光纤光栅压力传感器

合集下载

光纤压力传感器原理及特点

光纤压力传感器原理及特点

光纤压力传感器原理及特点1.压力引起光纤光学特性的改变:光纤中的体驻波由于受到外部应力的作用而受到频率变化,从而改变了光的传播特性。

当光纤被施加压力时,压力作用在光纤芯部分,导致光纤的折射率发生变化,进而改变了光纤内部的光的传播速度。

这个频率变化可以通过光纤的弯曲和伸缩来引起,并且随着压力的改变而改变。

2. 光学电探测方法对光纤内部光信号的测量:测量光纤内部光信号的变化是光纤压力传感器的关键步骤。

一般采用的测量原理有激光光栅原理和Mach-Zehnder干涉原理。

激光光栅原理利用激光光栅与光纤中的光信号的相互作用,通过测量光的频率变化来获得外部压力信号的变化。

而Mach-Zehnder干涉原理则是利用干涉装置通过光纤内部光信号与参考光信号的叠加来进行测量。

1.高精度:由于光纤内部光信号的传播速度和频率变化具有高度稳定性,因此光纤压力传感器具有很高的测量精度。

2.宽量程:光纤压力传感器可以通过改变光纤的材料、结构和尺寸等参数来适应各种压力范围的测量需求。

3.高灵敏度:光纤压力传感器通过测量光的频率变化来感知压力信号,其灵敏度相对较高,可以实现对微小压力变化的测量。

4.高稳定性:光纤压力传感器的工作原理不受温度、湿度、电磁场等环境因素的影响,具有较高的稳定性。

5.抗干扰能力强:由于光纤传输光信号不受外界干扰影响,光纤压力传感器具有较强的抗干扰能力。

6.长寿命:光纤传感器无机械件,不易损坏,寿命长,可以在恶劣环境下长时间工作。

综上所述,光纤压力传感器具有高精度、宽量程、高灵敏度、高稳定性、抗干扰能力强和长寿命等特点,广泛应用于工业自动化、石油化工、航空航天、医疗仪器等领域。

具有温度补偿的膜片型光纤光栅温度压力传感器

具有温度补偿的膜片型光纤光栅温度压力传感器

关键词 :光纤光栅 ; 压力传感器 ;弹性 膜片 ; 温度补偿
中 图分 类 号 :T N2 5 3 文献 标 识 码 :A 文 章 编 号 :1 0 0 0 - 9 7 8 7 ( 2 0 1 3 ) 0 4 - 0 0 9 8 - 0 3
Op t i c a l ib f e r g r a t i n g t e mp e r a t u r e a n d pr e s s ur e s e n s o r
b a s e d o n d i a p hr a g m wi t h t e m pe r a t u r e c o m pe ns a t i o n
CAI An’

YI N Xi n— d a 。 CHANG Xi a o . d o n g 。 J I ANG S h a n
2 . WU T OS T e c h n o l o g y C o L t d, Wu h a n 4 3 0 2 2 3 , C h i n a )
Ab s t r a c t : Op t i c a l f i b e r g r a t i n g t e mp e r a t u r e a n d p r e s s u r e s e n s o r b a s e d o n d i a p h r a g m w i t h t e mp e r a t u r e
在压力作用下产生轴 向位移来压缩压力敏感光栅以实现压力传感 ; 通过结构 温度补偿 消除压力敏感光栅 的温度漂移 , 同时串入感温光栅进行实 时修正并实现温度测量 。对传感器的压 力和温度特性进行 了测量 。
试验结果表 明: 压力灵敏度为 5 2 8 p m / M P a , 温度灵敏度 为 8 p m /  ̄ C。

光纤光栅轮辐式压力传感器的研究

光纤光栅轮辐式压力传感器的研究

光纤光栅轮辐式压力传感器的研究摘要光纤光栅是二十世纪九十年代以来国际上新兴的一种基础性光纤器件。

温度和应变传感是光纤光栅传感器最主要和直接的应用,但一直存在着温度、应变交叉敏感的问题。

本文设计了一种新颖的轮辐式光纤光栅压力传感器,有效地消除了温度对压力测量的影响,进而可以实现压力和温度的同时测量.关键词:光纤光栅,轮辐,压力,温度,传感器1.压力传感实验将一根光纤光栅粘贴在轮辐式压力盒的一片轮辐上,光栅布拉格波长为1539.60nm。

将制成的压力传感器置于自制的千斤顶上,用千斤顶施加压力,用测力环测量压力,同时应用光谱分析仪(Q8383型)测量波长的变化。

在0~30KN的压力范围内,经数据拟合,这种封装的压力传感器的压力响应曲线具有良好的线性度(R2=0.9998),压力灵敏系数为-0.02843nm/KN(相当于1.847×10-5KN-1)。

我们选用的光纤光栅的中心波长是λB=1539.60nm,半峰宽0.26nm,反射率90%。

根据式计算,光纤光栅压力灵敏度的理论计算值为-0.02979nm/KN,比实际测量值大。

这是因为第一,受粘贴工艺条件的限制,光栅与轮辐中性面的夹角小于,这时,光栅部分的应变值小于理论计算值,这就导致了压力灵敏度下降;第二,粘贴用的胶是手工涂覆的,与轮辐结合得不够紧密,不是刚性粘贴,这样,轮辐的形变不能有效的带动光栅,也会造成压力灵敏度的下降;第三,我们采用的实验装置的施力、测力方向没有严格与压力盒的中轴线保持在一条直线上,这样在施力的过程中,在垂直于压力盒中轴线的方向上有力的分量,压力盒上受到的沿中轴线的、对光栅应变起作用的力就减小,光栅上产生的应变就会减小,波长漂移随之减小,也会导致压力灵敏度的下降。

上述第三点如能很好的解决,压力响应曲线的斜率和线性度还可以有效的提高。

实验表明,增大光栅的粘贴角度(使之尽量接近角粘贴),采用与光纤、金属结合更为紧密的胶,改进粘贴工艺,设计更为合理的施力、测力装置,可使实验结果和理论计算更为相符。

光纤光栅传感器的原理应用

光纤光栅传感器的原理应用

光纤光栅传感器的原理应用1. 光纤光栅传感器的基本原理光纤光栅传感器是一种基于光纤光栅原理的传感器,主要用于测量和监测光纤中的温度、应变、压力等物理量。

其基本原理如下:•光纤光栅构造:光纤光栅由一段光纤中定期布置的光栅构成,其中光栅中的折射率周期性变化,形成了一个光栅结构。

•光栅反射与折射:当光线传播通过光纤光栅时,一部分光线会被光栅反射回来,另一部分光线会因为光栅的折射而偏转。

•光栅中的相位偏移:当外界物理量(如温度、应变、压力)作用于光栅光纤时,会引起光栅的折射率发生改变,从而导致光栅中的相位偏移。

•相位偏移的测量:通过测量光纤光栅反射光的相位,可以间接得到光栅中的相位偏移,进而推导出外界物理量的变化。

2. 光纤光栅传感器的应用领域光纤光栅传感器在各个领域都有广泛的应用,包括但不限于以下方面:2.1 温度传感•石油和化工工业:用于测量和监测油井和化工过程中的温度变化,以确保设备的正常运行和安全性。

•电力系统:用于测量电力设备和输电线路中的温度,以保护设备并及时发现故障。

•环境监测:用于测量大气温度、水温等环境参数,用于气象和环境保护研究。

2.2 应变传感•结构安全监测:用于测量桥梁、建筑物等结构的应变变化,以预防和监测结构的损坏。

•航天航空领域:用于测量飞机、火箭等复杂结构的应变,以保证其安全性和稳定性。

•汽车工业:用于测量汽车和列车等交通工具的应变,以确保车辆的安全性和性能。

2.3 压力传感•工业自动化:用于测量和监测工业设备中的压力变化,以控制和调节设备的运行状态。

•化工过程:用于测量化工过程中的压力,以确保设备的正常运行和安全性。

•石油勘探:用于测量油井中的压力变化,以评估油井的产量和储量。

3. 光纤光栅传感器的优势和特点光纤光栅传感器具有以下优势和特点:•高灵敏度:光纤光栅传感器能够实现高精度的物理量测量,具有很高的灵敏度和分辨率。

•远距离传输:光纤传输具有低损耗和高带宽的特点,可实现长距离传输和分布式测量。

2024年光纤光栅传感器市场发展现状

2024年光纤光栅传感器市场发展现状

2024年光纤光栅传感器市场发展现状摘要光纤光栅传感器是一种基于光纤光栅技术的传感器,通过对光纤光栅进行测量和分析,实现对温度、应变、压力等物理量的传感和监测。

本文分析了光纤光栅传感器的市场发展现状,包括技术进展、应用领域和市场规模等方面,并对未来的发展趋势进行展望。

1. 引言光纤光栅传感器是一种基于光纤光栅技术的传感器,具有高灵敏度、抗干扰能力强、体积小等优点,在工业、医疗、航空航天等领域有广泛的应用。

近年来,随着技术的不断进步和需求的增加,光纤光栅传感器市场也呈现出快速发展的态势。

2. 技术进展光纤光栅传感器技术在过去几十年中取得了长足的发展。

最早的光纤光栅传感器采用单点传感的方式,只能实现对单个物理量的监测。

随着技术的进步,现在的光纤光栅传感器可以实现对多个物理量的同时监测,并且具有更高的精度和灵敏度。

另外,随着微纳制造技术的发展,光纤光栅传感器的体积也不断减小,尺寸更加紧凑,便于在复杂环境中的安装和应用。

此外,光纤光栅传感器还与其他传感技术结合,如惯性导航、无线通信等,提高了其在实际应用中的性能和功能。

3. 应用领域光纤光栅传感器在众多领域中都有着广泛的应用。

其中,工业领域是其主要应用领域之一。

工业中的光纤光栅传感器主要应用于温度、压力、应变等物理量的监测和控制。

另外,光纤光栅传感器在医疗领域也有重要的应用,如生物医学传感、病情监测等方面。

此外,光纤光栅传感器在航空航天、海洋工程、能源领域等也有广泛的应用。

例如,在航空航天领域,光纤光栅传感器可以用于飞行器结构的监测和故障诊断,提高飞行安全性。

在海洋工程领域,光纤光栅传感器可以实现对海水温度、压力等参数的监测,为海洋资源开发和环境保护提供数据支持。

4. 市场规模光纤光栅传感器市场在过去几年中呈现出快速增长的趋势。

根据市场研究机构的数据显示,全球光纤光栅传感器市场规模从2015年的约10亿美元增长到2020年的约20亿美元,年复合增长率超过10%。

光纤光栅压力传感器

光纤光栅压力传感器

光纤光栅压力传感器摘要光纤光栅压力传感器是一种基于光纤光栅技术的压力测量装置。

它利用光纤光栅的特性,通过测量光纤光栅的光谱变化来间接测量压力。

本文将介绍光纤光栅压力传感器的工作原理、优势以及应用领域,并对光纤光栅压力传感器的未来发展进行展望。

1. 引言随着科技的发展,压力传感技术在工业自动化、机械制造、医疗诊断等领域中具有重要的应用价值。

光纤光栅压力传感器作为一种新型的压力测量技术手段,具有高灵敏度、快速响应、抗电磁干扰等优点,逐渐受到研究者的关注。

2. 光纤光栅压力传感器工作原理光纤光栅压力传感器的工作原理基于光纤光栅的特性,即通过光纤中的光栅结构使入射光产生衍射,从而形成一系列特定波长的光谱。

当光纤光栅受到外界压力的作用时,光栅的结构会发生变化,导致衍射光谱发生位移。

通过测量光谱的位移大小,可以间接得到外界压力的大小。

3. 光纤光栅压力传感器的优势相比传统的压力传感器,光纤光栅压力传感器具有以下优势:•高灵敏度:光纤光栅压力传感器可以实现对微小的压力变化的检测,具有较高的灵敏度。

•快速响应:光纤光栅压力传感器的响应时间非常快,可以在毫秒级别内完成压力测量。

•抗电磁干扰:光纤光栅压力传感器采用光学传输信号,对电磁干扰具有很好的抗干扰能力。

•高可靠性:由于光纤光栅压力传感器没有机械移动部件,因此具有较长的使用寿命和高可靠性。

4. 光纤光栅压力传感器的应用领域光纤光栅压力传感器在多个领域都有广泛的应用,包括但不限于以下几个方面:4.1 工业自动化光纤光栅压力传感器可以用于工业自动化中的压力监测和控制,如机械加工、液压系统等。

通过实时测量压力变化,可以及时调整系统的工作状态,提高生产效率和产品质量。

4.2 汽车工程光纤光栅压力传感器可以应用于汽车制造和汽车发动机的研究中。

通过监测引擎内部的压力变化,可以实时监控引擎的工作状态,提高燃烧效率和燃油利用率。

4.3 医疗诊断光纤光栅压力传感器可以应用于医疗诊断中的血压测量、内脏压力监测等领域。

光纤光栅传感器

光纤光栅传感器

温度传感
温度传感
光纤光栅传感器能够实时监测温度变化,广 泛应用于电力、能源、环保等领域的温度监 控。通过将光纤光栅传感器安装在发热设备 或热流通道中,可以实时监测温度,实现设 备的预防性维护和安全控制。
温度传感特点
光纤光栅传感器具有测温范围广、响应速度 快、精度高、稳定性好等特点,能够实现高 精度的温度测量和实时监测。
航空航天
用于监测飞机和航天器的结构健康状况,如机翼、 机身等关键部位的温度、应变和振动等参数。
智能交通
用于监测高速公路、桥梁和隧道等基础设施的结 构健康状况,以及车辆速度、流量等交通参数。
06 光纤光栅传感器与其他传 感器的比较
电容式传感器
总结词
电容式传感器利用电场感应原理,通过测量电容器极板 间距离的变化来检测位移或形变。
分布式测量
长距离传输
光纤光栅传感器可以实现分布式测量,即 在同一条光纤上布置多个光栅,实现对多 点同时监测。
光纤光栅传感器以光纤为传输媒介,可实 现远距离信号传输,适用于长距离、大规 模监测系统。
THANKS FOR WATCHING
感谢您的观看
抗电磁干扰
光纤光栅传感器采用光信号传输,不 受电磁干扰的影响,特别适合在强电 磁场环境下工作。这使得光纤光栅传 感器在电力、航空航天、军事等领域 具有广泛的应用前景。
光纤光栅传感器的抗电磁干扰特性使 其在复杂环境中能够稳定工作,提高 了测量的可靠性和准确性。
耐腐蚀与高温
光纤光栅传感器采用石英光纤作为传输介质,具有优良的化 学稳定性和耐腐蚀性,能够在恶劣的化学环境下正常工作。 同时,石英光纤的熔点高达1700℃,使得光纤光栅传感器能 够在高温环境下进行测量。
光纤光栅传感器

光纤光栅传感器

光纤光栅传感器

光纤光栅传感器概述光纤光栅传感器是一种基于光纤传输和光栅技术的传感器。

它利用光栅的特性来测量光纤中的光信号,从而实现对物理量的测量和监测。

光纤光栅传感器具有高精度、长寿命、抗干扰等特点,在许多领域中广泛应用。

工作原理光纤光栅传感器的工作原理基于布拉格光栅的特性。

布拉格光栅是一种光学衍射结构,它由一系列等间距的折射率变化区域组成。

当入射光波与光栅相互作用时,会发生光衍射现象。

根据不同的入射角度和波长,只有特定的波长会在特定的入射角度下被反射回来。

这个特定波长就是布拉格波长。

在光纤光栅传感器中,通过将光纤中一段长度的折射率周期性变化,形成一个布拉格光栅。

当光信号从光纤中传输经过光栅区域时,会发生衍射现象,反射出特定波长的光信号。

通过测量这个特定波长的光信号的强度变化,可以得到物理量的信息。

应用领域光纤光栅传感器在许多领域中得到广泛应用。

以下是一些典型的应用领域:1. 温度测量:光纤光栅传感器可以通过测量光栅中的布拉格波长随温度的变化来实现温度的测量。

这种传感器具有高精度、快速响应等优点,在工业过程控制、环境监测等方面应用广泛。

2. 应变测量:光纤光栅传感器可以通过测量光纤中的布拉格波长随应变的变化来实现应变的测量。

由于光纤的柔性和高强度特性,这种传感器在结构健康监测、材料力学测试等领域中具有广泛的应用前景。

3. 液位测量:光纤光栅传感器可以通过测量光栅中的布拉格波长随液位的变化来实现液位的测量。

这种传感器具有高灵敏度、非接触式测量等优点,适用于液体储罐、水池等液位监测场景。

4. 压力测量:光纤光栅传感器可以通过测量光栅中的布拉格波长随压力的变化来实现压力的测量。

这种传感器具有高精度、快速响应等优点,适用于工业流体控制、汽车发动机监测等领域。

总结光纤光栅传感器是一种基于光纤传输和光栅技术的传感器,利用光栅的特性来测量光纤中的光信号,实现对物理量的测量和监测。

它具有高精度、长寿命、抗干扰等优点,在温度测量、应变测量、液位测量、压力测量等领域中得到广泛应用。

光纤光栅压力传感实验

光纤光栅压力传感实验
以电为基础的传统传感器是一种把被测量的状态转变为可测的电信号的装置,是由电源、敏感元件、信号接收和处理系统以及传输信息所用金属导线组成。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置,由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成。由光发送器发出的光经光纤引导至敏感元件,在这里,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理系统处理得到我们所期待的被测量[2]。光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别,传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。光纤系统比类似的电子系统更安全,因为基于电材料的系统不会产生火花,所以光纤传感技术可以应用在常规电子系统不适合的危险地区。光纤传感器还具有其他优点,如可以使用干涉光学技术,以便在不接触的情况下获得极高分辨率的长度遥测,光纤传感器一般不移动,结构紧凑,结实耐用,几何结构灵活,适用多种应用,构建简单,维护费低,可靠性高,并且比一般传统传感器便宜。另外光纤传感器适合与数字系统连接并可以应用多种信号复用方法,如时分、幅度和数字信号编码。
传感器的应用相当广泛,它是人类生活的触角、视野的延伸,也成为了现代人类科学技术活动的重要基础。国家经济建设、国防建设和高新技术的发展都离不开传感器,而传感器总是要在一定的环境中工作。它的性能的优劣直接影响着人类的各种活动,传感器一旦出现问题不仅给国家带来重大的经济损失和大量的资源与能源的消耗,还会给设备、装备、建筑物及人身安全带来威胁。随着人类触角遍及整个地球以及外太空,传统的传感器已经越来越不能满足人类的要求。本课题所研究的传感器以其简单的结构、较高的精度有望在未来满足一些人类的需求。此传感器目前可以通过对飞机等储油箱的多点测量,来实现对液位的监测。由于此传感器可以做得非常薄,所以它非常适合作为液位传感器来使用。

光纤光栅传感器的工作原理和应用实例

光纤光栅传感器的工作原理和应用实例

光纤光栅传感器的工作原理和应用实例一、本文概述光纤光栅传感器作为一种先进的光学传感器,近年来在多个领域中都得到了广泛的应用。

本文旨在全面介绍光纤光栅传感器的工作原理及其在各领域中的应用实例。

我们将详细阐述光纤光栅传感器的基本原理,包括其结构、光学特性以及如何实现传感功能。

接着,我们将通过一系列应用实例,展示光纤光栅传感器在结构健康监测、温度测量、压力传感以及安全防护等领域的实际应用。

通过本文的阅读,读者将能够对光纤光栅传感器有一个全面深入的了解,并理解其在现代科技中的重要地位。

二、光纤光栅传感器的基本概念和原理光纤光栅传感器,也被称为光纤布拉格光栅(Fiber Bragg Grating, FBG)传感器,是一种基于光纤光栅技术的传感元件。

其基本概念源于光纤中的光栅效应,即当光在光纤中传播时,遇到周期性折射率变化的结构(即光栅),会发生特定波长的反射或透射。

光纤光栅传感器的工作原理基于光纤中的光栅对光的反射作用。

在制造过程中,通过在光纤芯部形成周期性的折射率变化,即形成光栅,当入射光满足布拉格条件时,即入射光的波长等于光栅周期的两倍与光纤有效折射率的乘积时,该波长的光将被反射回来。

当外界环境(如温度、压力、应变等)发生变化时,光纤光栅的周期或折射率会发生变化,从而改变反射光的波长,通过对这些波长变化的检测和分析,就可以实现对环境参数的测量。

光纤光栅传感器具有许多独特的优点,如抗电磁干扰、灵敏度高、测量范围大、响应速度快、能够实现分布式测量等。

这使得它在许多领域,如结构健康监测、航空航天、石油化工、环境监测、医疗设备、智能交通等,都有广泛的应用前景。

光纤光栅传感器的工作原理决定了其可以通过测量光栅反射光的波长变化来感知外界环境的变化。

因此,在实际应用中,通常需要将光纤光栅传感器与光谱分析仪、解调器等设备配合使用,以实现对环境参数的精确测量。

光纤光栅传感器的基本概念和原理为其在各种应用场景中的广泛应用提供了坚实的基础。

光纤光栅传感器的温度灵敏度研究

光纤光栅传感器的温度灵敏度研究

光纤光栅传感器的温度灵敏度研究一、光纤光栅传感器概述光纤光栅传感器是一种利用光纤光栅的特性来检测物理量变化的传感器。

与传统的传感器相比,光纤光栅传感器具有抗电磁干扰能力强、尺寸小、重量轻、可实现分布式测量等优点。

光纤光栅传感器通过在光纤中写入周期性的折射率变化来形成光栅,当外部环境发生变化时,光栅的周期或折射率也会随之变化,从而引起反射或透射光的波长发生变化,通过测量这些变化可以检测出温度、压力、应力等物理量。

1.1 光纤光栅传感器的工作原理光纤光栅传感器的工作原理基于光的干涉和衍射现象。

当光波在光纤中传播时,遇到光栅结构会发生衍射,产生多个衍射级。

这些衍射级相互干涉,形成特定的反射和透射光谱。

当光栅的周期或折射率发生变化时,衍射光谱也会相应地移动,通过测量光谱的移动量,可以推算出外部环境的变化。

1.2 光纤光栅传感器的分类根据光栅的类型,光纤光栅传感器可以分为布拉格光栅传感器、长周期光栅传感器和光纤布拉格光栅传感器等。

根据测量的物理量,又可以分为温度传感器、压力传感器、应力传感器等。

每种类型的传感器都有其独特的优势和应用场景。

二、光纤光栅传感器的温度灵敏度研究温度是光纤光栅传感器中最常见的测量对象之一。

温度的变化会影响光纤的折射率,进而影响光栅的周期和反射光谱的位置。

因此,研究光纤光栅传感器的温度灵敏度对于提高测量精度和应用范围具有重要意义。

2.1 温度对光纤光栅传感器的影响温度的变化会引起光纤材料的热膨胀和折射率的变化,从而影响光栅的周期和波长。

这种影响可以通过温度系数来量化。

不同的光纤材料具有不同的温度系数,选择合适的材料可以提高传感器的温度灵敏度。

2.2 提高温度灵敏度的方法为了提高光纤光栅传感器的温度灵敏度,研究者们提出了多种方法,包括优化光栅的参数、使用特殊的光纤材料、采用复合光栅结构等。

这些方法可以有效地提高传感器对温度变化的响应速度和精度。

2.3 温度灵敏度的测量与标定温度灵敏度的测量通常采用实验方法,通过将传感器暴露在不同温度下,测量反射光谱的变化,从而计算出温度灵敏度。

光纤光栅压力传感器原理

光纤光栅压力传感器原理

光纤光栅压力传感器原理光纤光栅压力传感器是一种利用光纤光栅技术来实现压力测量的传感器。

它通过测量光栅的光谱参数变化来反映压力的大小,具有高精度、快速响应和抗干扰能力强等优点。

下面将详细介绍光纤光栅压力传感器的工作原理。

光纤光栅压力传感器的工作原理基于光纤光栅的光学特性和压力与光纤光栅参数之间的关系。

光纤光栅是一种通过在光纤中引入周期性折射率变化而形成的光学器件。

光栅的折射率周期性变化会导致光信号在光纤中的传播速度发生改变,从而引起入射光波的频率发生偏移。

当光纤光栅受到压力作用时,光栅中的折射率会发生变化,从而改变光栅的光谱参数。

一般来说,光纤光栅压力传感器采用的是光栅的中心波长和光栅的谐振峰宽度来反映压力的大小。

压力越大,光栅的中心波长和谐振峰宽度的变化越大。

在实际应用中,光纤光栅压力传感器通常采用光栅的反射光谱来进行测量。

当入射光波与光栅发生反射时,会形成一系列的反射峰,每个峰对应光栅的一个共振模式。

光栅的中心波长和谐振峰宽度可以通过测量反射光谱的位置和形状来确定。

为了实现对光栅光谱的测量,光纤光栅压力传感器一般采用光谱分析仪或光栅光谱仪作为测量设备。

光谱分析仪能够对反射光谱进行高精度的测量和分析,从而得到光栅的中心波长和谐振峰宽度的变化。

通过与已知压力的对比,可以建立光栅光谱参数与压力之间的关系,从而实现对压力的测量。

光纤光栅压力传感器具有很多优点。

首先,光纤光栅技术具有高精度和快速响应的特点,能够实现对微小压力变化的测量。

其次,光纤光栅传感器具有较宽的工作温度范围和良好的抗干扰能力,适用于各种复杂的工作环境。

此外,光纤光栅传感器还具有体积小、重量轻和易于集成等优点,方便在各种应用中使用。

总结起来,光纤光栅压力传感器是一种利用光纤光栅技术实现压力测量的传感器。

它通过测量光栅的光谱参数变化来反映压力的大小。

光纤光栅压力传感器具有高精度、快速响应和抗干扰能力强等优点,适用于各种工业和科学领域的压力测量应用。

光纤光栅传感器

光纤光栅传感器

一、传感器背景及应用1.1传感器的背景传感器是高度自动化系统, 亦是现代尖端技术关键的组成部分, 因此, 传感器技术是当代高新技术着重发展的领域, 是各个国家科技进步的核心之一。

传感器是指能感受规定的被测信号(非电量) 并按照一定的规律(多指数学规律) 转换成可用信号(电量) 的器件或装置,通常由敏感元件和转换电路组成。

作为模拟人体感觉的“电五官”, 传感器的出现, 使物体存在了触觉、味觉和嗅觉等感官, 让难以测量的信号变得更易检测。

传感器是借助于敏感元件,将感受的信息按一定的规律转换成另一种信息的装置。

在一般情况下,是将信息转换成电量,以便进一步传输、显示。

研究、开发和制造传感器的技术涉及到许多学科,是一门跨学科的边缘科学技术。

随着现代测量、控制和自动化技术的发展,传感器技术己越来越为人们所重视,它是人类社会跨入信息时代的物质基础。

信息的采集和处理是信息社会的支柱之一,信息的处理依赖于计算机技术,而信息的采集则依赖于传感器。

在国外,随着生产自动化和实时控制的发展,为了更好地发挥计算机的效能,各国都已开始重视传感器技术的研究和开发。

前一时期,传感器技术没有跟上计算机技术的发展,信息的获得远远落后于信启、的处理,反过来又阻碍了计算机的应用和电子工业的发展。

因此近年来各国已把传感器技术摆到了重要的地位。

如美国空军200。

年报告中将传感器列为提高二十一世纪空军能力的十五项关键技术之一;在日本更认为“唯有模仿人脑的计算机与传感器的协调发展,才能决定技术的将来。

当务之急,是全力发展传感电子设备。

”总之,传感器技术在国民经济各部门、科学研究、国防建设、日常生活等各方面的应用十分广泛,从而形成了一个大的新型科学技术领域,随着科学技术的进一步发展,传感器技术的研究、开发还将日益扩大和深入,因此被视为80年代的关键技术而受到国内外的广泛瞩目是理所当然的。

1.2传感器在海洋中的应用海洋蕴藏着丰富的资源,影响着全球气候变化,海洋科学在海洋环境保护、能源开发、灾害预防、权益维护等多方面有着举足轻重的作用,同时也能为国家制定海洋政策提供科学依据。

《光纤光栅传感器》课件

《光纤光栅传感器》课件

远程监测
由于光纤的特性,光纤光栅 传感器可以实现远程监测, 适用于各种复杂环境。
应用领域
1 结构监测
光纤光栅传感器在桥梁、建筑等结构监测中有广泛应用。
2 油气检测
光纤光栅传感器可以用于油气管道中的泄漏检测和流量监测。
3 环境监测
光纤光栅传感器在环境监测领域中用于气体浓度、温度等参数的监测。
制备方法
工作原理
光纤光栅传感器的工作原理基于光纤中的光栅结构。当被测量物理量发生变 化时,光纤中的光栅会发生形变,从而导致光信号的改变。通过分析光信号 的变化,可以确定被测量物理量的数值。
优点
高灵敏度
光纤光栅传感器具有高灵敏 度,可以检测微小的物理量 变化。
抗干扰性强
光纤光栅传感器对外界干扰 的影响较小,具有良好的抗 干扰性能。
1
光纤制备
选择适合的光纤材料,并通过预拉伸等工艺制备光纤。
2
光栅制备
使用光刻、激光干涉等方法制备光栅结构。
3
光纤光栅组装
将光纤与光栅结构组装在一起,形成光纤光栅传感器。
实验室案例分享
实验室搭建
我们在实验室中搭建了一个光纤 光栅传感器测试平台。
传感器测试,我们验证了其性能和准确性。
《光纤光栅传感器》PPT 课件
欢迎大家来到《光纤光栅传感器》PPT课件。在本课程中,我们将介绍光纤光 栅传感器的定义、工作原理、优点、应用领域、制备方法,还会分享一些实 验室案例。让我们一起探索这一领域的知识和技术。
什么是光纤光栅传感器
光纤光栅传感器是一种利用光纤光栅结构对物理量进行测量的传感器。通过监测光纤中的光信号变化,可以获 得被测量物理量的信息。
我们还展示了一些光纤光栅传感 器在实际应用中的示例。

几种常见光纤光栅传感器工作原理

几种常见光纤光栅传感器工作原理

几种常见光纤光栅传感器工作原理光纤光栅传感器是一种利用光纤光栅原理进行测量和传感的设备。

光栅传感器常见的工作原理包括光纤布拉格光栅传感器、光纤长周期光栅传感器和微弯光纤光栅传感器。

光纤布拉格光栅传感器的工作原理是基于布拉格散射原理。

布拉格光栅是一种周期性折射率的光学结构,在光纤中形成了一个周期性的介质折射率变化。

当光线从光纤的一端传输到另一端时,如果入射光的波长与光纤布拉格光栅的周期匹配,一部分光子将被散射回来。

通过测量返回的散射光的波长,可以得到光纤周围环境的物理参数,如温度、应力和应变等。

光纤长周期光栅传感器的工作原理是基于光纤中被定期改变的折射率。

长周期光栅是一种周期性折射率变化的光学结构,在光纤中形成了一个周期性的折射率变化。

当光线从光纤的一端传输到另一端时,由于光纤中折射率的周期性变化,部分光子将被耦合到光纤的芯部分中。

通过监测被耦合到芯部分的光强,可以得到光纤周围环境的物理参数,如温度和应变等。

微弯光纤光栅传感器的工作原理是基于光纤的微弯曲变化。

当光纤受到外力或外部物理参数的作用,如温度、压力和应变等,会导致光纤发生微弯曲。

微弯光纤光栅传感器通过监测微弯光纤的光强变化来测量这些物理参数。

微弯光纤光栅传感器通常由两个光纤光栅组成,一个作为敏感光纤光栅,另一个作为参考光纤光栅。

通过比较敏感光纤光栅和参考光纤光栅的光强变化,可以得到环境物理参数的值。

综上所述,光纤光栅传感器可以基于光栅的布拉格散射原理、长周期折射率变化和微弯光纤的光强变化来实现对环境物理参数的测量和传感。

这些传感器在温度监测、应力分析、应变测量和压力检测等领域具有广泛的应用前景。

光纤光栅传感器原理课件

光纤光栅传感器原理课件
光纤光栅的反射波长与其光栅周期存在一种反比关系,通过改变光 栅周期可以实现对反射波长的调谐。
光纤光栅传感器的传感原理
外界物理量变化
当光纤光栅受到外界物理量(如 温度、压力、应变等)的作用时 ,其折射率调制周期或纤芯长度
会发生变化。

反射波长漂移
由于光纤光栅的反射波长与光栅周 期相关,当折射率调制周期或纤芯 长度发生变化时,反射波长也会发 生相应的漂移。
03
CATALOGUE
光纤光栅传感器的制作与表征
光纤光栅的制作技术
光纤光栅的写入技术
01
利用紫外光干涉法,通过两束相干紫外光在光纤上形成干涉条
纹,引起光纤折射率周期性变化,从而形成光纤光栅。
光纤光栅的制作材料
02
通常使用石英光纤或掺铒光纤作为基材,其线性和稳定性较好
,能够满足光栅传感器的要求。
制作过程中的关键因素
通过测量由应力引起的光栅周期或折射率 的变化,可以推导出待测物体内部的应力 分布和大小。
结构健康监测
生物医学领域
光纤光栅传感器可以嵌入到建筑物、桥梁 等结构中,实时监测结构的变形、开裂等 状况,确保结构安全。
利用光纤光栅传感器可实现对生物组织内 部的温度、压力等参数的实时监测,为生 物医学研究提供有力支持。
测量反射波长变化
通过测量光纤光栅反射波长的变化 ,可以推断出外界物理量的变化情 况,实现对相应物理量的传感测量 。
光纤光栅传感器的信号解调原理
光谱仪解调
利用光谱仪对光纤光栅的反射光谱进行检测,通过测量反射波长的漂移量来解调出外界物 理量的变化。这种方法具有高精度和高分辨率的优点,但设备成本较高。
可调谐滤波器解调
交叉敏感问题
在实际应用中,光纤光栅传感器可能受到多种物理量的交叉影响, 导致测量准确度降低。

光纤压力传感器ppt

光纤压力传感器ppt

绞合式光纤压力传感器
1.3 相位调制型光纤压力传感器在称重领域的研究
• 工作原理:通过干涉测量技术,相 位调制型光纤压力传感器测量光纤 内传播的光波相位在压力作用下发 生的变化。该技术用在称重领域通 过测量压力后转换为质量。
• 实例:2005年,袁申芳等人设计了 一套基于迈尔讯干涉仪动态称重系 统。如有图所示将干涉仪的测量光 纤铺设在一块钢板上。当有压力作 用在钢板上时,干涉仪输出信号会 发生变化,通过测量输出信号的变 化进行称量。该称重系统结构简单 ,价格低,可为许多实际应用提供 更高精度需求。
基本原理:压力(应力)是光纤光栅传感器的主要检测量之一, 压力(应力)的变化可
被光纤光栅传感器直接感知。而压力(应力)在不同场合表示不同的物理量, 煤矿 中很多和压力(应力)有关的参数都可由光纤光栅传感器感知测量。
应用:矿用光纤称重传感器、矿用光纤液压传感器等。
2.1 矿用光纤称重传感器
• 工作原理:没有施加载荷作用
• 应用:光纤压力传感器包括强度调制型、相位调制型及波长调制型

1.1 强度调制型光纤压力传感器在称重领域的研究
基本原理:当光纤
弯曲时,在光纤中 传输的导行模会在 弯曲点变为辐射模 ,损耗掉部分光功 率,光功率的损耗 值与待测压力具有 一定关系,通过测 量光功率可得到待 测压力。
光纤加强材料和光纤光栅组成的传感器
一、强度调制光纤压力传感器
• 透射型
原理:在发射光纤与
接收光纤之间放置一 个遮光片,对进入接收 光纤的光束产生一定 程度的遮挡,外界信号 通过控制遮光片的位 移来制约遮光程度,实 现对进入接收光纤的 光强进行调制。
优点:灵敏度高,线性度好。
一、强度调制光纤压力传感器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The research of FBG pressure sensing on the application of engineering
ABSTRACT
Fiber grating is one of the most rapid passive optical fiber components in recent years. Since 1978, the year when K.O.Hill and others first used the standing wave writing way in the germanium-doped fiber and make the world's first fiber grating, because of its’ many unique advantages, the use of the fiber grating in optical fiber communications Fields and fiber optic sensor Fields are broad prospected. With fiber grating manufacturing technology continues to improve, and the outcome of the application increasing, the fiber grating has been one of the most promising and representative optical passive components. The emergence of fiber grating makes many of the complex all-fiber communications and sensor networks possible, which greatly widened the scope of application of optical fiber technology.
As sensor component, fiber grating also possesses other special functions. For example, high ability of resisting electromagnetism disturb, small size and weight, high temperature-proof, high ability of multiplex, being liable to connect with fiber, low loss, good spectrum characteristic, erosion-proof, high sensitivity, being liable to deform and so on. At present, the sensor that adopts FBG (fiber Bragg grating) as sensor components has become the main stream of development and cultivation. Pressure is the direct cause of the drifting of the Bragg wavelength of the grating, so research on the FBG pressure sensing character in-depth is important to the FBG sensing technology.
The design is on the basis of understanding of FBG sensing elements; explore the using of FBG pressure character, so research on the FBG pressure sensing character in-depth is important to the FBG sensing technology. Bring forward a package project that can be used and the text.
1. Generally introducing the history of the development of the
optical fiber grating, the classification and the writing technology of the FBG. And the development and application of technology of the FBG sensing technology.
2. Analyzing the principal theory of FBG sensing, and
comprehensively analyzing the multiplexing techniques of fiber gratings such as WDM、TDM、SDM etc.
3.Studying the pressure sensing character of the bare grating and self-produced fiber grating pressure sensor. Expounding the theory and structure of packaging and doing the related experiment, we also analyzing the data and drawing the relevant conclusion on the experiment. In addition, the application of birefringence overcomes the cross-sensitization of temperature and pressure.
Key words: Optical Fiber Grating, Optical Fiber Bragg Grating, Sensing, Sensing Character, Pressure Sensing, Pressure
Sensing Character
光纤光栅压力传感器工程化研究
摘要
光纤光栅是最近几年发展最为迅速的光纤无源器件之一。

自从1978年K.O.Hill 等人首先在掺锗光纤中采用驻波写入法制成世界上第一只光纤光栅以来,由于它具有许多独特的优点,因而在光纤通信、光纤传感等领域均有广阔的应用前景。

随着光纤光栅制造技术的不断完善,应用成果的日益增多,使得光纤光栅成为目前最有发展前途,最具代表性的光纤无源器件之一。

由于光纤光栅的出现,使许多复杂全光纤通信和传感网成为可能,极大拓宽了光纤技术的应用范围。

光纤光栅作为传感元件还具有一些独特的性质,例如:抗电磁干扰能力强、尺寸小、重量轻、耐温性好、复用能力强、易与光纤连接、低损耗、光谱特性好、耐腐蚀、高灵敏度、易形变等等。

目前,已报道的光纤光栅传感器可以检测的物理量有:温度、应变、压力、位移、压强、扭角、扭矩(扭应力)、加速度、电流、电压、磁场、频率、浓度、热膨胀系数、振动等,其中一部分光纤光栅传感系统已经实际应用。

而以布拉格光纤光栅(FBG: fiber Bragg grating)为传感元件的传感器已成为研发主流。

压力则是光栅布拉格波长发生漂移的直接原因之一,研究光纤光栅的压力传感特性对深入研究光纤光栅传感技术有重要意义。

本设计在深入理解光纤光栅传感机理的基础上,探索利用光纤光栅进行压力传感的工程化封装技术,提出一种工程上可实际利用的封装方案并进行实验。

主要包括以下内容:
1、概述了光纤及光纤光栅发展的历史,介绍了光纤光栅的分类与光纤
光栅传感技术的发展与应用。

2、分析了光纤光栅传感的基本原理
3、研究了裸光栅的应变传感特性,并自行制作了光纤光栅压力传感器,
阐述了其封装原理与结构并进行了相关实验,并在实验的基础上进
行了数据分析并得出相关结论。

另外,在此基础上,就温度、压力
交叉敏感问题提出了相关温度补偿解决方案。

关键词:光纤光栅,光纤Bragg光栅,传感,传感特性,压力传感,压力传感特性。

相关文档
最新文档