(完整版)广东中考数学省卷压轴题汇总

合集下载

专题02 【五年中考+一年模拟】选择压轴题-备战2023年广东中考数学真题模拟题分类汇编(原卷版)

专题02 【五年中考+一年模拟】选择压轴题-备战2023年广东中考数学真题模拟题分类汇编(原卷版)

专题02 选择压轴题1.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2C r p =.下列判断正确的是( )A .2是变量B .p 是变量C .r 是变量D .C 是常量2.(2021•广东)设O 为坐标原点,点A 、B 为抛物线2y x =上的两个动点,且OA OB ^.连接点A 、B ,过O 作OC AB ^于点C ,则点C 到y 轴距离的最大值( )A .12B C D .13.(2020•广东)如图,抛物线2y ax bx c =++的对称轴是直线1x =,下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A .4个B .3个C .2个D .1个4.(2019•广东)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点N 、K :则下列结论:①ANH GNF D @D ;②AFN HFG Ð=Ð;③2FN NK =;④:1:4AFN ADM S S D D =.其中正确的结论有( )A .1个B .2个C .3个D .4个5.(2018•广东)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A B C D ®®®路径匀速运动到点D ,设PAD D 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .6.(2022•东莞市一模)如图,已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②420a b c ++>;③b a c ->;④若1(2B -,1)y ,3(2C ,2)y 为函数图象上的两点,则12y y >;⑤()(1a b m am b m +>+¹的实数).其中正确结论的个数是( )A .1B .2C .3D .47.(2022•东莞市校级一模)如图,对称轴为2x =的抛物线2(0)y ax bx a =+¹与x 轴交于原点O 与点A ,与反比例函数(0)b y x x =>交于点B ,过点B 作x 轴的平行线,交y 轴于点C ,交反比例函数ay x=于点D ,连接OB 、OD .则下列结论中:①0ab >; ②方程20ax bx +=的两根为0和4;③30a b +<; ④tan 4tan BOC CODÐ=Ð正确的有( )A .0个B .1个C .2个D .3个8.(2022•东莞市一模)如图,在四边形ABCD 中,//AD BC ,90D Ð=°,5AB BC ==,4tan 3A =.动点P 沿路径A B C D ®®®从点A 出发,以每秒1个单位长度的速度向点D 运动.过点P 作PH AD ^,垂足为H .设点P 运动的时间为x (单位:)s ,APH D 的面积为y ,则y 关于x 的函数图象大致是( )A .B .C .D .9.(2022•东莞市一模)观察规律111111111,,12223233434=-=-=-´´´,¼,运用你观察到的规律解决以下问题:如图,分别过点(n P n ,0)(1n =、2、)¼作x 轴的垂线,交2(0)y ax a =>的图象于点n A ,交直线y ax =-于点.n B 则1122111n nA B A B A B ++¼+的值为( )A .(1)n a n -B .2(1)a n -C .2(1)a n n +D .(1)n a n +10.(2022•东莞市校级一模)如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,把线段AB 以A 为旋转中心,逆时针方向旋转90°,得到线段AC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .11.(2022•东莞市一模)若33a -<…,则关于x 的方程2x a +=解的取值范围为( )A .15x -<…B .11x -<…C .11x -<…D .15x -<…12.(2022•东莞市校级一模)如图,在平面直角坐标系中,直线V x =与双曲线1y x=交于A 、B 两点,P 是以点(4,0)C -为圆心,半径长为1的圆上一动点,连接AP ,M 为AP 的中点.则线段OM 长度最大值为( )A .2B .1C D13.(2022•东莞市一模)如图,矩形ABCD 中,E 在AC 上运动,EF AB ^,2AB =,BC =,求BF BE +的最小值( )A .B .C .3D .14.(2022•东莞市一模)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,对称轴为12x =-,下列结论中,正确的是( )A .abc o >B .240b ac -<C .20b c +>D .420a b c -+<15.(2022•中山市一模)如图,二次函数2(0)y ax bx c a =++¹的图象经过点(1,2)-,且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③0abc >;④284b a ac +>.其中正确的是( )A .①②③B .①③④C .②③④D .①②③④16.(2022•中山市二模)如图,抛物线2y ax bx c =++经过点(1,0)-,l 是其对称轴,则下列结论:①0abc >; ②0a b c -+=;③20a b +>; ④20a c +<;其中正确结论的个数为( )A .1B .2C .3D .417.(2022•中山市模拟)如图,已知正ABC D 的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE BF CG ==,设EFG D 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A .B .C .D .18.(2022•中山市一模)定义新运算“※”:对于实数m ,n ,p ,q .有[m ,]p ※[q ,]n mn pq =+,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]253422=´+´=.若关于x 的方程2[1x +,]x ※[52k -,]0k =有两个实数根,则k 的取值范围是( )A .54k <且0k ¹B .54k …C .54k …且0k ¹D .54k …19.(2022•中山市校级一模)已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:x1-0234y54-3-0下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若1(A x ,2),2(B x ,3)是抛物线上两点,则12x x <,其中正确的个数是( )A .2B .3C .4D .520.(2022•中山市三模)如图,在平行四边形ABCD 中,2AB AD =,M 为AB 的中点,连接DM ,MC ,BD .下列结论中:①DM MC ^;②34ADM CDN S S D D=;③当DM DA =时,DMN CBN D @D ;④当45DNM Ð=°时,tan A Ð=.其中正确的结论是( )A .①②③B .①③④C .①②④D .①②③④21.(2022•中山市三模)如图,在平面直角坐标系中,ABC D 的边AB x ^轴,(2,0)A -,(4,1)C -,二次函数223y x x =--的图象经过点B .将ABC D 沿x 轴向右平移(0)m m >个单位,使点A 平移到点A ¢,然后绕点A ¢顺时针旋转90°,若此时点C 的对应点C ¢恰好落在抛物线上,则m的值为( )A1+B3+C 2+D .1+22.(2022•珠海二模)如图,已知点A 2),(0,1)B ,射线AB 绕点A 逆时针旋转30°,与x 轴交于点C ,则过A ,B ,C 三点的二次函数21y ax bx =++中a ,b 的值分别为( )A .2a =,b =B .12a =,b =C .3a =,b =D .13a =-,b =23.(2022•香洲区校级一模)如图,二次函数221y x x m =-+++的图象交x 轴于点(,0)A a 和(,0)B b ,交y 轴于点C ,图象的顶点为D .下列四个命题:①当0x >时,0y >;②若1a =-,则4b =;③点C 关于图象对称轴的对称点为E ,点M 为x 轴上的一个动点,当2m =时,MCE D 周长的最小值为④图象上有两点1(P x ,1)y 和2(Q x ,2)y ,若121x x <<,且122x x +>,则12y y >,其中真命题的个数有( )A .1个B .2个C .3个D .4个24.(2022•香洲区校级一模)在正方形ABCD 中,2AB =,E 是BC 的中点,在BC 延长线上取点F 使EF ED =,过点F 作FG ED ^交ED 于点M ,交AB 于点G ,交CD 于点N ,以下结论中:①1tan 2GFB Ð=;②NM NC =;③12CM EG =;④GBEM S =四边形( )A .4个B .3个C .2个D .1个25.(2022•珠海一模)二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >;②20a b +=;③若m 为任意实数,则2a b am bm +>+;④0a b c -+>;⑤若221122ax bx ax bx +=+,且12x x ¹,则122x x +=.其中,正确结论的个数为( )A .1B .2C .3D .426.(2022•香洲区校级一模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC --运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1/cm 秒.设P 、Q 同时出发t 秒时,BPQ D 的面积为2ycm .已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①5AD BE ==;②3cos 5ABE Ð=;③当05t <…时,225y t =;④当294t =秒时,ABE QBP D D ∽;其中正确的结论是( )A .①②③B .②③C .①③④D .②④27.(2022•香洲区校级一模)已知菱形ABCD ,E 、F 是动点,边长为5,BE AF =,120BAD Ð=°,则下列结论正确的有几个( )①BEC AFC D @D ;②ECF D 为等边三角形;③AGE AFC Ð=Ð;④若2AF =,则23GF EG =.A .1B .2C .3D .428.(2022•香洲区一模)如图,点A 在x 轴上,点B ,C 在反比例函数(0,0)ky k x x=>>的图象上.有一个动点P 从点A 出发,沿A B C O ®®®的路线(图中“®”所示路线)匀速运动,过点P 作PM x ^轴,垂足为M ,设POM D 的面积为S ,点P 的运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .29.(2022•香洲区校级一模)已知抛物线2(0)y ax bx c a =++>,且12a b c ++=-,32a b c -+=-.判断下列结论:①0abc <;②220a b c ++<;③抛物线与x 轴正半轴必有一个交点;④当23x ……时,3y a =最小,其中正确结论的个数为( )A .1个B .2个C .3个D .4个30.(2022•香洲区校级一模)如图,抛物线221(y x x m m =-+++为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线221y x x m =-+++与直线2y m =+有且只有一个交点;②若点1(2,)M y -、点1(2N ,2)y 、点3(2,)P y 在该函数图象上,则123y y y <<;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为2(1)y x m =-++;④点A 关于直线1x =的对称点为C ,点D 、E 分别在x 轴和y 轴上,当1m =时,四边形BCDE 周长的最+其中正确的判断有( )A .①②③④B .②③④C .①③④D .①③31.(2022•澄海区模拟)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,下列结论:①20a b +=;②关于x 的不等式20ax bx c ++<的解集为12x -<<;③420a b c ++<;④80a c +<.其中正确结论的个数为( )32.(2022•潮南区模拟)如图,四边形ABCD 为正方形,CAB Ð的平分线交BC 于点E ,将ABE D 绕点B 顺时针旋转90°得到CBF D ,延长AE 交CF 于点G ,连接BG ,DG ,DG 与AC 相交于点H .有下列结论:①BE BF =;②ACF F Ð=Ð;③BG DG ^;④AE DH=( )A .①②B .②③C .①②③D .①②③④33.(2022•潮南区模拟)如图,二次函数2(0)y ax bx c a =++¹的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244a b ac +<,④30a c +<.正确的个数是( )A .1B .2C .3D .434.(2022•龙湖区一模)如图是抛物线2y ax bx c =++的部分图象,图象过点(3,0)对称轴为直线1x =,有下列四个结论:①0abc >;②0a b c -+=;③y 的最大值为3;④方程210ax bx c +++=有实数根;⑤40a c +<.其中,正确结论的个数是( )35.(2022•金平区一模)如图,已知二次函数2y x bx c =++,它与x 轴交于A 、B ,与y 的负半轴交于C ,顶点D 在第四象限,纵坐标为4-,则下列说法:①若抛物线的对称轴为1x =,则3c =-;②40b -<<;③AB 为定值;④8ABD S D =.其中正确的结论个数有( )A .4B .3C .2D .136.(2022•南海区一模)如图,菱形ABCD 的边长为2,60A Ð=°,点P 和点Q 分别从点B 和点C 出发,沿射线BC 向右运动,且速度相同,过点Q 作QH BD ^,垂足为H ,连接PH ,设点P 运动的距离为(02)x x <…,BPH D 的面积为S ,则能反映S 与x 之间的函数关系的图象大致为( )A .B .C .D .37.(2022•佛山二模)如图,抛物线2(0)y ax bx c a =++>与x 轴交于(3,0)A -、B 两点,与y 轴交于点C ,点(5,)m n -与点(3,)m n -也在该抛物线上.下列结论:①点B 的坐标为(1,0);②方程220ax bx c ++-=有两个不相等的实数根;③504a c +<;④当22x t =--时,y c >.正确的有( )A .1个B .2个C .3个D .4个38.(2022•禅城区校级一模)如图,二次函数2(0)y ax bx c a =++¹图象的对称轴为直线1x =-,下列结论:①0abc <;②20a b -=;③3a c <-;④若图象经过点(3,2)--,方程220ax bx c +++=的两根为1x ,212(||||)x x x <,则1225x x -=.其中结论正确的有( )个.A .1B .2C .3D .439.(2022•南海区二模)如图,正方形ABCD 中,点E 是边CD 上的动点(不与点C 、D 重合),以CE 为边向右作正方形CEFG ,连接AF ,点H 是AF 的中点,连接DH 、CH .下列结论:①ADH CDH D @D ;②AF 平分DFE Ð;③若4BC =,3CG =,则AF =④若12CG BC =,则12EFI DFI S S D D =.其中正确的有( )A .1个B .2个C .3个D .4个40.(2022•禅城区二模)如图,在ABCD Y 中,:2:3AE DE =,若AE 的长为4,AEF D 的面积为8,则下列结论:①10BC =;②AC BF BE CF ×=×;③四边形CDEF 的面积为62;④AD 与BC 之间的距离为14.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④41.(2022•顺德区一模)在ABC D 中,90BAC Ð=°,AB AC =,D 、E 是斜边BC 上两点,且45DAE Ð=°,将ADC D 绕点A 顺时针旋转90°得到AFB D ,连接EF .下列结论:①BE BF ^;②ABC D 的面积等于四边形AFBD 的面积;③当BE CD =时,线段DE 的长度最短.其中正确的个数是( )A .0个B .1个C .2个D .3个42.(2022•三水区一模)已知二次函数(1)()(0y a x x m a =+-¹,12)m <<,当1x <-时,y 随x 的增大而增大,则下列结论正确的是( )①当2x >时,y 随x 的增大而减小;②若图象经过点(0,1),则10a -<<;③若1(2022,)y -,2(2022,)y 是函数图象上的两点,则2l y y <;④若图象上两点11(,)4y ,21(,)4n y +对一切正数n ,总有12y y >,则312m <….A .①②B .①③C .①②③D .①③④43.(2022•南海区校级一模)设1k y x =,21(1)k y k x -=>,当24x ……时,函数1y 的最大值是a ,函数2y 的最小值是32a -,则(ak = )A .2B .4918C .329D .49844.(2022•湛江二模)如图,在矩形ABCD 中,6AB =,4BC =,点E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连接AP 并延长AP 交CD 于点F .下列结论中,正确的结论有( )个.①BP AP ^;②BP EC PC AB ×=×;③1312ABP PBCF S S D =四边形;④7sin 25PCF Ð=.A .4B .3C .2D .145.(2022•雷州市模拟)已知抛物线2y ax bx c =++的对称轴在y 轴右侧,该抛物线与x 轴交于点(3,0)A -和点B ,与y 轴的负半轴交于点C ,且3OB OC =.有下列结论:①0b c a +<;②3b ac =;③19a =;④23()2ABC S c c D =-.其中正确的有( )A .①②③B .①③④C .②③④D .①②④46.(2022•徐闻县模拟)如图,在Rt ABC D 中,90ACB Ð=°,10AB =,8AC =,E 是ABC D 边上一动点,沿A C B ®®的路径移动,过点E 作ED AB ^,垂足为D .设AD x =,ADE D 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .47.(2022•鹤山市一模)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()(1a b m am b m +>+¹的实数).其中正确的结论有( )A .2个B .3个C .4个D .5个48.(2022•开平市模拟)如图:在矩形ABCD 中,AD =,BAD Ð的平分线交BC 于点E ,DH AE ^于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,有下列结论:①AED CED Ð=Ð;②OE OD =;③BEH HDF D @D ;④2BC CF EH -=;⑤AB FH =.其中正确的结论有( )A .5个B .4个C .3个D .2个49.(2022•新会区模拟)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y (单位:)km 与慢车行驶时间t (单位:)h 的函数关系如图,则两车先后两次相遇的间隔时间是( )A .53hB .32hC .75hD .43h 50.(2022•蓬江区校级二模)如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为(1,1),1AA 是以点B 为圆心,BA 为半径的圆弧;12A A 是以点O 为圆心,1OA 为半径的圆弧,23A A 是以点C 为圆心,2CA 为半径的圆弧,34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述作法得到的曲线12345AA A A A A ¼称为正方形的“渐开线”,那么点2022A 的坐标是( )A .(2022,0)B .(0,2022)C .(2022,0)-D .(0,2022)-。

2024广东中考数学压轴题

2024广东中考数学压轴题

2024广东中考数学压轴题一、在直角坐标系中,抛物线y = ax2 + bx + c与x轴交于点A(-3,0)和B(1,0),且与y 轴交于点C(0,3)。

下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 抛物线的对称轴是直线x = -1(答案:D)二、已知三角形ABC的三边长为a,b,c,且满足a2 + b2 + c2 = 10a + 6b + 8c - 50。

则下列判断三角形ABC的形状中,正确的是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(答案:D)三、函数y = (x - 1)/(x + 2)中,当x的值增大时,y的值会:A. 一直增大B. 一直减小C. 在某个区间内增大,在另一个区间内减小D. 保持不变(答案:C)四、已知四边形ABCD是平行四边形,且AB = 6,BC = 8,对角线AC与BD相交于点O,则下列关于O点到AB和BC的距离d1和d2的说法正确的是:A. d1 + d2 = 14B. d1 × d2 = 24C. d1/d2 = AB/BCD. d12 + d22 = AB2 + BC2(答案:B)五、圆O的半径为5,点P在圆O外,且OP = 8。

过点P作圆O的两条切线,分别与圆O 相切于点A和B。

则弦AB的长度为:A. 6B. 4√3C. 5√2D. 2√15(答案:A)六、在数轴上,点A表示的数为-2,点B表示的数为3。

若点C表示的数为x,且满足AC + BC = 8,则x的值为:A. -3或4B. -4或3C. -3或-1D. 2或-5(答案:B)七、已知二次函数y = ax2 + bx + c的图像经过点(1,0),(2,0)和(3,4)。

下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 函数的顶点在x轴上(答案:A)八、正方形ABCD的边长为4,点E在边AB上,且AE = 1。

广州中考数学压轴题(学生版)

广州中考数学压轴题(学生版)

1.如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线1交x 轴于点B 。

P 为线段上一动点,作直线⊥,交直线1于点C 。

过P 点作直线平行于x 轴,交y 轴于点M ,交直线1于点N 。

(1)当点C 在第一象限时,求证:△≌△;(2)当点C 在第一象限时,设长为m ,四边形的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段上移动时,点C 也随之在直线1上移动,△是否可能成为等腰三角形?如果可能,求出所有能使△成为等腰三角形的点P 的坐标;如果不可能,请说明理由。

说明:●考查字母运算能力 ● 分类讨论思想,取值范围内解的有效性 ●2.关于x 的二次函数y =2+(k 2-4)x +22以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作垂直x 轴于点B,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作垂直x 轴于点C, 得到矩形.设矩形的周长为C ,点A 的横坐标为x ,试求C 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.x 第1题图 第2题图说明:●考查字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,易错点为用字母表示边长时,注意边长的非负性3.如图所示, 在平面直角坐标系中, 矩形的边长、分别为12、6, 点A、C 分别在y轴的负半轴和x轴的正半轴上, 抛物线2经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿边以1的速度向终点B移动, 同时点Q由点B开始沿边以2的速度向终点C移动.①移动开始后第t秒时, 设△的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形如第3题图果存在, 求出R点的坐标, 如果不存在, 请说明理由.说明:●图形必须准确,存在性问题如果不会做,可通过画图判断(答存在得分的机会大得多)4.已知二次函数2++c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r 的⊙P ,且圆心P 在抛物线上运动,当⊙P 与两坐标轴都相切时,求半径r 的值.(3)半径为1的⊙P 在抛物线上,当点P 的纵坐标在什么范围内取值时,⊙P 与y 轴相离、相交?说明:●考查画图能力和字母运算能力 ●分类讨论思想,取值范围内解的有效性 ● 方法多样化,易错点为用字母表示边长时,注意边长的非负性5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C .(1)求点C 的坐标并画出抛物线的大致图象(2)过C 点作⊙M 的切线,求直线的解析式.说明:●图形必须准确,画切线后巧妙解法是利用两直线平行,K 相等 ●易错点为漏解(过圆外一点作圆的切线有两条) ● 两直线垂直,K 互为负倒数可以使用6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A '∆与梯形DBCE 重叠部分的面积记为y.(1).用x 表示∆的面积;第5题图(2).求出0﹤x≤5时y与x的函数关系式;(3).求出5﹤x﹤10时y与x的函数关系式;(4).当x取何值时,y的值最大?最大值是多少?说明:●考查画图能力和字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,在设未知数或用字母表示未知量时,要充分发挥“勾股、相似、锐角三角函数”的作用,挖掘题目中的特殊角(特殊比值)来巧妙运算7.在△中,∠A=90°,=4,3,M是上的动点(不与A、B重合),过点M作∥交于点N. 以为直径作⊙O,并在⊙O内作内接矩形,令. 当x为何值时,⊙O与直线相切?8.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是的中点,过点C向左方作射线⊥y轴,点D是线段上一动点,不和B重合,⊥于点P,⊥于点E,连接。

挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)

挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)

03挑战压轴题(解答题一)(1)尺规作图:将法);(2)在(1)所作的图中,连接V①求证:ABD②若tan BAC∠2.(2022·广东广州·统考中考真题)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆的AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD = 1.6m,BC =5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE = 1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.(1)求A 、B 两点的坐标;(2)设PAO V 的面积为S ,求S 关于x 的函数解析式:并写出x 的取值范围;(3)作PAO V 的外接圆C e ,延长PC 交C e 于点Q ,当POQ △的面积最小时,求C e 的半径.(1)沿AC BC 、剪下ABC V ,则ABC V 是_______三角形(填“锐角______.(2)分别取半圆弧上的点E 、F 和直径AB 上的点G 、H .已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm 的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);2.(2022上·陕西西安·九年级校考期中)如图,在等边ABC V 中,点D 是AB 边上的一个动点(不与点A ,B 重合),以CD 为边作等边EDC △,AC 与DE 交于点F ,连接AE .(1)求证:ADF BCD △∽△;(2)若:5:2AB BD =,且20AB =,求ADF △的面积.3.(2022·安徽合肥·统考一模)如图,在正方形ABCD 中,9AB =,E 为AC 上一点,以AE 为直角边构造等腰直角AEF △(点F 在AB 左侧),分别延长FB ,DE 交于点H ,DH 交线段BC 于点M ,AB 与EF 交于点G ,连结BE .(1)求证:AFB AED≅V V (2)当62AE =时,求sin MBH ∠的值.(3)若BEH △与DEC V 的面积相等,记△(1)当点D 与圆心O 重合时,如图2所示,求DE 的长.(2)当CEF △与ABC V 相似时,求cos BDE ∠的值.6.(2023下·安徽蚌埠·九年级校考开学考试)如图,矩形ABCD 中,8AB =厘米,12BC =厘米,P 、Q 分别是AB 、BC 上运动的两点,若点P 从点A 出发,以1厘米/秒的速度沿AB 方向运动,同时,点Q 从点B 出发以2厘米/秒的速度沿BC 方向运动,设点P ,Q 运动的时间为x 秒.(1)设PBQ V 的面积为y ,求y 与x 之间的函数关系式及自变量x 的取值范围;(2)当x 为何值时,以P ,B ,Q 为顶点的三角形与BDC V 相似?7.(2021下·湖北随州·七年级统考期末)阅读材料:在平面直角坐标系中,二元一次方程0x y -=的一个解11x y =⎧⎨=⎩可以用一个点(1,1)表示,二元一次方程有无数个解,以方程0x y -=的解为坐标的点的全体叫作方程0x y -=的图象.一般地,在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,我们可以把方程0x y -=的图象称为直线0x y -=.直线x -y =0把坐标平面分成直线上方区域,直线上,直线下方区域三部分,如果点M (x 0,y 0)的坐标满足不等式x -y ≤0,那么点M (x 0,y 0)就在直线x -y =0的上方区域内。

2021年广东省中考数学解答题压轴题练习及答案 (2)

2021年广东省中考数学解答题压轴题练习及答案 (2)

2021年广东省中考数学解答题压轴题练习1.已知:如图,在△ABC中,AB=6,AC=9,tan∠ABC=2.过点B作BM∥AC,动点P在射线BM上(点P不与B重合),连结P A并延长到点Q,使∠AQC=∠ABP.(1)求△ABC的面积;(2)设BP=x,AQ=y,求y关于x的函数解析式,并写出x的取值范围;(3)连接PC,如果△PQC是直角三角形,求BP的长.【分析】(1)用解直角三角形的方法,求出AH和BC长即可求解;(2)证明△ABP∽△CQA,利用,即可求解;(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,利用cos∠PQC=cosα==,即可求解.【解答】解:(1)过点A作AH⊥BC交于点H,在Rt△ABH中,tan∠ABC==2,设BH=m,∴AH=2m,根据勾股定理得,m2+(2m)2=36,∴m=﹣2(舍)或m=2,∴BH=2,AH=2m=4,在Rt△AHC中,AC=9,根据勾股定理得,CH==7,∴BC=BH+CH=9,S△ABC=AH•BC=×4×9=18;(2)过点A作AG⊥P A交于点G,由(1)知,BC=9,∵AC=9,∴AC=BC,∴∠ABC=∠BAC,∵BM∥AC,∴∠BAC=∠ABP,∴∠ABP=∠ABC,∵AH⊥BC,AG⊥BP,∴AG=AH=4,BG=BH=2,∴PG=BP﹣BG=x﹣2根据勾股定理得,AP==,∵BM∥AC,∴∠QAC=∠APB,又∠AQC=∠ABP,∴△ABP∽△CQA,∴,其中:AB=6,BP=x,QA=y,AP=,AC=9,∴,∴CQ=,y=①(x>0);(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,在Rt△ABH中,cos∠ABH==,∴cos∠PQC=cosα==其中CQ=,PQ=AP+AQ=y+AP,AP=,∴=②联立①②解得:x=﹣14(舍)或x=9,即BP的长为9.。

专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(广州专用)(解析版)

专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(广州专用)(解析版)

专题04 几何压轴题1.(2021•广州)如图,在菱形ABCD 中,60DAB ∠=︒,2AB =,点E 为边AB 上一个动点,延长BA 到点F ,使AF AE =,且CF 、DE 相交于点G .(1)当点E 运动到AB 中点时,证明:四边形DFEC 是平行四边形;(2)当2CG =时,求AE 的长;(3)当点E 从点A 开始向右运动到点B 时,求点G 运动路径的长度.【答案】(1)见解析;(2)34;(3)273【详解】(1)连接DF ,CE ,如图所示:,E 为AB 中点,12AE AF AB ∴==, EF AB ∴=,四边形ABCD 是菱形,//EF CD ∴,EF AB CD ==,∴四边形DFEC 是平行四边形.(2)作CH BH ⊥,设AE FA m ==,如图所示,,四边形ABCD 是菱形,//CD EF ∴,CDG FEG ∴∆∆∽, ∴CD EF CG FG =, 2FG m ∴=, 在Rt CBH ∆中,60CBH ∠=︒,2BC =, sin 60CH BC ︒=,3CH =, cos60BH BC︒=,1BH =, 在Rt CFH ∆中,22CF m =+,3CH =,3FH m =+,222CF CH FH =+,即(22)2(3)2(3)2m m +=++,整理得:32280m m +-=,解得:143m =,22m =-(舍去), ∴43AE =. (3)G 点轨迹为线段AG ,证明:如图,(此图仅作为证明AG 轨迹用),延长线段AG 交CD 于H ,作HM AB ⊥于M ,作DN AB ⊥于N ,四边形ABCD 是菱形,//BF CD ∴,DHG EGA ∴∆∆∽,HGC AGF ∆∆∽,∴AE AG DH HG =,AF AG HC HG =, ∴AE AF DH CH=, AE AF =,1DH CH ∴==,在Rt ADN ∆中,2AD =,60DAB ∠=︒.sin 60DN AD ∴︒=,3DN =.cos60AN AD ︒=,1AN =, 在Rt AHM ∆中,3HM DN ==,2AM AN NM AN DH =+=+=,3tan 2HAM ∠=, G 点轨迹为线段AG .G ∴点轨迹是线段AG .如图所示,作GH AB ⊥,四边形ABCD 为菱形,60DAB ∠=︒,2AB =,//CD BF ∴,2BD =,CDG FBG ∴∆∆∽,∴CD DG BF BG=,即2BG DG =, 2BG DG BD +==,43BG ∴=, 在Rt GHB ∆中,43BG =,60DBA ∠=︒, sin 60GH BG ︒=,233GH =, cos60BH BG ︒=,23BH =, 在Rt AHG ∆中,24233AH =-=,233GH =, 423282()2()2339AG =+=, 273AG ∴=. G ∴点路径长度为273. 2.(2019•广州)如图,等边ABC ∆中,6AB =,点D 在BC 上,4BD =,点E 为边AC 上一动点(不与点C 重合),CDE ∆关于DE 的轴对称图形为FDE ∆.(1)当点F 在AC 上时,求证://DF AB ;(2)设ACD ∆的面积为1S ,ABF ∆的面积为2S ,记12S S S =-,S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;(3)当B ,F ,E 三点共线时.求AE 的长.【答案】(1)见解析;(2)见解析;(3)713- 【详解】(1)ABC ∆是等边三角形 60A B C ∴∠=∠=∠=︒ 由折叠可知:DF DC =,且点F 在AC 上60DFC C ∴∠=∠=︒DFC A ∴∠=∠//DF AB ∴;(2)存在,过点D 作DM AB ⊥交AB 于点M ,6AB BC ==,4BD =,2CD ∴=2DF ∴=,∴点F 在以D 为圆心,DF 为半径的圆上,且在ABC ∆内部,∴当点F 在DM 上时,ABF S ∆最小,4BD =,DM AB ⊥,60ABC ∠=︒23MD ∴=ABF S ∆∴的最小值16(232)6362=⨯⨯-=- ()12336363362S ∴=⨯⨯--=-+最大值 (3)如图,过点D 作DG EF ⊥于点G ,过点E 作EH CD ⊥于点H ,CDE ∆关于DE 的轴对称图形为FDE ∆2DF DC ∴==,60EFD C ∠=∠=︒GD EF ⊥,60EFD ∠=︒1FG ∴=,33DG FG == 222BD BG DG =+, 2163(1)BF ∴=++,131BF ∴=-13BG ∴=EH BC ⊥,60C ∠=︒2EC CH ∴=,332EH HC EC == GBD EBH ∠=∠,90BGD BHE ∠=∠=︒BGD BHE ∴∆∆∽∴DG EH BG BH= ∴3321362EC EC =- 131EC ∴=-713AE AC EC ∴=-=-3.(2021•广州模拟)如图,在四边形ABCD 中,60B ∠=︒,30D ∠=︒,AB BC =.(1)求A C ∠+∠的度数;(2)连接BD ,探究AD ,BD ,CD 三者之间的数量关系,并说明理由;(3)若1AB =,点E 在四边形ABCD 内部运动,且满足222AE BE CE =+,求点E 运动路径的长度.π【答案】(1)︒270;(2)见解析;(3)3【详解】(1)如图1中,在四边形ABCD中,360D∠=︒,30∠=︒,BA B C D∠+∠+∠+∠=︒,60∴∠+∠=︒-︒-︒=︒.3606030270A C(2)如图2中,结论:222=+.DB DA DC理由:连接BD.以BD为边向下作等边三角形BDQ∆.∠=∠=︒,60ABC DBQ∴∠=∠,ABD CBQ=,=,DB BQAB BCABD CBQ SAS∴∆≅∆,()∴=,A BCQ∠=∠,AD CQ∠+∠=∠+∠=︒,A BCD BCQ BCD270∴∠=︒,DCQ90222∴=+,DQ DC CQ=,DQ DB=,CQ DA222∴=+.DB DA DC(3)如图3中,连接AC,将ACE∆,连接RE.∆绕点A顺时针旋转60︒得到ABR则AER ∆是等边三角形,222EA EB EC =+,EA RE =,EC RB =,222RE RB EB ∴=+,90EBR ∴∠=︒,150RAE RBE ∴∠+∠=︒,210ARB AEB AEC AEB ∴∠+∠=∠+∠=︒,150BEC ∴∠=︒,∴点E 的运动轨迹在O 为圆心的圆上,在O 上取一点K ,连接KB ,KC ,OB ,OC , 180K BEC ∠+∠=︒,30K ∴∠=︒,60BOC ∠=︒,OB OC =,OBC ∴∆是等边三角形,1OB OC BC ∴===,∴点E 的运动路径6011803ππ==. 4.(2021•天河区一模)如图,ABC ∆中,120BAC ∠︒,AB AC =,点A 关于直线BC 的对称点为点D ,连接BD ,CD .(1)求证:四边形ABDC 是菱形;(2)延长CA 到E ,使得AB BE =.求证:22BC AC CE AC -⋅=;(3)在(2)小题条件下,可知E ,B ,D ,C 四点在同一个圆上,设其半径为a (定值),若BC kAB =,问k 取何值时,BE CE ⋅的值最大?【答案】见解析;【详解】(1)证明:如图1,连接AD ,交BC 于O ,A ,D 关于直线BC 对称,AD BC ∴⊥,OA OD =,AB AC =,OB OC ∴=,∴四边形ABDC 是菱形;(2)证明:解法一:如图2,延长AE 到F ,使EF BE =,连接BF ,AB BE =,AB BD CD AC BE EF ∴=====,BE CE EF CE CF ∴+=+=,AB AC =,ABC ACB ∴∠=∠,同理得EBF F ∠=∠,BAE BEA ∠=∠,BAE ABC ACB ∠=∠+∠,BEA EBF F ∠=∠+∠,ABC ACB EBF F ∴∠=∠=∠=∠,ABC BFC ∴∆∆∽, ∴BC AC CF BC =, 2()()BC AC CF AC CE EF AC CE AC ∴=⋅=⋅+=⋅+,即22BC AC CE AC -⋅=;解法二:如图3,过点B 作BP CE ⊥于P ,AB BE =,AP EP ∴=,且AB AC BE ==,Rt BPC ∆中,222BC BP CP =+,在Rt BPA ∆中,222BA BP AP =+,2222222222()()BC AC BC AB BP CP BP AP CP AP ∴-=-=+-+=-,22()()()CP AP CP AP CP AP CP EP AC CE AC -=+-=+⋅=⋅,22BC AC CE AC ∴-=⋅,即22BC AC CE AC -⋅=;(3)解:如图4,连接AD 交BC 于M ,作CD 的垂直平分线交DA 的延长线于G ,连接CG ,由题意得:CG DG a ==,设DM x =,则GM a x =-,120BAC ∠︒,∴当120BAC ∠=︒时,如图5,ABD ∆和ADC ∆是等边三角形,AB AD AC ∴==,∴当点A 为圆心,即点A 与G 重合,此时1cos602x CD a =⋅︒=, 02a x ∴<, 四边形ABCD 是菱形,BC AD ∴⊥,2BC CM =,由勾股定理得:2222()2CM a a x x ax =--=-+,22222CD x x ax ax =-+=,222448BC CM x ax ∴==-+,222BE CD ax ==,由22BC AC CE AC -⋅=,得2222222239482464()44BE CE BC AC BC BE x ax ax x ax x a a ⋅=-=-=-+-=-+=--+, 02a x<, ∴当12x a =时,BE CE ⋅有最大值,此时223BC a =,222AB BE a ==, 故223BC AB =,所以3BC AB =,故3k =时,BE CE ⋅的值最大.5.(2021•越秀区一模)如图,在四边形ABCD 中,90A ADC ∠=∠=︒,10AB AD ==,15CD =,点E ,F 分别为线段AB ,CD 上的动点,连接EF ,过点D 作DG ⊥直线EF ,垂足为G .点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,当点E 运动到点A 时,E ,F 同时停止运动,设点E 的运动时间为t 秒.(1)求BC 的长;(2)当GE GD =时,求AE 的长;(3)当t 为何值时,CG 取最小值?请说明理由.【答案】(1)55;(2)52;(3)见解析【详解】(1)如图1,过点B 作BH CD ⊥于点H ,则四边形ADHB 是矩形,10AB =,15CD =,5CH ∴=,又10BH AD ==, 222210555BC BH CH ∴=+=+=; (2)过点G 作MN AB ⊥,如图2,//AB CD ,MN CD ∴⊥,DG EF ⊥,EG DG =,()EMG GND AAS ∴∆≅∆,MG DN ∴=,设DN a =,GN b =,则MG a =,ME b =,点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,2BE t ∴=,102AE t =-,3DF t =,153CF t =-,AM DN =,AD MN =,10a b ∴+=,102a b t -=-,解得10a t =-,b t =,DG EF ⊥,GN DF ⊥,DGN GFN ∴∆∆∽,∴GN NF DN GN=, 2GN DN NF ∴=⋅,2210GN t NF DN t ∴==-, 又DF DN NF =+, 231010t t t t ∴=-+-, 解得55t =±,又03t ,55t ∴=-,10225AE t ∴=-=.(3)如图3,连接BD ,交EF 于点K ,//BE DF ,BEK DFK ∴∆∆∽,∴2233BK BE t DK DF t ===, 又10AB AD ==, 2102BD AB ∴==,3625DK BD ∴==, 取DK 的中点,连接OG ,DG EF ⊥,DGK ∴∆为直角三角形,1322OG DK ∴==, ∴点G 在以O 为圆心,32r =的圆弧上运动,连接OC ,OG ,由图可知CG OC OG -,当点G 在线段OC 上时取等号,AD AB =,90A ∠=︒,45ADB ∴∠=︒,45ODC ∴∠=︒,过点O 作OH DC ⊥于点H , 又32OD =,15CD =, 3OH DH ∴==, 12CH ∴=, 22317OC OH CH ∴=+=,则CG 的最小值为3(172)-,当O ,G ,C 三点共线时,过点O 作直线OR DG ⊥交CD 于点S , OD OG =,R ∴为DG 的中点,又DG GF ⊥,//OS GF ∴,∴点S 是DF 的中点,OC SC OG SF=, 32DS SF t ∴==,3152SC t =-, ∴31531723322t t -=, 23443t -∴=, 即当23443t -=时,CG 取得最小值为31732-. 6.(2021•天河区二模)如图,矩形ABCD 中,4AB =,8AD =,点E 是边AB 上的一点,点F 是边BC 延长线上的一点,且2AE CF =.连接AC ,交EF 于点O ,过E 作EP AC ⊥,垂足为P .(1)求证:DAE DCF ∆∆∽;(2)求证:OP 长为定值;(3)记AC 与DE 的交点为Q ,当14PQ OP =时,直接写出此时AP 的长.【答案】(1)见解析;(2)见解析;(3)6525- 【详解】(1)证明:在矩形ABCD 中,4AB CD ==,90DAE DCB ∠=∠=︒, 90DCF ∴∠=︒, DAE DCF ∴∠=∠,2AE CF =,8AD BC ==,∴2AE AD CF CD==, DAE DCF ∴∆∆∽;(2)证明:如图1,过点E 作//EG BC ,交AC 于点G ,90AEG B ∴∠=∠=︒,AGE ACB ∠=∠,EOG FOC ∆∆∽,在Rt ABC ∆中,4AB =,8BC =,224845AC ∴=+=,EP AC ⊥,90AEP BAC ∴∠+∠=︒,90CAD BAC ∠+∠=︒,AEP CAD ∴∠=∠,1tan tan tan tan 2CAD ACB AGE AEP ∴∠=∠=∠=∠=,即12CD AE AP PE AD EG EP PG ====, 2EG AE ∴=,2AE CF =,4EG CF ∴=,设(0)AP m m =>,(0)OC n n =>,则2PE m =,4PG m =,EOG FOC ∆∆∽,∴4EG OG CF OC==, 44OG OC n ∴==,4445AC AP PG OG OC m m n n ∴=+++=+++=,455m n ∴+=,165445OP PG OG m n ∴=+=+=, 所以OP 是一个定值;(3)如图2,11165454455PQ OP ==⨯=,由(2)知:(0)AP m m =>,5AE m =,//AE CD ,AEQ CDQ ∴∆∆∽,∴AE AQ CD CQ=, ∴4555445455m m m +=--,解得:6525m =±, 054m <<,4505m ∴<<, 6525AP ∴=-. 7.(2021•白云区一模)不在射线DA 上的点P 是边长为2的正方形ABCD 外一点(P 在AB 左侧),且满足45APB ∠=︒,以AP ,AD 为邻边作APQD .(1)如图,若点P 在射线CB 上,请用尺规补全图形;(2)若点P 不在射线CB 上,求PAQ ∠的度数;(3)设AQ 与PD 交点为O ,当APO ∆的面积最大时,求tan ADO ∠的值.【答案】(1)见解析;(2)︒45;(3)123+ 【详解】(1)如图1,以B 为圆心,AB 长为半径作弧,交射线CB 于点P ,连接BD ,//AD PB ,AD AB PB ==,∴四边形ADBP 是平行四边形,∴点Q 与点B 重合.(2)如图2,连接QA ,QC ,QB ,BD ,四边形APQD 是平行四边形,AP DQ ∴=,//PQ AD ,//AP QD ,180PAD ADQ ∴∠+∠=︒,90PAB ADQ ∴∠=︒-∠,90PAB ADQ QDC ∴∠=︒-∠=∠,又AP QD =,AB CD =,()PAB QDC SAS ∴∆≅∆,45APB DQC ∴∠=∠=︒,四边形ABCD 是正方形,45ABD DBC ∴∠=∠=︒,45CQD CBD ∴∠=∠=︒,∴点B ,点C ,点D ,点Q 四点共圆,90BCD BQD ∴∠=∠=︒,90BQD BAD ∴∠=∠=︒,∴点B ,点D ,点A ,点Q 四点共圆,45AQD ABD ∴∠=∠=︒,//AP QD ,45PAQ AQD ∴∠=∠=︒;(3)四边形APQD 是平行四边形, 14APO APQD S S ∆∴=, ∴当APQD 的面积最大时,APO ∆的面积取最大值,APQD S AD =⨯点P 到AD 的距离,∴当点P 到AD 的距离最大时,APQD 的面积最大,如图3,以AB 为斜边作等腰直角三角形ABE ,以E 为圆心,AE 为半径作ABP ∆的外接圆,延长CB 交E 于H ,过点E 作FE BH ⊥,交E 于P ,交DA 的延长线于F ,此时点P 到AD 的距离最大,EA EB =,90AEB ∠=︒,2AB =,45EAB ∴∠=︒,2AE =,45EAF ∴∠=︒,EF AF ⊥,45EAF FEA ∴∠=∠=︒,1AF EF ∴==,12PF ∴=+,()212APQD S AD PF ∴=⋅=⨯+最大,12142APQD APO S S ∆+∴==最大, 12tan 3FP ADO DF +∴∠==. 8.(2021•番禺区一模)如图,ABC ∆中,120A ∠=︒,AB AC =,过点A 作AO AC ⊥交BC 于点O .(1)求证:13BO BC =; (2)设AB k =.①以OB 为半径的O 交BC 边于另一点P ,点D 为CA 边上一点,且2CD DA =.连接DP ,求CPD S ∆.②点Q 是线段AB 上一动点(不与A 、B 合),连接OQ 在点Q 运动过程中,求2AQ OQ +的最小值.【答案】(1)见解析;(2)①2318CPD S k ∆=,②k 【详解】(1)证明:120A ∠=︒,AB AC =,30B C ∴∠=∠=︒,AO AC ⊥,90OAC ∴∠=︒,30BAO ∠=︒,BO AO ∴=,12AO CO =, 12BO CO ∴=, 13BO BC ∴=; (2)①如图:AB k =,AC k ∴=,Rt AOC ∆中,tanOA C AC =, 33OA k OB ∴==, 30C ∠=︒,2323OC OA k ∴==, 33CP OC OP OC OA k ∴=-=-=, 2CD DA =,3k DA ∴=,23DC k =, Rt AOD ∆中,33tan 333kAD AOD OA k ∠===, 30AOD ∴∠=︒,18060AOC OAC C ∠=︒-∠-∠=︒,30AOD DOP ∴∠=∠=︒,又OA OP =,OD OD =,()AOD POD SAS ∴∆≅∆,90DPO OAD ∴∠=∠=︒,DA DP =,3k DP ∴=, 213218CPD S CP DP k ∆∴=⋅=; ②以A 为顶点,AB 为一边,在ABC ∆外部作30BAN ∠=︒,过Q 作QN AN ⊥于N ,过O 作OM AN ⊥于M ,连接OQ ,如图:在Rt AQN ∆中,30BAN ∠=︒,12NQ AQ ∴=, 122()2AQ OQ AQ OQ +=+, 2AQ OQ ∴+最小,即是12AQ OQ +最小,故NQ OQ +最小,此时ON AN ⊥,Q 与Q '重合,N 与M 重合,OM 长度即是12AQ OQ +的最小值, 而由①知:33OA k =,60OAM OAB BAM ∠=∠+∠=︒, Rt AOM ∆中,sin OM OAM OA ∠=, sin 6033OMk ∴︒=,2k OM ∴=, ∴12AQ OQ +的最小值为2k , 2AQ OQ ∴+的最小值是k .9.(2021•花都区一模)如图,在Rt ABC ∆中,90C ∠=︒,8AC cm =,16BC cm =.(1)尺规作图:作AB 的垂直平分线DE 交AB 于点D ,交BC 于点E (保留作图痕迹,不要求写作法);(2)连接AE ,动点M ,N 分别从点A ,C 同时出发,均以每秒1cm 的速度分别沿AE 、CB 向终点E ,B 运动,是否存在某一时刻t 秒(010)t <<,使MNC ∆的面积S 有最大值?若存在,求S 的最大值;若不存在,请说明理由.【答案】见解析【详解】(1)如图,直线DE 即为所求作.(2)过点M 作MH EC ⊥于H . DE 垂直平分线段AB ,EA EB ∴=,设EA EB x ==cm ,则(16)EC x cm =-,在Rt ACE ∆中,222AE AC EC =+,2228(16)x x ∴=+-,解得10x =,//MH AC , ∴EM MH EA AC =, ∴10108t MH -=, 4(10)5MH t ∴=-, 2214225(10)2()1025552MNC S t t t t t ∆∴=⨯⨯-=-+=--+, 502-<, 52t ∴=时,MNC ∆的面积最大,最大值为10. 10.(2021•越秀区校级二模)已知ABC ∆,90ACB ∠=︒,4AC BC ==,D 是AB 的中点,P 是平面上的一点,且1DP =,连接CP(1)如图,当点P 在线段BD 上时,求CP 的长;(2)当BPC ∆是等腰三角形时,求CP 的长;(3)将点B 绕点P 顺时针旋转90︒得到点B ',连接AB ',求AB '的最大值.【答案】(1)3;(2)①13,②42+ 【详解】(1)如图1中,连接CD .在Rt ABC ∆中,90ACB ∠=︒,4AC BC ==,2242AB AC BC ∴=+=,AD DB =,1222CD AB ∴==,CD AB ⊥, 在Rt CDP ∆中,223PC PD CD =+=.(2)如图2中,1DP =,∴点P 在以点D 为圆心的D 上.①当PB PC =时,CD DB =,P ∴、D 都在线段BC 的垂直平分线上,设直线DP 交BC 于E .90PEC ∴∠=︒,2BE CE ==,90CDB ∠=︒, 122DE BC CE ∴===, 在Rt PCE ∆中,22PC EC PE =+,当P 在线段PD 上时,1PE DE DP =-=,22125PC =+=,当P 在线段ED 的延长线上时,3PE ED DP =+=,223213PC =+=.②当PC BC =时,221PC CD PD BC +=+<,PC BC ∴≠,此种情形不存在;③当PB BC =时,同理这种情形不存在;如图3中(3)如图4中,连接BB '.由旋转可知:PB PB =',90BPB ∠'=︒,45PBB ∴∠'=︒,2BB PB ∴'=,∴2BB PB'=, AC BC =,90ACB ∠=︒,45ABC ∴∠=︒,ABC PBB ∴∠=∠',ABB CBP ∴∠'=∠, 4224BA BC ==, ∴BA BB BC PB '=, ∴BA BC BB PB =', ABB CBP ∴∆'∆∽,∴2AB BA CP BC'==, 221PC CD DP +=+,∴点P 落在CD 的延长线与D 的交点处,PC 的值最大,2(221)42AB ∴'+=+.AB ∴'的最大值为42+.11.(2021•黄埔区二模)如图1,正方形ABCD 的对角线相交于点O ,延长OD 到点G ,延长OC 到点E ,使2OG OD =,2OE OC =,以OG ,OE 为邻边作正方形OEFG ,连接AG ,DE .(1)探究AG 与DE 的位置关系与数量关系,并证明;(2)固定正方形ABCD ,以点O 为旋转中心,将图1中的方形OEFG 逆时针转(0180)n n ︒<<得到正方形111OE F G ,如图2.①在旋转过程中,当190OAG ∠=︒时,求n 的值;②在旋转过程中,设点1E 到直线1AG 的距离为d ,着正方形ABCD 的边长为1,请直接写出d 的最大值与最小值,不必说明理由.【答案】(1)见解析;(2)①30n =;②见解析【详解】(1)AG DE ⊥,.AG DE =证明:如图1,延长ED 交AG 于点H ,点O 是正方形ABCD 两对角线的交点,OA OC OD ∴==,OA OD ⊥,90AOG DOE ∴∠=∠=︒,2OG OD =,2OE OC =,OG OE ∴=,在AOG ∆和DOE ∆中,OA OD AOG DOE OG OE =⎧⎪∠=∠⎨⎪=⎩,()AOG DOE SAS ∴∆≅∆,AG DE ∴=,AGO DEO ∠=∠,90AGO GAO ∠+∠=︒,90GAO DEO ∴∠+∠=︒,90AHE ∴∠=︒,AG DE ∴⊥,故AG DE ⊥,AG DE =;(2)①在旋转过程中,190OAG ∠=︒有两种情况:(Ⅰ)n 由0增大到90过程中,当190OAG ∠=︒时,11122OA OD OG OG ===, ∴在1Rt OAG ∆中,11sin 2OA AG O OG ∠==', 130AG O ∴∠=︒,OA OD ⊥,1OA AG ⊥,1//OD AG ∴,1130DOG AG O ∴∠=∠=︒,即30n =;(Ⅱ)n 由90增大到180过程中,当190OAG ∠=︒时,同理可求130BOG ∠=︒,118030150DOG ∴∠=︒-︒=︒,150n ∴=;综上所述,当190OAG ∠=︒时,30n =或150.②如图3,d 的最大值为116262222E H DE DH +=+=+=,如图4,d 的最小值为116262222E H DE DH -=-=-=. 理由如下:如图3、图4所示,连接11E G ,设直线1E D 交直线1AG 于H ,作正方形ABCD 的外接圆O ,仿照(1)的证明,可证得DE AG ⊥,即在旋转过程中,1190E HG ∠=︒保持不变,所以1d E H =. 在旋转过程中,1E H 的位置有以下两种情况:第一种情况,当1E H 在1OE G ∠内时,11145E G H OG A ∠=︒+∠,如图3所示,第二种情况:当1E H 在11OE G ∠外时,11145E G H OG A ∠=︒-∠,如图3所示, 1222OG OD BD AB ====,112E G ∴=.在Rt △11E HG 中,11111sin 2E H d E G H E G ∠==, 112sin d E G H ∴=∠, 所以,当11E G H ∠最大时,最大;当最小时,最小; 设点到的距离为,则, 由上式可知,当取最大值时,取最大值.在旋转过程中,当与相切,即时,取最大值.此时,取最大值,从而取最大值或最小值.由①可知,当时,,在(1)中,已证得,且,四边形为正方形,, , 的最大值为, 的最小值为 d 11E G H ∠d O 1AG m 1sin 2m OG A OG ∠=m 1OG A ∠1E D O 190OAG ∠=︒m 1OG A ∠11E G H ∠190OAG ∠=︒130OG A ∠=︒11AOG DOE ∆≅∆90AHD ∠=︒∴AODH 22DH AO ∴==221126(2)()22DE AG ∴==-=d ∴116262E H DE DH +=+=d 116262E H DE DH -=-=12.(2021•从化区一模)如图,四边形是矩形,点是对角线上一动点(不与点和点重合),连接,过点作交射线于点,连接,已知,,设的长为.(1)线段的最小值为 . (2)如图,当动点运动到的中点时,与的交点为,的中点为,求线段的长度;(3)当点在运动的过程中:①试探究是否会发生变化?若不改变,请求出大小;若改变,请说明理由;②当为何值时,是等腰三角形?ABCD P AC C A PB P PF PB ⊥DA F BF 33AD =3CD =CP x PB P AC AP BF G FP H GH P FBP ∠FBP ∠x AFP ∆【答案】(1);(2(3)见解析 【详解】(1)四边形是矩形,,,,,,,当时,最小,此时为斜边上的高,,即, ,; (2)如图:运动到的中点,,,中,, , 是等边三角形,,又,,,,是的垂直平分线,3323GH ∴=ABCD 33AD =3CD =3AB CD ∴==33BC AD ==90ABC D ∠=∠=︒226AC AB BC ∴=+=BP AC ⊥BP BP Rt ABC ∆AC 1122ABC S AB BC AC BP ∆∴=⋅=⋅3336BP ⨯=⨯332BP ∴=P AC 6AC =3AP AB ∴==Rt ABC ∆tan 3BC BAC AB∠==60BAC ∴∠=︒ABP ∴∆3AB BP ∴==90BAF BPF ∠=∠=︒BF BF =()BAF BPF HL ∴∆≅∆AF PF ∴=BF ∴AP是中点,是中点,, 是等边三角形,是中点,, 在中,, 得, , ; (3)①不会发生变化,,理由如下:过作于,交于,如图:,四边形是矩形,,,中,, ,中,, ,, ,, ,, 而,,G ∴AP H PF 12GH AF ∴=ABP ∆G AP 1302PBF PBA ∴∠=∠=︒Rt PBF ∆tan PF PBF BP ∠=tan303PF ∴︒=3PF 3AF ∴=32GH ∴=FBP ∠30FBP ∠=︒P MN AD ⊥M BC N MN AD ⊥ABCD MN BC ∴⊥3MN AB ==Rt ABC ∆3tan AB ACB BC ∠==30ACB ∴∠=︒Rt CPN ∆CP x =1sin302PN CP x ∴=⋅︒=3cos30CN CP x =⋅︒3332BN BC CN x ∴=-=-132PM MN PN x =-=-90BPF ∠=︒90FPM BPN PBN ∴∠=︒-∠=∠90PMF BNP ∠=∠=︒PMF BNP ∴∆∆∽, 在中,, , ;②当在右侧时,过作于,交于,如图:由①知:,,,,, , , , 中, 而,是等腰三角形,分三种情况:(一,则,解得(舍去), (二,则,解得(大于6,舍去)或(此时,舍去),(三,则,解得或与重合,舍去), 当在左侧时,如图: ∴13323332x PF PM BP BN x -===-Rt BPF ∆tan PF FBP BP∠=3tan 3FBP ∴∠=30FBP ∴∠=︒F A P MN AD ⊥M BC N PMF BNP ∆∆∽33PF BP =12PN x =333BN =132PM x =-∴3FM PN =36FM x ∴=23333AF AM FM BN FM x ∴=-=-=-Rt PFM ∆22222311()(3)39623PF FM PM x x x x =+=+-=-+6AP AC CP x =-=-AFP ∆)AP AF =263333x x -==33x =-)AP PF =216393x x x -=-+9x =92x =0AF =)AF PF =2213333933x x x -=-+3x =6(x P =A F A此时, 同理可得,综上所述,是等腰三角形,或.13.(2020•武汉模拟)在中,,线段绕点顺时针旋转得到线段,连接.(1)如图1,若,求证:平分;(2)如图2,若,①求的值; ②连接,当的面积为.【答案】(1)见解析;(2)①773,② 【详解】(1)证明:连接, 由题意知,,,是等边三角形,,又,,,,平分;(2)解:①连接,作等边三角形的外接圆,23333AF FM AM x =-=-33x =AFP ∆3x =33x =ABC ∆120ABC ∠=︒AC C 60︒CD BD AB BC =BD ABC ∠2AB BC =BD AC AD 3ABC S ∆=ABCD 93AD 60ACD ∠=︒CA CD =ACD ∴∆CD AD ∴=AB CB =BD BD =()ABD CBD SSS ∴∆≅∆CBD ABD ∴∠=∠BD ∴ABC ∠AD ACD O,,,点在上,,,,在上截取,使,则为等边三角形,,,又,,,,设,则,,过点作于,在中,,, , , 在中, , ,;②如图3,分别过点,作的垂线,垂足分别为,, 设,,,则由①知,,,在与中,,60ADC ∠=︒120ABC ∠=︒180ADC ABC ∴∠+∠=︒∴B O AD CD =∴AD CD =60CBD CAD ∴∠=∠=︒BD BM BM BC =BCM ∆60CMB ∴∠=︒120CMD CBA ∴∠=︒=∠CB CM =BAC BDC ∠=∠()CBA CMD AAS ∴∆≅∆MD AB ∴=1BC BM ==2AB MD ==3BD ∴=C CN BD ⊥N Rt BCN ∆60CBN ∠=︒30BCN ∴∠=︒1122BN BC ∴==33CN =52ND BD BN ∴=-=Rt CND ∆222235()()722CD CN DN =+=+=7AC ∴=∴377BD AC ==B D AC H Q 1CB =2AB =CH x =7AC =7AH x =-Rt BCH ∆Rt BAH ∆2222BC CH AB AH -=-即,解得,,,在中,,,为与的公共底,,,,,故答案为:.22212(7)x x-=--277x=2227211()77BH∴=-=Rt ADQ∆33217DQ AD==∴2127721BHDQ==AC ABC∆ACD∆∴27ABCACDS BHS DQ∆∆==32ABCS∆=734ACDS∆∴=37393244ABCDS∴=+=四边形93414.(2021•越秀区校级二模)如图1,已知正方形的边长为,点在边上,,连接,点、分别为、边上的点,且.(1)求点到的距离;(2)如图2,连接,当、、三点共线时,求的面积;(3)如图3,过点作于点,过点作于点,求的最小值.【答案】(1)1;(2)518;(3)见解析 【详解】(1)如图1中,过点作于.ABCD 42E BC 2BE =BD F G BD CD FG EF ⊥E BD AF A F G FDG ∆E EM BD ⊥M G GN BD ⊥N MN E EH BF ⊥H四边形是正方形,,,. 点到的距离为1.(2)如图2中,过点作的垂线分别交,于点,.,,共线,,,.设,且,,,, ,,即,ABCD 45DBC ∴∠=︒EH BD ⊥2sin 45212EHBE ∴=⋅︒=⨯=∴E BD F AD AD BC M N A F G 90EFG ∠=︒90AFE ∴∠=︒45ADF ∠=︒∴MF MD a ==AD MN =AM FN ∴=NFE AFM AFM MAF ∠+∠=∠+∠NFE MAF ∴∠=∠()AMF FNE AAS ∴∆≅∆MF EN ∴=32a a =-, ,, , .(3)如图3中,设,. 四边形是正方形,,,,,,,,, ,,,, ,,, 322a ∴=//FM DG ∴FM AM DG AD =∴32522242DG =1225DG ∴=112232182525DFG S ∆∴=⨯⨯=2CG y =MF x =ABCD 45CBD CDB ∴∠=∠=︒42CB CD ==28BD BC ∴==22DG y =EM BD ⊥GN BD ⊥90EMF EFG GNF ∴∠=∠=∠=︒4DN NG y ∴==-2BE =1BM EM ∴==7(4)3FN x y x y ∴=---=-+9090MFE GFN GFN FGN ∠+∠=︒∠+∠=︒MFE FGN ∴∠=∠EMF FNG ∴∆∆∽∴EM MF FN GN=, 整理得,△,,解得或,的最小值为,的最小值,观察图象可知,当的值最小时,的值最小,的最小值. 15.(2021•越秀区模拟)如图,四边形为矩形,,,点为边上一动点,过点作交直线于点,连接,.(1)若四边形为菱形,求的长;(2)若的面积为,求的面积; (3)当长为多少时,四边形周长有最小值?并求该最小值.【答案】(1)23;(2)42;(3)见解析 【详解】(1)四边形为菱形,,设, 四边形是矩形,, ,, , ; (2)四边形为矩形,∴134x x y y=-+-2(3)40x y x y -++-=02(3)4(4)0y y ∴+--425y -542y --y ∴25CG ∴852=-CG MN MN 81(942)422=---=ABCD 2AD =2CD =E AD E EF AC ⊥BC F CE AF AECF AE ABF ∆24CDE ∆AE AECF AECF AE EC ∴=AE EC x ==ABCD 90D ∴∠=︒222EC DE CD ∴=+222(2)(2)x x ∴=-+32x ∴=32AE ∴=ABCD,,, , ,即:, , , 在中,, ,, 是的垂直平分线,,由(1)可知:, , , ; (3)如图,过点作交的延长线于点,四边形为矩形,,,四边形是平行四边形,,,,,,在中,, , ,2AB CD ∴==2BC AD ==90B D ∠=∠=︒ABF ∆2∴122AB BF ⨯⨯1222BF =12BF ∴=13222CF BC BF ∴=-=-=Rt ABF ∆222213(2)()22AF AB BF =++AF CF ∴=EF AC ⊥EF ∴AC AE CE ∴=32AE CE ==AF CE ∴=Rt CDE Rt ABF(HL)∴∆≅∆24CDE ABF S S ∆∆∴==C //CM EF AD M ABCD //AD BC ∴90ADC ABC BAC ∠=∠=∠=︒∴CFEM EM CF ∴=CM EF =EF AC ⊥CM AC ∴⊥90ACM ∴∠=︒Rt ACD ∆22222(2)6AC AD CD ++tan CD CM CAD AD AC ∠==∴263CM ∴=, , ,即,,延长至,使,过点作于点,连接,过点作交于点, 在中,,四边形是矩形,,,,,四边形是平行四边形,,, 四边形周长,当、、三点共线时,最小,即四边形周长最小, 此时,,,△,, ,此时,,四边形周长最小值为,故当时,四边形周长最小值为6. 3EF CM ∴==cos ADACCAD AC AM ∠==22(6)32AC AM AD ∴===3AE EM +=3AE CF ∴+=CD C '2DC CD '==C E 'F FG AD ⊥G BG E //EH BG BC H Rt EFG ∆2222(3)(2)1EG EF FG =-=-=ABFG AF BG ∴=FBG FAG ∠=∠//BG EH //EG BH ∴BGEH EH BG AF ∴==CHE FBG ∠=∠AECF 3AE AF CF CE AE EM BG CE AM EH C E C E EH =+++=+++=++'=+'+∴C 'E H C E EH '+AECF C ED CHE FBG FAG ∠'=∠=∠=∠90C DE FGA ∠'=∠=︒C D FG '=∴()C DE FGA AAS '≅∆111()(21)222DE AG AD EG ∴==-=-=13222AE AD DE ∴=-=-=222213()(2)22CE DE CD =+=+=∴AECF 33262+⨯=32AE =AECF16.(2021•花都区三模)为等腰三角形,,点为所在平面内一点.(1)若,①如图1,当点在边上,,求证:; ②如图2,当点在外,,,,连接,求的长;(2)如图3,当点在外,且,以为腰作等腰三角形,,,直线交于点,求证:点是中点.【答案】(1)①见解析;②132;(2)见解析 【详解】证明:(1)①,, ,,, ,, ;②如图2,以,为边作等边,等边,以,为边作等边,等边,连接,过点作,交的延长线于, ABC ∆AB AC =D ABC ∆120BAC ∠=︒D BC BD AD =2DC BD =DABC ∆120ADB ∠=︒2AD =4BD =CD CD D ABC ∆90ADB ∠=︒AD ADE ∆DAE BAC ∠=∠AD AE =DE BC F F BC 120BAC ∠=︒AB AC =30ABC ACB ∴∠=∠=︒BD AD =30ABD BAD ∴∠=∠=︒90DAC ∴∠=︒2CD AD ∴=2CD BD ∴=AB AC ABH ∆ACH ∆AD BD ADE ∆BDG ∆GH E EN DG ⊥GD N和都是等边三角形,,,,,,,,,点,点,点三点共线,,和都是等边三角形,,,,,,,,,,,, , , .(2)连接,如图3所示:,,,, ,, 、、、四点共圆,,,BDG ∆ABH ∆4BD BG DG ∴===AB BH =60DBG ABH BGD ∠=∠=︒=∠ABD GBH ∴∠=∠()ADB HGB SAS ∴∆≅∆2AD GH ∴==120ADB BGH ∠=∠=︒180DGB BGH ∴∠+∠=︒∴G H D 426DH ∴=+=ADE ∆ACH ∆AC AH ∴=2AE AD DE ∠===60DAE CAH EDA ∠=∠=∠=︒DAC EAH ∴∠=∠()DAC EAH SAS ∴∆≅∆DC EH ∴=60BDG EDN ∠=∠=︒EN DG ⊥30DEN ∴∠=︒112ND DE ∴==33NE DN =7HN DH DN ∴=+=22349213EH EN NH ∴=+=+=213CD EH ∴==AF DAE BAC ∠=∠AD AE =AB AC =∴AD AE AB AC=ADE ABC ∴∆∆∽ADE ABC ∴∠=∠A ∴D B F 1801809090BFA ADB ∴∠=︒-∠=︒-︒=︒AF BC ∴⊥,,点是中点.17.(2021•越秀区校级四模)在一次数学探究活动中,李老师设计了一份活动单:已知线段,使用作图工具作,尝试操作后思考:(Ⅰ)这样的点唯一吗?(Ⅱ)点的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点的位置不唯一,它在以为弦的圆弧上(点、除外),,小华同学画出了符合要求的一条圆弧(如图.(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为,请你利用图1证明.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形的边长,,点在直线的左侧,且.①求线段长的最小值;②若,求线段的长.【答案】(1)①2,②;(2)见解析;(3;②【详解】(1)解:①设为圆心,连接,,,,又,是等边三角形,,即半径为2,故答案为:2;AB AC=BF CF∴=∴F BC2BC=30BAC∠=︒AAA BCB C⋯1)ABC∆A'30BAC∠'>︒ABCD 2AB=3BC=P CD4tan3DPC∠=PB23PCD PADS S∆∆=PD32+975-3272244PD DF PF∴=+=+=O BO CO30BCA∠=︒60BOC∴∠=︒OB OC=OBC∴∆2OB OC BC∴===②以为底边,,当点到的距离最大时,的面积最大,如图,过点作的垂线,垂足为,延长,交圆于,以为底,则当与重合时,的面积最大,,,,,的最大面积为, 故答案为:;(2)证明:如图,延长,交圆于点,连接,点在圆上,,,,,即;(3)解:①如图,当点在上,且时, ,,, ,为定值, 连接,设点为中点,以点为圆心,为半径画圆, ABC ∆BC 2BC =∴A BC ABC ∆O BC E EO D BC A D ABC ∆1BE CE ∴==2DO BO ==223OE BO BE ∴=-=32DE ∴=+ABC ∴∆12(32)322⨯⨯+32+BA 'D CD D BDC BAC ∴∠=∠BAC BDC ACD ∠'=∠+∠'BAC BDC ∴∠'>∠BAC BAC ∴∠'>∠30BAC ∠'>︒P BC 32PC =90PCD ∠=︒2AB CD ==3AD BC ==4tan 3CD DPC PC ∴∠==PD Q PD Q 12PD当点在优弧上时,,连接,与圆交于, 此时即为的最小值,过点作,垂足为,点是中点,点为中点,即,,, , , 圆的半径为, ,即;②,,, , 中边上的高中边上的高,即点到的距离和点到的距离相等,点在的平分线上, 如图,过点作,垂足为,平分,, 为等腰直角三角形,又,,∴P CPD 4tan 3DPC ∠=BQ Q P 'BP 'BP Q QE BE ⊥E Q PD ∴E PC 112QE CD ==1324PE CE PC ===39344BE BC CE ∴=-=-=22974BQ BE QE ∴=+=2252PD CD PC =+=∴Q 155224⨯=975975444BP BQ P Q -∴'=-'=-=BP 975-3AD =2CD =23PCD PAD S S ∆∆=∴23CD AD =PAD ∴∆AD PCD =∆CD P AD P CD ∴P ADC ∠C CF PD ⊥F PD ADC ∠45ADP CDP ∴∠=∠=︒CDF ∴∆2CD =2CF DF ∴==, , . 18.(2020•广州一模)如图①,在四边形中,于点,,点为中点,为线段上的点,且(1)求证:平分;(2)若,连接,当四边形为平行四边形时,求线段的长;(3)若点为的中点,连接、(如图②,求证:.【答案】(1)见解析;(2)510;(3)见解析 【详解】(1)证明:如图①,,, 是的中点,,在中,,在中,, ,,是等腰直角三角形,,,,即平分; (2)解:设, 四边形是平行四边形, ,4tan 3CF DPC PF ∠==324PF ∴=3272244PD DF PF ∴=+=+=ABCD AC BD ⊥E AB AC BD ==M BC N AM MB MN =BN ABE ∠1BD =DN DNBC BC F AB FN FM )MFN BDC ∠=∠AB AC =ABC ACB ∴∠=∠M BC AM BC ∴⊥Rt ABM ∆90MAB ABC ∠+∠=︒Rt CBE ∆90EBC ACB ∠+∠=︒MAB EBC ∴∠=∠MB MN =MBN ∴∆45MNB MBN ∴∠=∠=︒45EBC NBE MAB ABN MNB ∠+∠=∠+∠=∠=︒NBE ABN ∴∠=∠BN ABE ∠BM CM MN a ===DNBC 2DN BC a ∴==在和中,,,,在中,由,可得:,解得:(负值舍去), ; (3)解:是的中点,在中,,,,,,即, ,.19.(2020•荔湾区一模)如图,在矩形中,,,点是边上的一动点,连接. (1)若将沿折叠,点落在矩形的对角线上点处,试求的长;(2)点运动到某一时刻,过点作直线交于点,将与分别沿与折叠,点与点分别落在点,处,若,,三点恰好在同一直线上,且,试求此时的长;(3)当点运动到边的中点处时,过点作直线交于点,将与分别沿与折叠,点与点重合于点处,请直接写出到的距离.ABN ∆DBN ∆AB DB NBE ABN BN BN =⎧⎪∠=∠⎨⎪=⎩()ABN DBN SAS ∴∆≅∆2AN DN a ∴==Rt ABM ∆222AM MB AB +=22(2)1a a a ++=1010a =±1025BC a ∴==F AB ∴Rt MAB ∆MF AF BF ==MAB FMN ∴∠=∠MAB CBD ∠=∠FMN CBD ∴∠=∠12MF MN AB BC ==MF MN BD BC=MFN BDC ∴∆∆∽MFN BDC ∴∠=∠ABCD 4AB =3BC =P AB DP DAP ∆DP A A 'AP P P PE BC E DAP ∆PBE ∆DP PE A B A 'B 'P A 'B '2A B ''=AP P AB P PG BC G DAP ∆PBG ∆DP PG A B F F BC【答案】(1)或;;(2)1或3;;(3)【详解】(1)四边形是矩形,,,,分两种情况:①当点落在对角线上时,如图1所示:设,在中,,,由折叠的性质得:,,,,,,在中,,即:,解得:, ; ②当点落在对角线上时,如图2所示: 由翻折性质可知:,,,, ,,, , 综上所述:的长为或; (2)①如图3所示:设,则,由折叠的性质得:,,,,解得:,;32941613ABCD 4AB CD ∴==3AD BC ==90ABC BCD CDA BAD ∠=∠=∠=∠=︒A BD AP x =Rt ADB ∆90BAD ∠=︒2222435BD AB AD ∴=+=+=AP PA x ='=3AD DA ='=90DA P BAD ∠'=∠=︒532BA BD DA ∴'=-'=-=90BA P ∠'=︒4BP AB AP x =-=-Rt BPA ∆'222BP PA BA ='+'222(4)2x x -=+32x =32AP ∴=A AC PD AC ⊥90PAC APD ∴∠+∠=︒90BAC BCA ∠+∠=︒APD BCA ∴∠=∠90DAP ABC ∠=∠=︒DAP ABC ∴∆∆∽∴AD AB AP BC=33944AD BC AP AB ⋅⨯∴===AP 3294AP x =4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=42x x ∴--=1x =1PA ∴=②如图4所示:设,则,由折叠的性质得:,,,,,;综上所述,的长为1或3;(3)作于,如图5所示:则的长就是到的距离,由翻折的性质得:,,、、共线,设,则,,在中,,即:,解得, , ,, , , , 到的距离为.APx=4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=(4)2x x ∴--=3x ∴=3PA ∴=PA FH CD ⊥H CH F BC 3AD DF ==BG FG =G F D BG FG x ==3DG DF FG x =+=+3CG BC BG x =-=-Rt GCD ∆222DG CD CG =+222(3)4(3)x x +=+-43x =413333DG ∴=+=//FH CG ∴DH DF CD DG=∴31343DH =3613DH ∴=361641313CH ∴=-=F ∴BC 161320.(2020•越秀区一模)如图所示,四边形为平行四边形,,,,且,点为直线上一动点,将线段绕点逆时针旋转得到线段,连接.(1)求平行四边形的面积;(2)当点、、三点共线时,设与相交于点,求线段的长;(3)求线段的长度的最小值.ABCD 13AD =25AB =DAB α∠=5cos 13α=E CD EA E αEF CF ABCD C B F EF AB G BG CF【答案】(1)300;(2);(3 【详解】解(1)如图1,作于点,将线段绕点逆时针旋转得到线段, ,,在中, ,且, ,, ; (2)如图2,延长至,作,,,过点作于点,由(1)知,,, 11722BG ∴=6613DK AB ⊥K EA E αEF AEF α∴∠=AE EF =Rt DAK ∆5cos cos 13AK DAK AD α∠===13AD =5AK ∴=222213512DK AD AK ∴=-=-=2512300ABCD S AB DK ∴=⨯=⨯=平行四边形CD H AHD α∠=AHD ADH α∠=∠=13AH AD ∴==A AM DH ⊥M 12AM =225DM AD AM ∴=-=10DH ∴=。

2021年广东省中考数学解答题压轴题练习及答案 (47)

2021年广东省中考数学解答题压轴题练习及答案 (47)

2021年广东省中考数学解答题压轴题练习1.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.【分析】(1)根据正方形的四条边都相等,AB=BC,又BE=BF,所以△ABE和△CBF全等,再根据全等三角形对应角相等即可证出;(2)连接DG,根据正方形的性质,AB=AD,∠DAC=∠BAC=45°,AG是公共边,所以△ABG和△ADG全等,根据全等三角形对应边相等,BG=DG,对应角相等∠2=∠3,因为BG⊥AE,所以∠BAE+∠2=90°,而∠BAE+∠DAM=90°,所以∠2=∠DAM,因此∠3=∠DAM,根据GM⊥CF和(1)中全等三角形的对应角相等可以得到∠1=∠BFC=∠2,在△ADG中,∠DGC=∠3+45°,所以DGM三点共线,因此△ADM是等腰三角形,AM=DM=DG+GM,所以AM=BG+GM.【解答】证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠BFC=∠BEA;(2)连接DG,在△ABG和△ADG中,1/ 2,∴△ABG≌△ADG(SAS),∴BG=DG,∠2=∠3,∵BG⊥AE,∴∠BAE+∠2=90°,∵∠BAD=∠BAE+∠DAM=90°,∴∠2=∠3=∠DAM,∵GM⊥CF,∴∠BCF+∠1=90°,又∠BCF+∠BFC=90°,∴∠1=∠BFC=∠2,∴∠1=∠3,在△ADG中,∠DGC=∠3+45°,∴∠DGC也是△CGH的外角,∴D、G、M三点共线,∵∠3=∠DAM(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴AM=BG+GM.2/ 2。

2020年广东省中考数学压轴题专题训练(含解析)

2020年广东省中考数学压轴题专题训练(含解析)

2020年(广东)中考数学压轴题专题训练1.如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.2.已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.3.如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tan G=,AE=6,求GM的值.4.如图,已知AC是半径为2的⊙O的一条弦,且AC=2,点B是⊙O上不与A、C重合的一个动点,(1)请计算△ABC的面积的最大值;(2)当点B在优弧上,∠BAC>∠ACB时,∠ABC的平分线交AC于D,且OD⊥BD,请计算AD的长;(3)在(2)条件下,请探究线段AB、BC、BD之间的数量关系.5.如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当四边形ABOF是菱形时,∠AEG=°;②若OC=2DC,△AGE为等腰直角三角形,则AB=.6.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的弦,AD=BC,AD与BC相交于点E.(1)求证:CB平分∠ACD;(2)过点B作BG⊥AC于G,交AD于点F.①猜想AC、AG、CD之间的数量关系,并且说明理由;②若S△ABG=S△ACD,⊙O的半径为15,求DF的长.7.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D 三点的⊙O交AB于另一点E,连结AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连结EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,抛物线y=x2+mx+n与x轴交于A,B两点,与y轴交于点C,若A(﹣1,0),且OC=3OA.(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.10.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.11.如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)求a与m的关系式;(2)求证:为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+4ax+与x轴交于点A、B(A在B的左侧),过点A的直线y=kx+3k交抛物线于另一点C.(1)求抛物线的解析式;(2)连接BC,过点B作BD⊥BC,交直线AC于点D,若BC=5BD,求k的值;(3)将直线y=kx+3k向上平移4个单位,平移后的直线交抛物线于E、F两点,求△AEF的面积的最小值.13.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.15.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)该二次函数图象上有一点P(x,y)使得S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上一点(不含端点),连接AF,求2AF+DF的最小值.16.二次函数y=x2﹣x﹣与x轴分别交于A、B两点,与y轴交于点C,点D 为抛物线的顶点,连接BD.(1)如图1,点P为抛物线上的一点,且在线段BD的下方(包括线段的端点),连接P A,PC,AC.求△P AC的最大面积;(2)如图2,直线l1过点B、D.过点A作直线l2∥l1交y轴于点E,连接点A、E,得到△OAE,将△OAE绕着原点O顺时针旋转α°(0<α<180)得到△OA1E1,旋转过程中直线OE1与直线l1交于点M,直线A1E1与直线l1交于点N.当△E1MN为等腰三角形时,直接写出点E1的坐标并写出相应的α值.17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.18.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B 两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.20.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A(x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH 与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR 为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.参考答案一.解答题(共20小题)1.(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),∴AD=3,由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠BDC=∠DBA,BD是⊙O的直径,∴∠BED=90°,∵∠BFD=∠ABF+∠BAD,∠BFD=∠BDC+45°,∴∠ABF+90°=∠DBA+45°,∴∠DBA﹣∠ABF=45°,∴∠EBD=45°,∴△BED是等腰直角三角形,∴∠EBD=∠EDB;(2)证明:过点K作KS⊥BE,垂足为R,交AB于S,如图2所示:∵KG⊥AB,∴∠BGH=∠KRH=∠SRB=∠KGS=90°,∴∠SBR=∠HKR,∵∠BED=90°,∴∠RBK=∠RKB=45°,∴BR=KR,在△SRB和△HRK中,,∴△SRB≌△HRK(ASA),∴SB=HK,∵SB=BG+SG,HK=BG+AF,∴BG+SG=BG+AF,∴SG=AF,在△ABF和△GKS中,,∴△ABF≌△GKS(AAS),∴AB=KG;(3)解:过点O分别作AD与CN的垂线,垂足分别为Q和T,连接OC,如图3所示:∵∠APO=∠CPO,∴OQ=OT,在Rt△OQD和Rt△OTC中,,∴Rt△OQD≌Rt△OTC(HL),∴DQ=CT,∴AD=CN,∵四边形ABCD是矩形,∴AD=CN=BC,连接ON,在△NOC和△BOC中,,∴△NOC≌△BOC(SSS),∴∠BCO=∠NCO,设∠OBC=∠OCB=∠NCO=α,∴∠MOC=2α,过点M作MW⊥OC于W,在OC上取一点L,使WL=OW,连接ML,∴MO=ML,∴∠MOL=∠MLO=2α,∴∠LCM=∠LMC=α,∴ML=CL,设OM=ML=LC=a,则OD=a+8=OC,∴OL=8,OW=WL=4,∴CW=4+a,由勾股定理得:OM2﹣OW2=MW2=MC2﹣CW2,即a2﹣42=(3)2﹣(4+a)2,整理得:a2+4a﹣45=0,解得:a1=﹣9(不合题意舍去),a2=5,∴OM=5,∴MW=3,WC=9,∴OB=OC=OD=13,BD=26,∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW===,∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW=,设AB=b,则AD=3b,由勾股定理得:b2+(3b)2=262,解得b=,∴CD=GK=AB=,在Rt△GKB中,tan∠GKB==,∴GB=GK=×=.3.(1)证明:连接OF.∴AB⊥CD,∴∠AEH=90°,∴∠EAH+∠AHE=90°,∵GF=GH,∴∠GFH=∠GHF=∠AHE,∵OA=OF,∴∠OAF=∠OF A,∴∠OF A+∠GFH=90°,∴OF⊥GM,∴MG是⊙O的切线.(2)证明:∵=,∴OF垂直平分线段AC∵OF⊥MG,∴AC∥GM,∴∠CAH=∠GFH,∵∠CHA=∠GHF,∠HGF=∠GFH,∴∠CAH=∠CHA,∴CA=CH.(3)解:∵AC∥GM,∴∠G=∠ACH,∴tan∠CAH=tan∠G==,∵AE=6,∴EC=8,AC===10,设GF=GH=x,则CG=CH+GH=AC+GH=10+x,∵CD=2EC=16,∴GD=10+x﹣16=x﹣6,∵GF2=GD•GC,∴x2=(x﹣6)(x+10),解得x=15,∴EG=CG﹣CE=25﹣8=17,∵tan∠G==,∴EM=,∴GM===.4.解:(1)如图1中,当点B在优弧AC的中点时,△ABC的面积的最大,连接AB,BC,OB,延长BO交AC于H.∵=,∴BH⊥AC,∴AH=HC=,∴OH==1,∴BH=OB+OH=2+1=3,∴△ABC的最大面积=×AC×BH=×2×3=3.(2)如图2中,延长BD交⊙O于E,连结OE交AC于F,连结OC.由BD平分∠ABC可得,E为弧AC中点,∴OE⊥AC,∴AF=CF=∴OF===1=EF,∴DF垂直平分OE,又∵OD⊥BD,∴△ODE是等腰直角三角形,∴DF=OE=1,∴AD=.(3)如图3,连结AE、CE,由已知得AE=CE,∠AEC=120〫,将△EAB绕点E顺时针旋转120〫得△ECF,∵∠BAE=∠ECF,∠BAE+∠BCE=180〫,∴∠ECF+∠BCE=180〫,∴BF=BC+CF,∵AB=CF,∴BF=AB+BC,∵BE=FE,∠BEF=∠AEC=120〫,∴BF=BE,∵OD⊥BD,∴BE=2BD,∴BF=2BD,∴BA+BC=2BD.5.(1)证明:连接OA.∵OA=OC,∴∠OAC=∠OCA,∵GA=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠EDC=90°,∴∠OCA+∠DEC=90°,∵∠CED=∠GEA=∠GAE,∴∠OAC+∠GAE=90°,∴∠OAG=90°,∴OA⊥AG,∴AG是⊙O的切线.(2)①如图2中,连接OA,AF,OF.∵四边形ABOF是菱形,∴AB=BO=OF=AF=OA,∴△ABO是等边三角形,∴∠B=60°,∵BC是直径,∴∠BAC=90°∴∠ACB=90°﹣60°=30°,∵ED⊥BC,∴∠DEC=90°﹣∠ACB=60°,∴∠AEG=∠DEC=60°.故答案为60.②如图3中,当AB=4时,△AGE是等腰直角三角形.理由:连接OA.∵△AGE是等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC,△ABC都是等腰直角三角形,∵OB=OC,∴AO⊥OC,∴∠AOD=∠ODG=∠G=90°,∴四边形AODG是矩形,∴AG=OD=2,∴OC=2OD=4,∴BC=2OC=8,∴AB=AC=4,故答案为4.6.(1)证明:如图1中,∵AD=BC,∴=,∴=,∵AB=AC,∴=,∴=,∴∠ACB=∠BCD,∴CB平分∠ACD.(2)①结论:AC﹣2AG=CD.理由:如图2中,连接BD,在GC上取一点H,使得GH=GA.∵BG⊥AH,GA=GH,∴BA=BH,∴∠BAH=∠BHA,∵∠BAH+∠BDC=180°,∠BHG+∠BHC=180°,∴∠BDC=∠BHC,∵∠BCH=∠BCD,CB=CB,∴△BCH≌△BCD(AAS),∴CD=CH,∴AC﹣2AG=AC﹣AH=CH=CD.②如图3中,过点G作GN⊥AB于G,过点D作DM⊥AC交AC的延长线于M,连接AO,延长AO交BC于J,连接OC.∵=,∴∠BAD=∠ADC,∴AB∥CD,∴S△ACD=S△BCD,∵△BCH≌△BCD,∴S△BCH=S△BCD,∵AG=GH,∴S△ABG=S△BGH,∵S△ABG=S△ACD,∴S△ABG=S△BGH=S△BCH,∴AG=GH=CH,设AG=GH=HC=a,则AB=AC=3a,BG===2a,∵BG⊥AC,∴•BG•AG=•AB•GN,∴GN==a,在Rt△BGC中,BC===2a,∵AB=AC,∴=,∴AJ⊥BC,∴BJ=JC=a,∴AJ===a,在Rt△OJC中,∵OC2=OJ2+JC2,∴152=(a﹣15)2+(a)2,∴a=,∵S△ABG=S△ACD,AB=AC,GN⊥AB,DM∠AC,∴DM=GN=a=,∵BC=AD=2a=20,∴AM===,∵FG∥DM,∴=,∴=,∴AF=6,∴DF=AD=AF=20﹣6=14. 7.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).10.解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点P(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点P(,);故点P的坐标为:(,)或(,)或(,)或(,).11.解:(1)将点C的坐标代入抛物线表达式得:﹣3am2=3,解得:am2=﹣1;(2)对于二次函数y=a(x2+2mx﹣3m2),令y=0,则x=m或﹣3m,∴函数的对称轴为:x=﹣m,∵CD∥AB,∴点D、C的纵坐标相同,故点D(﹣2m,3),故点A、B的坐标分别为:(m,0)、(﹣3m,0),设点E(x,y),y=a(x2+2mx﹣3m2),分别过点D、E作x轴的垂线,垂足分别为M、N,∵AB平分∠DAE,∴∠DAM=∠EAN,∴RtADM△∽Rt△ANE,∴,即,解得:y=,故点E(x,),将点E的坐标代入抛物线表达式并解得:x==﹣4m,则y==﹣5,故点E(﹣4m,﹣5),故===为定值;(3)存在,理由:函数的对称轴为x=﹣m,当x=﹣m时,y=a(x2+2mx﹣3m2)=4,即点F(﹣m,4),由点F、C的坐标得,直线FC的表达式为:y=﹣x+3,令y=0,则x=3m,即点G(3m,0),GF2=(3m+m)2+42=16m2+16,同理AD2=9m2+9,AE2=25m2+25,故AE2=AD2+GF2,GF、AD、AE的长度为三边长的三角形是直角三角形,点G的横坐标为3m.12.解:(1)∵直线y=kx+3k过点A,∴y=0时,0=kx+3k,解得x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得a=,∴抛物线解析式为y=x2+x+;(2)如图1,过点D作DF⊥x轴于F,过点C作CG⊥x轴于G,∴∠DFB=∠CGO=90°=∠DBC,∴∠DBF+∠BDF=90°,又∵∠DBF+∠CBG=90°,∴∠BDF=∠CBG,∴△BDF∽△CBG,∴,∵CB=5BD,∴CG=5BF,BG=5DF,联立方程组,解得:,(舍去),∴点C(4k﹣1,4k2+2k),∴CG=4k2+2k,OG=4k﹣1,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k=﹣(舍去)或k=0(舍去)或k=1,∴k的值为1;(3)∵将直线y=kx+3k向上平移4个单位,∴平移后解析式为y=kx+3k+4,∴kx+3k+4=x2+x+,∴x E+x F=4k﹣4,x E•x F=﹣12k﹣13,∴|x F﹣x E|==,∵△AEF的面积=×4×,∴当k=﹣时,△AEF的面积的最小值为16.13.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).14.解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.15.解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣.(2)如图1中,设直线BD交y轴于J,则J(0,).连接CD,BC.∵S△BDC=××9=10,∴S△P AB=10,∴×6×|y P|=10y P=±,当y=时,=x2﹣x﹣,解得x=1±,∴P(,)或(,),当﹣=x2﹣x﹣,方程无解,∴满足条件的点P的坐标为(,)或(,).(3)如图2中,过点D作DM平行于x轴,∵D(﹣5,3),B(4,0),∴tan∠DBA==,∴∠DBA=30°∴∠BDM=∠DBA=30°,过F作FJ⊥DM于J,则有sin30°=,∴HF=,∴2AF+DF=2(AF+)=2(AF+HF),当A、F、H三点共线时,即AH⊥DM时,2AF+DF=2(AF+HF)取最小值为=.16.解:(1)∵y=x2﹣x﹣=(x2﹣2x﹣3)=(x﹣1)2﹣2,∴顶点D的坐标为(1,﹣2),令y=0,则(x2﹣2x﹣3)=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0,则y=﹣,∴C(0,﹣),∴AC是定值,要△ACP的面积最大,则点P到AC的距离最大,即当点P在点B位置时,点P到AC的距离最大,∴S△ACP最大=S△ABC=AB•OC=(3+1)•=3;(2)由(1)知,B(3,0),D(1,﹣2),∴直线l1的解析式为y=x﹣3,∵l1∥l2,且l1过点A,∴直线l2的解析式为y=x+,∴E(0,),∴OE=,在Rt△AOE中,OA=1,∴tan∠AEO==,∴∠AEO=30°,∵l1∥l2,∴∠DBO=60°,由旋转知,OE1=OE=,∠A1E1O=∠AEO=30°,∴∠ME1N=30°如图,∵△E1MN为等腰三角形,∴①当E1N1=M1N1时,∴∠E1M1N1=∠A1E1O=30°,∴α=∠BOM=60°﹣30°=60°,过点E1作E1F⊥x轴于F,∴E1F=OE1=,∴OF=E1F=,∴E1(,),②当E2M2=E2N2时,∠E2N2M2=∠E2M2N2=(180°﹣30°)=75°,∴∠BOM2=75°﹣60°=15°,∴α=105°,过点E2作E2H⊥x轴,在OH上取一点Q,使OQ=E2Q,∴∠E2QH=30°,设E2H=a,则E2Q=2a,HQ=a,∴OQ=E2Q=2a,OH=(2+)a,在Rt△OHE2中,根据勾股定理得,[(2+)a]2+a2=3,∴a=(舍去负值),∴E2(,﹣).③当E3M3=M3N3时,∠E3N3M3=∠M3E3N3=30,∴∠E3M3N3=120°,∴∠BOM3=60°,∴α=150°,∵∠OBM3=60°,∠E3N3M3=30°,∴∠N3GB=90°,∴OG=,E3G=,∴E3(,﹣).17.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).18.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).19.解:(1)理由:∵∠ACB=90°,∴∠ACD=∠BCE=90°,又∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,且∠ADC=∠BEC=90°,∴△ADC∽△CEB;(2)如图,过点O作ON⊥OM交直线CD于点N,分别过M、N作ME⊥x轴NF⊥x轴,由(1)可得:△NFO∽△OEM,∴,∵点M(2,1),∴OE=2,ME=1,∵tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∵设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∠CDP=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,∵∠ADC+∠CDP=180°,∴点A,点D,点P三点共线,∵∠BAP=∠B=∠H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠H=90°,AE=EP,∴△ABE≌△EHP(AAS),∴BE=PH=3,当∠CPD=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠EHP=90°,AE=EP,∴△ABE≌△EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∵∠DPC=90°,∴∠DPN+∠CPH=90°,且∠CPH+∠PCH=90°,∴∠PCH=∠DPN,且∠N=∠CHP=90°,∴△CPH∽△PDH,∴,∴∴x=∵点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,△DPC为直角三角形.20.解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.。

2021年广东省中考数学解答题压轴题练习及答案 (7)

2021年广东省中考数学解答题压轴题练习及答案 (7)

2021年广东省中考数学解答题压轴题练习1.如图,点B为长为5的线段AC上一点,且AB=2,过B作BE⊥BC于B,且BE=4,以BC、BE为邻边作矩形BCDE,将线段AB绕点B顺时针旋转,得到线段BF,优弧交BE于N,交BC于M,设旋转角为a(1)若扇形MBF的面积为π,则a的度数为200;(2)连接EC,判断CE与扇形ABF所在圆⊙B的位置关系,并说明埋由.(3)设P为直线AC上一点,沿EP所在直线折叠矩形,若折叠后DE所在的直线与扇形ABF所在的⊙B相切,求CP的长.【分析】(1)由扇形的面积公式得:=,则∠MBF=20°,即可求解;(2)过点B作BG⊥CE于点G,则CB×BE=CE×BG,求出BG=>2,即可求解;(3)分点Q在BE的左侧、点Q在BE右侧两种情况,分别求解即可.【解答】解:(1)由扇形的面积公式得:=,则∠MBF=20°,a=180°+20°=200°,答案为:200;(2)相离.如图1,∵BE⊥BC,∴∠EBC=90°,∵BE=4,BC=3,∴EC=5,过点B作BG⊥CE于点G,∴CB×BE=CE×BG,∴BG=>2,∴CE与扇形ABF所在圆⊙B相离;(3)①当折叠后DE所在的直线与扇形ABF所在的圆B相切时,切点为Q,如图2,当点Q在BE的左侧时,连接BQ,则∠BQE=90°,∵BQ=2,BE=4,sin∠QEB=,∴∠QEB=30°,∵四边形EBCD为矩形,∴∠DEB=90°,∴∠QED=120°,又由题意得:∠QEP=∠PED=60°,∴∠EPB=30°,∵BE=4,∴PB=,∴CP=3﹣;②如图3,当点Q在BE右侧时,同理可得:∠QEB=30°,又由题意得:∠QEP=∠PED=30°,∵BE=4,∴PB=4,∠BEP=60°,∴CP=4﹣3.③当D′E于圆相切时,如图3,由折叠知:∠1=∠2,在Rt△BQE中,∵BQ=BE,∴∠BEC=30°,又∠B′EC=90°,∴∠1=∠2=30°,在Rt△PBE中,PB=tan∠PEB•BE=×4=,PC=3+;④当D′E同左侧圆相切时,如图4,同理可得:PB=4,PC=4+3;综上,PC=3﹣或4﹣3或3+或4+3.。

中考数学临考题号押广东卷24题(几何综合)(解析版)

中考数学临考题号押广东卷24题(几何综合)(解析版)
∴DF=FB= ,
∴∠FDB=∠FBD,
∴tan∠FDB=tan∠FBD,
∴ ,
∵∠A=45°,
∴ 是等腰直角三角形,
∴GH=AH,
∴ ,此时,H、D重合,
∴设AD=3x,BD=2x,则AB=5x,AC=BC=5x÷ = ,
∴GH=AH=3x,AG=3 x
∴CG=3 x- = ,
【小问1详解】
∵BC是直径,
∴∠BAC=∠BDC=90°,
∵AD平方∠BAC,
∴∠BAD=∠DAC=45°,
∴BD=DC,且∠DBC=∠DAC=∠DAB=∠DCB=45°
∵BD= ,
∴在等腰Rt△BDC中,BC= BD=4,DC=BD= ,
∵在Rt△BAC中,AB=2,BC=4,
∴利用勾股定理可得AC= ,
(3)连接OD,根据(1)和(2)中的结论可得出∠FBD=75°=∠DEC,再利用 和BD=CD,可得 ,即有∠BDF=∠ECD=45°,则可得∠ODF=90°,即OD⊥DF,可证得DF是⊙O的切线;根据∠BAD=∠BDF=45°,∠F=∠F,证得 ,则有 ,即可找到BF、FD、FA之间的关系,根据 ,即可求出DF.
【分析】(1)把C(1,4)代入y= 求出k=4,把(4,m)代入y= 求出m即可,将A、C两点坐标代入 ,获得直线解析式,然后利用 ,代入即可求解;
(2)设平移后的解析式为 ,而当直线与反比例函数只有一个交点时,两者相切,联立平移后的直线和反比例函数解析式,形成的新的方程的判别式为0,代入数值即可求解;
∴在Rt△AHD中,∠HAD=∠ADH=45°,即HA=HD,
设HD=a,则HA=a,HB=HA-AB=a-2,
在Rt△HBD中,利用勾股定理,

2021年广东省中考数学解答题压轴题练习及答案 (79)

2021年广东省中考数学解答题压轴题练习及答案 (79)

2021年广东省中考数学解答题压轴题练习1.如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段P A,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.【分析】(1)欲证明AD是⊙O的切线,只需推知AD⊥AE即可;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BP A≌△BFC(AAS),即可得出P A+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP•PD求出AP的长,即可得出答案.【解答】(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠P AE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠P AE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)P A+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BP A=∠APC+∠BPC=120°,∴∠BP A=∠BFC,在△BP A和△BFC中,,∴△BP A≌△BFC(AAS),∴P A=FC,AB=CB,∴P A+PB=PF+FC=PC;(3)解:∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BP A=60°,∴∠APD=∠APC,∵∠P AD=∠E,∠PCA=∠E,∴∠P AD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP•PD,∴AP2=(3+AP)•1,解得:AP=或AP=(舍去),∴BC=AB=2AP=1+.。

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

专题07一次函数与反比例函数综合问题通用的解题思路:1.三角形面积的解题步骤:类型一:三角形有其中一边与坐标轴平行(垂直)的,以这边为底边,以该边所对的顶点的坐标的绝对值为高•底边平行于V轴,则以所对顶点的横坐标的绝对值为高,反之则以纵坐标的绝对值为高.类型二:三角形没有其中一边与坐标轴平行(垂直)的,可以用公式水平宽X铅垂高求解.2.利用图象法解不等式解集的解题步骤:①求交点:联立方程求出方程组的解;②分区间:将一次函数和反比例函数两个交点以及y轴左右两侧分层4个区间;③比大小:图象谁在上方谁就大;④:写出对应区间自变量的取值范围.3.两线段和差的最值问题利用将军饮马模型:做对称,连定点,求交点.1.(2024广东东莞•一模)如图,一次函数y=+3的图象与'轴交于点,与反比例函数日的图象在第一象限内交于点瓦点B的横坐标为1,连接。

8,过点B作BClx轴于点C.⑴求一次函数和反比例函数的解析式;.....................................~4〜.......................⑵设点。

是x轴上一点,使得S^BCD=~S^AOB,求点Q的坐标.【答案】(1)必=2x+3,J=-x⑵点。

的坐标为(-1,0)或(3,0)【分析】本题主要考查了待定系数法确定函数的解析式,一次函数图象的性质,一次函数图象上点的坐标的特征,反比例函数的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.(1)把点代入一次函数了=心+3中,解得m=2,进而可得点B的坐标为(1,5),再利用待定系数法解答即可;(2)根据坐标求得S△朝=可知S%co=:S△皿=5,再根据S^cd=?CD・BC,得CD=2,即可求解.【详解】(1)解:把点{―代入一次函数:Y=m+3中,,一3___——m+3=0,解得m=2,园一次函数的解析式为"2x+3.把点B的横坐标工二1代入y=2x+3中,得"5,国点B的坐标为(1,5),国点B为一次函数和反比例函数图象的交点,园把点8(1,5)代入反比例函数y=|中,得S5,园反比例函数的解析式为:y=-;(2)园jo],8(1,5),BClx轴,0OA=-,BC=5,C(l,0),S5aaob=-AO-BC=-x-x5=—,△如2224[?]Q=—V-^x—=5U*BCD3°AA(9B34,0S ABCn=-CD BC=-CD=5,园CD=2,M(l,0),回点。

专题01 尺规作图(解析版)--2020年中考数学保A必刷压轴题(广东广州专版)

专题01 尺规作图(解析版)--2020年中考数学保A必刷压轴题(广东广州专版)

专题01 尺规作图一.解答题(共8小题)1.(2019秋•龙华区期末)如图,已知四边形ABCD,请用尺规按下列要求作图.(1)延长BC到E,使CE=CD;(2)在平面内找到一点P,使P到A、B、C、D四点的距离之和最短.【分析】(1)延长BC到E,使CE=CD即可;(2)使点P、D、E共圆在平面内找到一点P,使P到A、B、C、D四点的距离之和最短【解答】解:(1)如图,延长BC到E,使CE=CD;(2)如图,点P即为所求作的点.【点评】本题考查了作图﹣复杂作图,解决本题的关键是准确找到点P.2.(2020•市南区校级模拟)已知△ABC,在△ABC中作一半圆满足以下要求:①圆心在边BC上;②该半圆面积最大.【分析】根据角平分线上的点到角的两边距离相等即可画出满足要求的半圆.【解答】解:根据题意作图,如图,圆O在三角形ABC内部的半圆即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是掌握角平分线的性质.3.(2020•德城区一模)已知:如图,在△ABC中,AD⊥BC.求作:在AD上求作点E,使得点E到AB的距离EF等于DE.(要求:尺规作图,不写作法,保留作图痕迹.)(1)作图的依据是到角两边距离相等的点在这个角的角平分线上;(2)在作图的基础上,若∠ABC=45°,AB⊥AC,DE=1,求CD的长.【分析】(1)作∠ABC的角平分线交AD于E,过点E作EF⊥AB于F,线段EF即为所求.(2)证明△AEF是等腰直角三角形,求出AE即可解决问题.【解答】解:(1)如图线段EF即为所求.作图的依据是:到角两边距离相等的点在这个角的角平分线上.故答案为:到角两边距离相等的点在这个角的角平分线上.(2)∵BE平分∠边长,ED⊥BC,EF⊥AB,∴ED=EF=1,∵AD⊥BC,∠ABC=45°,∴AF=EF=1,∴AE===,∴AD=AE+DE=+1.【点评】本题考查作图﹣复杂作图,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2019秋•碑林区校级期末)如图,△ABC中,AB=6,AC=8,点D在AB上,AD=3,在边AC上求作一点E使得△DAE的周长为11.(要求:尺规作图,不写作法,保留作图痕迹)【分析】连接CD,作CD的垂直平分线,交AC于E,则CE=DE,依据AD=3,AC=AE+CE=8,即可得到△DAE的周长为3+8=11.【解答】解:如图所示,点E即为所求.【点评】本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.5.(2019秋•包河区期末)如图,已知△ABC.(1)画出△ABC的高AD;(2)尺规作出△ABC的角平分线BE(要求保留作图痕迹,不用证明).【分析】(1)根据过直线外一点作已知直线的垂线的尺规作图可得;(2)根据角平分线的尺规作图可得.【解答】解:(1)如图,AD即为△ABC的高.(2)如图,BE即为△ABC的角平分线.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线及角平分线的尺规作图.6.(2017秋•聊城期中)已知:如图,直线l极其同侧两点A,B.(1)在图1直线l上求一点P,使到A、B两点距离之和最短;(不要求尺规作图)(2)在图2直线l上求一点O,使OA=OB.(尺规作图,保留作图痕迹)【分析】(1)直接利用对称点求最短路线方法作图即可;(2)结合线段垂直平分线的性质与作法分析得出答案.【解答】解:(1)如图1所示:点P即为所求;(2)如图1所示:点O即为所求.【点评】此题主要考查了基本作图、最短路线问题以及线段垂直平分线的性质,正确掌握相关性质是解题关键.7.(2017秋•滨海新区期末)如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的任意一点.(Ⅰ)P A+PB的最小值为4;(Ⅱ)在直线EF上找一点P,使得∠APE=∠CPE,画图,并简要说明画图方法.(保留画图痕迹,不要求证明)【分析】(Ⅰ)根据题意知点B关于直线EF的对称点为点C,故当点P为AC与EF的交点时,AP+BP 的最小值,依据AC的长度即可得到结论.(Ⅱ)先作射线BA与直线EF的交点即为点P的位置.【解答】解:(Ⅰ)∵EF是BC中垂线,∴点B关于直线EF的对称点为C,当点P为AC与EF的交点时,P A+PB取得最小值,最小值为P A+PC=AC=4,故答案为:4.(Ⅱ)如图所示,延长BA交直线EF于P,连接CP,则∠APE=∠CPE.理由:∵EF是BC的垂直平分线,∴PB=PC,又∵PE⊥BC,∴等腰△PBC中,PE平分∠BPC,∴∠APE=∠CPE.【点评】本题考查基本作图、轴对称变换、最短距离问题等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.8.(2019秋•惠山区校级期中)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD、ED⊥BD,连结AC、EC.已知AB=6,DE=2,BD=15,设CD=x.(1)用含x的代数式表示AC+CE的值;(写出过程)(2)请问点C满足条件点C与点A和B在同一条直线上时,AC+CE的值最小;(3)根据(2)中的结论,画图并标上数据,求代数式的最小值.【分析】(1)根据勾股定理用含x的代数式表示AC+CE的值即可;(2)根据两点之间线段最短可知:点C满足条件与点A、E在同一条直线上时,AC+CE的值最小;(3)根据(2)中的结论,画图并标上数据,即可求代数式的最小值.【解答】解:(1)∵AB=6,DE=2,BD=15,设CD=x则BC=15﹣x,根据勾股定理,得AC+CE=+=+(2)根据两点之间线段最短可知:当点C与点A和点E在同一条直线上时,AC+CE的值最小;故答案为:点C与点A和点E在同一条直线上.(3)如图所示:∵AB⊥BD、ED⊥BD,∴AB∥DE,∴=,即=,解得x=,则4﹣x=,=+=5答:代数式的最小值为5.【点评】本题考查了作图﹣基本作图、列代数式、轴对称﹣最短路线问题,解决本题的关键是求x的值.。

初中数学中考压轴题及答案详解(广东篇)

初中数学中考压轴题及答案详解(广东篇)

专题训练122. 如图,抛物线923212--=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC 。

(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合)。

过点E 作直线l 平行BC ,交AC 于点D 。

设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围; (3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π)。

参考答案: 解:(1)令y=0,即0923212=--x x , 整理得 01832=--x x , 解得:31-=x ,62=x , ∴ A (—3,0),B (6,0) 令x = 0,得y = —9, ∴ 点C (0,—9)∴ 9)3(6=--=AB ,99=-=OC , (2)281992121=⨯⨯=⋅=∆OC AB S ABC, ∵ l ∥BC ,∴ △ADE ∽△ACB , ∴22ABAE S S ABC=∆,即229281m S = ∴ 221m S =,其中90<<m 。

(3)88129212192122+⎪⎭⎫ ⎝⎛--=-⨯⨯=-=∆∆∆m m m S S S ADEACE CDE , ∵ 021<-∴ 当29=m 时,S △CDE 取得最大值,且最大值是881。

这时点E (23,0),yA OB xElCD题22图∴29236=-=-=OE OB BE ,133962222=+=+=OC OB BC , 作EF ⊥BC ,垂足为F ,∵∠EBF=∠CBO ,∠EFB=∠COB , ∴△EFB ∽△COB ,∴CB BEOC EF =,即133299=EF ∴132627=EF , ∴ ⊙E 的面积为:πππ5272913262722=⎪⎭⎫⎝⎛⨯=⋅=EF S 。

2021年广东省深圳市各区中考数学模拟真题汇编:四边形 压轴题

2021年广东省深圳市各区中考数学模拟真题汇编:四边形 压轴题

2021年九年级中考数学广东省深圳市各区模拟真题汇编:四边形压轴1.(2021•深圳模拟)已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB⋅AM=AE⋅AC.求证:(1)四边形ABCD是矩形;(2).2.(2021•罗湖区校级模拟)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠ADE=60°,若AD=3,求DE的长度.3.(2021•深圳模拟)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG ⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,求证:AB=FB.4.(2021•宝安区模拟)如图,在△ABC中,AB=AC,点D是BC中点,点E是AD中点,延长BE至F,使EF=BE,连接AF,CF,BF与AC交于点G,连接DG.(1)求证:四边形ADCF是矩形.(2)若AB=5,BC=6,求线段DG的长.5.(2021•宝安区模拟)(1)如图,正方形ABCD中,AC、BD交于点O,点F为边CD上一动点,作∠FOE=90°OE交BC于点E,若正方形ABCD的面积为16,则四边形ECFO的面积为;(2)若将正方形改为矩形,且AB=4,BC=6,其他条件不变,试探究OE:OF的值是否发生改变,若不变,请求出该值,若变化,请说明理由;(3)若将正方形改为菱形,且∠BAD=60°,∠EOF=120°,其他条件不变,试探究CE、CF与BC之间的数量关系,请写出你的结论并证明.6.(2021•罗湖区三模)在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A(0,2),C(2,0),点D是对角线AC上一点(不与A、C重合),连接BD,作DE⊥BD,交x 轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长;若不存在,请说明理由;(2)求证:;(3)设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式,并求出当x取何值时,y有最小值?7.(2021•坪山区二模)如图1,在平面直角坐标系中,四边形AOBC为矩形,点A的坐标为(0,3),点B的坐标为(4,0),点E、F分别是BC边、AC边上的动点,均不与端点重合,连接EF,把△CEF沿着动直线EF翻折,得到△DEF.(1)如图1,当点C的对应点D落在AB上,且EF∥AB时,则CE=;(2)如图2,点G(0,2),连接FG交AB于点H,直线ED交AB于点I,当四边形FHIE 为平行四边形时,求CE的长;(3)当点E、F在问题(1)中的位置时,把△EDF绕点E逆时针旋转α度(0°<α<180°)得到△E′D′F,设直线D′F′与y轴、直线AB分别交于点N、M,当AN=AM时,直接写出AM的长.8.(2021•龙岗区校级三模)如图,已知平行四边形ABCD中,M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)若∠BAD=135°,CD=2,AB⊥AC,求对角线MN的长.9.(2021•宝安区二模)如图,在四边形ABCD中,AB=AD,∠DAB=90°,AC平分∠DAB,作DE∥BC交AC于E,连BE.(1)求证:四边形DEBC是菱形;(2)若∠CDE=2∠EDA,CE=2,求AD的长.10.(2021•深圳模拟)如图,在▱ABCD中,AC,BD交于点O,且AO=BO.(1)求证:四边形ABCD是矩形;(2)∠BDC的平分线DM交BC于点M,当AB=3,tan∠DBC=时,求CM的长.11.(2021•福田区二模)如图,在平行四边形ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:▱ABCD是矩形;(2)若AD=4,cos∠ABE=,求AC的长.12.(2021•龙岗区模拟)如图,在平行四边形ABCD中,按下列步骤作图:①以点B为圆心,以适当长为半径作弧,交AB于点N.交BC于点M;②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G;③作射线BG交AD于F;④过点A作AE⊥BF交BF于点P,交BC于点E;⑤连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=8,AD=10,∠ABC=60°,求△APD的面积.13.(2021•福田区一模)如图1,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上.O为坐标原点,AB∥OC,线段OA,AB的长分别是方程x2﹣9x+20=0的两个根(OA<AB).(1)请求出点B的坐标;(2)如图2,P为OA上一点,Q为OC上一点,OQ=5,将△POQ翻折,使点O落在AB上的点O'处,记∠AO'P=α,∠PQO'=β,求tanα+tanβ的值;(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以O',Q,M,N 为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.14.(2021•深圳模拟)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC 与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AD=2,求tan∠E;(3)如图2,连接AG,请在下面选择EG,DG,AG三者之间的数量关系并证明.我的选择是.①EG﹣DG=AG;②EG﹣DG=AG;③EG﹣DG=AG.15.(2021•深圳模拟)如图1,AC是平行四边形ABCD的对角线,E、H分别为边BA和边BC 延长线上的点,连接EH交AD、CD于点F、G,且EH∥AC.(1)求证:△AEF≌△CGH;(2)若△ACD是等腰直角三角形,∠ACD=90°,F是AD的中点,AD=8,求BE的长;(3)在(2)的条件下,连接BD,如图2,求证:AC2+BD2=2(AB2+BC2).16.(2021•江西模拟)如图,在矩形ABCD中,AB=6,BC=8,点O为对角线AC的中点,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,点P 运动速度为每秒2个单位长度,点Q运动速度为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止运动,连接PQ,设点P运动时间为t(t>0)秒.(1)cos∠BAC=.(2)当PQ⊥AC时,求t的值.(3)求△QOP的面积S关于t的函数表达式,并写出t的取值范围.(4)当线段PQ的垂直平分线经过△ABC的某个顶点时,请直接写出t的值.17.(2021•深圳模拟)【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.18.(2021•深圳模拟)如图(1),点P是菱形ABCD对角线BD上的一点,连接AP,以AP 为腰在AP的右侧作等腰三角形APE,且使∠APE=∠ABC,AP=PE.(1)当点E在菱形ABCD内,=1时,=;(2)如图(2),当点E在菱形ABCD内,=k(k≠1),其他条件不变时,求值;(3)如图(3),当点E在菱形ABCD外,=,BP=6,菱形ABCD的面积为8,其他条件不变,请直接写出△DCE的面积.19.(2021•深圳一模)我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:,;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的两个勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.写出线段DC,AC,BC的数量关系为.20.(2021•深圳模拟)综合与实践(1)问题发现:正方形ABCD和等腰直角△EBF按如图1所示的方式放置,点F在AB上,连接AE,CF,则AE,CF的数量与位置关系为;(2)类比探究:如图2,正方形ABCD保持固定,等腰直角△EBF绕点B顺时针旋转,旋转角为α(0<α≤360°),请问(1)中的结论还成立吗?说明你的理由;(3)拓展延伸:在(2)的条件下,若AB=2BF=4,在等腰直角△EBF的旋转过程中,当CF为最大值时,请直接写出DE的长.参考答案1.证明:(1)∵AB⋅AM=AE⋅AC,∴,∵∠CAB=∠CAB,∴△ACB∽△AME,∴∠AEM=∠ABC=90°,∴平行四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴DE=BE,AE=EC,AC=BD,∴AE=BE=DE=CE,∴∠EBC=∠ECB,∵△ACB∽△AME,∴∠ACB=∠AME,∴∠AME=∠EBF,又∵∠BEF=∠BEM,∴△BEF∽△MEB,∴,∴.2.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴DF=BE且DF∥BE,∴四边形DFBE是平行四边形.又∵DE⊥AB,∴∠DEB=90°,∴四边形DFBE是矩形;(2)解:∵∠ADE=60°,DE⊥AB,∴∠DAE=30°,又∵AD=3,∴DE=AD=,3.证明:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.4.(1)证明:∵点E是AD中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(SAS),∴AF=DB,∠AFE=∠DBE,∴AF∥DB,∵AB=AC,点D是BC中点,∴DB=DC,AD⊥BC,∴AF=DC,∠ADC=90°,∴四边形ADCF是平行四边形,∵∠ADC=90°,∴平行四边形ADCF是矩形;(2)解:过G作GH⊥CD于H,如图所示:则GH∥AD,∵AB=AC=5,点D是BC中点,∴AD⊥BC,BD=CD=BC=3,∴AD===4,由(1)得:AF=DC=BD=3=BC,AF∥BC,∴△AGF∽△CGB,∴==,∴AG=CG,∴AG=AC=,∴CG=AC﹣CG=,∵GH∥AD,∴△CGH∽△CAD,∴===,∴GH=AD=,CH=CD=2,∴DH=CD﹣CH=1,∴DG===.5.解:(1)∵正方形的对角线AC ,BD 相交于点O ,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°,∵∠FOE =90°=∠BOC ,∴∠FOE ﹣∠COE =∠BOC ﹣∠COE ,∴∠BOE =∠COF ,∴△BOE ≌△COF (ASA ),∴S △BOE =S △COF ,∵正方形的对角线AC ,BD 相交于点O ,∴S △BOC =S 正方形ABCD ,∵正方形ABCD 的面积为16,∴S △BOC =4,∴S 四边形ECFO =S △COF +S △COE =S △BOE +S △COE =S △BOC =4,故答案为4;(2)OE :OF 的值是不发生改变,其值为2:3,理由:如图1,过点O 作OM ⊥BC 于M ,ON ⊥CD 于N ,∴∠OME =∠ONF =90°,∵四边形ABCD 是矩形,∴∠BCD =90°=∠OME =∠ONF ,∴四边形OMCN 是矩形,∴∠MON =90°,∵∠FOE =90°,∴∠MON =∠FOE ,∴△MOE∽△NOF,∴,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠OMC=90°,∴∠ABC=∠OMC,∴OM∥AB,∵O是矩形ABCD的对角线的交点,∴OC=OA,∴OM是△ABC的中位线,∴OM=AB=2,同理:ON=3,∴=;(3)CE+CF=2CG=BC,证明:如图2,过点O作OG⊥BC于G,OH⊥CD于H,∵四边形ABCD是菱形,∠BAD=60°,∴∠BCD=60°,∵AC是菱形ABCD的对角线,∴∠ACB=∠ACD=30°,∴OG=OH,∵OG⊥BC,OH⊥CD,∴∠OGC=∠OHC=90°,在四边形OGCH中,∠GOH=360°﹣∠OGC﹣∠OHC﹣∠BCD=120°,∵∠EOF=120°,∴∠EOF=∠GOH,∴∠EOF﹣∠EOH=∠GOH﹣∠EOH,∴△OGE≌△OHF(ASA),∴EG=FH,∴CE+CF=CG﹣EG+CH+FH=CG+CH,在Rt△OCG和Rt△COH中,,∴Rt△OCG≌Rt△COH(HL),∴CG=CH,∴CE+CF=2CG,在Rt△BOC中,OC=BC•cos∠ACB=BC•cos30°=BC,在Rt△OGC中,CG=OC•cos30°=OC,∴CG=×BC=BC,∴CE+CF=2CG=BC.6.解:(1)存在;理由如下:∵点A(0,2),C(2,0),∴OA=2,OC=2,∵tan∠ACO=,∴∠ACO=30°,∠ACB=60°,分两种情况:①当E在线段CO上时,△DEC是等腰三角形,观察图像可知,只有ED=EC,如图1所示:∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2,∴当AD=2时,△DEC是等腰三角形;②当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE =15°,如图2所示:∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2;(2)证明:过点D作MN⊥AB交AB于M,交OC于N,如图3所示:设DN=a,∵∠ACO=30°,∴,∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴;(3)作DH⊥AB于H,如图4所示:在Rt△ADH中,AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,,∴BH=2﹣x,在Rt△BDH中,BD2=,由(2)得,∴,∴矩形BDEF的面积为,∴,∵>0,∴x=3时,y有最小值为,即当点D运动到距A点的距离为3时,y有最小值.7.解:(1)∵△CEF沿着直线EF翻折,得到△DEF,∴△CEF≌△△DEF,∴CE=DE,∠CEF=∠DEF,∵EF∥AB,∴∠CEF=∠ABC,∠DEF=∠EDB,∴∠ABC=∠EDB,∴DE=BE,∴CE=BE,∴E是BC中点,∴CE=BC,∵点A(0,3),∴OA=3,∵四边形AOBC是矩形,∴BC=OA=3,∴CE=BC=×3=;故答案为:;(2)∵点B的坐标为(4,0),∴OB=4,∴AC=OB=4,∵点G(0,2),∴OG=2,∴AG=OA﹣OG=3﹣2=1,由(1)得:△CEF≌△DEF,∴DE=CE,∠FEC=∠FED,∵EF∥AD,∴∠FED=∠EIB,∠FEC=∠ABC,∴∠EIB=∠ABC,∴EI=BE,∵四边形FHIE是平行四边形,∴HF∥IE,HF=IE,∴HF=BE,∠FHB=∠EIB,∵AO∥BC,∴∠GAB=∠ABC,∴∠EHB=∠GAB,∵∠AHG=∠FHB,∴∠GAB=∠AHG,∴AG=GH=1;设CE=x,则BE=3﹣x,∴HF=IE==3﹣x,∴FG=GH+HF=1+3﹣x=4﹣x,∵EF∥AB,∴=,即=,∴CF=x,∴AF=AC﹣CF=4﹣x,在Rt△GAF中,∵GF2=AF2+AG2,∴(4﹣x)2=(4﹣x)2+12,解得:x1=3(舍去),x2=,∴CE=;(3)由(1)得:CE=,∴DE=D′E′=CE=,∵EF∥AB,∴==,∴CF=AC=×4=2,∴AF=AC﹣CF=4﹣2=2,∴DF==D′F′=2,∵AB===5,∴EF=AB=,∴E′F′=,∵AM=AN,∴∠ANM=∠AMN,①当点N在OA的延长线上时,如图3,过点M作MQ⊥OA于点Q,则MQ∥OB,∴==,即==,设AM=AN=a,则MQ=a,AQ=a,BM=5﹣a,∴QN=AQ+AN=a+a=a,OQ=OA﹣AQ=3﹣a,∴M(a,3﹣a),N(0,a+3),设直线MN的解析式为y=kx+b,将M(a,3﹣a),N(0,a+3)代入,得:,解得:,∴直线MN的解析式为y=﹣2x+a+3,过点D′作D′G⊥BC于点G,D′H⊥OB于点H,设直线MN交OB于点S,∴∠D′HB=∠D′GB=∠HBG=90°,∴四边形D′GBH是矩形,∴∠GD′H=90°=∠ED′S,DH=BG,∴∠HD′S+∠SD′G=∠SD′G+∠ED′G,∴∠HD′S=∠ED′G,∵DH∥OA,∴∠HD′S=∠ONS,∴∠ED′G=∠ONS,∵∠MQN=∠EGD′=90°,∴△MQN∽△EGD′,∴==,设EG=m(m>0),则D′G=2m,在Rt△ED′G中,∵EG2+D′G2=D′E2,∴m2+(2m)2=()2,解得:m=,∴EG=,BH=D′G=,∴DH=BG=﹣,∴OH=OB﹣BH=4﹣,∴D′(4﹣,﹣),∵点D′在直线y=﹣2x+a+3上,∴﹣=﹣2×(4﹣)+a+3,解得:a=﹣,∴AM=﹣.②当点N在射线AO上时,如图4,设AM=AN=b,则M(b,3﹣b),N(0,3﹣b),∴直线MN解析式为y=x+3﹣b,设直线MN与x轴交于点K,则K(2b﹣6,0),∴ON=b﹣3,OK=2b﹣6,过点D′作D′L⊥x轴于点L,作D′H⊥BC于点H,∵D′L∥ON,∴===,∴KL=2D′L,∵D′H∥OB,∴∠HD′N=∠OKN,∠ED′F′=∠EHD′=90°,∴∠ED′H+∠HD′N=∠D′EH+∠ED′N=90°,∴∠D′EH=∠OKN,∴△D′EH∽△NKO,∴==,设D′H=n(n>0),则EH=2n,在Rt△ED′H中,∵D′H2+EH2=DE2,∴n2+(2n)2=()2,解得:n=,∴D′(4+,﹣),将D′(4+,﹣)代入y=x+3﹣b,得:﹣=×(4+)+3﹣b,解得:b=+,∴AM=+;综上所述,AM=﹣或+.8.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵AC=2OM,∴MN=AC,∴平行四边形AMCN是矩形;(2)解:由(1)得:MN=AC,∵四边形ABCD是平行四边形,∴AB=CD=2,AD∥BC,∴∠ABC+∠BAD=180°,∴∠ABC=45°,∵AB⊥AC,∴∠BAC=90°,∴△ABC是等腰直角三角形,∴AC=AB=2,∴MN=2.9.(1)证明:如图,连接BD交AC于点F,∵AB=AD,∠DAB=90°,∴△ABD是等腰直角三角形,∵AC平分∠DAB,∴∠BAC=∠DAC=45°,∴F是BD的中点,∴BF=DF,在△AED和△AEB中,,∴△AED≌△AEB(SAS),∴DE=BE,∵DE∥BC,∴∠CBF=∠EDF,在△BCF和△DEF中,,∴△BCF≌△DEF(SAS),∴BC=DE,∵BC∥DE,∴四边形DEBC是平行四边形,∵BE=DE,∴四边形DEBC是菱形;(2)如图,过点E作EH⊥AD于点H,∵四边形DEBC是菱形,∴∠CDB=∠EDB=CDE,∵∠CDE=2∠EDA,∴∠BDE=∠ADE,∵BD⊥CE,EH⊥AD,∴EF=EH=EC=,∴AH=EH=,∴AE==2,∴AF=AE+EF=2+,∴DF=AF=2+,∴AD=AF=(2+)=2+2.10.证明:(1)∵四边形ABCD是平行四边形,∴AC=2AO,BD=2BO.∵AO=BO,∴AC=BD.∴▱ABCD为矩形.(2)过点M作MG⊥BD于点G,如图所示:∵四边形ABCD是矩形,∴∠DCB=90°,∴CM⊥CD,∵DM为∠BDC的角平分线,∴MG=CM.∵OB=OC,∴∠ACB=∠DBC.∵AB=3,tan∠DBC=,∴tan∠ACB=tan∠DBC=.∴BC=4.∴AC=BD==5,sin∠ACB=sin∠DBC=.设CM=MG=x,则BM=4﹣x,在△BMG中,∠BGM=90°,∴sin∠DBC=.解得:x=,∴CM=.11.证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴▱ABCD是矩形;(2)∵▱ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,在Rt△ACD中,AD=4,cos∠CAD=cos∠ABE=,∴AC=10.12.证明:(1)由作图知BA=BE,∠ABF=∠EBF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EBF=∠AFB,∴∠ABF=∠AFB,∴AB=AF=BE,∴四边形ABEF是平行四边形,又AB=BE,∴四边形ABEF是菱形;(2)作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=8,∴AB=AF=8,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=4,∴PH=2,∴.13.解:(1)x2﹣9x+20=0,(x﹣4)(x﹣5)=0,得x1=4,x2=5.∵OA<AB,∴OA=4,AB=5,∴B(5,4).(2)连接BQ,∵AB∥OC,OQ=AB=5,∴四边形AOQB为平行四边形.∵∠AOQ=90°,∴四边形AOQB为矩形,∴BQ=OA=4,∠ABQ=90°,∴O′B==3,O′A=2,由△POQ翻折,使点O落在AB上的点O'处,可得OQ=OQ'=5,∠PO′Q=90°,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3=α,∴△AO′P∽△BQO′,∴,∴,∴O′P=,∵∠AO'P=α,∠PQO'=β,∴tanα=,tanβ=,∴tanα+tanβ=;(3)存在,点N的坐标为(5,4)或(﹣,﹣4)或(3,﹣)或(﹣3,).分两种情况:第一种情况:点M在x轴上;①如图1,点M在x轴的正半轴上,四边形NO'MQ是矩形,此时点N与点B重合,则N(5,4);②如图2,点M在x轴的负半轴上,四边形NMO'Q是矩形,过点O'作O'D⊥x轴于D,过点N作NH⊥x轴于H.∵四边形NMO′Q是矩形,∴MN=O'Q=5,MN∥O'Q.∴∠NMO=∠DQO',∵∠NHM=∠QDO'=90°,∴△NHM≌△O'DQ(AAS),∴NH=O'D=4,DQ=MH=3.∵AO'=2,设PO=x,则O'P=x,AP=4﹣x,在Rt△APO'中,由勾股定理得AP2+AO'2=O'P2,即x2=4+(4﹣x)2,解得x=,∴PO=,AP=4﹣x=,∵AB∥OC,∴,即,∴OM=,∴OH=,∴N(﹣,﹣4);第一种情况:点M在y轴上;①点M在y轴的正半轴上,四边形MNQO'是矩形,此时,点M和点P重合,∵四边形MNQO'是矩形,∴∠PN=O′Q=5,∠NPO′=90°,∴∠APO′+∠DPN=90°,∵∠APO′+∠AO′P=90°,∴∠AO′P=∠DPN,∵∠PAO′=∠NDP,∴△PAO′∽∠NDP,∴,∵AP=,∴DN=3,PD=4,∵PO=PO′=,∴OD=4﹣=,∴N(3,﹣);②点M在y轴的负半轴上,四边形MNO'Q是矩形,过点O′作O′D⊥x轴于D,∵∠MOQ=∠QDO′,∠OMQ=∠DQO′,∴△MOQ∽△QDO′,∴,,∴OM=,∴M(0,﹣),∵O′(2,4),Q(5,0),∴N(﹣3,),综合以上可得,存在点N,使以O',Q,M,N为顶点四边形为矩形,点N的坐标为(5,4)或(﹣,﹣4)或(3,﹣)或(﹣3,).14.(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,∴BD⊥EC;(2)解:∵AD=2,∴AE=AD=2,∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴=,∴AE•DF=AF•DC,设AF=AB=a(a>0),则2(2﹣a)=a2,整理得:a2+2a﹣4=0,解得:a=﹣1+或﹣1﹣(舍去),∴AF=﹣1+,∴tan E==;(3)解:我的选择是:②EG﹣DG=AG,证明如下:在线段EG上取点P,使得EP=DG,连接AP,如图2所示:∵AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴PG=AG,∴EG﹣DG=EG﹣EP=PG=AG,故答案为:②EG﹣DG=AG.15.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵AC∥EH,∴四边形ACHF是平行四边形,四边形ACGE是平行四边形,∴AC=HF,AC=EG,AE=CG,AF=CH,∴FH=EG,∴EF=GH,在△AEF和△CGH中,,∴△AEF≌△CGH(SSS);(2)解:∵AD=8,F是AD的中点,∴AF=AD=4,∵四边形ACGE是平行四边形,∠ACD=90°,∴四边形ACGE是矩形,∴∠E=∠EAC=90°,∴∠EAF=45°,∴AE=EF=4×=2,∵△ACD是等腰直角三角形,∴CD=AB=8×=4,∴BE=AB+AE=4+2=6;(3)证明:如图,设AC与BD的交点为O,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,AB∥CD,AB=CD,∴BD=2OB,AC=2OA,∴BD2=4OB2,∵△ACD是等腰直角三角形,∴∠BAC=∠ACD=90°,AC=CD,∴OB2=AB2+OA2,AB=AC,∴BD2=4AB2+4OA2=4AB2+AC2,∴AC2+BD2=4AB2+2AC2,∵AB2+AC2=BC2,∴BC2=2AB2,∴AC2+BD2=2(AB2+BC2).16.解:(1)∵四边形ABCD是矩形,∴∠B=90°,∴AC===10,∴cos∠BAC===,故答案为:;(2)由题意得:BQ=t,AP=2t,则AQ=6﹣t,当PQ⊥AC时,∠APQ=90°,∴cos∠QAP==,即=,解得:t=,即当PQ⊥AC时,t的值为;(3)过Q作QE⊥AC于E,如图1所示:则∠AEQ=90°=∠ABC,又∵∠QAE=∠CAB,∴△AEQ∽△ABC,∴=,即=,解得:QE=(6﹣t),∵点O为对角线AC的中点,∴AO=AC=5,若P与O重合时,则AP=AO=5,∴2t=5,∴t=,若P与C重合时,则AP=AC=10,∴2t=10,∴t=5,当点P在线段AO上时,OP=5﹣2t,则△QOP的面积S=OP×QE=×(5﹣2t)×(6﹣t)=t2﹣t+12,即S=t2﹣t+12(0≤t<);当点P在线段CO上时,OP=2t﹣5,则△QOP的面积S=OP×QE=×(2t﹣5)×(6﹣t)=﹣t2+t﹣12,即S=﹣t2+t﹣12(<t≤5);(4)分三种情况:①当线段PQ的垂直平分线经过点C时,连接QC,如图2所示:PC=QC=10﹣2t,在Rt△QBC中,由勾股定理得:QC2=BC2+BQ2,即(10﹣2t)2=82+t2,解得:t=或t=(舍去),∴t=;②当线段PQ的垂直平分线经过点B时,BQ=BP=t,过点P作PG⊥BC于G,连接BP,如图3所示:则PG∥AB,∴△PCG∽△ACB,∴==,即==,解得:PG=(10﹣2t)=6﹣t,CG=(10﹣2t),∴BG=8﹣(10﹣2t)=t,在Rt△BPG中,由勾股定理得:BP2=BG2+PG2,即t2=(t)2+(6﹣t)2,此方程无解;③当线段PQ的垂直平分线经过点A时,如图4所示:则AQ=AP,即6﹣t=2t,解得:t=2;综上所述,当线段PQ的垂直平分线经过△ABC的某个顶点时,t的值为或2.17.解:(1)∵将△DCB绕点D顺时针方向旋转60°,得到△DAB′,∴BD=B′D,∠BDB′=60°,∴△BDB ′是等边三角形;故答案为:等边三角形;(2)由(1)知,△BCD ≌△B ′AD ,∴四边形ABCD 的面积=等边三角形BDB ′的面积,∵BC =AB ′=1,∴BB ′=AB +AB ′=2+1=3,∴S 四边形ABCD =S △BDB ′=;(3)解:将△BDM 绕点D 顺时针方向旋转120°,得到△DCP ,∴△BDM ≌△CDP ,∴MD =PD ,CP =BM ,∠MBD =∠DCP ,∠MDB =∠PDC ,∵△BDC 是等腰三角形,且∠BDC =120°,∴BD =CD ,∠DBC =∠DCB =30°,又∵△ABC 等边三角形,∴∠ABC =∠ACB =60°,∴∠MBD =∠ABC +∠DBC =90°,同理可得∠NCD =90°,∴∠PCD =∠NCD =∠MBD =90°,∴∠DCN +∠DCP =180°,∴N ,C ,P 三点共线,∵∠MDN =60°,∴∠MDB +∠NDC =∠PDC +∠NDC =∠BDC ﹣∠MDN =60°,即∠MDN =∠PDN =60°,∴△NMD ≌△NPD (SAS ),∴MN =PN =NC +CP =NC +BM ,∴△AMN 的周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2+2=4.故△AMN的周长为4.18.解:(1)连接AC,则△ABC为等腰三角形,BA=BC,∵△APE为等腰三角形,且∠APE=∠ABC,∵AP=PE,∴∠EAP=∠CAB,∴△APE∽△ABC,∴,∵∠EAP=∠BAC,∴∠EAP=∠PAC=∠BAC=∠PAC,即∠CAE=∠BAP,在△BAP和△CAE中,∵,∠BAP=∠CAE,∴△BAP∽△CAE,∴,故答案为1;(2)由(1)知,,而=k(k≠1),故=k;(3)连接AO交BD于点O,设CE交AD于点F,∵=,BP=6,由(1)知==,故CE=4,四边形ABCD为菱形,则∠DAC=∠BAC,由△BAP∽△CAE得,∠ABP=∠ACF,∵∠BAC+∠ABP=90°,∴∠DAC+∠ACE=90°,即AD⊥EF,∵△BAP∽△CAE,∴=(三角形相似高的比等于相似比),设AB=3x,则AC=2x,AO=x,则BO==2x,则菱形ABCD的面积=×AC•BD=2AO•BO=2x•2x=8,解得x=,故AO=x=,而=,故AF=,则DF=AD﹣AF=AB﹣AF=3﹣=,故△DCE的面积=CE•DF=×4×=.19.解:(1)学过的特殊四边形中是勾股四边形的有矩形,正方形;故答案为:矩形,正方形;(2)如图,(3)线段DC,AC,BC的数量关系为:DC2+BC2=AC2.证明:如图2,连接CE,由旋转得:△ABC≌△DBE,∴AC=DE,BC=BE,又∵∠CBE=60°,∴△CBE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=∠DCB+∠BCE=30°+60°=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.故答案为:DC2+BC2=AC2.20.解:(1)延长CF交AE于G,如图1所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=CB,∴∠ABE=∠CBF=90°,∵△EBF是等腰直角三角形,∴∠EBF=90°,BE=BF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴AE=CF,∠BAE=∠BCF,∵∠BCF+∠BFC=90°,∠AFG=∠BFC,∴∠BAE+∠AFG=90°,∴∠AGF=90°,∴AE⊥CF;故答案为:AE=CF,AE⊥CF;(2)(1)中的结论依然成立,理由如下:延长CF交AE于G,交AB于H,如图2所示:∵∠EBF=∠ABC=90°,∴∠ABE=90°﹣∠ABF,∠CBF=90°﹣∠ABF,∴∠ABE=∠CBF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴AE=CF,∠BAE=∠BCF,∵∠BCF+∠BHC=90°,∠AHG=∠BHC,∴∠BAE+∠AHG=90°,∴∠AGH=90°,∴AE⊥CF;(3)在等腰直角△EBF的旋转过程中,当CF为最大值时,点F在CB的延长线上,如图3所示:则点E在AB的延长线上,∵四边形ABCD是正方形,∴∠A=90°,AD=AB=4,∵AB=2BF=4,∴BE=BF=2,∴AE=AB+BE=6,∴DE===2.。

2008年广东省各市中考压轴试题精编(精品)

2008年广东省各市中考压轴试题精编(精品)

2008年广东省各市数学中考压试题精编1、(2008年广东省)22.(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD .(1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.解:(1)…………………………1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB , 又∵ ∠1=∠2=30°,∴ ∠PFB =∠2=30°,∴ FP =BP (6)过点P 作PK ⊥FB 于点K ,则FK BK =∵ AF =t ,AB =8,∴ FB =8-t ,1(8)2BK t =-.在Rt △BPK 中,1tan 2(8)tan 30)2PK BK t t =⋅∠=-︒=-. ……………………7分 DCAE图9图10∴ △FBP的面积11(8))22S FB PK t t =⋅⋅=⋅--, ∴ S 与t 之间的函数关系式为:28)12S t =-,或24123S t t =-+分 t 的取值范围为:08t ≤<. …………………………………………………………9分注:其中东莞市、中山市、汕头市与本题,(即2008年广东省的压轴题)是一样的。

广州、广东中考数学压轴题集锦

广州、广东中考数学压轴题集锦

广州市历年中考压轴题2018年24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣mm2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求ll rr的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.2017年24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD 的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=√5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA 匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,AAAA�=BBAA�,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD 所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②EEEE CCCC是否为定值?若是,请求出这个定值;若不是,请说明理由.2016年24.(14分)(2016•广州)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.25.(14分)(2016•广州)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.24.(14分)(2015•广州)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.24.(14分)(2013•广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.25.(14分)(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(),求当x≥1时y1的取值范围.24.(14分)(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.25.(14分)(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.24.(14分)(2011•广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.25.(14分)(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.24.(14分)(2010•广州)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE 长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.25.(14分)(2010•广州)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.(14分)(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH 分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.25.(14分)(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣1),△ABC的面积为.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.24.(14分)(2007•广州)一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B 点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在直角坐标系中画出一次函数的图象;(2)求a、b满足的等量关系式;(3)若△APQ是等腰三角形,求△APQ的面积.25.(12分)(2007•广州)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连接EC,取EC的中点M,连接DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,探索BM、DM的关系并给予证明;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.广东省历年中考压轴题2018年24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9.00分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B 路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2017年24.(9分)如图,AB是⊙O的直径,AB=4√3,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当CCCC CCCC=34时,求劣弧BBAA�的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2√3,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:CCEE CCEE=√33;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.24.(9分)(2016•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A 作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)(2016•广东)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.24.(9分)(2015•广东)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.25.(9分)(2015•广东)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt △ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm(1)填空:AD= (cm),DC= (cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B方向运动,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F 点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.21.(2012•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2012•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省卷压轴题汇总选择题(2009·广东)如图所示的矩形纸片,先沿虑线按箭头方向向右对折,接着将对折后的纸片沿虑线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )(2010广东5) 左下图为主视方向的几何体,它的俯视图是( )(2015·广东)如图,已知正△ABC 的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE=BF=CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A .B .C .D .C .D . A . B .(2016·广东)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.(2017·广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③ B.②③ C.①④ D.②④(2018·广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.填空题(2009)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n个图形中需要黑色瓷砖__________块(用含n的代数式表示).……(1)(2)(3)第10题图(2010广东10)如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .(2011广东10)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.(2012•广东)如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 _________ (结果保留π).题10图(1)A 1BCD AFEBCD A FEB CD A FEB 1C 1F 1 D 1 E 1 A 1B 1C 1F 1 D 1 E 1 A 2B 2C 2F 2 D 2E 2 题10图(2)题10图(3)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_________ (结果保留π).(2014•广东)如图,ABC∠=︒,∆绕点A顺时针旋转45︒得到△AB C'',若90BAC==,则图中阴影部分的面积等于.AB AC(2015.广东)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是.(2016·广东)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC的距离之和AE+AF= .(2017·广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.(2018·广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.解答题(2009.广东)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△;(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.DM AB C第22题图N(2010广东20)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.∆是等腰三角形;(1)求证:EGB∆绕点F逆时针旋转最小____度时,四边形ACDE成为以(2)若纸片DEF不动,问ABCED为底的梯形(如图(2)).求此梯形的高.(2011广东22)如图,抛物线1417452++-=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接C M ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.(2012•广东21)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.(2012•广东22)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).(2013•广东24)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.(2013•广东25)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA 方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= _________ 度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.(2014•广东24)如图,O是ABC⊥于点D,∆的外接圆,AC是直径,过点O作OD AB延长DO交O于点P,过点P作PE AC⊥于点E,作射线DE交BC的延长线于F点,连接PF.π(1)若60AC=,求劣弧PC的长;(结果保留)POC∠=︒,12(2)求证:OD OE=;(3)求证:PF是O的切线.(2014•广东25)如图,在ABC=,8=.点AD cmBC cm⊥于点D,10∆中,AB AC=,AD BCP从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(0)t>.(1)当2t=时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的PEF∆的面积最大时,求∆的面积存在最大值,当PEF 线段BP的长;(3)是否存在某一时刻t,使PEF∆为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.(2015•广东24)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.(2015•广东25)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm(1)填空:AD= (cm),DC= (cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A →D,C→B方向运动,当N点运动到B点时,M、N两点同时停止运动,连接MN,求当M、N 点运动了x秒时,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)(2016·广东24)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.(2016·广东25)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.(2017·广东24)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)(2017·广东25)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C 的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y 的最小值.(2018·广东24)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若BC=1,求EF的长.(2018·广东24)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?。

相关文档
最新文档