主板上电时序及名词解答

合集下载

主板上电时序精华

主板上电时序精华
2.一般利用Linear Regulator由+3V_Dual 得到.或者是利用Switch Regulator由 +5V_Dual得到.
+2.5V
+2.5V的电压直接由+2.5V_Dual通过一个MOS开关提供,用 +12V作为MOS的gate控制.从而保证进入S3时+2.5V可以被 关闭.避免漏电.
Intel架构上电时序
P5+Intel915G (P5GD2-VM为例).
1.未插电源时的主板准备上电状态. 2.插上电源后的主板动作时序. 3.按下Power Buttom后的动作时序.
1.未插电源时的主板准备上电状态
装入电池后首先送出RTCRST#&V_3V_BAT给南桥. Crystal 提供32.768KHz频率给南桥.
MB上电时序
Caspar_zhang
2005.12
上电时序
主板电压概述 主板上电时序
Intel架构上电时序 AMD架构上电时序
主板电压概述
主板电压概述
ATX电源提供+12V、-12V、+5V、-5V 、+3V、+5VSB六种电压,其 它的则由主板上的DC-DC电路利用ATX提供的电压转换而来。 DCDC电路则可分为线性转换电路和PWM转换电路,主板上的 +5vsb?+3vsb就是典型的线性稳压电路,而vcore部分则是PWM技 术最基本的应用。所谓的+3V_DUAL就是用+3v与+3vsb共同供电, 相互间用MOSFET或者二极管隔离。
主板的上的电压有+12V、-12V、+5V、(-5V)、+3V、+5VSB、 +3VSB、+1.5VSB、+1.5V、+5V_Dual、+3V_DUAL、+2.5V_DUAL、+ 2.5V_DAC、1.8V_Dual、VCORE、VTT_DDR、VTT+_CPU ect.

主板上电时序自己总结

主板上电时序自己总结

在这里以ASUS的915主板来描述一下INTEL主板的上电及工作时序:1、当ATX Power送出士12V,+3.3V, 士数组Main Power电压后,其它工作电压如+VTT_CPU,+1.5V, +2.5V_DAC,+ 5V_Dual,+3V_Dual,+1.8V_Dual 也将随后全部送出.2、当+VTT_CPU送给CPU后,CPU会送出VTT_PWRGD言号[High]给CPU;ICS;VRM;CP用VTT_PWRGD言号确认VTT_CPU稳定在Spec之内,OK后CPU 会发出VID[0:5].VRM收到VTT_PWRGC后会根据VID组合送出Vcore.3、在VCORE正常发出后‘Processor Voltage Regulato即送出VRMPWRGD 言号给南桥ICH6以通知南桥此时VCORE已经正常发出.在VTT_PWRGDE常发出后,此信号还通知给Clock Generator(ICS以通知Clock Generator在可以正常发出所有Clock.4、当提供给的南桥工作电压及Clock都OK后由南桥发出PLTRST及PCIRST 给各个Device.The ICH6drives PLTRST#inactive a minimum of 1ms after both PWROK and VRMPWRGD are driven high.翻译:ICH6驱动PLTRST为无效的至少1毫秒,在PWROK和VRMPWRGD被置为高电平以后。

这里我的理解为在PWROK和VRMPWGRD发出后,至少IMS, ICH6才会发出PLTRST给北桥和SIO复位。

PLTRST与PCIRST K别如下:PLTRST# :Platform (翻译:平台指的是北桥+CPU)Reset PCIRST#:PLTRST# is higher than PCIRST#.在北桥NB接收到南桥送出的PLTRST大约1ms后,北桥送出CPURST给CPU以通知CPU可以开始执行第一个指令动作•(不过要北桥送出CPURST的前提是在北桥的各个工作电压&Clock都0K的情况下);下面是一个时序图,按照顺序,对应上述文字。

上电时序

上电时序
上电时序
什么叫上电时序? 什么叫上电时序?
• 时序其实就是个排程,比如你家的电视、 时序其实就是个排程,比如你家的电视、 DVD、功放、无线话筒发射机之类的,有 、功放、无线话筒发射机之类的, 个电源时序器的话, 个电源时序器的话,把所有设备的供电都 由时序器供电,时序器再接入电源, 由时序器供电,时序器再接入电源,时序 器一开按照设备在时序器接口的先后一个 一个的自动打开设备, 一个的自动打开设备,简而言之主板的上 电时序是为了防止烧某样东西, 电时序是为了防止烧某样东西,按照排程 都设备逐一供电不是同时供电, 都设备逐一供电不是同时供电,也防止瞬 间电流过大~! 间电流过大 !

什么叫上电时序? 什么叫上电时序?
• 待机电压、保护隔离主供电、系统供电、 待机电压、保护隔离主供电、系统供电、 内存供电、 供电等电压。 内存供电、cpu供电等电压。 供电等电压 • 笔记本上这么多电压如何产生,他们是遵 笔记本上这么多电压如何产生, 照一定的顺序产生, 照一定的顺序产生,这个顺序就叫上电时 序。 1.为了省电 为了省电 2.保护相关电路 保护相关电路
• ALW 一直有的供电 • PM_SLP_S5# 关机模式 为低电平 电脑关机 电脑退出关机状态(开机) 为高电平 电脑退出关机状态(开机) • PM_SLP_S3# 休眠模式 为低电平 电脑休眠 为高电平 电脑退出休眠模式
• DDR_VREF_S3/1D8V 1.8V内存电压 内存电压 • 芯片组供电,显卡电压 芯片组供电, 1D5V 显卡电压 1D2V北桥电压 北桥电压 CPUCORE_ON cpu电压开启信号 电压开启信号 CLK_EN# 时钟开启 VGATE_PWRGD 电源好信号 PLT_RST#/PCIRST# 复位信号

atx3.0标准下,上电放电时序

atx3.0标准下,上电放电时序

一、引言ATX3.0标准是一种电源管理规范,它规定了计算机的上电放电时序,以保证计算机硬件的正常运转和保护。

本文将详细介绍ATX3.0标准下的上电放电时序,以便读者更好地了解计算机硬件的工作原理。

二、ATX3.0标准概述1. ATX3.0标准是由英特尔公司制定的,它取代了旧版的ATX2.0标准,为计算机硬件的电源管理提供了更加严谨的规定。

2. ATX3.0标准规定了计算机电源的输出电压范围、稳定性要求、上电放电时序等重要参数。

3. 上电放电时序是指计算机电源上电和断电的时间顺序,它对于计算机硬件的正常运转和保护至关重要。

三、上电时序1. 上电时序是指计算机电源在接通电源后,各种电压输出的时间顺序。

2. 根据ATX3.0标准,上电时序应包括以下几个关键步骤:(1) 5VSB上电:在主电源接通后,计算机电源的5VSB线路应首先提供稳定的待机电压,以供主板和其他设备的待机模式使用。

(2) PW_ON信号响应:计算机主板上的PW_ON信号由主机电源按键触发,触发后,主板应向电源发送启动信号。

(3) 主电压输出:在接收到启动信号后,计算机电源应输出各种主要电压(如+12V、+5V等),以供主板和其他设备正常工作。

四、放电时序1. 放电时序是指计算机电源在断开电源后,各种电压输出的时间顺序。

2. 根据ATX3.0标准,放电时序应包括以下几个关键步骤:(1) 主电压输出关闭:在主电源断开后,计算机电源应先关闭各种主要电压的输出。

(2) 5VSB放电:在主电源断开后,计算机电源应在一定时间内将5VSB线路的电压降至安全范围内,以避免对主板和其他设备的损害。

(3) 所有输出关闭:在放电完毕后,计算机电源应确保所有电压输出均已关闭,以保证计算机设备的安全。

五、ATX3.0标准的改进1. 相较于旧版的ATX2.0标准,ATX3.0标准在上电放电时序方面做出了以下改进:(1) 5VSB线路的待机电压更加稳定,能够更好地支持待机模式。

主板开机部分时序

主板开机部分时序

主板开机部分时序以MS01 MB_DVT(SONY 915)为例一,静态(当电源适配器插到笔记本在未按开关之前,主板已有一部分电路在工作,为按开关做准备)。

具体上电时序:①主板供电DCBATOUT产生插入适配器到主板后经过保险丝送给MOS管,经过转换后将电源适配器的电转化为笔记本的主供电,主板各单元电路的供电都由主供电产生。

主供电会首先供给待机电源IC,电源IC会先产生EC和BIOS的主供电。

当EC和BIOS获得供电后发出触发信号给待机电源IC产生3V,5V待机电压(AIW/ON)供给南桥内部的待机电路,此时EC 发出静态OK(PM-RESMRST)信号告诉南桥静态OK。

此信号发出即标志着静态上电OK。

SONY915 详细过程:DC-IN经过电感PL1,PL2后再经过保险丝PF1和稳压二极管PD4送给MAX1909第1PIN,然后由第四PIN产生参考电压REF(标准电压4V),再由第27PIN输出一个低电平信号MAX109_PDS(9.0V),送给PQ51的第四PIN控制极,控制PQ51导通,把DC_IN转换成DC_IN_MOS送给PQ50的1,2,3PIN等待控制极的控制,同事由MAX1909第27PIN产生的低电平信号MAX1909_PDS经过一个电阻延时后送给PQ50的第四PIN控制极,控制PQ50导通,吧DC_IN_MOS转换成为DC_IN_R后送给电流传感器(PR155),由PR155侦测其通过本身的电流大小载反馈给MAX1909,由MAX1909根据此信息再调节第27PIN输出一个标准的低电平信号,从而控制PQ51,PQ50的导通状态,最终输出一个标准的DCBATOUT(18.6V)电压(此时主板主供电DCBATOUT已经标准的产生,电压电流够标准)MAX1909在给27PIN发出低电平的同时,就会由第28PIN输出一个高电平,控制PU1不导通。

为什么不让PQ1导通?是由于当同时插上直流电源与电池供电的时候,MAX1909就会主动优先选择直流电源供电,此时电池就不工作。

必备主板上电时序图,强烈推荐

必备主板上电时序图,强烈推荐
这两个信号主要是侦测电池电量 SMB0_CLK ProTek MQC.
POWER_CHARGER
输出低电平信号CHG_PDS开启A/D_DOCK_IN转化AC_BAT_SYS 输出低电平信号CHG_PDL开启BAT_CON转化AC_BAT_SYS
ACIN
输入电压
DCIN
ProTek MQC.
POWER PATH A/D_DOCK_IN→AC_BAT_SYS
EC-工作电压
+3VS是SB工作后由 SUSB#_PWR开启
ProTek MQC.
EC-RESET
+3VA_EC输入给芯片U3001产生EC_RST# 从pin19输入 ECProTΒιβλιοθήκη k MQC.EC-CLOCK
当EC接收到工作电压后就开始从pin160发出EC_XOUT 给晶振提供电压使其产生 32.768KHz的频率给EC工作
ProTek MQC.
返回南桥
PM_PWRBTN#
按下SW5605,则PWR_SW# 瞬间拉低
ProTek MQC.
+3VA_EC经过电阻到PWR_SW#,给 PWR_SW#一个高电平
南桥开机最后一个条件 返回南桥
南桥开机条件
+3VSUS PM_RSMRST# +VCC-RTC CLK(32.768KHz) PM_PWRBTN#
ProTek MQC.
PM_RSMRST
南桥开机条件之一 当EC pin54接收到SUS_PWRGD后从pin105发出PM_RSMRST#
ProTek MQC.
返回南桥
+VCC_RTC
南桥开机条件之一
C-MOS电池
+RTCBAT经过电阻R2001经过D2000产生+VCC_RTC

上电时序

上电时序

1.PWRBTN#/PWRSW#: Power Button/Power Switch
主板上電按鈕或開關,一般置於主板右下方的PANEL上,以便於組裝機,它需要由一電阻Pull Hign,低電平有效.
2.: Stand by电压,預備.
意義為在機箱電源即主板的A TX Power打開但並未上電的情況下,電源會提供預備電壓,並且主板上會有多個預備上電的電壓存在,若此條件未滿足,主板肯定會無法上電.此些電壓如:12VSB,5VSB,3VSB,2.5VSB,1.8VSB,1.5VSB,1.2VSB,1.05VSB.此些電壓在主板上電後仍會存在,做為工作電壓使用.
3.RSMRST#
為主板控制上電部分的芯片產生發給ICH的信號,意義為通知ICH說明5VSB電壓為ok的,它在有的板子上的名稱為AUXOK. 辟如產生RSMRST#的芯片可能為SMSC,ITE,Winbond,ASUS的Super I/O,或AS016等.
4.SLP_S3#
當它動作時,表示系統進入S3(suspend to RAM)模式,當不是用在STR模式時,此信號可用來控制電源的動作,它一般由南橋發出,在有的板子上的名稱為SUSB#.它們的作用是等同的.
5.32.768KHZ
它是一個圓筒晶振工作時產生的頻率大小,是主板RTC邏輯電路的一部分,RTC邏輯主要由電池,32.768KHZ晶振等組成,起到保存系統時間,日期和CMOS設置的作用
6.PSON#
控制A TX Power 是否輸出電源的訊號,高電平時,電源不會動作,低電平時,電源供出電壓,說明主板已上電.在S3,S5狀態時,它為High,在S1狀態時,它為Low.。

主板上电时序分解

主板上电时序分解
14、当VCORE正常后,电源管理芯片发出VRMPWRGD信号给南桥,通知南桥此时CPU电压已经正常;《 VRMPWRGD 即:CPU电源正常信号:这个信号直接连接到CPU电源管理芯片,该信号正常表示VRM是稳定的。这个输入信号与PWROK在内部是相与的》
15、时钟芯片收到VTT_PWRGD,且其3.3V电压和14.318MHz都正常后发出各组频率;
12、CPU收到VTT_PWRGD后,发出VID[0:5]组合信号给cpu电源管理芯片VRM;《VID是在CPU得到VTT电压之后,CPU通过它上面的VID脚的接地与不接地,来拉低与置高电源IC上面VID脚的电压,让电源IC知道CPU需要多少V的供电》
13、电源管理芯片,在供电正常和收到VTT_PWRGD和CPU发来的VID组合后,产生VCORE;《VCORE电压是提供给CPU工作的电压,电压转换主要分为两种1)线性电压调变2)PWM调变(也称为脉冲宽度调变)。一般VCORE电压都是通过第二种方法调变得到的》
1、装入电池后首先送出RTCRST#,3V_BAT给南桥;《RTC是Real Time Clock,意为实时时钟;rst是reset,意为复位》(CMOS电池没电或CMOS跳线设为清零时,VCCRTC为低电平(检测点:CMOS跳线1脚),RTCRST#有效,使CMOS电路复位状态,即保存的CMOS消息丢失。《VCCRTC是Real Time Clock VCC的缩写,意为实时时钟(正)电源》)《3V_BAT是电池电压,即VCCRTC,在待机状态中,若此电池没有或者没有电,接通电源后,将首先调用转换出的+3VSB,代替电池3V_BAT
11、当+VTT_CPU一路供给CPU后,另一路会经过电路转换出VTT_PWRGD信号(高电平),给CPU、电源管理芯片、 时钟芯片。

Intel主板上电时序

Intel主板上电时序

时序是指主板在开机过程中电压及信号先后开启的顺序。

上电时序反映的是主板工作的内在规律,是区分故障部位的重要手段,是使维修工作事半功倍的前提。

按下开机按键,启动就开始了。

启动过程分为硬启动和软启动两步。

硬启动就是指给主板加电,产生各级芯片必须的时钟信号和复位信号的过程;而软启动部分就是指BIOS的POST自检过程,通过POST自检程序检测电脑的配置和能否正常工作,产生各种总线信号,形成硬件配置信息。

无论是台式机还是笔记本均先硬启动而后再软启动。

下面以神舟945PL天尊板为例,讲解主板的上电时序。

第一步:未插电源时主板准备上电的状态装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。

晶体(Crystal)提供32.768KHz频率给南桥。

第二步:插上电源后的主板动作时序+5Vsb正常转换出+3VDUAL。

SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。

SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。

南桥正常送出待机时钟SUSCLK (32KHZ)。

第三步:按下电源按钮后的动作时序使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。

SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。

SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。

SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。

当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V,+3.3V,±5V数组主要电压.一般当电源送出的+3.3Vand +5V正常后,SIO(IT8712K)的95脚ATXPG信号由5V通过R450和R472两个8.2K的电阻分压提供侦测信号。

当今流行笔记本主板intel架构电源时序讲解

当今流行笔记本主板intel架构电源时序讲解

当今流行笔记本主板intel架构电源时序讲解1.RTC电源:用以保持机器内部时钟的运转和保证CMOS配制信息在断电的情况下不丢失;2.在你插上电池或者电源适配器,但还没按power键的时候(S5),机器内部的开启的电称为ALWAYS电,主要用以保证EC的正常运行;3.你开机以后,所有的电力都开启,这时候,我们称为MAIN电(S0),以供整机的运行;4.在你进待机的时候(S3),机器内部的电成为SUS电,主要是DDR的电力供应,以保证RAM 内部的资料不丢失;5.而休眠(S4)和关机(S5)的电是一样的,都是Always电。

上文中括号内的是表示计算机的状态(S0-开机,S3-待机,S4-休眠,S5-关机)。

逻辑启动时序:1. 在插上电池或者电源的时候,等待用户按下Power键的时候机器内部的单片机EC就Reset 并开始工作,。

在此期间的时序是:ALWAYS电开启以后,EC Reset并开始运行,随后发给南桥一个称为`RSMRST#'的信号。

这时候南桥的部分功能开始初始化并等待开机信号。

这里要注意,这时候的南桥并没有打开全部电源,只有很少一部分的功能可用,比如供检测开机信号的PWRBTN#(PWR_SWIN2#3)信号。

2. 用户按下Power键的时候,EC检测到一个电平变化(一般时序是:高-低-高),然后发送一个开机信号(PWRBTN#) 南桥,南桥收到PWRBTN#信号后- 拉高SLP_S5#,SLP_S4#,SLP_S3#信号,- 开启了所有的外围电压,S电压+VCCP PWR_GOOD3 等,并发送PM PWROK(表明外围电源正常开启)信号。

WR-GOOD3 和PM_PMROK 发送给VCC_CORE芯片,VCC_CORE产生后- 发出VR_PWRGD_CK505信号送给CLK,CLK开始工作。

- 同时VR_PWRGD会发送给南桥告知VCC_CORE电源已开启OK。

- 随后南桥发出PCI_RST#和PLT_RST#总线设备初始化,随后南桥发出- H_PWRGD给CPU (通知CPU的核心电压及CLK工作稳定),- 北桥产生H—CPURST#送给CPU-- CPU 被RESET.关于M/B开机无显DP00的量测方法:1. 电源部分:M/B所有电源是否OK,南北桥及CPU的工作电压及参考电压是否OK。

主板上电时序

主板上电时序

1、装入电池后首先送出RTCRST#,3V_BA T给南桥;《RTC是Real Time Clock,意为实时时钟;rst是reset,意为复位》(CMOS电池没电或CMOS跳线设为清零时,VCCRTC为低电平(检测点:CMOS跳线1脚),RTCRST#有效,使CMOS电路复位状态,即保存的CMOS 消息丢失。

《VCCRTC是Real Time Clock VCC的缩写,意为实时时钟(正)电源》)《3V_BA T 是电池电压,即VCCRTC,在待机状态中,若此电池没有或者没有电,接通电源后,将首先调用转换出的+3VSB,代替电池3V_BAT》2、晶振提供32.768KHz频率给南桥;3、主板上的1117芯片将+5VSB转换出+3VSB,IO检查+5VSB是否正常,若正常则发出RSMRST#,通过南桥待机电压OK;《SB是Stand By ,俗称待机电压》《RSMRST#是Resume Well Reset的缩写,意为重启正常复位。

resume意为重新开始,复位。

RSMRST#是恢复常态的复位信号,用于重置供电恢复逻辑,所有电源至少都有效10ms这个信号才起作用,当解除有效后,挂起》《rsmrst# == resume well reset 低电平有效,用于复位南桥的睡眠唤醒逻辑。

如果为低电平,则南桥ACPI控制器始终处于复位状态,当然就无法上电了。

》4、南桥送出SUSCLK(32KHz);《SUSCLK:Suspend Clock,This clock is an output of the RTC generator《发生器》circuit 《环绕》to use by other chipsfor refresh clock》《SUSCLK 挂起时钟信号:这个时钟是RTC时钟发生器通过其它芯片产生的时钟来输出的》5、按下电源开关后,送出PWRBTN#给IO;《PWRBTN#是电源按钮,如果系统已经处于睡眠状态,那么这个信号将触发一个唤醒事件,如果PWRBTN#有xxxxxx间超过4s,不管系统处在S0,S2,S3,S4状态,都将无条件转到S5状态》6、IO收到后发出IO_PWRBTN#给南桥;7、南桥送出SLP_S4#和SLP_S3#给IO;《SLP_S3#和SLP_S4#是电源层的休眠控制信号。

上电时序概述

上电时序概述

不凡修笔记本维修培训上电时序概述什么是上电时序Power on Sequence:主板上的供电,从最开始的电压适配器电压输入,到最后CPU供电的产生,都有严格的开启顺序控制,这个先后顺序,就是上电时序。

上电时序示意图适配供电保护隔离电路对适配电压进行检测,符合要求后,向主板供电单元提供供电,常见功能:1.充放电管理2.适配器电压检测3.输入电流监测4.充电电流监测待机电路负责为EC,BIOS芯片,RTC电路供电,常见元件:1.LDO电压2.EC3.BIOS4.RTC电路5.系统供电3.3V和5VRSMRST#返回挂起模块复位信号,在系统供电正常好,从信号高电平发给南桥,指示当前系统供电已经准备好了,可以进行开机触发动作。

BATLOW#电池电量低指示信号,笔记本平台专用信号,在南桥开机触发前,此信号一定要为高电平,否则低电平的话,南桥会认为,当前电池电量不足,不能维持系统的正常运行。

从而拒绝触发。

开机触发电路与PWRBTN#⏹PWRBTN#:power button,电源开关,此信号为南桥接收到EC发来的开机触发信号。

⏹开机触发事件一般都是由机主按下开机按键后,发送给EC,用来指示一次开机触发的请求。

EC收到信号后,发出PWRBTN#信号的上升沿触发给南桥,向南桥请求开机触发。

1.EC所接收信号变化:3.3V---0V---3.3V跳变2.PWRBTN#信号变化:3.3V---0V---3.3VSLP_S4#⏹开启内存供电。

⏹南桥收到PWRBTN#信号后,拉高SLP_S4#,返回给EC,通知EC开启内存供电。

⏹有效电压:3.3VSLP_S3#⏹南桥收到PWRBTN#信号后,拉高SLP_S3#信号,通知EC开启桥供电,显卡供电,VCCP等其他供电,但不包含CPU供电和内存供电。

⏹有效电压:3.3VVR_ON⏹EC开启了SLP_S3#与SLP_S4#信号对应的供电后,发出VR_ON,开启CPU核心供电。

主板的上电时序及维修思路

主板的上电时序及维修思路

一般插上ATX电源后,先不要直接去将主板通电试机,而是要量测主板在待机状态下的一些重要工作条件是否是正常的。

在这里我们要引入“Power Sequencing”——上电时序这个概念,主板对于上电的要求是很严格的,各种上电的必备条件都要有着先后的顺序,也就是我们所说的“Power Sequencing”,一项条件满足后才可以转到下一步,如果其中的某一个环节出现了故障,则整个上电过程不能继续下去,当然也就不能使主板上电了。

主板上最基本的Power Sequencing可以理解为这样一个过程,RTCRST#-VSB 待机电压-RTCRST#-SLP_S3#-PSON#,掌握了Power Sequencing的过程,我们就可以一步的来进行反查,找到没有正常执行的那一个步骤,并加以排除。

下面具体介绍一下整个Power Sequencing的详细过程:1.在未插上ATX电源之前,由主板上的电池产生VBAT电压和CMOS跳线上的RTCRST#来供给南桥,RCTRST#用来复位南桥内部的逻辑电路,因此我们应首先在未插上ATX电源之前量测电池是否有电,CMOS跳线上是否有2.5V-3V的电压。

2.检查晶振是否输出了32.768KHz的频率给南桥(在nFORCE芯片组的主板上,还要量测25MHz的晶振是否起振)3.插上ATX电源之后,检查5VSB、3VSB、1.8VSB、1.5VSB、1.2VSB等待机电压是否正常的转换出来(5VSB和3VSB的待机电压是每块主板上都必须要有的,其它待机电压则依据主板芯片组的不同而不同,具体请参照相关芯片组的DATASHEET中的介绍)4.检查RSMRST#信号是否为3.3V的高电平,RSMRST#信号是用来通知南桥5VSB和3VSB待机电压正常的信号,这个信号如果为低,则南桥收到错误的信息,认为相应的待机电压没有OK,所以不会进行下一步的上电动作。

RSMRST#可以在I/O 、集成网卡等元件上量测得到,除了量测RSMRST#信号的电压外,还要量测RSMRST#信号对地阻值,如果RSMRST#信号处于短路状态也是不行的,实际维修中,多发的故障是I/O或网卡不良引起RMSRST#信号不正常。

必备主板上电时序图,强烈推荐

必备主板上电时序图,强烈推荐

PM_SUSB# PM_SUSC#
南桥满足上面5个条件后开始工作发出PM_SUSB#,PM_SUSC# PM_SUSC#比PM_SUSB#,先出来
ProTek MQC.
SUSC_EC# SUSB_EC1#
ProTek MQC.
PM_SUSC#,PM_SUSB#分别经过电 阻转成SLP_S4_R,SLP_S3_R
当pin2反馈电压大于pin3时pin1输出低 电平,相反则输出高电平,利用反馈 电压来控制N-MOS的开启和关闭
ProTek MQC.
参考电压
ALL_SYSTEM_PWRGD
二极管在这里的作用:保护SUS_PWRGD,当其他PWRGD有 问题时不会拉低SUS_PWRGD,因为只有SUS_PWRGD工作 正常后南桥才能工作,来开启其他电压
这两个信号主要是侦测电池电量 SMB0_CLK ProTek MQC.
POWER_CHARGER
输出低电平信号CHG_PDS开启A/D_DOCK_IN转化AC_BAT_SYS 输出低电平信号CHG_PDL开启BAT_CON转化AC_BAT_SYS
ACIN
输入电压
DCIN
ProTek MQC.
POWER PATH A/D_DOCK_IN→AC_BAT_SYS
+12VSUS
这是一个线性稳压芯片AC_BAT_SYS从pin1输入, 从pin5输出
+12VSUS
反馈回路:+12VSUS经过电阻R8114,R8104分压反馈给U8100 pin4,
使芯片pin5输出一个稳定的+12V
反馈电压Vfb= 95.3KΩ
×12V =1.21V
95.3KΩ+845KΩ

关于AMD单桥主板上电时序的详细解释

关于AMD单桥主板上电时序的详细解释

关于AMD单桥主板上电时序的详细解释因为AMD的主板和CPU都很便宜,所以我们这的电子城装机,用的AMD主板的偏多,现在我手头,有个10多块AMD单桥的板子,有好的也有坏的,自从学习主板维修,就想拿他们来修修,在网上找了好久关于AMD单桥的资料,终于找到一个比较全面的,所以就转发了下来,相信很多人也有对这种主板的困惑。

此文为转载,在这里,谢谢这位热心的网友。

3个待机条件:1、桥需要得到待机电压:3.3V,1.5V/1.2V2、25M起振注:NV的RTC电路,一般不会导致时序故障,都可以出CPURST#3、PWRGD-SB(即INTEL芯片组的RSMRST#),通知南桥待机电压OK,一般从IO发给桥,也有从其它芯片发给桥的此时,待机完成3个触发电路:4、PWRBTN#-------触发开关,开关进IO,IO发给南桥5、南桥收到PWRBTN#后,首先发出SLP--S5#,一般去开启内存供电,OK后,返回MEM-VLD给南桥,南桥收到MEM-VLD后才会发出SLP--S3#.(大多数厂家,都是把SLP--S5#直接连接到MEM--VLD,当SLP--S5#发出去的同时,返回MEM-VLD给南桥,使南桥认为内存供电已开启),随后便发出SLP--S3#6、IO收到SLP--S3#,发出PS--ON#,拉低绿线,电源开工。

NV和INTEL的上电对比:多了个25M,多了MEN--VLD,少了个RTC电路(多数NV的RTC电路都不会导致不上电)绿线拉低后,发出各路供电..................7、电源发出ATXPWRGD.一般会发给IO,IO发出PWRGD给南桥8、南桥收到此PWRGD后,发出CPUVDD-EN给CPU电源管理芯片的EN脚,去开启CPU供电。

CPU供电将会产生........9、电源管理芯片正常工作后,返回CPU-VLD信号(相当于INTEL的VRMPWRGD)给南桥的CPU-VLD脚,告知南桥CPU供电已经正常发出。

主板上电时序

主板上电时序

ACPI---高级电源管理Advanced Configuration and Power Interface`六种状态:AS0--Working Status,所有设备全开,功耗一般会超过80WS1--POS(Power on Suspend),这时除了通过CPU时钟控制器将CPU关闭之外,其他的部件仍然正常工作,这时的功耗一般在30W以下(有些CPU降温软件就是利用这种工作原理)S2--这时CPU处于停止运作状态,总线时钟也被关闭,但其余的设备仍然运转;S3--STR(Suspend to RAM), 这时的功耗不超过10W;S4--STD(Suspend to Disk),这时系统主电源关闭,但是硬盘仍然带电并可以被唤醒S5--Soft Off,电源在内的所有设备全部关闭,功耗为0以华硕P5GD1为例的上电时序如下:;第一阶段该阶段的电源有battery电源和standby电源RSMRST#:当SB电压OK时由IO发出的触发南桥内SB电路的RST信号第二阶段准备上电阶段PWRBTN# IO_PWRBTN# S3#,S4# PSON# 各信号无误后到第三阶段第三阶段主板上的所有main POWER都在POWER OK以前达到稳定状态Intel平台和AMD平台在这个阶段的上电时序是不一样不同的chipset在这阶段的要求也不一样AMD需要一个专门的电源控制芯片控制来控制其CPU的电源时序AMD的时序:1、VDIMM_STR_EN:Memory voltage enable2、VDDA_EN:CPU PLL power enable,3、VCORE_EN:Vcore power enable4、VLDT_EN:Hyper Transport I/O powerIntel的时序:VTT OK(VTT_CPU) 2、Vcore Enable 3、VRMPWRGD(Vcore_PG):VTT OK ----早期主板上电压为Vocre电压;较新的主板为1.2V的VTT_CPU;VRMPWRGD----部分主板连接南桥(3v)和CPU Socket(1.2V)下图是754与939的CPU工作时序:1、主板上电后先发出1.8V_Dual, 2.5VDDA和VTT_DDR;2、在Vcore电压会升高到自身的10%之前Group A应该达到标准值;3、在1.2V_HT电压会升高到自身的10%之前,Vcore应该达到标准值;4、当1.2V_HT产生后1ms后产生Power OK ;5、当Power OK产生后,Vcore会根据VID表升高到标准值。

主板上电顺序

主板上电顺序

第一步:未插电源时主板准备上电的状态装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。

晶体(Crystal)提供32.768KHz频率给南桥。

第二步:插上电源后的主板动作时序+5Vsb正常转换出+3VDUAL。

SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。

SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。

南桥正常送出待机时钟SUSCLK (32KHZ)。

第三步:按下电源按钮后的动作时序使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。

SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。

SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。

SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。

当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V, +3.3V, ±5V 数组主要电压.一般当电源送出的+3.3V and +5V正常后, SIO(IT8712K)的95脚A TXPG信号由5V 通过R450和R472两个8.2K的电阻分压提供侦测信号。

Super IO侦测到5V电压正常后,即送出PWROK给南北桥,通知南北桥此时ATX Main Power 送出OK。

当ATX Power送出±12V, +3.3V, ±5V数组Main Power电压后,其它工作电压如+1.8V ,+1.5V,1.05V,MCH1.2V,2.5V,2.5V-DAC,+ 5V A VDD,VTT-DDR0.9V等也将随后全部送出。

当+VTT_GMCH送给CPU后,CPU会送出VTT_OL,控制产生VTT-PWRGD信号[High]给CPU,VRM芯片;CPU用VTT_PWRGD信号会发出VID[0:5]。

主板上电时序

主板上电时序

+2.5V
文档仅供参考,如有不当之处,请联系改正。
+2.5V旳电压直接由+2.5V_Dual经过一种MOS开关提供,用 +12V作为MOS旳gate控制.从而确保进入S3时+2.5V能够被 关闭.防止漏电.
+2.5V_DUAL =-> +2.5V
+2.5V_DAUL
Q23 NDS351N
+2.5V
主板上此PIN一般空接
文档仅供参考,如有不当之处,请联系改正。
主板上电时序
Intel架构上电时序 AMD架构上电时序
文档仅供参考,如有不当之处,请联系改正。
Intel架构上电时序
P5+Intel915G (P5GD2-VM为例).
1.未插电源时旳主板准备上电状态. 2.插上电源后旳主板动作时序. 3.按下Power Buttom后旳动作时序.
文档仅供参考,如有不当之处,请联系改正。
+5VSB: Standby power提供power down state下主板需 要旳多种电压,涉及:Standby and Dual power.
ATX要求提供旳电流不低于10mA.但是目前旳主板为了提 供USB设备开启,网罗唤醒等功能,需要很大旳电流.一般 旳Power supply都能够提供2A左右.
主板旳上旳电压有+12V、-12V、+5V、(-5V)、+3V、+5VSB、 +3VSB、+1.5VSB、+1.5V、+5V_Dual、+3V_DUAL、+2.5V_DUAL、+ 2.5V_DAC、1.8V_Dual、VCORE、VTT_DDR、VTT+_CPU ect.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

待机的时候,还是在开机触发后?
这个信号是南桥输出的时钟信号,外部晶谐频率一样,32.768K,是一个方波!只 要南桥被触发PWRBTN信号就会有
* 按下电源的开关后,送出PWRBTN#给 IO
或南桥或其它专门的开机复位芯片收到这一个方波信号后(在其它工作条件正常的情况下)就会发出下一步的工作信号(IO_PWRBTN)
IO_PWRBTN 就是IO收到开关信号后发出的一个同PWRBTN#一样的高低高变化的方波信号,这个信号送给南桥通知南桥开机
而按下开关的时候该信号变为0V低电平(开关的另一端是接地的,按下开关时就是把PWRBTN信号接到地上了),
然后松开开关PWRBTN又回到3.3V或5V的高电平。
8这一高低高的变化信号会送给IO或南桥或其它专门的开机复位芯片(有些中间会有一些电阻或门芯片中转一下)
INTEL芯片组主板上电时序 一, * 装入电池后首先送出RTCRST#, 3V—BAT 给南桥
* 晶振提供 32.768KHZ频率给南桥
* +5SB 转换出+3VSB, IO 检查 5VSB 是否正常,若正常则发出 RSMRST#
通知南桥待机电压OK
* 北桥接收到南桥发出的PLTRST#,且其电压,时钟都正常,大约1SMS后发 出CPURST#给CPU,通知CPU可以开始执行第一个指令动作
相关资料
/view/a72c961dc5da50e2524d7f7b.html
这个是一个开机信号,是一个低电平有效的信号 (南桥的触发信
号,低电平有效,常态为高电平)
PWRBTN 主板上电时的一个信号,即电脑开关就是这个信号,在电脑接通电源的时候,3VSB或5VSB通过一个4.7K或8.2K等的电阻给该信号提供上拉,所以在接通电 源时该信号的电压是3.3V或5V的高电平,
* IO 收到的发出 IO—PWRBTN#给南桥
* 南桥送出 SLP—S4# 和 SLP—S3#给IO
* IO发出PS—ON#(持续低电平)给ATX电源
* 当ATX 电源睡到PS—ON#由高——》低后,即送出+12V, —12V,+3.3V,+5V
* 当电压送出后,即通过主板电路转出其他工作电压;+VTT—CPU, +1.5V,+2.5V—DAC,+5V—DUAL, +3V—DUAL, +1.8V—DUAI
PWRBTN#这个信号待机时应该为高电平?
* 南桥送出SUSCLK (32KHZ)
RSMRST#信号是用来通知南桥5VSB 和3VSB待机电压正常用的信号,这个信号如果为低,则南桥收到错误的售息,认为相应的待机电压没有OK,所以不会进行下一步的上电 动作。 RSMSST#可以在I/O, 集成网卡等元件测量到,除了测量RSMRST#信号的电压外,还要测RSMRST#W信号对地阻值,如果RSMRST#信号处于短路状态也是不行的,实际 维修中, 多发的故障是I/O 或网卡不良引起RSMRST#信号不正常。。。。。。。。
* ATX 电源灰线延时发出 ATXPWRGD 经过是路转化送给南桥,或者 IO延时发出PWROK给南桥
* 南桥发出CPUPWRGD 给CPU ,通知CPU电压已经正常
* 南桥电压,时钟都正常,且收到VRMPWRGD, PWROK 后,发出PLTRST#(平台复位)及PCIRST#给各个设备
* CPU 收到VTT——PWRGD和CPU发来的VID 组合后,产生VCORE
* 当VCORE 正常后,电源管理芯片发VRMPWRGD信号给南桥,通知南桥此时 CPU电压已经正常
* 时钟芯片收到VTT-PWRGD, 且其3.3V 电压和14.318MHZ 都正常后发出各 组时钟频率
XPWRBTN#及IO_PWRBTN#这个名称并不是唯一的在不同的电图图上标示的可能不一样
* 当+VTT—CPU供给CPU后,会经过电路转换出 VTT—PWRGD信号(高电平) 给CPU,时钟芯片, 电源管理芯片
SUSCLK的作用及产生条件是什么?
SUSCLK是晶振发给南桥的频率,当RSMRST#信号正常后,南桥唤醒,就会发出SUSCLK 也就是32.768MHZ出去
SUSCLK是什么,什么时候产生,是在
相关文档
最新文档