kg,②获得利润4.2万元,列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润,可得y与x间的函数关系式,根据一次函数的性质即可得答案.【详解】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意得:,解得:,答:前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)根据题意得:y=(60-40)x+(54-38)×=12x+16000,∵k=12>0,∴y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,弄清题意,找出各个量之间的关系是解题的关键.22. 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【答案】(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:第一次第1 -2 3二次1 (1,1) (1,-2) (1,3)-2 (-2,1) (-2,-2) (-2,3)3 (3,1) (3,-2) (3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)如图,连接ON,根据直角三角形斜边中线等于斜边的一半可得AD=CD=DB,从而可得∠DCB=∠DBC,再由∠DCB=∠ONC,可推导得出ON∥AB,再结合NE是⊙O的切线,ON//AB,继而可得到结论;(2)如图,由(1)可知ON∥AB,继而可得N为BC中点,根据圆周角定理可知∠CMD=90°,继而可得MD∥CB,再由D是AB的中点,根据得到MD=NB.【详解】(1)如图,连接ON,∵CD是Rt△ABC斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC,又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB,∵NE是⊙O的切线,ON是⊙O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB;(2)如图所示,由(1)可知ON∥AB,∵OC=OD,∴∴CN=NB=CB,又∵CD是⊙O的直径,∴∠CMD=90°,∵∠ACB=90°,∴∠CMD+∠ACB=180°,∴MD//BC,又∵D是AB的中点,∴MD=CB,∴MD=NB.【点睛】本题考查了切线的性质、三角形中位线、圆周角定理等,正确添加辅助线、熟练应用相关知识是解题的关键.24. 已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求出△ABC的面积;(2)将抛物线向左或向右平移,得到抛物线L´,且L´与x轴相交于A´、B´两点(点A´在点B´的左侧),并与y轴交于点C´,要使△A´B´C´和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.【答案】(1)A(-3,0),B(2,0),C(0,6);15;(2)y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【解析】【分析】(1)在抛物线解析式中分别令x=0、y=0即可求得抛物线与坐标轴的交点坐标,然后根据三角形面积公式即可求得三角形的面积;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC 的面积相等,高也只能是6,分点C´在x轴上方与x轴下方两种情况分别讨论即可得.【详解】(1)当y=0时,x2+x-6=0,解得x1=-3,x2=2,当x=0时,y=-6,∴A(-3,0),B(2,0),C(0,6),∴S△ABC=AB·OC=×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6,设A(a,0),则B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a,当C´点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C´点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与原抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【点睛】本题考查了抛物线与坐标轴的交点、抛物线的平移等知识,熟知抛物线沿x轴左右平移时,抛物线与x轴两个交点间的距离不变是解(2)小题的关键.25. 问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P 的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图① 图② 图③【答案】(1)5;(2)18;(3)(3-9)km.【解析】【分析】(1)如图(1),设外接圆的圆心为O,连接OA, OB,根据已知条件可得△AOB是等边三角形,由此即可得半径;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MN即为MP的最大值,根据垂径定理求得OM的长即可求得MN的最大值;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP",则P´P"即为最短距离,其长度取决于PA的长度,根据题意正确画出图形,得到点P的位置,根据等边三角形、勾股定理等进行求解即可得PE+EF+FP的最小值.【详解】(1)如图(1),设外接圆的圆心为O,连接OA, OB,∵O是等腰三角形ABC的外心,AB=AC,∴∠BAO=∠OAC=∠BAC==60°,∵OA=OB,∴△AOB是等边三角形,∴OB=AB=5,故答案为:5;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MP≤OM+OP=OM+ON=MN,ON=13,OM==5,MN=18,∴PM的最大值为18;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度,如图(4),作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点,∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3,BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3,∴∠ABO=90°,AO=3,PA=3-3,∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°,∵P´P"=2P´Acos∠AP´E=P´A=3-9,所以PE+EF+FP的最小值为3-9km.【点睛】本题考查了圆的综合题,涉及到垂径定理、最短路径问题等,正确添加辅助线、灵活应用相关知识是解题的关键.。

2020届中考复习陕西省西安市中考数学模拟试题(有配套答案)

2020届中考复习陕西省西安市中考数学模拟试题(有配套答案)

陕西省西安市中考数学模拟试卷(解析版)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.的相反数是()A.﹣B.C.﹣D.1.414【分析】根据相反数的意义,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.下列几何体中,左视图与主视图相同的是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,从正面看得到的图形是主视图,可得答案.【解答】解:的主视图与左视图都是下边是梯形上边是矩形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,从正面看得到的图形是主视图.3.下列计算正确的是()A.(﹣3a2b)3=﹣3a5b3B. ab2•(﹣4a3b)=﹣2a4b3C.4m3n2÷m3n2=0 D.a5﹣a2=a3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣3a2b)3=﹣27a6b3,故选项A错误,∵,故选项B正确,∵4m3n2÷m3n2=4,故选项C错误,∵a5﹣a2不能合并,故选项D错误,故选B.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.如图,直线a、b被c所截,若a∥b,∠1=45°,∠3=100°,则∠2的度数为()A.70°B.65°C.60°D.55°【分析】先根据平行线的性质,得到∠4=∠1=45°,再根据∠3=∠2+∠4,即可得到∠2的度数.【解答】解:∵a∥b,∠1=45°,∴∠4=∠1=45°,∵∠3=∠2+∠4,∴100°=∠2+45°,∴∠2=55°,故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.5.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3 D.m=﹣3【分析】先根据正比例函数的定义列出关于m的不等式组,求出m的值即可.【解答】解:∵y=(1﹣m)x是正比例函数,且y随x的增大而减小,∴,∴m=,故选B.【点评】本题考查的是正比例函数的定义和性质,即形如y=kx(k≠0)的函数叫正比例函数.6.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.7.如图,1﹣4月份,甲、乙两工厂月生产增长量的变化情况,则甲工厂和乙工厂生产增长量差值最大的月份是()A.1月份B.2月份C.3月份D.4月份【分析】折线最陡的一段线,就是增长量差值最大的月份.【解答】解:甲工厂和乙工厂生产增长量差值最大的月份是2月份,故选B.【点评】本题考查了折线统计图,根据图中的折线的变化和数据进行求解.8.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b 的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.9.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG 于点H,则GH的长为()A.8﹣4B.﹣4 C.3﹣4 D.6﹣3【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【解答】解:如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选A.【点评】本题考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,熟练掌握直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值,属于基础题.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x 轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共4小题,每小题3分,计12分)11.﹣13+﹣12sin30°= ﹣5 .【分析】根据乘方的意义,开平方、特殊角三角函数值,可得答案.【解答】解:原式=﹣1+2﹣12×=﹣1+2﹣6=﹣5,故答案为:﹣5.【点评】本题考查了实数的运算,利用乘方的意义,开平方、特殊角三角函数值,注意﹣13的底数是1.12.(1)正三角形的边长为4,则它的面积为2(2)31+2sin18°≈31.62 (保留两位小数)【分析】(1)求出等边三角形一边上的高,即可确定出三角形面积;【解答】解:如图,过A作AD⊥BC,∵AB=AB=BC=4,∴BD=CD=BC=2,在Rt△ABD中,根据勾股定理得:AD==2,则S△ABC=BC•AD=2;(2)31+2sin18°≈31+2×0.3090=31.62.故答案为:2,31.62.【点评】此题考查了等边三角形的性质,计算器﹣三角函数,熟练掌握等边三角形的性质是解本题的关键.13.如图所示,直线y=kx(k<0)与双曲线y=﹣交于M(x1,y1),N(x2,y2)两点,则x1y2﹣3x2y1的值为﹣.【分析】由反比例函数图象的特征,得到两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点M(x1,y1),N(x2,y2)关于原点对称,即﹣x1=x2,﹣y1=y2,把M(x1,y1)代入双曲线y=﹣,得x1y1=﹣2,则x1y2﹣3x2y1=﹣x1y1+3x1y1=﹣6=﹣.故答案为:﹣.【点评】本题考查了正比例函数与反比例函数交点坐标的性质,解决问题的关键是利用两交点坐标关于原点对称.14.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为.【分析】设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理可求得BC的长,由MN=PD+CP可得到MN≥CD,故此当MN=CD时,MN有最小值,此时点C、P、D在一条直线上,最后利用面积法可求得CD的长,从而得到MN的最小值.【解答】解:如图,设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;∵AB=13,AC=12,∴BC==5.∵PC+PD=MN,∴PC+PD≥CD,MN≥CD.∴当MN=CD时,MN有最小值.∵PD⊥AB,∴CD⊥AB.∵AB•CD=BC•AC,∴CD===.∴CD的最小值.∴MN的最小值为.故答案为:.【点评】此题主要考查了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解,得出CD=BC•AC÷AB是解题关键.三、解答题.(共11小题,满分78分,解答题后写出过程)15.(5分)1﹣1﹣2sin30°+|3.14﹣π|+(﹣1)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣1+π﹣3.14+1=π﹣2.14.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(5分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x2+x=x2﹣1,即2x2﹣x﹣4=0,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用转化的思想,解分式方程注意要检验.17.(5分)如图,已知锐角三角形ABC,求作⊙C,使⊙C与AB所在的直线相切于点D(保留作图痕迹,不写作法).【分析】根据切线的性质,过C先作AB的垂线,垂足为D,以C为圆心,由CD作半径的圆即和AB相切.【解答】解:作法:①过C作CE⊥AB于D,②以C为圆心,以CD为半径画圆,则⊙C就是所求作的圆.【点评】本题考查了切线的性质和复杂作图问题,明确过直线外一点作已知直线的垂线,并熟练掌握圆的切线的性质.18.(5分)某校为了了解七年级学生课外活动情况,随机调查了该校若干名学生,调查他们喜欢各类课外活动的情况(课外活动分为四类:A﹣﹣喜欢打乒乓球的人,B﹣﹣喜欢踢足球的人,C﹣﹣喜欢打篮球的人,D﹣﹣喜欢其他的人),并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息完成下列问题:(1)调查的学生人数为120 人.(2)补全条形统计图和扇形统计图.(3)若该校七年级共有600人,请估计七年级学生中喜欢打乒乓球的人数.【分析】(1)利用A人数除以所占百分比即可得到调查学生数;(2)首先计算出喜欢踢足球的人数,然后计算出喜欢踢足球的人所占百分比,再计算出喜欢其他的人所占百分比,然后补图即可;(3)利用总人数乘以样本中喜欢打乒乓球的人数所占百分比即可.【解答】解:(1)30÷25%=120,故答案为:120;(2)喜欢踢足球的人数:120﹣30﹣60﹣6=24,所占百分比:×100%=20%,喜欢其他的人所占百分比:×100%=5%,如图所示;(3)600×=150(人),答:七年级学生中喜欢打乒乓球的人数为150人.【点评】此题主要考查了条形统计图,以及利用样本估计总体,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.20.(7分)已知某山区的平均气温与该山的海拔高度的关系见下表:海拔高度(单位:米)0 100 200 300 400 …平均气温(单位:℃)22 21.5 21 20.5 20 …(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?【分析】(1)分析数据可知:高度每增加100米,温度下降0.5℃.据此列关系式;(2)取y=18,20,分别求出高度x的值,再回答问题.【解答】解:(1)y=22﹣0.5×=22﹣0.005x;(2)当y=18时,即 22﹣0.005x=18,解得 x=800;当y=20时,即 22﹣0.005x=20,解得 x=400.∴若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,那么该植物适宜种植在海拔为400~800米的山区.【点评】此题考查一次函数的应用,正确表示函数关系式是关键.难度不大.21.(7分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G 处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【分析】根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=, =,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.22.(7分)“五一”小长假期间,某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性购物满500元以上均可获得两次摸球的机会(摸出小球后放回).超市根据两小球所标金额的和返还相应的代金券.(1)顾客甲购物1000元,则他最少可获0 元代金券,最多可获60 元代金券.(2)请用树形图或列表方法,求出顾客甲获得不低于30元(含30元)代金券的概率.【分析】(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元;(2)列举出所有情况,看该顾客所获得购物券的金额不低于30元的情况数占总情况数的多少即可.【解答】解:(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元,故答案为0、60;(2)画树状图如下:共16种情况,不低于30元的情况数有10种,所以所求的概率为=.【点评】本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.23.(8分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.【分析】(1)证明OC⊥AC即可.根据∠DOC是等腰直角三角形可得∠DCO=45°.又∠ACD=45°,所以∠ACO=90°,得证;(2)如果∠ACB=75°,则∠BCD=30°;又∠B=∠O=45°,解斜三角形BCD求解.所以作DE⊥BC,把问题转化到解直角三角形求解.先求CD,再求DE,最后求BD得解.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2.∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC于点E,则∠DEC=90°,∴DE=DCsin30°=.∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD是等边三角形∴BD=OD=2.【点评】此题考查了切线的判定方法和解直角三角形,内容单一,难度不大.注意:解斜三角形通常通过作垂线把问题转化为解直角三角形求解.24.(10分)已知抛物线y=3ax2+2bx+c,(Ⅰ)若a=b=1,c=﹣1,求该抛物线与x轴公共点的坐标;(Ⅱ)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【分析】(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可;(Ⅱ)把a,b代入解析式可得△=4﹣12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围;(Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论.【解答】解:(Ⅰ)当a=b=1,c=﹣1时,抛物线为y=3x2+2x﹣1,方程3x2+2x﹣1=0的两个根为x1=﹣1,.∴该抛物线与x轴公共点的坐标是(﹣1,0)和(,0);(Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c≥0,有c≤.①当时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);(4分)②当时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c.由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为,应有即,解得﹣5<c≤﹣1.综上,或﹣5<c≤﹣1.(6分)(Ⅲ)对于二次函数y=3ax2+2bx+c,由已知x1=0时,y1=c>0;x2=1时,y2=3a+2b+c>0,又∵a+b+c=0,∴3a+2b+c=(a+b+c)+2a+b=2a+b.∴2a+b>0.∵b=﹣a﹣c,∴2a﹣a﹣c>0,即a﹣c>0.∴a>c>0.(7分)∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2﹣12ac=4(a+c)2﹣12ac=4[(a﹣c)2+ac]>0,∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分)又该抛物线的对称轴,由a+b+c=0,c>0,2a+b>0,得﹣2a<b<﹣a,∴.又由已知x1=0时,y1>0;x2=1时,y2>0,观察图象,可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)【点评】借助图象,可将抽象的问题直观化;二次函数与x轴的交点的纵坐标为0;抛物线与x轴交点的个数就是一元二次方程根的个数.25.(12分)问题探究(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点E为BC边的中点,求作一点P,使PE+PC最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.【分析】(1)利用正方形的对称性直接连接AC即可;(2)作出点C关于BD的对称性,连接C'E交BD于P,进而判断出△CEC'是直角三角形,利用勾股定理即可求出;(3)直接连接AE交BD于P,再过点E作EF⊥AC,构造出直角三角形,再利用三角形的中位线求出EF,进而利用勾股定理求出CF,最后在Rt△AEF中利用勾股定理即可.【解答】解:(1)如图①,连接AC交BD于P,则AP+CP最小=AC;(2)如图②,作点C关于BD的对称点C'交BD于F,连接C'E交BD于P,则PE+PC最小=C'E.∵BD是矩形ABCD的对角线,∴CD=AB=2,∠BCD=90°,在Rt△BCD中,CD=2,BC=2,∴tan∠CBD===,∴∠CBD=30°,由对称知,CC'=2CF,CC'⊥BD,∴∠CFD=90°,∴∠BCF=60°,∠DCF=30°,在Rt△CDF中,CD=2,∠DCF=30°,∴CF=,∴CC'=2CF=2,∵点E为BC边的中点,∴CE=BC=,∴CF=CE,连接EF,∴△CEF是等边三角形,∴EF=CF=C'F,∴△CEC'是直角三角形,在Rt△CEC'中,CC'=2,CE=,∴C'E=3,∴PE+PC最小为3;(3)如图③,菱形ABCD的对角线相交于点O,∴OC=OA=AC=600,AC⊥BD,在Rt△BOC中,OB==800,过点E作EF⊥AC于F,∴EF∥OB,∵点E是BC的中点,EF=OB=400,∵CE=BC=500,根据勾股定理得,CF==300,∴AF=AC﹣CF=1200﹣300=900,连接AE交BD于P,即:PC+PE最小=AE,在Rt△AEF中,根据勾股定理得,AE==100,【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,菱形的性质,对称的性质,三角形的中位线,勾股定理;解(2)的关键是判断出△CEC'是直角三角形,解(3)的关键是构造出直角三角形AEF.。

陕西省2020年中考数学模拟试卷(三)及解析

陕西省2020年中考数学模拟试卷(三)及解析

2020年陕西省中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)9的倒数是()A.9B.C.﹣9D.2.(3分)如图所示,该几何体的俯视图是()A.B.C.D.3.(3分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2D.6y2÷2y=3y4.(3分)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为()A.75°B.65°C.45°D.30°5.(3分)已知:点A(a,b),B(a+1,b﹣2)均在正比例函数y=kx(k≠0)的图象上,则k值为()A.﹣1B.﹣2C.﹣3D.﹣46.(3分)如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为()A.2B.2﹣1C.D.+17.(3分)直线y=﹣x+1与y=2x+a的交点在第一象限,则a的取值不可能是()A.B.﹣C.﹣D.﹣8.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3B.C.D.49.(3分)如图,在半径为6的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E,则tan∠OEA的值是()A.B.C.D.10.(3分)在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣7二、填空题(共4小题,每小题3分,计12分)11.(3分)在﹣2,,,,这5个数中,无理数有个.12.(3分)在正六边形中,其较短对角线与较长对角线的比值为.13.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(8,4),反比例函数y=(k >0)的图象分别交边BC、AB于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是.14.(3分)如图,在正方形ABCD中,AB=4,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD 的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG的最小值为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:(π﹣2020)0+|1﹣|+2﹣1﹣2sin60°.16.(5分)化简:(x)17.(5分)赵凯想利用一块三角形纸片ABC裁剪一个菱形ADEF,要求一个顶点为A,顶点D在三角形的AC边上,点E在三角形的BC边上,点F在三角形的AB边上,请你利用尺规作图把这个菱形作出来.(不写作法,保留作图痕迹)18.(5分)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.19.(7分)为了给顾客提供更好的服务,某商场随机对部分顾客进行了关于“商场服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值为;(2)请补全条形统计图;(3)根据统计,该商场平均每天接待顾客约3600名,若将“非常满意”和“满意”作为顾客对商场服务工作的肯定,请你估计该商场服务工作平均每天得到多少名顾客的肯定.20.(7分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为多少米(精确到0.1米).21.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.22.(7分)小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大汤圆,一个花生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求小明吃第一个汤圆恰好是芝麻馅的概率;(2)请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.23.(8分)如图,已知⊙O经过平行四边形ABCD的顶点A,B及对角线的交点M,交AD于点E且圆心〇在AD 边上,∠BCD=45°.(1)求证:BC为⊙O的切线;(2)连接ME,若ME=﹣1,求⊙O的半径.24.(10分)综合与探究:如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,求点H坐标;(3)若抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,求点P坐标;(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.25.(12分)问题提出(1)如图1,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.问题探究(2)如图2,在△ABC中,内角∠ABC的平分线BE和外角∠ACF的平分线CE,相交于点E,连接AE,若∠BEC=40°,请求出∠EAC的度数.问题解决(3)如图3,某地在市政工程施工中需要对一直角区域(∠AOB=90°)内部进行围挡,直角区域∠AOB内部有一棵大树(点P),工作人员经过测量得到点P到OA的距离PC为10米,点P到OB的距离PD为20米,为了保护大树及节约材料,设计要求围挡牌要经过大树位置(点P)并且所用材料最少,即围挡区域△EOF周长最小,请你根据以上信息求出符合设计的△EOF周长的最小值,并说明理由.参考答案与试题解析1.B.2.C.3.D.4.A.5.B.6.B.7.D.8.C.9.D.10.D.11.3.12.:2.13.12.14.2﹣2.15.解:原式=1+﹣1+﹣2×=.16.解:原式=•=•=x(x﹣1)=x2﹣x.17.解:如图所示:先作∠BAC的平分线交BC边于点E,再作线段AE的垂直平分线交AC于点D,交AB于点F 连接DE、EF,易证△EAD≌△EAF(SAS),则F A=DA而由线段的垂直平分线的性质可得DA=DE、F A=FE∴F A=DA=DE=FE∴四边形ADEF为菱形则菱形ADEF即为所求作的菱形.18.证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD19.解:(1)本次调查的总人数为:12÷10%=120,m=54÷120×100%=45%,故答案为:120,45%;(2)比较满意的人数为:120×40%=48,补全的条形统计图如右图所示;(3)3600×(10%+45%)=3600×55%=1980(名),答:该商场服务工作平均每天得到1980名顾客的肯定.20.解:∵∠CED=∠AEB,CD⊥DB,AB⊥BD,∴△CED∽△AEB,∴=,∵CD=1.6米,DE=2.4米,BE=8.4米,∴=,∴AB==5.6米.故答案为:5.6米.21.解:(1)设甲、乙两种商品每件的进价分别是x元、y元,,解得,,即甲、乙两种商品每件的进价分别是30元、70元;(2)设购买甲种商品a件,获利为w元,w=(40﹣30)a+(90﹣70)(100﹣a)=﹣10a+2000,∵a≥4(100﹣a),解得,a≥80,∴当a=80时,w取得最大值,此时w=1200,即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元.22.解:(1)小明吃第一个汤圆,可能的结果有4种,其中是芝麻馅的结果有2种,∴小明吃第一个汤圆恰好是芝麻馅的概率==;(2)分别用A,B,C表示花生馅,水果馅,芝麻馅的大汤圆,画树状图得:∵共有12种等可能的结果,小明吃前两个汤圆恰好是芝麻馅的有2种情况,∴小明吃前两个汤圆恰好是芝麻馅的概率为=.23.(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°,连接EM,过M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,设OM=OE=r,∴FM=r,OF=r,∴EF=r﹣r,∵EF2+FM2=EM2,∴(r﹣r)2+(r)2=(﹣1)2,解得:r=(负值舍去),∴⊙O的半径为.24.解:(1)∵抛物线与y轴交于点C,∴点C坐标为(0,﹣4),把A(﹣3,0)、B(4,0)坐标代入y=ax2+bx﹣4得解得∴抛物线解析式为:.(2)抛物线的对称轴为:x=,由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,点H为AC直线与对称轴的交点,由A(﹣3,0)、C(0,﹣4)易得直线AC解析式为:,当x=时,y=,故点H的坐标为:(,﹣).(3)∵抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,∴点P(m,n)只能位于第一象限,C(0,﹣4)∴n=4∴由4=﹣4解得x=或x=(舍)故点P坐标为(,4).(4)若以A、B、M、N为顶点的四边形是矩形,则点M和点N的位置有两种如图所示点M和点M’点N和点N’易得OA=3,OC=4,AC=5,点M是∠BAC平分线上的一点,作QF⊥AC,则OQ=QF,∴OQ=QF=1.5,∴在直角三角形AOQ和直角三角形ABM中,,∴,∴BM=3.5,∴点N(﹣3,﹣3.5)同理在直角三角形AEN’和直角三角形ABN’中,可解得点N’(﹣,).故点N的坐标为(﹣3,﹣3.5)或(﹣,).25.解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故答案为:4;(2)解:∵∠ABC与∠ACD的角平分线相交于点E,∴∠CBE=∠ABC,∠ECD=∠ACD,由三角形的外角性质得,∠ACD=∠ABC+∠BAC,∠ECD=∠BEC+∠CBE,∴∠ACD=∠BEC+∠ABC,∴(∠ABC+∠BAC)=∠BEC+∠ABC,整理得,∠BAC=2∠BEC,∵∠BEC=40°,∴∠BAC=2×40°=80°,过点E作EH⊥BA交延长线于H,作EG⊥AC于G,作EF⊥BC于F,∵BE平分∠ABC,∴EF=EH,∵CE平分∠ACD,∴EG=EF,∴EH=EG,∴AE是∠CAF的平分线,∴∠CAE=(180°﹣∠BAC)=(180°﹣80°)=50°;(3)如图,设∠AOB、∠AEF、∠BFE的角平分线交于点Q,作QN⊥OB于N,QM⊥OA于M,QH⊥EF于H.连接QP.则QN=QH=QM=y,FH=FN,EH=EM,∴△OEF的周长:OE+OF+EF=OF+FN+OE+EM=ON+OM=QN+QM=2QN=2y,∵PDOC是矩形,且PD=20,PC=10,∴ND=y﹣10,CM=y﹣20,∴QP2=(y﹣10)2+(y﹣20)2∵PQ≥QH,∴(y﹣10)2+(y﹣20)2≥y2∴y2﹣60y+500≥0,∴(y﹣30)2≥400,∴y≥50或y≤10(舍),∴2y≥100,当且仅当P、H重合时取等号.即△OEF的周长的最小值为100.。

2020年陕西省中考数学模拟试卷(三)-解析版

2020年陕西省中考数学模拟试卷(三)-解析版

2020年陕西省中考数学模拟试卷(三)一、选择题(本大题共10小题,共30.0分)1.计算:(−2020)0=()A. 1B. 0C. 2020D. −20202.如图,该几何体的俯视图是()A.B.C.D.3.已知直线a//b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A. 80°B. 70°C. 85°D. 75°4.若正比例函数为y=3x,则此正比例函数过(m,6),则m的值为()A. −2B. 2C. −3√2D. 3√25.下列计算中,结果是a7的是()A. a3−a4B. a3⋅a4C. a3+a4D. a3÷a46.若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A. AM>ANB. AM≥ANC. AM<AND. AM≤AN7.一次函数y=43x+b(b>0)与y=43x−1图象之间的距离等于3,则b的值为()A. 2B. 3C. 4D. 68.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A. 5B. 4C. 3.5D. 39.如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()A. 30°B. 45°C. 60°D. 90°10.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (−3,−6)B. (−3,0)C. (−3,−5)D. (−3,−1)二、填空题(本大题共4小题,共12.0分)11.分解因式:(m+1)(m−9)+8m=______.12.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为______.(x>0)的图象上,13.如图所示,点C在反比例函数y=kx过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为____.14.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是______.三、计算题(本大题共2小题,共17.0分)15.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)16.如图,已知抛物线y=x2−4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.四、解答题(本大题共9小题,共61.0分)17.计算:√3×√15−|2−√5|−(12)−2.18.计算:x−2x−1⋅x2−1x2−4x+4−1x−219.已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.20.在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A−国学诵读”、“B−演讲”、“C−课本剧”、“D−书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是______.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?21.如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)求证:∠ABE=∠ACD;(2)求证:过点A、F的直线垂直平分线段BC.22.在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.23.如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.25.问题提出(1)如图①,在△ABC中,AB=4,∠A=135°,点B关于AC所在直线的对称点为B′,则BB′的长度为______.问题探究(2)如图②,半圆O的直径AB=10,C是AB⏜的中点,点D在BC⏜上,且CD⏜=2BD⏜,P是AB上的动点,试求PC+PD的最小值.问题解决(3)如图③,扇形花坛AOB的半径为20m,∠AOB=45°.根据工程需要.现想在AB⏜上选点P,在边OA上选点E,在边OB上选点F,用装饰灯带在花坛内的地面上围成一个△PEF,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带PE+EF+FP的长度最短,并且用长度最短的灯带围成的△PEF为等腰三角形.试求PE+EF+FP的值最小时的等腰△PEF的面积.(安装损耗忽略不计)答案和解析1.【答案】A【解析】解:(−2020)0=1,故选:A.根据零指数幂的运算法则计算即可.此题考查了零指数幂,正确掌握零指数幂的运算法则是解题的关键.2.【答案】A【解析】解:从几何体的上面看可得,故选:A.找到从几何体的上面所看到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.【答案】A【解析】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a//b,∴∠5=∠4=100°,∴∠2=180°−∠5=80°,故选:A.想办法求出∠5即可解决问题;本题考查平行线的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.【答案】B【解析】解:∵点(m,6)在正比例函数为y=3x的图象上,∴3m=6,解得m=2.故选B.直接把点(m,6)代入正比例函数为y=3x,求出m的值即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.【答案】B【解析】【分析】根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.【解答】解:A、a3与a4不能合并;B、a3⋅a4=a7,C、a3与a4不能合并;D、a3÷a4=1a;故选:B.6.【答案】D【解析】【分析】此题考查垂线段问题,关键是根据垂线段最短解答.根据垂线段最短解答即可.【解答】解:因为线段AM,AN分别是△ABC的BC边上的高线和中线,所以AM≤AN,故选:D.7.【答案】C【解析】【分析】设直线y=43x−1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=43x+b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.本题考查了一次函数的性质以及含绝对值符合的一元一次方程,解题的关键是找出线段AB=|b−(−1)|=5.本题属于基础题,难度不大,解决该题型题目时,巧妙的借用角的余弦值求出线段AB的长度,再根据线段的长度得出关于b的含绝对值符号的方程是关键.【解答】解:设直线y=43x−1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=43x+b于点D,如图所示.∵直线y =43x −1与x 轴交点为C ,与y 轴交点为A ,∴点A(0,−1),点C(34,0),∴OA =1,OC =34,AC =√OA 2+OC 2=54,∴cos∠ACO =OC AC =35.∵∠BAD 与∠CAO 互余,∠ACO 与∠CAO 互余,∴∠BAD =∠ACO .∵AD =3,cos∠BAD =AD AB =35,∴AB =5.∵直线y =43x +b 与y 轴的交点为B(0,b),∴AB =|b −(−1)|=5,解得:b =4或b =−6.∵b >0,∴b =4,故选:C .8.【答案】B【解析】解:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°,∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =12AC =4;故选:B .由矩形的性质得出AC =BD ,OA =OC ,∠BAD =90°,由直角三角形的性质得出AC =BD =2AB =8,得出OC =12AC =4即可.此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.9.【答案】B【解析】解:连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∠BOC=45°.∴∠BEC=12故选:B.首先连接OB,OC,由⊙O是正方形ABCD的外接圆,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BEC的度数.此题考查了圆周角定理与圆的内接多边形的知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.10.【答案】B【解析】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x−2)=x2−2x=(x−1)2−1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x−1+2)2−1−3=(x+1)2−4.当x=−3时,y=(x+1)2−4=0,∴得到的新抛物线过点(−3,0).故选:B.根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.11.【答案】(m+3)(m−3)【解析】【分析】本题考查了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般多项式是解题的关键.先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m−9)+8m,=m2−9m+m−9+8m,=m2−9,=(m+3)(m−3).故答案为(m+3)(m−3).12.【答案】八【解析】【分析】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.根据多边形的内角和定理,多边形的内角和等于(n−2)⋅180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n−2)⋅180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为八.13.【答案】4【解析】解:设点A的坐标为(−a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,ka),∴点B的坐标为(0,k2a),∴12⋅a⋅k2a=1,解得,k=4,故答案为:4.根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.【答案】√5【解析】【分析】此题考查了线路最短的问题,确定动点E在何位置时,使EC+ED的值最小是关键.首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′=√BC′2+BD2=√22+12=√5.故答案为:√5.15.【答案】解:如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF=AFtan36∘52′≈x+290.75=43x+1163,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴x+56=43x+1163,解得:x=52,答:该铁塔的高AE为52米.【解析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD 中表示出BD,根据CF=BD可建立方程,解出即可.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.16.【答案】解:(1)由x2−4=0得,x1=−2,x2=2,∵点A位于点B的左侧,∴A(−2,0),∵直线y=x+m经过点A,∴−2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD=√OA2+OD2=2√2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+b2)2+2−b24,则点C′的坐标为(−b2,2−b24),∵CC′平行于直线AD,且经过C(0,−4),∴直线CC′的解析式为:y=x−4,∴2−b24=−b2−4,解得,b1=−4,b2=6,∴新抛物线对应的函数表达式为:y=x2−4x+2或y=x2+6x+2.【解析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.17.【答案】解:原式=√3×15+2−√5−4=3√5+2−√5−4=2√5−2.【解析】利用二次根式的乘法法则、绝对值的意义和负整数指数幂的意义计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:原式=x−2x−1⋅(x+1)(x−1)(x−2)2−1x−2=x+1x−2−1x−2=xx−2.【解析】先将分子、分母因式分解,再约分,最后计算分式的减法即可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.19.【答案】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:【解析】本题考查作图−复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.根据角平分线的性质、线段的垂直平分线的性质即可解决问题.20.【答案】(1)∵被调查的总人数为12÷20%=60(人),∴B项目人数为60×15%=9,则D项目人数为60−(27+9+12)=12(人),补全条形图如下:(2)A−国学诵读;(3)估算全校学生希望参加活动A有800×2760=360(人).【解析】解:(1)见答案;(2)由条形图知,A项目的人数最多,由27人,所以所抽取的学生参加其中一项活动的众数是A−国学诵读,故答案为:A−国学诵读;(3)见答案.【分析】(1)由C项目人数及其所占百分比可得总人数,总人数乘以B的百分比求得B项目的人数,继而根据各项目的人数之和等于总人数求得D的人数即可补全图形;(2)根据众数的定义求解可得;(3)总人数乘以样本中A项目人数占被调查人数的比例即可得.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【答案】证明:(1)∠ABE=∠ACD;在△ABE和△ACD中,{AB=AC ∠A=∠A AE=AD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【解析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.22.【答案】解:(1)甲的速度为:100÷4=250米/分钟,令250x=150(x+3060),解得,x=0.75,答:当x为0.75分钟时,两人第一次相遇;(2)当x=5时,乙行驶的路程为:150×(5+3060)=825<1000,∴甲乙第二次相遇的时间为:5+1000−825150+250=5716(分钟),则当两人第二次相遇时,甲行驶的总路程为:1000+(5716−5)×250=1109.375(米),答:当两人第二次相遇时,甲行驶的总路程是1109.375米.【解析】(1)根据函数图象中的数据可以计算出当x为何值时,两人第一次相遇;(2)根据函数图象中的数据可以计算出当两人第二次相遇时,甲行驶的总路程.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.【答案】解:(1)∵共有4种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=14;∴最后落回到圈A的概率P2=416=14,∴她与嘉嘉落回到圈A的可能性一样.【解析】(1)由共有4种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是4的倍数.24.【答案】证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.【解析】(1)连接OC,如图,利用圆周角定理得到∠2+∠3=90°,再证明∠1=∠3得到∠1+∠2=90°,即∠OCM=90°,然后根据切线的判定定理可得到结论;(2)利用EG⊥AB得到∠B+∠BFH=90°,利用对顶角相等得到∠4+∠B=90°,而根据切线的性质得到∠5+∠3=90°,从而得到∠4=∠5,然后根据等腰三角形的判定定理可得结论.本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.25.【答案】4√2【解析】解:(1)如图①中,∴B,B′关于直线AC对称,∴∠CAB =∠CAB′=135°,AB =AB′=4, ∴∠BAB′=360°−135°−135°=90°, ∴BB′=√AB 2+AB′2=√42+42=4√2, 故答案为4√2.(2)如图②中,作点C 关于AB 的对称点C′,连接DC′交AB 于P ,连接PC ,此时PC +PD 的值最小,过点D 作DM ⊥OC 于M .∵AB 是直径,AC⏜=BC ⏜, ∴OC ⊥AB , ∴∠COB =90°, ∵CD⏜=2BD ⏜, ∴∠COD =60°, ∵OC =OD ,∴△OCD 是等边三角形, ∵DM ⊥OC , ∴∠DMO =90°,∵OD =5,∠DOM =60°,∴OM =OD ⋅cos60°=52,DM =OD ⋅sin60°=5√32,∴C′M =152,∴DC′=√DM 2+MC′2=√(5√32)2+(152)2=5√3,∴PC +PD 的最小值=PD +PC′=DC′=5√3.(3)如图③中,连接OP ,作点P 关于OA 的对称点M ,点P 关于OB 的对称点N ,连接MN 交OA 于E ,交OB 于F ,连接PE ,PF ,OM ,ON ,此时△PEF 的周长最小,∵∠AOP=∠AOM,∠BOP=∠BON,∠AOB=45°,∴∠MON=90°,∴OM=ON=20m,∴MN=20√2(m),∵OP=OM=ON,∴∠OMP=∠OPM,∠ONP=∠OPN,∴2∠OPM+2∠OPN=360°−90°,∴∠OPM+∠OPN=135°,∴∠MPN=135°,∴∠PMN+∠PNM=45°,∵EP=EM,FP=FN,∴∠EMP=∠EPM,∠FNP=∠FPN,∴∠PEF=2∠EMP,∠PFE=2∠FNP,∴∠EPF+∠PFE=2(∠EMP+∠FNP)=90°,∴∠EPN=90°,∵△PEF是等腰三角形,∴PE=PF,设PE=PF=x,则有x+√2x+x=20√2,解得x=(20√2−20)(m),∴S△PEF=12⋅PE⋅PF=12(20√2−20)2=(600−400√2)(m2).(1)证明△ABB′是等腰直角三角形,利用勾股定理求解即可.(2)如图②中,作点C关于AB的对称点C′,连接DC′交AB于P,连接PC,此时PC+PD 的值最小,过点D作DM⊥OC于M.利用勾股定理求出DC′即可解决问题.(3)如图③中,连接OP,作点P关于OA的对称点M,点P关于OB的对称点N,连接MN交OA于E,交OB于F,连接PE,PF,OM,ON,此时△PEF的周长最小,再证明∠EPF=90°,利用等腰直角三角形的性质解决问题即可.本题属于圆综合题,考查了轴对称最短问题,等腰直角三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用轴对称解决最短问题,属于中考压轴题.。

2020年陕西省西安市雁塔区益新中学中考数学二模试卷(含答案解析)

2020年陕西省西安市雁塔区益新中学中考数学二模试卷(含答案解析)

2020年陕西省西安市雁塔区益新中学中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.算式−80的值是()A. −18B. 1 C. −1 D. 182.下列四个几何体中,俯视图为正方形的是()A. 球B. 圆柱C. 圆锥D. 正方形3.如图,AB//ED,∠ECF=70°,则∠BAF的度数为()A. 130°B. 110°C. 70°D. 20°4.若一个正比例函数的图象经过A(m,4),B(−13,n)两点,则mn的值为()A. −34B. −43C. −12D. 435.下列计算正确的是()A. (−2a3b)3=−6a9b3B. (2x−y)2=4x2−y2C. 3x2+x2=4x4 D. (−2x3y)÷x2=−2xy6.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A. 2B. 4C. 6D. 87.将一次函数y=−2x−2的图象先向左平移3个单位,再向下平移2个单位,得到的函数图象的表达式为()A. y=−2x+7B. y=−2x−7C. y=−2x−10D. y=−2x+108.矩形ABCD中,已知AB=5,AD=12,则AC长为()A. 9B. 13C. 17D. 209. 如图,点A 、B 、C 在⊙O 上,AC//OB ,∠BAO =25°,则∠BOC 的度数为( )A. 25°B. 50°C. 60°D. 80°10. 二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( )A. a >0B. c <0C. 当−1<x <3时,y >0D. 当x ≥1时,y 随x 的增大而增大二、填空题(本大题共4小题,共12.0分)11. 已知实数−12,0.16,√3,π,√25,√43,其中为无理数的是______.12. 边心距为√3的正六边形的面积为______ .13. 如图,在平面直角坐标系xOy 中,有一宽度为1的长方形纸带,平行于y 轴,在x 轴的正半轴上移动,交x 轴的正半轴于点A 、D ,两边分别交函数y 1=1x (x >0)与y 2=3x (x >0)的图像于B 、F 和E 、C ,若四边形ABCD 是矩形,则A 点的坐标为____________.14. 如图,正方形ABCD 的边长为4,E 为BC 上的点,BE =1,F 为AB的中点,P 为AC 上一个动点,则PF +PE 的最小值为_____ .三、计算题(本大题共1小题,共5.0分)15.先化简,再求值:x2−1x2−x ÷(2+x2+1x),其中x=√2−1.四、解答题(本大题共10小题,共73.0分)16.计算:√27−(−2019)0+(13)−1−|√3−2|17.(1)在△ABC中,∠BAC=60°,BC=4√3,则△ABC面积的最大值是______;(2)已知:△ABC,用无刻度的直尺和圆规求作△DBC,使∠BDC+∠A=180°,且BD=DC(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注,作出一个符合题意的三角形即可).18.如图,在△ABC中,AD平分∠BAC,过点D分别作DE//AC、DF//AB,分别交AB、AC于点E、F.求证:四边形AEDF是菱形.19.随着社会的发展,中学生上学带手机的现象越来越受到社会的关注,为此某校随机抽取了部分同学对其所持手机的态度进行了问卷调查(将对所持手机的态度分为四种类型:A非常赞同、B 赞同、C无所谓、D不赞同,所随机抽取的学生必须在四种类型中选择一种),现将调查结果制成了如图所示的两幅不完整统计图.请结合两幅统计图,解答下列问题:(1)请补全条形统计图和扇形统计图;(2)抽取的同学中,对所持手机的态度的众数是__________;(3)若该校有3000名学生,请你估计该校学生对持“赞同”和“非常赞同”两种态度的人数之和.20.如图,小明在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20米,镜子与小明的距离ED=2米时,小明刚好从镜子中看到铁塔顶端A.已知小华的眼睛距地面的高度CD=1.6米,求铁塔AB的高度.(根据光的反射原理,∠1=∠2)21.经测算,某地气温t(℃)与距离地面的高度ℎ(km)有如下对应关系:请根据上表,完成下面的问题.(1)猜想:距离地面的高度每上升1km,气温就下降________℃;表中a=________.(2)气温t与高度h之间的函数关系式是________.(3)求该地距离地面1.8km处的气温.22.A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?23.如图,在Rt△ABC中,∠ACB=90°,BO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线;(2)设BO交⊙O于点E,延长BO交⊙O于点D,连接CE,CD.若CD=2CE,求BE的值;BC(3)在(2)的条件下,若⊙O的半径为3,求BC的长.24.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.25.已知:四边形ABCD是矩形,E是AB边上一点.(1)如图1,若AB=AD,F是BC延长线上一点,且DE=DF,求证:DF⊥DE;(2)在(1)的条件下,连接AC,EF交于点M,求证:M是EF的中点.(3)若E是AB的中点,DE的垂直平分线HF与射线DC、BC分别交于H、F点,垂足为G,且BF=4CF,求AE.AD【答案与解析】1.答案:C解析:本题考查此题主要考查了零指数幂的性质,正确把握定义是解题关键,属于基础题.直接利用零指数幂的性质得出答案.解:−80=−1故选C.2.答案:D解析:解:A、其俯视图为圆,故此选项错误;B、其俯视图为圆,故此选项错误;C、其俯视图为圆,且有圆心,故此选项错误;D、其俯视图为正方形,故此选项正确;故选:D.分别利用几何体得出其俯视图的形状进而得出答案.此题主要考查了简单几何体的三视图,正确掌握俯视图的定义是解题关键.3.答案:B解析:由AB平行于ED,根据两直线平行内错角相等得到∠BAC=∠ECF,由∠ECF的度数求出∠BAC的度数,再利用邻补角定义即可求出∠BAF的度数.此题考查了平行线的性质,平行线的性质为:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补,熟练掌握平行线的性质是解本题的关键.解:∵AB//ED,∴∠BAC=∠ECF,又∠ECF=70°,∴∠BAC=70°,则∠BAF=180°−∠BAC=180°−70°=110°.故选:B.4.答案:B解析:此题主要考查了正比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点,必能满足解析式.设正比例函数关系式为y=kx(k≠0),再把A(m,4),B(−13,n)代入可得4=mk,n=−13k,然后利用换元法换掉k,可得mn的值.解:设正比例函数关系式为y=kx(k≠0),∵正比例函数的图象经过A(m,4),B(−13,n)两点,∴4=mk,n=−13k,∴m=4k,∴mn=−43,故选B.5.答案:D解析:解:A.(−2a3b)3=−8a9b3,此选项错误;B.(2x−y)2=4x2−4xy+y2,此选项错误;C.3x2+x2=4x2,此选项错误;D.(−2x3y)÷x2=−2xy,此选项正确;故选:D.分别根据单项式的乘方、完全平方公式和合并同类项法则及单项式的除法计算可得.本题主要考查整式的混合运算,解题的关键是掌握整式的混合运算顺序和运算法则.6.答案:C解析:本题主要考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度.解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.7.答案:C解析:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.直接根据“上加下减,左加右减”的原则进行解答.解:把函数y=−2x−2的图象向左平移3个单位长度,再向下平移2个单位长度,可得到的图象的函数解析式是:y=−2(x+3)−2−2=−2x−10.故选:C.8.答案:B解析:解:如图,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴BD=√AB2+AD2=√52+122=13,∴AC=BD=13,故选:B.由勾股定理可求出BD长,由矩形的性质可得AC=BD=13.本题考查了矩形的性质,勾股定理,求DB的长是本题的关键.9.答案:B解析:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC//OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.10.答案:C解析:解:A、∵抛物线开口向下,∴a<0,结论A错误;B、∵抛物线与y轴交于正半轴,∴c>0,结论B错误;C、∵抛物线与x轴的一个交点为(−1,0),对称轴为直线x=1,∴抛物线与x轴的另一交点为(3,0),∴当−1<x<3时,y>0,结论C正确;D、∵抛物线开口向下,且对称轴为直线x=1,∴当x≥1时,y随x的增大而减小,结论D错误.故选:C.A、由抛物线开口向下,可得出:a<0,结论A错误;B、由抛物线与y轴交于正半轴,可得出:c>0,结论B错误;C、由抛物线与x轴的一个交点坐标及对称轴,可找出抛物线与x轴的另一交点坐标,进而即可得出:当−1<x<3时,y>0,结论C正确;D、由抛物线的开口方向及对称轴,可得出:当x≥1时,y随x的增大而减小,结论D错误.此题得解.本题考查了抛物线与x的交点以及二次函数的性质,观察函数图象,逐一分析四个选项的正误是解题的关键.311.答案:√3,π,√4、0.16是有理数;解析:解:√25=5,−123.无理数有√3、π、√43.故答案为:√3、π、√4无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…相邻两个2之间0的个数逐次加1,等有这样规律的数.12.答案:6√3解析:本题考查的是正多边形和圆,熟知正六边形的性质,求出△AOB的面积是解答此题的关键.根据题意画出图形,先求出∠AOB的度数,证明△AOB是等边三角形,得出OA=OB=AB,求出OA 的长,再根据S六边形=6S△AOB即可得出结论.解:∵图中是正六边形,∴∠AOB=60°,∵OA=OB,∴△OAB是等边三角形,∴OA=OB=AB,∵OD⊥AB,OD=√3,∴OA=ODsin60°=2,∴AB=OA=2,∴S△AOB=12AB×OD=12×2×√3=√3,∴正六边形的面积=6S△AOB=6×√3=6√3.故答案为6√3.13.答案:(12,0)解析:本题考查了反比例函数图象上点的坐标特征以及矩形的性质,解题的关键是根据反比例函数图象上点的坐标特征找出关于m的分式方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出方程是关键.设点A的坐标为(m,0)(m>0),根据矩形的性质以及反比例函数图象上的坐标特征即可找出点A、C的坐标,再根据点C在反比例函数y2=3x(x>0)的图象上,利用反比例函数图象上点的坐标特征即可得出关于m的分式方程,解方程求出m值,将其代入点A坐标中即可得出结论.解:设点A的坐标为(m,0)(m>0),则点B坐标为(m,1m ),点C坐标为(m+1,1m),∵点C在反比例函数y2=3x(x>0)的图象上,∴1m =3m+1,解得:m=12,经检验m=12是分式方程1m=3m+1的解.∴点A的坐标为(12,0).故答案为(12,0).14.答案:√17解析:本题考查的是轴对称−最短线路问题,解题的关键是学会利用垂线段最短解决最短问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG中,利用勾股定理即可求出E′F的长.解:作E关于直线AC的对称点E′,连接E′F,过F作FG⊥CD于G,则CE=CE′=3,CG=BF=2,PE=PE′,在Rt△E′FG中,GE′=CD−BE−BF=4−1−2=1,GF=4,所以E′F=√FG2+E′G2=√17,即PF+PE的最小值为√17.故答案为√17.15.答案:解:原式=(x+1)(x−1)x(x−1)÷2x+x2+1x=x+1x÷(x+1)2x=x+1x⋅x(x+1)2=1x+1,当x=√2−1时,原式=√2−1+1=√22.解析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=1,再把x的值代入计算.x+1本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.16.答案:解:原式=3√3−1+3−2+√3=4√3.解析:直接利用二次根式的性质以及负指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17.答案:(1)12√3;(2)如图,△DBC为所作.解析:本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了垂径定理、三角形外心与圆周角定理.(1)作AB、BC的垂直平分线,它们相交于点O,再以点O为圆心,OA为半径作圆得到△ABC的外接圆,利用三角形面积公式得到当点A到BC的距离最大时,△ABC面积的最大,此时点A在优弧BC的中点,利用圆周角定理可判断△A′BC为等边三角形,然后利用等边三角形的面积的计算方法可得到△ABC面积的最大值;(2)BC的垂直平分线交BC弧于D,根据垂径定理得到弧BD=弧CD,根据圆周角定理得到∠BDC+∠A=180°,从而可判断△DBC满足条件.解:(1)作△ABC的外接圆⊙O,当点A到BC的距离最大时,△ABC面积的最大,此时点A在BC的垂直平分线上,如图,点A在A′时△ABC的面积最大,∵∠BA′C=∠BAC=60°,A′B=A′C,∴△A′BC为等边三角形,∴△ABC面积的最大值=√3×(4√3)2=12√3,4故答案为:12√3;(2)见答案.18.答案:证明:∵DE//AC,DF//AB,∴四边形AEDF是平行四边形.∵AD平分∠BAC,∴∠BAD=∠CAD.∵DE//AC,∴∠EDA=∠CAD,∴∠EDA=∠BAD,∴AE=DE,∴四边形AEDF是菱形.解析:本题考查了菱形的判定,基础题根据平行四边形的定义得出四边形AEDF是平行四边形,再求出AE=DE,根据菱形的判定推出即可.19.答案:解:(1)∵5÷10%=50,∴在这次问卷调查中一共随机调查了50名学生;“无所谓”的学生人数为:50−10−20−5=15,百分比为1550×100%=30%,补全条形统计图和扇形统计图如下:(2)B“赞同”;(3)3000×(40%+20%)=1800人,答:估计该校学生对持“赞同”和“非常赞同”两种态度的人数之和为1800人.解析:本题考查了作样本估计总体,扇形统计图和条形统计图及众数.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据D类5个点调查人数的10%求出调查的人数,即可补全条形统计图和扇形统计图;(2)根据众数的定义,出现次数最多的是B类;(3)用学校总人数乘以调查人数中持“赞同”和“非常赞同”两种态度所占的比.解:(1)见答案;(2))抽取的同学中,对所持手机的态度的众数是B“赞同”,故答案为B赞同;(3)见答案.20.答案:解:∵由光的反射可知,∠1=∠2,∴∠CED=∠AEB,∵CD⊥BD,AB⊥CB,∴∠CDE=∠ABE=90°,∴△CDE∽△ABE,∴CDAB =DEBE,∵ED=2,BE=20,CD=1.6,∴1.6AB =220,∴AB=16.答:AB的高为16米.解析:此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.直接根据题意得出△CDE∽△ABE,进而得出AB的值.21.答案:解:(1)6;2;(2)温度t与距离地面高度h之间的函数关系式为:t=26−6ℎ;(3)把ℎ=1.8代入解析式可得:t=26−6×1.8=15.2(℃).解析:此题主要考查一次函数的应用,正确得出函数关系式是解题关键.(1)根据图表解得即可;(2)直接利用表格中数据得出温度与高度之间的关系;(3)利用(2)中所求,进而代入h的值求出答案.解:(1)由表格中数据可得:距离地面高度每升高1km,温度就降低6℃,进而猜想:温度t与距离地面高度h之间的函数关系式为:t=26−6ℎ;把ℎ=4代入解析式可得:t=26−6×4=2,故答案为6;2;(2)见答案;(3)见答案.22.答案:解:(1)P=13;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=46=23,乙获胜的情况有2种,P=26=13,所以,这样的游戏规则对乙不公平.解析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比23.答案:(1)证明:如图,过点O作OG⊥AB于点G,∵BO平分∠ABC,OC⊥BC,OG⊥AB,∴OC=OG,∴AB是⊙O的切线;(2)解:∵DE是⊙O的直径,∴∠DCE=90°,∵∠ACB=90°,∴∠DCO+∠OCE=∠BCE+∠OCE=90°,∴∠DCO=∠BCE,∵OD =OC ,∴∠D =∠DCO ,∴∠BCE =∠D ,∴∠BEC =90°+∠D ,∠BCD =90°+∠BCE ,∴∠BEC =∠BCD ,∵∠CBE =∠DBC ,∴△BCE∽△BDC ,∴BE BC =CE CD =12; (3)解:∵△BCE∽△BDC ,∴BC BD =CE CD =BE BC =12, ∴BD =2BC ,∵BE =12BC ,⊙O 的半径为3,∴BD =2BC =BE +DE =12BC +6,∴BC =4.解析:本题考查了切线的判定,相似三角形的判定和性质,圆周角定理,熟练掌握相似三角形的判定和性质是解题的关键.(1)如图,过点O 作OG ⊥AB 于点G ,根据角平分线的性质得到OC =OG ,根据切线的判定定理得到AB 是⊙O 的切线;(2)根据圆周角定理得到∠DCE =90°,根据余角的性质得到∠DCO =∠BCE ,等量代换得到∠BCE =∠D ,根据相似三角形的性质即可得到结论;(3)根据相似三角形的性质得到BC BD =CE CD =12,求得BD =2BC ,列方程即可得到结论. 24.答案:解:(1)把A(4,0)、B(−3,0)代入y =ax 2+bx −4中,得{16a +4b −4=0,9a −3b −4=0.解得{a =13,b =−13.∴这条抛物线所对应的函数表达式为y =13x 2−13x −4;(2)当−3<m<0时,S=12×4×(−m)+12×4×4=−2m+8;当0<m<4时,S=12×4×m+12×4×(−13m2+13m+4)=−23m2+83m+8;故:S={−2m+8(−3<m<0)−23m2+83m+8(0<m<4);(3)点C(0,−4),AB=5,BM=CN=n,则BN=5−n,①当BM=BN=CN时,则点N是BC的中点,故点N(−32,−2),则CN=√(32)2+(4−2)2=52;②当BN=MN时,如图,过点N作NR⊥x轴于点R,则MN=BN=5−n,则BR=12n,则cos∠OCB=BRNB =12n5−n=35,解得:n=3011;③当BM=MN=CN时,同理可得:n=2511;综上,n=52或n=2511或n=3011.解析:(1)把A(4,0)、B(−3,0)代入y=ax2+bx−4中,即可求解;(2)当−3<m<0时,S=12×4×(−m)+12×4×4=−2m+8;当0<m<4时,S=12×4×m+1 2×4×(−13m2+13m+4)=−23m2+83m+8,即可求解;(3)点C(0,−4),AB=5,BM=CN=n,则BN=5−n,分BM=BN、BN=MN、BM=MN三种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.25.答案:(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠DCB=90°.∴∠DCF=180°−90°=90°.∴∠DAE=∠DCF.在Rt△DAE和Rt△DCF中,DE=DF,DA=DC,∴Rt△DAE≌Rt△DCF(HL).∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DF⊥DE.(2)证明;过点F作GF⊥CF交AC的延长线于点G,则∠GFC=90°.∵正方形ABCD中,∠B=90°,∴∠GFC=∠B.∴AB//GF.∴∠BAC=∠G.∵四边形ABCD是正方形,∴AB=BC,∴∠BAC=∠BCA=45°.∴∠BAC=∠BCA=∠FCG=∠G=45°.∴FC=FG.∵△DAE≌△DCF,∴AE=CF.∴AE=FG.在△AEM和△GFM中,∠AME=∠GMF,∠EAM=∠G,AE=GF,∴△AEM≌△GFM(AAS).∴ME=MF.即M是EF的中点;(3)当AB>AD时,如图a,连接EF,DF,∵DE的垂直平分线HF与射线DC、BC分别交于H、F点,∴EF=DF,∵EF2=BE2+BF2,DF2=DC2+CF2,∴BE2+BF2=DC2+CF2,∵BF=4CF,E为AB的中点,∴BF=43BC,BE=12AB,DC=AB,CF=13BC,∴(43BC)2+(12AB)2=AB2+(13BC)2,解得ABBC =2√53,∴AEAD =√53.②当AB<AD时,如图b,∵BF=4CF,E为AB的中点,∴BF=45BC,BE=12AB,DC=AB,CF=15BC,∴(45BC)2+(12AB)2=AB2+(15BC)2,解得ABBC =2√55,∴AEAD =√55.故AEAD 的值为√53或√55.解析:本题主要考查正方形的性质,全等三角形的判定与性质,勾股定理,注意分类讨论.(1)由正方形的性质得出DA=DC,∠DAE=∠DCB=90°.得出∠DAE=∠DCF.由HL证明Rt△DAE≌Rt△DCF,得出∠ADE=∠CDF,证出∠EDF=90°即可;(2)过点F作GF⊥CF交AC的延长线于点G,则∠GFC=90°.AB//GF.得出∠BAC=∠G.由正方形的性质证出FC=FG.得出AE=FG.由AAS证明△AEM≌△GFM,得出ME=MF即可.(3)(3)连接EF,DF,根据垂直平分线的性质及勾股定理可得BE2+BF2=DC2+CF2,分两种情况①当AB>AD时,②当AB<AD时,利用BF=4CF代入计算求解即可.。

陕西省西安市2020年中考数学模拟试卷(解析版)

陕西省西安市2020年中考数学模拟试卷(解析版)

陕西省西安市2020年中考数学模拟试卷一.选择题(每题3分,满分30分)1.与原点距离是2.5个单位长度的点所表示的有理数是()A.2.5 B.﹣2.5C.±2.5 D.这个数无法确定2.如图,下面几何体的左视图是()A.B.C.D.3.计算2019×2018的结果为()A.B.C.D.﹣20164.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°5.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是()A.y1 =y2B.y1 <y2C.y1 >y2D.y1 ≥y26.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4 D.37.将直线y=x+5向下平移2个单位,得到的直线是()A.y=x﹣2 B.y=x+2 C.y=x+3 D.y=x+78.如图Rt△ABC中,∠B=90.,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于()cm.A.5 B.6 C.7 D.89.下列是关于四个图案的描述:图1所示是太极图,该图案关于外圈大圆的圆心中心对称;图2所示是一个正三角形内接于圆;图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.这四个图案中,阴影部分的面积小于该图案外圈大圆面积一半的是()A.图1和图3 B.图2和图4 C.图2和图3 D.图1和图410.设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17 B.x12+x22=8 C.x12+x22<17 D.x12+x22>8 二.填空题(满分12分,每小题3分)11.比较数的大小:+1.12.如图,在△OAB中,∠AOB=90°,AO=2,BO=4.将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,此时线段OB1与AB的交点D恰好为线段AB的中点,线段A1B1与OA交于点E,则图中阴影部分的面积.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=.14.如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.三.解答题15.(5分)计算:(+2)2﹣+2﹣216.(5分)化简:()17.(5分)如图,已知在△ABC中,∠A=90°.(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.18.(5分)西安市某中学九年级组织了一次数学计算比赛(禁用计算器),每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,数学教研组将九年级一班和二班的成绩整理并绘制成如下的统计图,请根据提供的信息解答下列问题.(1)把一班竞赛成绩统计图补充完整.(2)填表:平均数(分)中位数(分)众数(分)一班85二班84 75(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:①从平均数、众数方面来比较一班和二班的成绩;②从B级以上(包括B级)的人数方面来比较一班和二班的成绩.19.(7分)正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD于E,连接EO,AE.(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);(2)用等式表示线段AE与BP之间的数量关系,并证明.20.(7分)如图,防洪大堤的横断面是梯形,背水坡AB的坡度产1:,且AB=20m.身高为1.7m的小明站在大堤A点,测得高压电线杆顶端点D的仰角为30°.已知地面CB 宽30m,求小明到电线杆的距离和高压电线杆CD的高度(结果保留根号).21.(7分)为增强公民的节约意识,合理利用天然气费源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调能后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2超出75m3不超过125m3的部分a超出125m2的部分a+0.5(1)若某户3月份用气量为60m3,则应交费多少元?(2)调价后每月支付燃气费用y(元)与每月用气量x(m3)的函数关系如图所示,求a 的值及线段AB对应的一次函数的表达式;(3)求射线BC对应的一次函数的表达式.22.(7分)2018无锡市体育中考男生项目分为速度耐力类、力量类和灵巧类,每位考生只能在三类中各选一项进行考试.其中速度耐力类项目有:50米跑、800米跑、50米游泳;力量类项目有:掷实心球、引体向上;灵巧类项目有:30秒钟跳绳、立定跳远、俯卧撑、篮球运球.男生小明“50米跑”是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.(1)请用画树状图或列表的方法求“小明‘选50米跑、引体向上和立定跳远’”的概率;(2)小明所选的项目中有立定跳远的概率是.23.(8分)如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=3,AC=3,求⊙O的半径长.24.(10分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC 相似,请你直接写出所有满足条件的点P的坐标.25.(12分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是.参考答案1.C 2.A.3.A.4.D.5.C.6.B.7.C.8.C.9.B.10.D.11.<12..13.﹣12.14..15.解:原式=3+4+4﹣4+=.16.解:原式=[+]•=[+]•=•==.17.解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=AB tan∠ABP=3×=,∴S=3π.⊙P18.解:(1)一班C等级的学生有:25﹣6﹣12﹣5=2,补全的条形统计图如右图所示;(2)一班的平均数是:=82.8,中位数是85,二班的众数是100,故答案为:82.8、85、100;(3)①从平均数、众数方面来比较,二班成绩更好;②从B级以上(包括B级)的人数方面来比较,一班成绩更好.19.解:(1)在正方形ABCD中,BC=DC,∠C=90°,∴∠DBC=∠CDB=45°,∵∠PBC=α,∴∠DBP=45°﹣α,∵PE⊥BD,且O为BP的中点,∴EO=BO,∴∠EBO=∠BEO,∴∠EOP=∠EBO+∠BEO=90°﹣2 α;(2)连接OC,EC,在正方形ABCD中,AB=BC,∠ABD=∠CBD,BE=BE,∴△ABE≌△CBE,∴AE=CE,在Rt△BPC中,O为BP的中点,∴CO=BO=,∴∠OBC=∠OCB,∴∠COP=2 α,由(1)知∠EOP=90°﹣2α,∴∠EOC=∠COP+∠EOP=90°,又由(1)知BO=EO,∴EO=CO.∴△EOC是等腰直角三角形,∴EO2+OC2=EC2,∴EC=OC=,即BP=,∴BP=.20.解:过点A作AE⊥CE于E,在Rt△AEB中,AB=20∵i=tan∠ABE=1:=,∴∠ABE=30°,∴cos30°=,即得BE=AB=10m,∴sin30°=,即得AE==10m,∴MN=BC+BE=(30+10)m,即小明到电线杆距离为(30+10)m,NC=ME=MA+AE=(1.7+10)=11.7m,在Rt△DNM中,MN=(30+10),∠DNM=30°,∵tan30°=,∴DN=MN•tan30°=(30+10)×=(10+10)m,∴CD=DN+AM+AE=10+10+1.7+10=(21.7+10)m.答:髙压电线杆CD的髙度(21.7+10)米.21.解:(1)由题意不超出75m3收费得60×2=120(元),即若某用户3月份用气量为60 m3,交费120元;(2)由题意得a=(275﹣75×2)÷(125﹣75))=2.5(元),超出125 m2的部分a+0.25=3(元),由图可知A点坐标为(75,150),设AB的解析式为y=kx+b,把A、B两点的坐标代入y=kx+b,得到:,解得,∴线段AB对应的一次函数的表达式为y=2.5x﹣37.5(75≤x≤125).(3)设BC的解析式为y=mx+n,假设点C的横坐标为150,则其纵坐标y=275+25×3=150,将C点坐标(150,350)代入B、C两坐标得到,解得,∴射线BC对应的一次函数的表达式为y=3x﹣100(x>125).22.解:(1)记掷实心球、引体向上分别为甲、乙,30秒钟跳绳、立定跳远、俯卧撑、篮球运球分别为A、B、C、D,画树状图如下:由树状图知,共有8种等可能结果,其中选择引体向上和立定跳远的只有1种结果,所以小明‘选50米跑、引体向上和立定跳远’的概率为;(2)因为小明所选的项目中有立定跳远的结果有2种结果,所以小明所选的项目中有立定跳远的概率为=.故答案为:.23.(1)证明:连接OC,∵OA=OC,∴∠ACO=∠CAO,∵CD切⊙O于C,∴CO⊥CD.又∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠BAD;(2)解:过点O作OE⊥AC于E,∵CD=3,AC=3,在Rt△ADC中,AD==6,∵OE⊥AC,∴AE=AC=,∵∠CAO=∠DAC,∠AEO=∠ADC=90°,∴△AEO∽△ADC,∴,即,∴AO=,即⊙O的半径为.24.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,过点P作PG⊥y轴于点G,则==,即==,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=,解得DP=3,过点P作PG⊥y轴于点G,则==,即==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).25.解:(1)①∵∠ABC=90°,∴BD=AC===,故答案为,②∵A(0,3),B(5,0),∴AB==,设点P(m,n),O(0,0),∴OP==,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠EBF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF 是准矩形;(3),,∵∠ABC =90°,∠BAC =60°,AB =2,∴BC =2,AC =4,准矩形ABCD 中,BD =AC =4,①当AC =AD 时,如图1,作DE ⊥AB ,∴AE =BE =AB =1,∴DE ===,∴S 准矩形ABCD =S △ADE +S 梯形BCDE =DE ×AE +(BC +DE )×BE =×+(2+)×1 =+; ②当AC =CD 时,如图2,作DF ⊥BC ,∴BD =CD ,∴BF =CF =BC =, ∴DF ===,∴S 准矩形ABCD =S △DCF +S 梯形ABFD=FC ×DF +(AB +DF )×BF =××+(2+)× =+; ③当AD =CD ,如图3,连接AC 中点和D 并延长交BC 于M ,连接AM ,连接BG ,过B 作BH ⊥DG , 在Rt △ABC 中,AC =2AB =4,∴BD =AC =4,∴AG =AC =2,∵AB =2,∴AB =AG ,∵∠BAC =60°,∴∠ABG =60°,∴∠CBG =30°在Rt △BHG 中,BG =2,∠BGH =30°,∴BH =1,在Rt △BHM 中,BH =1,∠CBH =30°,∴BM =,HM =,∴CM =, 在Rt △DHB 中,BH =1,BD =4,∴DH =,∴DM =DH ﹣MH =﹣,∴S 准矩形ABCD =S △ABM +S 四边形AMCD , =BM ×AB +AC ×DM=××2+×4×(﹣)=2;故答案为+,+,2.。

2020年陕西省西安市雁塔区益新中学中考数学二模试卷

2020年陕西省西安市雁塔区益新中学中考数学二模试卷

2020年陕西省西安市雁塔区益新中学中考数学二模试卷一.选择题(本大题共10小题,共30.0分) 1.(3分)02016的值为( ) A .0B .1C .2016D .2016-2.(3分)如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A .B .C .D .3.(3分)如图,已知//AB CD ,135DFE ∠=︒,则ABE ∠的度数为( )A .30︒B .45︒C .60︒D .90︒4.(3分)若一个正比例函数的图象经过(3,6)A -,(,4)B m -两点,则m 的值为( ) A .2B .8C .2-D .8-5.(3分)下列计算结果正确的是( ) A .632623x x x ÷=B .224x x x +=C .23222()22x y x y x y x y --=-+D .2336(3)9xy x y -=-6.(3分)如图,在ABC ∆中,30B ∠=︒,45C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E .若1DE =,则BC 的长为( )A .22B 23C .23+D .37.(3分)将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为() A .2-B .1-C .1D .28.(3分)如图,矩形ABCD 中,3AB =,4BC =,//EB DF 且BE 与DF 之间的距离为3,则AE 的长是( )A .7B .38C .78 D .589.(3分)如图,已知20OBA ∠=︒,且OC AC =,则BOC ∠的度数是( )A .70︒B .80︒C .40︒D .60︒10.(3分)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表: x 1- 0 1 3 y3-131下列结论:①抛物线的开口向下;②其图象的对称轴为1x =;③当1x <时,函数值y 随x 的增大而增大;④方程20ax bx c ++=有一个根大于4.其中正确的结论有( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,共12.0分) 11.(3分)在实数117,(1)--,3π1.213131131135中,无理数有 个.12.(3分)若正六边形的边长为3,则其面积为 .13.(3分)如图,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数(0,0)ky k x x=≠>的图象过点B ,E .若2AB =,则k 的值为 .14.(3分)如图,已知正方形ABCD 的边长为8,点E 是正方形内部一点,连接BE ,CE ,且ABE BCE ∠=∠,点P 是AB 边上一动点,连接PD ,PE ,则PD PE +的长度最小值为 .三.解答题(本大题共11小题,共78分)15.(5分)先化简,再求值:222111()11a a a a a -++÷-+,其中2a =. 16.(5分)计算:118()|21|2----17.(5分)如图,已知线段AB .(1)仅用没有刻度的直尺和圆规作一个以AB 为腰、底角等于30︒的等腰ABC ∆.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若2AB cm =,则等腰ABC ∆的外接圆的半径为 cm .18.(5分)如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是AB 边上的中线,过点B 作//BE CD ,过点C 作//CE AB ,BE ,CE 相交于点E . 求证:四边形BDCE 是菱形.19.(7分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m 的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.(7分)数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB .测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离2CD =米,小明的眼睛E 到地面的距离 1.5ED =米;②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离3FH =米; ③计算树的高度AB ;21.(7分)我们知道,海拔高度每上升1千米,温度下降6C ︒.某时刻,吉首市地面温度为20C ︒,设高出地面x 千米处的温度为C y ︒. (1)写出y 与x 之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少C ︒? (3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为34C ︒-,求飞机离地面的高度为多少千米?22.(7分)四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.23.(8分)如图,AB 是O e 的直径,点C 、E 在O e 上,2B ACE ∠=∠,在BA 的延长线上有一点P ,使得P BAC ∠=∠,弦CE 交AB 于点F ,连接AE . (1)求证:PE 是O e 的切线;(2)若2AF =,10AE EF ==,求OA 的长.24.(10分)在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴的两个交点分别为(3,0)A -、(1,0)B ,与y 轴交于点(0,3)D ,过顶点C 作CH x ⊥轴于点H(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当ADE ∆与ACD ∆面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与ACH ∆相似时,求点P 的坐标.25.(12分)问题提出(1)如图①,在矩形ABCD 中,2AB AD =,E 为CD 的中点,则AEB ∠ ACB ∠(填“>”“ <”“ =” ); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,APB∠最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即6AB=米),下边沿到地面的距离11.6BD=米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.2020年陕西省西安市雁塔区益新中学中考数学二模试卷参考答案与试题解析一.选择题(本大题共10小题,共30.0分) 1.(3分)02016的值为( ) A .0B .1C .2016D .2016-【解答】解:020161=. 故选:B .2.(3分)如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A .B .C .D .【解答】解:它的俯视图为,故选:A .3.(3分)如图,已知//AB CD ,135DFE ∠=︒,则ABE ∠的度数为( )A .30︒B .45︒C .60︒D .90︒【解答】解:135DFE ∠=︒Q ,18013545CFE ∴∠=︒-︒=︒, //AB CD Q ,45ABE CFE ∴∠=∠=︒.故选:B .4.(3分)若一个正比例函数的图象经过(3,6)A -,(,4)B m -两点,则m 的值为( ) A .2B .8C .2-D .8-【解答】解:设正比例函数解析式为:y kx =, 将点(3,6)A -代入可得:36k =-, 解得:2k =-,∴正比例函数解析式为:2y x =-,将(,4)B m -代入2y x =-,可得:24m -=-, 解得2m =, 故选:A .5.(3分)下列计算结果正确的是( ) A .632623x x x ÷=B .224x x x +=C .23222()22x y x y x y x y --=-+D .2336(3)9xy x y -=-【解答】解:633623x x x ÷=Q ,故选项A 错误; 2222x x x +=Q ,故选项B 错误;23222()22x y x y x y x y --=-+Q ,故选项C 正确; 2336(3)27xy x y -=-Q ,故选项D 错误;故选:C .6.(3分)如图,在ABC ∆中,30B ∠=︒,45C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E .若1DE =,则BC 的长为( )A .22B 23C .23+D .3【解答】解:过点D 作DF AC ⊥于F 如图所示,AD Q 为BAC ∠的平分线,且DE AB ⊥于E ,DF AC ⊥于F , 1DE DF ∴==,在Rt BED ∆中,30B ∠=︒,22BD DE ∴==,在Rt CDF ∆中,45C ∠=︒,CDF ∴∆为等腰直角三角形,22CD DF∴==,22BC BD CD∴=+=+,故选:A.7.(3分)将直线21y x=+向下平移n个单位长度得到新直线21y x=-,则n的值为( )A.2-B.1-C.1D.2【解答】解:由“上加下减”的原则可知:直线21y x=+向下平移n个单位长度,得到新的直线的解析式是21y x n=+-,则11n-=-,解得2n=.故选:D.8.(3分)如图,矩形ABCD中,3AB=,4BC=,//EB DF且BE与DF之间的距离为3,则AE的长是()A.7B.38C.78D.58【解答】解:如图所示:过点D作DG BE⊥,垂足为G,则3GD=.A G∠=∠Q,AEB GED∠=∠,3AB GD==,AEB GED∴∆≅∆.AE EG∴=.设AE EG x==,则4ED x=-,在Rt DEG ∆中,222ED GE GD =+,2223(4)x x +=-,解得:78x =. 故选:C .9.(3分)如图,已知20OBA ∠=︒,且OC AC =,则BOC ∠的度数是( )A .70︒B .80︒C .40︒D .60︒【解答】解:连接OA ,如图,OC AC OA ==Q , OAC ∴∆为等边三角形, 60OAC ∴∠=︒, OB OA =Q ,20OAB OBA ∴∠=∠=︒, 602040BAC ∴∠=︒-︒=︒, 280BOC BAC ∴∠=∠=︒.故选:B .10.(3分)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表: x 1- 0 1 3 y3-131下列结论:①抛物线的开口向下;②其图象的对称轴为1x =;③当1x <时,函数值y 随x 的增大而增大;④方程20ax bx c ++=有一个根大于4.其中正确的结论有( ) A .1个B .2个C .3个D .4个【解答】解:由表格可知,二次函数2y ax bx c =++有最大值,当03322x +==时,取得最大值, ∴抛物线的开口向下,故①正确, 其图象的对称轴是直线32x =,故②错误, 当32x <时,y 随x 的增大而增大,故③正确, 方程20ax bx c ++=的一个根大于1-,小于0,则方程的另一个根大于3232⨯=,小于314+=,故④错误,故选:B .二、填空题(本大题共4小题,共12.0分)11.(3分)在实数117,(1)--,3π, 1.21,313113113,5中,无理数有 2 个. 【解答】解:在所列实数中,无理数有3π,5这2个, 故答案为:2. 12.(3分)若正六边形的边长为3,则其面积为 93 .【解答】解:Q 此多边形为正六边形,360606AOB ︒∴∠==︒; OA OB =Q ,OAB ∴∆是等边三角形,3OA AB ∴==,3cos3033OG OA ∴=︒=⨯=g , 11333322OAB S AB OG ∆∴=⨯⨯=⨯⨯=, 336693OAB S S ∆∴==⨯=六边形. 故答案为:93.13.(3分)如图,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数(0,0)k y k x x =≠>的图象过点B ,E .若2AB =,则k 的值为 625+ .【解答】解:设(,)E x x ,(2,2)B x ∴+,Q 反比例函数(0,0)k y k x x=≠>的图象过点B 、E . 22(2)x x ∴=+,解得115x =+,215x =-(舍去),2625k x ∴==+,故答案为625+.14.(3分)如图,已知正方形ABCD 的边长为8,点E 是正方形内部一点,连接BE ,CE ,且ABE BCE ∠=∠,点P 是AB 边上一动点,连接PD ,PE ,则PD PE +的长度最小值为 4134- .【解答】解:Q 四边形ABCD 是正方形,90ABC ∴∠=︒,90ABE CBE ∴∠+∠=︒,ABE BCE ∠=∠Q ,90BCE CBE ∴∠+∠=︒,90BEC ∴∠=︒,∴点E 在以BC 为直径的半圆上移动,如图,设BC 的中点为O ,作正方形ABCD 关于直线AB 对称的正方形AFGB ,则点D 的对应点是F ,连接FO 交AB 于P ,交半圆O 于E ,则线段EF 的长即为PD PE +的长度最小值,4OE =, 90G ∠=︒Q ,8FG BG AB ===,12OG ∴=, 22413OF FG OG ∴=+=, 4134EF ∴=-,PD PE ∴+的长度最小值为4134-,故答案为:4134-.三.解答题(本大题共11小题,共78分)15.(5分)先化简,再求值:222111()11a a a a a -++÷-+,其中2a =. 【解答】解:原式21111()(1)11a a a a a a a a a-++=++=-+=+g , 当2a =时,原式2(2)1322+==. 16.(5分)计算:118()|21|2---- 【解答】解:原式221(21)=---22121=--+2=.17.(5分)如图,已知线段AB .(1)仅用没有刻度的直尺和圆规作一个以AB 为腰、底角等于30︒的等腰ABC ∆.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若2AB cm =,则等腰ABC ∆的外接圆的半径为 2 cm .【解答】解:(1)如图,ABC ∆为所作;(2)ABD∆为等边三角形,Q和BCD∆∴===,DA DB DC AB∆的外接圆的半径为2∴等腰ABC故答案为2.18.(5分)如图,在Rt ABC∠=︒,CD是AB边上的中线,过点B作//BE CD,ACB∆中,90过点C作//CE AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【解答】证明://CE AB,BE CDQ,//∴四边形BDCE是平行四边形.Q,CD是AB边上的中线,90∠=︒ACB∴=,CD BD∴平行四边形BDCE是菱形.19.(7分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【解答】解:(1)被调查的学生人数为1020%50÷=人,阅读3本的人数为50(410146)16-+++=,所以课外阅读量的众数是3本,则16%100%32%50m=⨯=,即32m=,补全图形如下:(2)估计该校600名学生中能完成此目标的有1614660043250++⨯=(人).20.(7分)数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离2CD=米,小明的眼睛E到地面的距离 1.5ED=米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离3FH=米;③计算树的高度AB;【解答】解:设AB x=米,BC y=米.90ABC EDC∠=∠=︒Q,ACB ECD∠=∠ABC EDC ∴∆∆∽ ∴AB BC ED DC =, ∴1.52x y =, 90ABF GHF ∠=∠=︒Q ,AFB GFH ∠=∠,ABF GHF ∴∆∆∽,∴AB BF GH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:20y =,把20y =代入1.52x y =中,得15x =, ∴树的高度AB 为15米.21.(7分)我们知道,海拔高度每上升1千米,温度下降6C ︒.某时刻,吉首市地面温度为20C ︒,设高出地面x 千米处的温度为C y ︒.(1)写出y 与x 之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少C ︒?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为34C ︒-,求飞机离地面的高度为多少千米?【解答】解:(1)由题意得,y 与x 之间的函数关系式206(0)y x x =->;(2)由题意得,0.9652060.96514.21(C)x kmy ︒==-⨯=.答:这时山顶的温度大约是14.21C ︒.(3)由题意得,34C y ︒=-时,34206x -=-,解得9x km =.答:飞机离地面的高度为9千米.22.(7分)四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【解答】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P (小贝获胜)P =(小晶获胜)12=. 23.(8分)如图,AB 是O e 的直径,点C 、E 在O e 上,2B ACE ∠=∠,在BA 的延长线上有一点P ,使得P BAC ∠=∠,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是O e 的切线;(2)若2AF =,10AE EF ==,求OA 的长.【解答】解:(1)连接OE ,2AOE ACE ∴∠=∠,2B ACE ∠=∠Q ,AOE B ∴∠=∠,P BAC ∠=∠Q ,ACB OEP ∴∠=∠,AB Q 是O e 的直径,90ACB ∴∠=︒,90OEP ∴∠=︒,PE ∴是O e 的切线;(2)OA OE =Q ,OAE OEA ∴∠=∠,AE EF =Q ,EAF AFE ∴∠=∠,OAE OEA EAF AFE ∴∠=∠=∠=∠,AEF AOE ∴∆∆∽, ∴AE AF OA AE=, 2AF =Q ,10AE EF ==,5OA ∴=.24.(10分)在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴的两个交点分别为(3,0)A -、(1,0)B ,与y 轴交于点(0,3)D ,过顶点C 作CH x ⊥轴于点H(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当ADE ∆与ACD∆面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与ACH ∆相似时,求点P 的坐标.【解答】解:(1)把点A 、B 、D 的坐标代入二次函数表达式得: 09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,则抛物线的表达式为:223y x x =--+⋯①, 函数的对称轴为:12b x a=-=-, 则点C 的坐标为(1,4)-;(2)过点C 作//CE AD 交抛物线于点E ,交y 轴于点H , 则ADE ∆与ACD ∆面积相等,直线AD 过点D ,则其表达式为:3y mx =+,将点A 的坐标代入上式得:033m =-+,解得:1m =, 则直线AD 的表达式为:3y x =+,//CE AD ,则直线CE 表达式的k 值为1,设直线CE 的表达式为:y x n =+,将点C 的坐标代入上式得:41n =-+,解得:5n =, 则直线CE 的表达式为:5y x =+⋯②,则点H 的坐标为(0,5),联立①②并解得:1x =-或2(1x -=为点C 的横坐标), 即点E 的坐标为(2,3)-;在y 轴取一点H ',使2DH DH ='=,过点H '作直线//E E AD ''',则ADE ∆'、ADE ∆''与ACD ∆面积相等,同理可得直线E E '''的表达式为:1y x =+⋯③,联立①③并解得:317x -±=, 则点E ''、E '的坐标分别为317(-+,117)-+、317(--,117)--, 点E 的坐标为:(2,3)-或317(-+,117)-+或317(--,117)--; (3)设:点P 的坐标为(,)m n ,223n m m =--+,把点C 、D 的坐标代入一次函数表达式:y kx b =+得:43k b b =-+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, 即直线CD 的表达式为:3y x =-+⋯④,直线AD 的表达式为:3y x =+,直线CD 和直线AD 表达式中的k 值的乘积为1-,故AD CD ⊥, 而直线PQ CD ⊥,故直线PQ 表达式中的k 值与直线AD 表达式中的k 值相同, 同理可得直线PQ 表达式为:()y x n m =+-⋯⑤,联立④⑤并解得:32m n x +-=,即点Q 的坐标为3(2m n +-,3)2m n -+, 则:222233(3)1()2()(1)2222m n m n m n PQ m n m m +--++-=-+-==+g , 同理可得:222(1)[1(1)]PC m m =+++,2AH =,4CH =,则25AC =, 当ACH CPQ ∆∆∽时,5PC AC PQ AH ==,即:2245PC PQ =, 整理得:2316160m m ++=,解得:4m =-或43-, 点P 的坐标为(4,5)--或4(3-,35)9; 当ACH PCQ ∆∆∽时,同理可得:点P 的坐标为2(3-,35)9或(2,5)-, 故:点P 的坐标为:(4,5)--或4(3-,35)9或2(3-,35)9或(2,5)-. 25.(12分)问题提出(1)如图①,在矩形ABCD 中,2AB AD =,E 为CD 的中点,则AEB ∠ > ACB ∠(填“>”“ <”“ =” );问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,APB ∠最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即6AB =米),下边沿到地面的距离11.6BD =米.如果小刚的睛睛距离地面的高度EF 为1.6米,他从远处正对广告牌走近时,在P 处看广告效果最好(视角最大),请你在图③中找到点P 的位置,并计算此时小刚与大楼AD 之间的距离.【解答】解:(1)AEB ACB ∠>∠,理由如下:如图1,过点E 作EF AB ⊥于点F ,Q 在矩形ABCD 中,2AB AD =,E 为CD 中点,∴四边形ADEF 是正方形, 45AEF ∴∠=︒,同理,45BEF ∠=︒,90AEB ∴∠=︒.而在直角ABC ∆中,90ABC ∠=︒,90ACB ∴∠<︒,AEB ACB ∴∠>∠.故答案为:>;(2)当点P 位于CD 的中点时,APB ∠最大,理由如下:假设P 为CD 的中点,如图2,作APB ∆的外接圆O e ,则此时CD 切O e 于点P ,在CD 上取任意异于P 点的点E ,连接AE ,与O e 交于点F ,连接BE ,BF , AFB ∠Q 是EFB ∆的外角,AFB AEB ∴∠>∠,AFB APB ∠=∠Q ,APB AEB ∴∠>∠,故点P 位于CD 的中点时,APB ∠最大:(3)如图3,过点E 作//CE DF 交AD 于点C ,作线段AB 的垂直平分线,垂足为点Q ,并在垂直平分线上取点O ,使OA CQ =,以点O 为圆心,OA 长为半径作圆,则O e 切CE 于点G ,连接OG ,并延长交DF 于点P ,此时点P 即为小刚所站的位置, 由题意知22DP OQ OA AQ =-12OA CQ BD QB CD BD AB CD ==+-=+-Q , 11.6BD =米,132AB =米, 1.6CD EF ==米, 11.63 1.613OA ∴=+-=米,22133410DP ∴=-=即小刚与大楼AD 之间的距离为410。

【精品初三数学】[2020年西安中考仿真模拟卷-数学]+详解答案

【精品初三数学】[2020年西安中考仿真模拟卷-数学]+详解答案

2020年西安中考仿真模拟卷数 学 2020.4考试时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是符合题目要求的)一、单选题 1.16-的倒数是( ) A .6B .﹣6C .16D .16-2.如图是某个几何体的表面展开图,则这个几何体是( )A .长方体B .三棱柱C .三棱锥D .四棱锥3.如图,AB ∥CD ,CE 交AB 于点F .∥A =20°,∥E =30°,则∥C 的度数为( )A .50°B .55°C .60°D .65°4.直线y kx =过点(,)A m n ,(34)B m n -+,,则k 的值是( ) A .43B .43-C .34D .34-5.下列算式中,正确的是( ) A .3262(a b)a b =B .23a a a -=-C .221a a a a÷⨯= D .326(a )a --= 6.如图,∥ABC 是等腰直角三角形,∥ACB=90°,点E 、F 分别是边BC 、AC 的中点,P 是AB 上一点,以PF 为一直角边作等腰直角三角形PFQ ,且∥FPQ=90°,若AB=10,PB=1,则QE 的值为( )A .3B .C .4D .7.若直线l 1经过点A (0,﹣6),直线l 2经过点(3,2)且l 1与l 2关于y 轴对称,则l 1、l 2与x 轴交点之间的距离为( ) A .1B .32C .3D .928.如图,ABCD Y 中,点E 在CD 上,点F 在AB 边上,2CD CE =,4AB AF =,连接BE 、CF 交于点G ,若4CGE S =△,则五边形AFGED 的面积为( )A .20B .21C .22D .239.如图,ABC V 内接于O e ,EF 为O e 直径,点F 是BC 弧的中点,若40B ∠=︒,60C ∠=°,则AFE ∠的度数( )A .10︒B .20︒C .30°D .40︒10.已知,平面直角坐标系中,直线 y 1=x+3与抛物线y 2=﹣212x +2x 的图象如图,点P 是 y 2 上的一个动点,则点P 到直线 y 1 的最短距离为()A .2B C D二、填空题(本题共4小题,每小题3分,计12分)11.在2-,π6,219,5个数中,无理数有______个. 12.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是 ____ . 13.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点B 的坐标为(12,6),反比例函数(0)ky k x=>的图象分别交边BC 、AB 于点D 、E ,连结DE ,ΔDEF 与ΔDEB 关于直线DE 对称.当点F 正好落在边OA 上时,则k 的值为________.14.已知分式2m 111m 1m 1⎛⎫-÷+ ⎪--⎝⎭.() 1请对分式进行化简;()2如图,若m 为正整数,则该分式的值对应的点落在数轴上的第_____段上.(填写序号即可)三、解答题(本大题共11小题,共78分。

模拟测试卷(七)-2020年陕西中考数学模拟测试卷(解析版)

模拟测试卷(七)-2020年陕西中考数学模拟测试卷(解析版)

模拟测试卷(七)一、选择题(共10小题,每小题3分,计30分)1.9的平方根是()A.±3 B.3 C.﹣3 D.±【考点】平方根.【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.【解答】解:±,故选:A.2.如图所示,两个紧靠在一起的圆柱体组成的物体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个正方形,右边是一个矩形,故选:B.3.下列计算正确的是()A.(ab)2=ab2B.a2•a3=a4C.a5+a5=2a5 D.(a2)3=a5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据幂的乘方和积的乘方以及合并同类项的法则进行计算.【解答】解:A、应为(ab)2=a2b2,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、a5+a5=2a5,正确;D、应为(a2)3=a6,故本选项错误;故选C.4.如图,在△AB C中,∠C=90°,EF∥AB,∠CEF=50°,则∠B的度数为()A.50°B.60°C.30°D.40°【考点】三角形内角和定理;平行线的性质.【分析】根据三角形内角和定理和平行线的性质计算.【解答】解:∵∠C=90°,∴∠CFE=90°﹣∠CEF=40°,又∵EF∥AB,∴∠B=∠CFE=40°.故选D.5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【考点】正比例函数的性质.【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B6.如图,△AB C中,D、E分别是BC、AC的中点,BE平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是()A.B.1 C.D.1.5【考点】三角形中位线定理.【分析】根据三角形中位线定理得到DE∥AB,DE=AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,DE=AB=5,BD=BC=4,∴∠ABF=∠BFD,∵BE平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠BFD,∴DF=DB=4,∴EF=DE﹣DF=1,故选:B.7.设方程x2+x﹣2=0的两个根为α,β,那么(α﹣1)(β﹣1)的值等于()A.﹣4 B.﹣2 C.0 D.2【考点】根与系数的关系.【分析】由根与系数的关系可得:α+β=﹣1,α•β=﹣2,然后所求的代数式化成(α﹣1)(β﹣1)=α•β﹣(α+β)+1,再把前面的式子代入即可求出其值.【解答】解:依题意得α+β=﹣1,α•β=﹣2,∴(α﹣1)(β﹣1)=α•β﹣(α+β)+1=﹣2+1+1=0.故选C.8.已知直线y=kx+b(k≠0)过点(2,﹣3),(﹣2,m),且不经过第一象限,则m的取值范围是()A.m<﹣2 B.m≤3C.﹣2<m<3 D.﹣3<m≤3【考点】一次函数图象与系数的关系.【分析】由直线不过第一象限即可得出k<0、b≤0,由点的坐标利用待定系数法即可求出k、b的值,进而即可得出关于m的一元一次不等式组,解之即可得出结论.【解答】解:∵直线y=kx+b(k≠0)不经过第一象限,∴k<0,b≤0,将(2,﹣3)、(﹣2,m)代入y=kx+b,,解得:,。

2020年陕西省西安市中考数学模拟试卷3解析版

2020年陕西省西安市中考数学模拟试卷3解析版

2020年陕西省西安市中考数学模拟试卷3解析版一.选择题(共10小题,满分30分,每小题3分)1.实数的相反数是()A.﹣B.C.﹣D.2.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列计算正确的是()A.y2+y2=2y4B.y7+y4=y11C.y2•y2+y4=2y4D.y2•(y4)2=y184.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°5.已知y与x成正比例,且x=3时,y=2,则y=3时,x的值为()A.B.C.2D.126.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或20°C.20°D.80°或50°7.若一次函数y=2x+6与y=kx的图象的交点纵坐标为4,则k的值是()A.﹣4B.﹣2C.2D.48.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1,BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B②当x=1时,四边形ABC1D1是菱形③当x=2时,△BDD1为等边三角形④s=(x﹣2)2(0<x<2),其中正确的有()A.1 个B.2 个C.3 个D.4 个9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD =2,则EC的长为()A.2B.8C.D.210.已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0B.a<0且4a+b=0C.a>0且2a+b=0D.a<0且2a+b=0二.填空题(共4小题,满分12分,每小题3分)11.不等式1﹣2x<6的负整数解是.12.用科学计算器计算:﹣tan65°≈(精确到0.01)13.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,若MO=5,则ON=.根据图象猜想,线段MN的长度的最小值.14.如图,在平面直角坐标系中,等边三角形ABC的顶点B、C的坐标分别为(2,0),(6,0),点N从A点出发沿AC向C点运动,连接ON交AB于点M.当边AB恰平分线段ON时,则AN =.三.解答题(共11小题)15.计算:2cos30°+﹣|﹣3|﹣()﹣216.计算:÷(x+)17.如图,△ABC中,AB=AC,请你利用尺规在BC边上求一点P,使△ABC∽△PAC(不写画法,保留作图痕迹)18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=;(2)补全条形统计图;(3)这次调查结果的众数是;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.下表中有两种移动电话计费方式.月使用费/元主叫限定时间/min 主叫超时费/(元/min)被叫方式一491000.20免费方式二691500.15免费设一个月内主叫通话为为t分钟(t是正整数).(1)当t=90时,按方式一计费为元;按方式二计费为元;(2)当100<t≤150时,是否存在某一时间t,使两种计费方式相等,若存在,请求出对应t的值,若不存在,请说明理由;(3)当t>150时,请直接写出省钱的计费方式?22.甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率.23.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.24.抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.25.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接利用实数的性质和相反数的定义分析得出答案.【解答】解:实数的相反数是:﹣.故选:A.【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】根据幂的乘方与积的乘方、合并同类项、整式的混合计算判断即可.【解答】解:A、y2+y2=2y2,错误;B、y7与y4不能合并,错误;C、y2•y2+y4=2y4,正确;D、y2•(y4)2=y10,错误;故选:C.【点评】此题考查幂的乘方与积的乘方、合并同类项、整式的混合计算,关键是根据法则计算.4.【分析】根据平行线的性质求出∠4,根据三角形的外角的性质计算即可.【解答】解:∵AB∥CD,∴∠4=∠2=50°,∴∠3=∠4﹣∠1=20°,故选:A.【点评】本题考查的是平行线的性质,三角形的外角的性质,掌握两直线平行,内错角相等是解题的关键.5.【分析】设y=kx,把x=3,y=2代入,求出k.即可得出答案.【解答】解:根据题意,设y=kx,把x=3,y=2代入得:2=3k,解得:k=,y=x,把y=3代入解析式,可得:x=,故选:A.【点评】本题考查了用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.6.【分析】分别从:①若100°是等腰三角形顶角的外角,②若100°是等腰三角形底角的外角,去分析,即可求得答案.【解答】解:①若100°是等腰三角形顶角的外角,则它的顶角的度数为:180°﹣100°=80°;②若100°是等腰三角形底角的外角,则它的底角的度数为:180°﹣100°=80°;∴它的顶角为:180°﹣80°﹣80°=20°;∴它的顶角的度数为:80°或20°.故选:B.【点评】此题考查了等腰三角形的性质:等边对等角.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.7.【分析】首先根据一次函数y=2x+6与y=kx图象的交点纵坐标为4,代入一次函数y=2x+6求得交点坐标为(﹣1,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=2x+6与y=kx图象的交点纵坐标为4,∴4=2x+6解得:x=﹣1,∴交点坐标为(﹣1,4),代入y=kx,4=﹣k,解得k=﹣4.故选:A.【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x+6与y=kx两个解析式.8.【分析】①正确,根据SSS即可判断;②正确,证明四边相等即可解决问题;③正确,只要证明BD=DD1,∠BDD1=60°即可;④错误,利用三角形的面积公式计算即可判定;【解答】解:∵AC=A1C1,∴AA1=CC1∵BC=D1A1,∠AA1D1=∠BCC1,∴△A1AD1≌△CC1B,故①正确,在Rt△ABC中,∵∠ACB=30°,AB=1,∴AC=A1C1=2,当x=1时,AC1=CC1=1,∴AC1=AB,∵∠BAC=60°,∴△ABC1是等边三角形,同法可证:△AD1C1是等边三角形,∴AB=BC1=AC1=AD1=C1D1,∴四边形ABC1D1是菱形,故②正确,当x=2时,BD=AC=2,DD1=2,∠BDD1=60°,∴△BDD1是等边三角形,故③正确,当0<x<2时,S=•(2﹣x)•(2﹣x)=(2﹣x)2,故④错误.故选:C.【点评】本题考查矩形的性质、等边三角形的判定和性质、菱形的判定、平移变换等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【分析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt △AOC中,OA=R,OC=R﹣CD=R﹣2,根据勾股定理得到(R﹣2)2+42=R2,解得R=5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故选:D.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.【分析】利用抛物线的对称性得到抛物线的对称轴为直线x=﹣=2,则b+4a=0,然后利用x=1,y=n,且n<m可确定抛物线的开口向上,从而得到a>0.【解答】解:∵点(0,m)、(4,m)为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即﹣=2,∴b+4a=0,∵x=1,y=n,且n<m,∴抛物线的开口向上,即a>0.故选:A.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共4小题,满分12分,每小题3分)11.【分析】根据不等式的性质求出不等式的解集,找出不等式的整数解即可.【解答】解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.【点评】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.12.【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:﹣tan65°≈2.828﹣2.145≈0.68.故答案为:0.68.【点评】此题考查了使用计算器计算开方及三角函数,解题的关键是:正确使用计算器.13.【分析】由双曲线的对称性知ON=OM,可求ON的长,求线段MN的长度可转化为求OM的最小值,列出OM距离的求解式子,求式子的最小值即可.【解答】解:∵过原点的直线l与反比例函数y=﹣的图象交于M,N两点∴点M与点N关于原点对称,∴OM=ON=5故答案为:5,设点M的坐标为(x,﹣),则OM=,∵x2+﹣2=(x﹣)2≥0∴x2+≥2,∴OM的最小值为,由双曲线的对称性可知ON=OM,故MN的最小值为2.故答案为:2【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,两点距离公式,熟练运用反比例函数的性质解决问题是本题的关键.14.【分析】作ND∥AB交OC于D,则∠NDC=∠ABC,∠DNC=∠A,由点的坐标得出OB=2,OB=6,得出BC=4,BD=CD=2,由等边三角形的性质得出∠A=∠ABC=∠ACB=60°,AC =BC=4,证明△CDN是等边三角形,得出CN=DN=CD=2,即可得出结果.【解答】解:作ND∥AB交OC于D,如图所示:则∠NDC=∠ABC,∠DNC=∠A,∵OM=MN,∴OB=BD,∵点B、C的坐标分别为(2,0),(6,0),∴OB=2,OB=6,∴BC=4,BD=OB=2,∴BD=CD=2,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,AC=BC=4,∴∠DNC=∠NDC=∠AC60°,∴△CDN是等边三角形,∴CN=DN=CD=2,∴AN=4﹣2=2.故答案为:2.【点评】本题考查了坐标与图形性质、等边三角形的判定与性质、平行线的性质;熟练掌握等边三角形的判定与性质,证明三角形是等边三角形是解决问题的关键.三.解答题(共11小题)15.【分析】直接利用特殊角的三角函数值以及二次根式的性质、负指数幂的性质分别化简得出答案.【解答】解:原式===.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,并利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】以AC为边、点A为顶点,作一个角等于∠B,角的另一条边与BC的交点即为所求.【解答】解:如图所示,点P即为所求.【点评】本题主要考查作图﹣相似变换,解题的关键是掌握相似三角形的判定与性质及作一个角等于已知角的尺规作图.18.【分析】(1)由“从不使用”的人数及其对应百分比求得总人数,继而用“经常使用”的人数除以总人数可得m的值;(2)根据各类别人数之和等于总人数求得“偶尔使用”的人数即可补全条形图;(3)根据众数的定义求解可得;(4)用总人数乘以样本中“经常使用”的人数对应的百分比可得.【解答】解:(1)∵被调查的学生总人数为25÷25%=100(人),∴经常使用的人数对应的百分比m=×100%=15%,故答案为:15%;(2)偶尔使用的人数为100﹣(25+15)=60(人),补全条形统计图如下:(3)∵偶尔使用的人数最多,∴这次调查结果的众数是偶尔使用,故答案为:偶尔使用;(4)估计“经常使用”共享单车的学生大约有3000×15%=450(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.【点评】此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定和性质解答.20.【分析】利用△CDF∽△ABF及△EGH∽△ABH得到相关比例式,求得BD的值,进而代入和AB有关的比例式,求得AB的值即可.【解答】解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.【点评】考查相似三角形的应用;利用相似三角形的知识得到BD的长是解决本题的关键.21.【分析】(1)根据两种计费方式收费标准列式计算,即可求出结论;(2)根据时间段,由计费相等,即可得出关于t的一元一次方程,解之即可得出结论;(3)根据t>150,列方式一和方式二收费相等、大于、小于三种情况可得结论.【解答】解:(1)当t=90时,按方式一计费:49元,按方式二计费:69元,故答案为:49,69;(2)当100<t≤150时,方式一收费为:49+0.20(t﹣100),方式二收费为:69元,由题意得:49+0.20(t﹣100)=69,解得:t=200,∵200>150,∴不存在这样的时间t,使两种计费方式相等;(3)当t>150时,方式一收费为:49+0.20(t﹣100)=0.2t+29,方式二收费为:69+0.15(t﹣150)=0.15t+46.5,0.2t+29=0.15t+46.5,t=350,0.2t+29>0.15t+46.5,t>350,0.2t+29<0.15t+46.5,t<350,答:当150<t<350时,选择方式一省钱,当t=350时,两种计费方式相同,当t>350时,选择方式二省钱.【点评】本题考查了一元一次方程及不等式的应用,列代数式表示数的运用,整式的加减的运用,一元一次方程的运用,解答时确定两种计费方式的式子是解本题的关键.22.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能性结果数,再找出满足条件的结果数,然后根据概率公式求解.【解答】解:(1)∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,∴P(恰好选中乙同学)=;(2)画树状图得:∵所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率23.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,可得x2+62=(x+8)2﹣102,解方程即可解决问题.【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)解:连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,∴x2+62=(x+8)2﹣102,解得x=,∴BC==.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用x1,t=﹣2,即可得出直线QH过定点(0,﹣2).待定系数法和韦达定理可求得a=x2﹣【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,x1)=ka,∴y2﹣y1=a(x1+x2),即k(x2﹣x1,∴a=x2﹣∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.25.【分析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(2)证△ABC∽△FBO得=,结合AB=2BO即可得;(3)证ECD∽△EGC得=,根据CE=3,DG=2.5知=,解之可得.【解答】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴=,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴=,∵CE=3,DG=2.5,∴=,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点评】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.。

2020届陕西省西安市雁塔区益新中学中考数学三模试卷(含解析)

2020届陕西省西安市雁塔区益新中学中考数学三模试卷(含解析)

2020届陕西省西安市雁塔区益新中学中考数学三模试卷一、选择题(本大题共10小题,共30.0分)1.设a、b互为相反数,c、d互为倒数,则2013(a+b)−cd的值是()A. 2013B. 0C. −1D. 20122.如图是由5个相同的小立方体搭成的一个几何体,从左面看这个几何体,看到的形状图是()A.B.C.D.3.下列说法中错误的是()A. (3.14−π)0=1B. 若x2+1x2=9,则x+1x=±3C. a−n(a≠0)是a n的倒数D. 若a m=2,a n=3,则a m+n=64.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE//BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A. 5B. 6C. 7D. 85.如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C,则下列结论正确的个数有()①∠AOB+∠BOC=45°;②|BC|=2AB;|OB|2③|OB|2=10|AB|2;④|OC|2=85A. 1个B. 2个C. 3个D. 4个6.如图,△ABC中,AC=BC,AD⊥BC,BE⊥AC,AD.BE交于F,则图中全等的三角形有()对A. 2对B. 3对C. 4对D. 5对7.在平面直角坐标系中,点A的坐标为(1,1),在坐标轴上找到一点P,使△AOP为等腰三角形,这样的点P个数为()A. 8个B. 7个C. 6个D. 5个8.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为ED的最小值为()CD上一点,CF=2,连接EF,ED,则EF+12A. 6√2B. 4C. 4√2D. 69.如图,已知正方形ABCD的边长为a,以各边为直径在正方形内画半圆.则阴影部分的面积()A. B. (2−)πa2 C. a2 D. a2π/2−a210.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=−1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①c>0;②−3<x2<−2;③a+b+c<0;④b2−4ac>0;⑤已知图象上点A(4,y1),B(1,y2),则y1>y2.其中,正确结论的个数有()A. 5B. 4C. 3D. 2二、填空题(本大题共4小题,共12.0分)11.在实数范围内分解因式:x3−2x=______.12.一个多边形的内角和为2700°,那么该图形是______边形.13.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=6的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折x到△B′DE处,点B′恰好落在正比例函数y=kx图象上,则k的值是______.14.若tanα=1,则sinα=______ .2三、解答题(本大题共11小题,共88.0分))−1−√2⋅cos45∘+3×(2009−π)0;15.(1)计算:(−12(2)请从下列三个代数式中任选两个构造一个分式,并化简该分式.a2−1,ab−b,b+ab.16.阅读下列材料:方程x+1x =2+12有两个解,它们是x1=2,x2=12;关于x的方程:x+1x =c+1c有两个解,它们是x1=c,x2=1c;x−1x =c−1c(即x+−1x=c+−1c)的解是x1=c,x2=−1c;x+2x =c+2c的解是x1=c,x2=2c;x+3x =c+3c的解是x1=c,x2=3c;…(1)请观察上述方程与解的特征,比较关于x的方程x+mx =c+mc(m≠0)与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:x+2x−1=a+2a−1.17.如图11,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF。

2020届陕西省中考数学模拟试卷(有答案)(Word版)(已审阅)

2020届陕西省中考数学模拟试卷(有答案)(Word版)(已审阅)

陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:21()12--==( ) A .54-B .14-C .34- D .0 【答案】C . 【解析】 试题分析:原式=14﹣1=34-,故选C . 考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B . 【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B . 考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8 C .﹣2 D .﹣8 【答案】A . 【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上,若∠1=25°,则∠2的大小为( )A .55°B .75°C .65°D .85°【答案】C . 【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a ∥b ,∴∠2=∠3=65°.故选C .考点:平行线的性质. 5.化简:x xx y x y--+,结果正确的是( ) A .1 B .2222x y x y +- C . x y x y-+ D .22x y + 【答案】B . 【解析】试题分析:原式=2222x xy xy y x y +-+- =2222x y x y +-.故选B .考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△A ′B ′C ′拼在一起,其中点A ′与点A 重合,点C ′落在边AB 上,连接B ′C .若∠ACB =∠AC ′B ′=90°,AC =BC =3,则B ′C 的长为( )A .33B .6C . 32D 21 【答案】A . 【解析】试题分析:∵∠ACB =∠AC ′B ′=90°,AC =BC =3,∴AB 22AB BC +=32CAB =45°,∵△ABC和△A ′B ′C ′大小、形状完全相同,∴∠C ′AB ′=∠CAB =45°,AB ′=AB =32,∴∠CAB ′=90°,∴B ′C 22'CA B A +33A . 考点:勾股定理.7.如图,已知直线l 1:y =﹣2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2【答案】D.【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB =AB ,则P A 的长为( )A .5B .532C . 52D .53 【答案】D . 【解析】试题分析:连接OA 、OB 、OP ,∵∠C =30°,∴∠APB =∠C =30°,∵PB =AB ,∴∠P AB =∠APB =30° ∴∠ABP =120°,∵PB =AB ,∴OB ⊥AP ,AD =PD ,∴∠OBP =∠OBA =60°,∵OB =OA ,∴△AOB 是等边三角形,∴AB =OA =5,则Rt △PBD 中,PD =cos30°•PB =32×5=532,∴AP =2PD =53,故选D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线224y x mx =--(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若点M ′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20) 【答案】C . 【解析】试题分析:224y x mx =--=22()4x m m ---,∴点M (m ,﹣m 2﹣4),∴点M ′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m =±2.∵m >0,∴m =2,∴M (2,﹣8).故选C . 考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣5,﹣3,0,π,6中,最大的一个数是 . 【答案】π. 【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.317tan38°15′≈.(结果精确到0.01)【答案】A.64°;B.2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A,B两点分别在反比例函数3myx=(m≠0)和25myx-=(m≠52)的图象上,若点A与点B 关于x轴对称,则m的值为.【答案】1.【解析】试题分析:设A(a,b),则B(a,﹣b),依题意得:325mbamba⎧=⎪⎪⎨-⎪-=⎪⎩,所以325m ma+-=0,即5m﹣5=0,解得m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.【答案】18. 【解析】∴四边形ABCD 的面积=正方形AMCN 的面积; 由勾股定理得:AC 2=AM 2+MC 2,而AC =6; ∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分)15.计算:11(2)6|32|()2---. 【答案】33- 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式=12232+=233-=33- 考点:二次根式的混合运算;负整数指数幂. 16.解方程:32133x x x +-=-+. 【答案】x =﹣6.【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.试题解析:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.考点:解分式方程.17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【答案】作图见解析.【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A 处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD 中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24tan23o o,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;(2)由题意得,7500x+6800≥100000,∴x≥4415,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316.【解析】(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:3 16.考点:列表法与树状图法;概率公式.23.如图,已知⊙O的半径为5,P A是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC的长;(2)求证:BC∥P A.【答案】(1)53;(2)证明见解析.【解析】在Rt△ODA中,AD=OA•sin6053,∴AC=2AD=53;(2)∵AC⊥PB,∠P=30°,∴∠P AC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠P AC=∠BCA,∴BC∥P A.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q 四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.»AB于点E,如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【答案】(1)43;(2)PQ =122;(3)喷灌龙头的射程至少为19.71米.【解析】试题分析:(1)构建Rt △AOD 中,利用cos ∠OAD =cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,由勾股定理解得:r =13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论. 试题解析:(1)如图1,过O 作OD ⊥AC 于D ,则AD =12AC =12×12=6,∵O 是内心,△ABC 是等边三角形,∴∠OAD =12∠BAC =12×60°=30°,在Rt △AOD 中,cos ∠OAD =cos30°=AD OA,∴OA =6÷32=43,故答案为:43;(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴12AB •MN =96,12×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC AD MN AN =,∴12818DC ,∴DC =163,∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交»AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在»AB 上任取一点异于点F 的点G ,连接GO ,GM ,∴MF =OM +OF =OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3,∴OM 22MH OH +2236+=35,∴MF=OM+r=35+13≈19.71(米).答:喷灌龙头的射程至少为19.71米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。

2020年陕西省西安市 益新中学中考数学二模试卷 解析版

2020年陕西省西安市 益新中学中考数学二模试卷 解析版

2020年陕西省西安市雁塔区益新中学中考数学二模试卷一.选择题(共10小题)1.20160的值为()A.0B.1C.2016D.﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为()A.B.C.D.3.如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A.30°B.45°C.60°D.90°4.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2B.8C.﹣2D.﹣85.下列计算结果正确的是()A.6x6÷2x3=3x2B.x2+x2=x4C.﹣2x2y(x﹣y)=﹣2x3y+2x2y2D.(﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37.将直线y=2x+1向下平移n个单位长度得到新直线y=2x﹣1,则n的值为()A.﹣2B.﹣1C.1D.28.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.9.如图,已知∠OBA=20°,且OC=AC,则∠BOC的度数是()A.70°B.80°C.40°D.60°10.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x﹣1013y﹣3131下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共4小题)11.在实数,﹣(﹣1),,,313113113,中,无理数有个.12.若正六边形的边长为3,则其面积为.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.三.解答题(共11小题)15.先化简,再求值:,其中.16.计算:﹣()﹣1﹣||17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE ∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED =1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF=,求OA的长.24.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.25.问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.参考答案与试题解析一.选择题(共10小题)1.20160的值为()A.0B.1C.2016D.﹣2016【分析】直接利用零指数幂的性质得出答案.【解答】解:20160=1.故选:B.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图为,故选:A.3.如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A.30°B.45°C.60°D.90°【分析】先根据两角互补的性质得出∠CFE的度数,再由平行线的性质即可得出结论.【解答】解:∵∠DFE=135°,∴∠CFE=180°﹣135°=45°,∵AB∥CD,∴∠ABE=∠CFE=45°.故选:B.4.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2B.8C.﹣2D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴正比例函数解析式为:y=﹣2x,将B(m,﹣4)代入y=﹣2x,可得:﹣2m=﹣4,解得m=2,故选:A.5.下列计算结果正确的是()A.6x6÷2x3=3x2B.x2+x2=x4C.﹣2x2y(x﹣y)=﹣2x3y+2x2y2D.(﹣3xy2)3=﹣9x3y6【分析】计算出各个选项中式子的正确结果然后对照即可解答本题.【解答】解:∵6x6÷2x3=3x3,故选项A错误;∵x2+x2=2x2,故选项B错误;∵﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;∵(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.3【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2,故选:A.7.将直线y=2x+1向下平移n个单位长度得到新直线y=2x﹣1,则n的值为()A.﹣2B.﹣1C.1D.2【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知:直线y=2x+1向下平移n个单位长度,得到新的直线的解析式是y=2x+1﹣n,则1﹣n=﹣1,解得n=2.故选:D.8.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.【分析】过点D作DG⊥BE,垂足为G,则GD=3,首先证明△AEB≌△GED,由全等三角形的性质可得到AE=EG,设AE=EG=x,则ED=4﹣x,在Rt△DEG中依据勾股定理列方程求解即可.【解答】解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.9.如图,已知∠OBA=20°,且OC=AC,则∠BOC的度数是()A.70°B.80°C.40°D.60°【分析】连接OA,如图,先判断△OAC为等边三角形得到∠OAC=60°,再利用等腰三角形的性质得到∠OAB=∠OBA=20°,则∠BAC=40°,然后根据圆周角定理得到∠BOC的度数.【解答】解:连接OA,如图,∵OC=AC=OA,∴△OAC为等边三角形,∴∠OAC=60°,∵OB=OA,∴∠OAB=∠OBA=20°,∴∠BAC=60°﹣20°=40°,∴∠BOC=2∠BAC=80°.故选:B.10.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x﹣1013y﹣3131下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x==,再由图象中的数据可以得到当x=取得最大值,从而可以得到函数的开口向下以及得到函数当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,然后跟距x=0时,y=1,x=﹣1时,y=﹣3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,从而可以解答本题.【解答】解:由表格可知,二次函数y=ax2+bx+c有最大值,当x==时,取得最大值,∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=,故②错误,当x<时,y随x的增大而增大,故③正确,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于=3,小于3+1=4,故④错误,故选:B.二.填空题(共4小题)11.在实数,﹣(﹣1),,,313113113,中,无理数有2个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:在所列实数中,无理数有,这2个,故答案为:2.12.若正六边形的边长为3,则其面积为9.【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【解答】解:∵此多边形为正六边形,∴∠AOB==60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×=,∴S△OAB=×AB×OG=×3×=,∴S六边形=6S△OAB=6×=9.故答案为:9.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为6+2.【分析】设E(x,x),则B(2,x+2),根据反比例函数系数的几何意义得出x2=2(x+2),求得E 的坐标,从而求得k的值.【解答】解:设E(x,x),∴B(2,x+2),∵反比例函数y=(k≠0,x>0)的图象过点B、E.∴x2=2(x+2),解得x1=1+,x2=1﹣(舍去),∴k=x2=6+2,故答案为6+2.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为4﹣4.【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D 的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故答案为:4﹣4.三.解答题(共11小题)15.先化简,再求值:,其中.【分析】先通分计算括号里的,再算括号外的,最后把a的值代入计算即可.【解答】解:原式===,当时,原式==.16.计算:﹣()﹣1﹣||【分析】直接利用算术平方根的定义、绝对值的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣(﹣1)=2﹣2﹣+1=﹣1.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为2cm.【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形,然后连接AC,则△CAB 满足条件;(2)利用△OAB为等边三角形可确定等腰△ABC的外接圆的半径.【解答】解:(1)如图,△ABC为所作;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2故答案为2.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【分析】根据平行四边形的判定得出四边形是平行四边形,根据直角三角形上的中线得出CD=BD,根据菱形的判定得出即可.【解答】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形.∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【解答】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×=432(人).20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED =1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;【分析】根据题意得出△ABF∽△GHF,利用相似三角形的性质得出AB,BC的长进而得出答案.【解答】解:设AB=x米,BC=y米.∵∠ABC=∠EDC=90°,∠ACB=∠ECD∴△ABC∽△EDC∴=,∴=,∵∠ABF=∠GHF=90°,∠AFB=∠GFH,∴△ABF∽△GHF,∴=,∴=,∴=,解得:y=20,把y=20代入=中,得x=15,∴树的高度AB为15米.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度﹣6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度﹣34℃代入一次函数求得x.【解答】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965kmy=20﹣6×0.965=14.21(℃).答:这时山顶的温度大约是14.21℃.(3)由题意得,y=﹣34℃时,﹣34=20﹣6x,解得x=9km.答:飞机离地面的高度为9千米.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【解答】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF=,求OA的长.【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论..【解答】解:(1)连接OE,∴∠AOE=2∠ACE,∵∠B=2∠ACE,∴∠AOE=∠B,∵∠P=∠BAC,∴∠ACB=∠OEP,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OEP=90°,∴PE是⊙O的切线;(2)∵OA=OE,∴∠OAE=∠OEA,∵AE=EF,∴∠EAF=∠AFE,∴∠OAE=∠OEA=∠EAF=∠AFE,∴△AEF∽△AOE,∴,∵AF=2,AE=EF=,∴OA=5.24.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.【分析】(1)把点A、B、D的坐标代入二次函数表达式,即可求解;(2)①过点C作CE∥AD交抛物线于点E,则△ADE与△ACD面积相等;②过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,分别求解即可.(3)分△ACH∽△CPQ、△ACH∽△PCQ两种情况,求解即可.【解答】解:(1)把点A、B、D的坐标代入二次函数表达式得:,解得:,则抛物线的表达式为:y=﹣x2﹣2x+3…①,函数的对称轴为:x=﹣=﹣1,则点C的坐标为(﹣1,4);(2)过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=﹣3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=﹣1+n,解得:n=5,则直线CE的表达式为:y=x+5…②,则点H的坐标为(0,5),联立①②并解得:x=﹣1或﹣2(x=1为点C的横坐标),即点E的坐标为(﹣2,3);在y轴取一点H′,使DH=DH′=2,过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,同理可得直线E′E″的表达式为:y=x+1…③,联立①③并解得:x=,则点E″、E′的坐标分别为(,)、(,),点E的坐标为:(﹣2,3)或(,)或(,);(3)设:点P的坐标为(m,n),n=﹣m2﹣2m+3,把点C、D的坐标代入一次函数表达式:y=kx+b得:,解得:,即直线CD的表达式为:y=﹣x+3…④,直线AD的表达式为:y=x+3,直线CD和直线AD表达式中的k值的乘积为﹣1,故AD⊥CD,而直线PQ⊥CD,故直线PQ表达式中的k值与直线AD表达式中的k值相同,同理可得直线PQ表达式为:y=x+(n﹣m)…⑤,联立④⑤并解得:x=,即点Q的坐标为(,),则:PQ2=(m﹣)2+(n﹣)==(m+1)2•m2,同理可得:PC2=(m+1)2[1+(m+1)2],AH=2,CH=4,则AC=2,当△ACH∽△CPQ时,==,即:4PC2=5PQ2,整理得:3m2+16m+16=0,解得:m=﹣4或﹣,点P的坐标为(﹣4,﹣5)或(﹣,);当△ACH∽△PCQ时,同理可得:点P的坐标为(﹣,)或(2,﹣5),故:点P的坐标为:(﹣4,﹣5)或(﹣,)或(﹣,)或(2,﹣5).25.问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB>∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小.(2)当点P位于CD的中点时,利用外角性质解答即可;(3)过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,根据线段之间的关系解答即可.【解答】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为:>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2020年陕西省西安市雁塔区中考数学模拟试卷注意事项:答题前填写好自己的姓名、班级、考号等信息请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一.选择题(共10小题,满分30分,每小题3分)1.﹣2的绝对值是()A.2B.C.D.12.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4C.3a+2a=5a2D.(a2b)3=a2•b34.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为()A.3B.﹣3C.12D.﹣126.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.在同一平面直角坐标系中,直线y=2x+3与y=2x﹣5的位置关系是()A.平行B.相交C.重合D.垂直8.如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG 全等时,⊙O的半径为()A.B.C.D.9.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为()A.1B.1.5C.2D.2.510.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0B.1C.2D.3二.填空题(共4小题,满分12分,每小题3分)11.不等式﹣9+3x≤0的非负整数解的和为.12.如果3sinα=+1,则∠α=.(精确到0.1度)13.如图,在平面直角坐标系中,直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为.14.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、y 轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是.三.解答题(共11小题)15.计算:+tan60°﹣(sin45°)﹣1﹣|1﹣|16.计算:+17.已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)18.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.19.如图,在▱CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.20.如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)22.汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完..........,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?23.如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT =,求⊙O的直径AB和弦BC的长.24.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x 轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.25.如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC=∠ABD=30°.(1)求证:△BCD是等边三角形;(2)求证:AE是⊙O的切线;(3)若CE=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:﹣2的绝对值是2﹣.故选:A.【点评】本题考查了实数的性质,差的绝对值是大数减小数.2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、合并同类项系数相加字母及指数不变,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.4.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.5.【分析】先利用待定系数法求出y=﹣3x,然后计算x=1对应的函数值.【解答】解:设y=kx,∵当x=2时,y=﹣6,∴2k=﹣6,解得k=﹣3,∴y=﹣3x,∴当x=1时,y=﹣3×1=﹣3.故选:B.【点评】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx(k ≠0),然后把一个已知点的坐标代入求出k即可.6.【分析】根据等腰三角形的性质得到∠BAD=∠CAD=20°,∠ABC=∠ACB,根据三角形内角和定理求出∠ACB,根据角平分线的定义计算即可.【解答】解:∵AB=AC,AD是△ABC的中线,∴∠BAD=∠CAD=20°,∠ABC=∠ACB,∴∠ACB==70°,∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°,故选:B.【点评】本题考查的是等腰三角形的性质,三角形的中线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.7.【分析】根据直线y=2x+3与y=2x﹣5中的k都等于2,于是得到结论.【解答】解:∵直线y=2x+3与y=2x﹣5的k值相等,∴直线y=2x+3与y=2x﹣5的位置关系是平行,故选:A.【点评】本题考查了两条直线相交或平行问题,知道两直线的k值相等时两直线平行是解题的关键.8.【分析】根据全等三角形的性质得到BF=DF,根据矩形的性质得到∠A=90°,根据勾股定理得到AF=4,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,根据相似三角形的性质得到OH=,根据勾股定理列方程即可得到结论.【解答】解:∵△ABF与△DFG全等,∴BF=DF,∵AD=9,∴BF=9﹣AF,∵四边形ABCD是矩形,∴∠A=90°,∴AB2+AF2=BF2,即32+AF2=(9﹣AF)2,解得:AF=4,∵AE=1,∴EF=3,DE=8,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,∴FH=1,∵∠A=∠OHF=90°,∠AFB=∠OFH,∴△ABF∽△HOF,∴,即,∴OH=,在Rt△ODH中,OD==,故选:B.【点评】本题考查了矩形的性质,全等三角形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.9.【分析】由OD⊥BC,根据垂径定理,可得CD=BD,即可得OD是△ABC的中位线,则可求得OD的长.【解答】解:∵OD⊥BC,∴CD=BD,∵OA=OB,AC=4∴OD=AC=2.故选:C.【点评】此题考查了垂径定理以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.10.【分析】利用题意画出二次函数的大致图象,利用对称轴的位置得到﹣>,则可对①进行判断;利用a<0,b>0,c>0可对②进行判断;由a﹣b+c=0,即b=a+c,则4a+2(b+c)+c>0,所以2a+c>0,变形b2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),则可对③进行判断.【解答】解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=﹣>,∴b>﹣a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴﹣a+b+c>0,所以②正确;∵a﹣b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),而2a+c>0,2a﹣c<0,∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共4小题,满分12分,每小题3分)11.【分析】根据不等式的性质求出不等式的解集,找出不等式的非负整数解相加即可.【解答】解:﹣9+3x≤0,3x≤9,∴x≤3,∴不等式﹣9+3x≤0的非负整数解有0,1,2,3,即0+1+2+3=6.故答案为:6.【点评】本题主要考查对解一元一次不等式,不等式的性质,一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式的非负整数解是解此题的关键.12.【分析】根据计算器可以计算出∠α的度数,从而可以解答本题.【解答】解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.【点评】本题考查计算器﹣三角函数,解答本题的关键是会用计算器求三角函数的值.13.【分析】根据“直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO 的平行线交双曲线于点B”,得到BC的解析式,根据“OD=4,OC=2,BC∥AO”,得到△BCD~△AOD,结合点A和点B的坐标,根据点A和点B都在双曲线上,得到关于m 的方程,解之,得到点A的坐标,即可得到k的值.【解答】解:∵OA的解析式为:y=,又∵AO∥BC,点C的坐标为:(0,2),∴BC的解析式为:y=,设点B的坐标为:(m,m+2),∵OD=4,OC=2,BC∥AO,∴△BCD~△AOD,∴点A的坐标为:(2m,m),∵点A和点B都在y=上,∴m()=2m•m,解得:m=2,即点A的坐标为:(4,),k=4×=,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题,正确掌握代入法和三角形相似的判定定理是解题的关键.14.【分析】利用等边三角形的性质得出C点位置,进而求出OC的长.【解答】解:如图所示:过点C作CE⊥AB于点E,当点C,O,E在一条直线上,此时OC最短,∴△ABC是等边三角形,∴CE过点O,E为BD中点,则此时EO=AB=1,故OC的最小值为:OC=CE﹣EO=BC sin60°﹣×AB=﹣1.故答案为:﹣1.【点评】此题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.三.解答题(共11小题)15.【分析】将特殊锐角的三角函数值代入,同时化简二次根式、计算绝对值,再进一步计算可得.【解答】解:原式=3+﹣()﹣1﹣(﹣1)=3+﹣﹣+1=2+1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及特殊锐角的三角函数值.16.【分析】原式先计算除法运算,再计算加减运算即可求出值.【解答】解:原式=+•=+=+=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】根据三角形相似的作图解答即可.【解答】解:如图,直线BD即为所求.【点评】此题主要考查相似图形的作法,关键是根据三角形相似的作图.18.【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【解答】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为:1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×=300(人),故答案为:300.【点评】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.19.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.【点评】此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定以及菱形的判定解答.20.【分析】(1)如图1,先证明△APM∽△ABD,利用相似比可得AP=AB,再证明△BQN∽△BAC,利用相似比可得BQ=AB,则AB+12+AB=AB,解得AB=18(m);(2)如图1,他在路灯A下的影子为BN,证明△NBM∽△NAC,利用相似三角形的性质得=,然后利用比例性质求出BN即可.【解答】解:(1)如图1,∵PM∥BD,∴△APM∽△ABD,=,即=,∴AP=AB,∵NQ∥AC,∴△BNQ∽△BCA,∴=,即=,∴BQ=AB,而AP+PQ+BQ=AB,∴AB+12+AB=AB,∴AB=18.答:两路灯的距离为18m;(2)如图1,他在路灯A下的影子为BN,∵BM∥AC,∴△NBM∽△NAC,∴=,即=,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.【点评】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.21.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W 的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.【点评】此题考查了一元一次方程的应用,以及一次函数的应用,弄清题中的等量关系是解本题的关键.22.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.【解答】解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】连接AC,如图所示,由AT与圆O相切,得到BA垂直于AT,在直角三角形ABT中,利用锐角三角函数定义求出AB的长,根据AB为圆O的直径,利用直径所对的圆周角为直角得到∠ACB=90°,在直角三角形ABC中,利用锐角三角函数定义即可求出BC 的长.【解答】解:连接AC,如图所示:∵直线AT切⊙O于点A,∴∠BAT=90°,在Rt△ABT中,∠B=30°,AT=,∴tan30°=,即AB==3;∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,AB=3,∴cos30°=,则BC=AB•cos30°=.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.24.【分析】(1)由y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x2+2x+3=0,求得点B的坐标,然后设直线BC的解析式为y=kx+b′,由待定系数法即可求得直线BC的解析式,再设P(a,3﹣a),即可得D(a,﹣a2+2a+3),即可求得PD的长,由S△BDC =S△PDC+S△PDB,即可得S△BDC=﹣(a﹣)2+,利用二次函数的性质,即可求得当△BDC的面积最大时,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:,解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴, 解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC=90°,∴NQ=CM,∴4NQ2=CM2,∵NQ2=(1﹣)2+(n﹣)2,∴4[=(1﹣)2+(n﹣)2]=m2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,当n=上,M最小值=﹣,n=4时,M最小值=5,综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.25.【分析】(1)由AB是⊙O的直径,M是CD的中点知AB⊥CD,BD=BC,结合∠ABD =∠ABC=30°,即∠CBD=60°即可得证;(2)先证AE∥CD,由AB⊥CD知AE⊥AB,据此即可得证;(3)由AB是直径知∠ACB=∠ACE=90°,由∠EAC=30°知AE=2CE=4,∠ABE=30°知BE=2AE=8,根据勾股定理可得直径AB的长,从而得出答案.【解答】证明:(1)∵AB是⊙O的直径,M是CD的中点,∴AB⊥CD,∴BD=BC,∴∠ABD=∠ABC=30°,即∠CBD=60°,∴△BCD是等边三角形;(2)∵∠EAC=∠ABD,∠ABD=∠ACD,∴∠EAC=∠ACD,∴AE∥CD,由(1)知AB⊥CD,∴AE⊥AB,∵点A在⊙O上,∴∴AE是⊙O的切线;(3)∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,∵∠EAC=30°,∴AE=2CE=4,在Rt△EAB中,∠ABE=30°,∴BE=2AE=8,∴AB===4,∴⊙O的半径为2.【点评】本题是圆的综合问题,解题的关键是掌握等边三角形的判定、圆心角定理、圆周角定理和勾股定理等知识.。

相关文档
最新文档