2在数轴上正确表示数(教师版)
1.2 数轴(教案)华东师大版(2024)数学七年级上册
1.2数轴第1课时数轴1.掌握数轴的三要素,能正确画出数轴;能将已知数在数轴上表示出来;能说出数轴上已知点所表示的数;2.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;对学生渗透数形结合的思想方法;3.使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.重点正确掌握数轴画法和用数轴上的点表示有理数.难点有理数和数轴上的点的对应关系.一、导入新课1.请大家看,这是一支温度计(展示温度计图片),它的用途大家是知道的,但是你会读温度计吗?请同学们读出此时温度计所显示的温度.这样看来,液面所在的刻度就表示此时的温度,这说明温度计上的刻度与一些有理数建立了对应的关系,也就是说温度计上的每一个刻度都表示一个有理数.2.在一条东西方向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.二、探究新知1.观察温度计的刻度规律,你能发现什么?学生观察温度计,从温度计上发现:刻度有正有负也有0.结合有理数包含正数、零和负数的特点,类比一条直线在什么样的条件下才能成为数轴,于是:因为有零,就必须在直线上取一点,用这个点表示零.(如图1)我们把这个点叫做原点,用大写字母O表示,由温度计的刻度规律可知:原点的一侧表示正数,另一侧表示负数.因而我们就规定原点的其中一侧为正方向,那么另一侧就为负方向.习惯上,当直线水平放置时,原点右方为正方向,原点的左方为负方向,正方向的一侧我们用箭头表示.(如图2)现在同学们来猜想一下,正有理数应该在图2的哪一个区域?负有理数呢?知道正数在原点的右边,那么我们用多长来表示+1呢?怎么办?我们需要规定一个单位长度.(如图3)一旦表示1的点确定了,表示其他的有理数就好确定了.我想请同学们举例说明其他有理数点的确定.(利用成倍的关系)2.这样能用来表示全体有理数的图形我们就找到了,我们把这种图形叫做数轴.现在我请同学们归纳一下数轴有哪几个特点?(原点、正方向和单位长度)于是:规定了原点、正方向和单位长度的直线叫做数轴.归纳数轴的规范画法:(1)三要素:原点、正方向和单位长度;(2)刻度要在直线上,且是细短线;数字在下,字母在上.3.动手操作、感受数轴的画法、巩固对数轴的认识.教师活动设计:现在每一位同学都画一个数轴,根据你所画的数轴提出你的问题.学生活动设计:学生动手画数轴,在画的过程中可能有诸多问题,比如:数轴一定是水平放置的吗?原点一定在最中间吗?单位长度究竟是什么样的一个长度?数轴可以画为射线吗?然后学生进行交流,得到数轴规范的画法.三、课堂练习1.判断下列图形哪些是数轴?2.画出一个单位长度是1厘米的数轴,并用刻度尺画出表示下列各数的点:1.5, 0, 2, -2, 2.5.3.如图:写出数轴上的点A,B,C,D,E,F表示的有理数.四、课堂小结1.数轴的三要素是什么?2.在数轴上,正数和负数分别是怎样排列的?五、课后作业教材第16页习题第2,3,4题.本节课从生活中的实际入手,由温度计的具体形象,引出数轴的概念,总结归纳出数轴的三要素和数轴上数字的排列规律.要求学生学会画出数轴,学会在数轴上表示出有理数,初步渗透数形结合的思想.第2课时在数轴上比较数的大小1.通过观察数轴上点的位置关系,初步学会利用数轴比较有理数的大小;2.初步认识图形和数量的对应关系.重点负数和零的大小比较.难点如何启发学生自己得到有理数的大小比较的方法,并认识其合理性.一、导入新课在小学,我们已知学会比较两个正数的大小,那么,引进负数后,怎样比较两个有理数的大小呢?例如:1与-2哪个大?-1与0哪个大?-3与-4哪个大?二、探究新知1.探寻规律(教材P17探索)(1)请任意写出两个正数,在下面的数轴上画出表示它们的点.你所写的两个数是________>________,观察在数轴上表示它们的点,我们可以发现,较大的数的对应点在较小的数的对应点的________边.(2)生活中,同学们能判断两个气温的高低吗?①某日哈尔滨的气温为-9 ℃,泉州的气温为12 ℃,该日________的气温较高;②把温度计如下图横放,我们可以发现,________的气温会显示在右边.2.总结规律(教材P17概括)规律1:把温度计横过来放,就像一条数轴,类似于气温的高低,我们可以知道,在数轴上表示的两个数,右边的数总________左边的数.规律2:从数轴上可以发现,表示正数的点都在原点的________,表示负数的点都在原点的________,所以,我们说:正数都________零,负数都________零,正数都比负数________.3.用“>”、“<”或“=”填空:1________-2;-1________0;-3________-4.三、课堂练习1.判断下列各数是否存在?如果存在,把它们写出来.(1)最小的正整数:________,_________________;(2)最小的负整数:________,________________;(3)最大的正整数:________,_____________________;(4)最小的整数:________,______________________________.2.如图所示的是数a,b在数轴上的位置,下列判断正确的一项是()A.a<0B.a>1C.b>-1 D.b<-1四、课堂小结1.在数轴上表示的数大小是怎样排列的?2.怎样利用数轴比较两个负数的大小?五、课后作业教材第19页习题2.2第5,6题.教师引导学生通过结合有理数在数轴上的位置,发现正数、零和负数在数轴上的位置关系,确定了正数、零和负数的大小比较法则,并能通过数轴来比较任意两个非确定数的大小,尤其是要注意掌握比较两个负数的大小.。
数轴教案16人教版高品质版
1.2 数轴、相反数和绝对值第1课时数轴1.掌握数轴的三要素,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数.2.理解任何有理数都可以用数轴上唯一的一个点表示出来.3.初步理解数形结合的数学思想.重点数轴的概念及其画法.难点数轴的画法以及有理数与数轴上的点的对应关系.一、复习旧知,导入新知回忆:你能说说什么叫正数,什么叫负数,什么叫有理数吗?教师提问:(1)观察带有刻度的尺子,边缘上的点是如何表示数的呢?能不能用一条直线上的点来表示有理数呢?二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.到达三、师生互动,理解新知探究点一:认识数轴问题1:让机器人在一条直路上做走步取物试验.根据指令:它由O处出发,向西走A处,拿取物品,然后,返回O处将物品放入蓝中,再向东走2m到达B处取物.3m (1)在下面的直线上画出A,B两处的位置.______________________________________把向东走记作“+〞,向西走记作“-〞,在上面的直线上标出与A,B相对应的数.问题2:观察温度计,在温度计上有刻度,刻度上有度数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示 10℃;在0下5个刻度,表示-5℃.温度计可以看作表示正数、0、负数的直线吗?它和刚刚那个的图有什么共同点,有什么不同点?教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边),用这点表示0(相当于温度计上的0℃);定直上从原点向右正方向(箭所指的方向),那么从原点向左方向(相当于温度上0℃以上正,0℃以下);取适当的度作位度,在直上,从原点向右,每隔一个度位取一点,依次表示1,2,3,⋯从原点向左,每隔一个度位取一点,依次表示-1,-2,-3,⋯在此基上,出数的定,即:定了原点、正方向和位度的直叫做数.而提:在数上,一点P表示数-5,如果数上的原点不在原来位置,而改在另一位置,那么P的数是否是-5?如果位度改呢?如果直的正方向改呢?通上述提,向学生指出:数的三要素——原点、正方向和位度,缺一不可.探究点二:有理数与数上的点提:我能不能用条直表示任何有理数?(可列几个数)教指出:任何有理数都可以用数上的唯一的一个点来表示,但数上的点不一定都表示有理数,个以后再研究.思考:(1)如果你一些数,你能相地在数上找出它的准确位置?如果你数上的点,你能出它所表示的数?哪些数在原点的左,哪些数在原点的右,由此你会什么律?(3)如果a正数,那么数上表示a的点在原点的哪?到原点的距离是多少?-a呢?(小,交流):一般地,a是一个正数,数上表示a的点在原点的右,到原点的距离是a个位度;表示-a的点在原点的左,到原点的距离是a个位度.四、用迁移,运用新知1.数例1以下形中是数的是()A.B.C. D.解析:A中没有位度,;B中没有正方向,;C中足原点、正方向、位度,正确;D中没有原点,.方法:要判断一条直是不是数,要抓住它的三要素:原点、正方向和位度,三者缺一不可.2.出数上的点所表示的数例2本P8例1.方法:在确定数字,要真察点是在原点的左是右.于点A,D种情况,要注意它所表示的数是在哪两个整数之.3.在数上表示有理数例3本P8例2.方法:用数上的点表示数,首先由数的性符号确定数在原点的左是右,然后再根据数到原点的距离,确定位置.4.数上两点的距离例4数上的点A表示的数是+2,那么与点A相距5个位度的点表示的数是()A.5B.±5C.7D.7或-3解析:与点A相距5个位度的点表示的数有2个,分是7或-3.方法总结:解答此类问题要注意考虑两种情况,即要求的点在点的左侧或右侧.五、尝试练习,掌握新知 课本P9练习第1、2题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了数轴, 一条直线只有具备了原点、 正方向和单位长度才能成为数轴. 所有 的有理数都可以用数轴上的点表示出来. 数轴的引入,使我们能用直观图形来理解数的有关概念,这就是数形的结合,它是一种很重要的数学思想方法,我们应特别注意掌握.七、深化练习,稳固新知 课本P12习题第4题.第2课时 相反数1.在具体的情境中了解相反数,能求一个数的相反数.2.了解两个相反数在数轴上的特征,懂得相反数的对立统一的关系.重点理解相反数的概念和求一个数的相反数.难点相反数概念的理解.一、复习旧知,导入新知回忆:在数轴上表示+ 3的点在原点的 ______侧,在数轴上表示-3的点在原点的______侧;距原点 5个单位的点是 ______.(要求学生画数轴并描点)观察上述数轴上的点的特点,并找出还有哪些点具有同样的特点.+3与-3这样成对出现的数就是我们今天要学习的相反数.二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.三、师生互动,理解新知探究点一:相反数的意义11问题:首先,画一条数轴,然后在数轴上标出以下各点:2与-2,4与-4,2与- 2.请同学们观察:(1) 上述这三对数有什么特点?(2) 表示这三对数的数轴上的点有什么特点? (3) 请你再写出同样的几对点来?显然:(1)上面的这三对数中,每一对数数值相同,只有符号不同.(2)这三对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同.1.相反数的概念像以上这样,只有符号不同的两个数互为相反数,如2与-2互为相反数,即数是-2,-2的相反数是 2.说明:(1)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数互为2的相反相反数.如4与-4是互为相反数.(2)0的相反数是0.也只有0的相反数是它的本身.2.相反数的表示在一个数的前面添上“-〞号就成为原数的相反数.数表示为-a.在一个数的前面添上“+〞号仍与原数相同.假设a表示一个有理数,那么a的相反例如,+7=7,特别地,+0=0,-0=0.3.相反数的特性假设a、b互为相反数,那么a+b=0;反之假设a+b=0,那么a、b互为相反数.探究点二:多重符号的化简提出问题:a前面加“-〞表示a的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、答复.学生答复后教师引导:在一个数前面加上“-〞表示这个数的相反数,如果在这些数前面加上“+〞呢?学生讨论后答复.说明:(1)相反数的意义是简化多重符号的依据.如-(-1)是-1的相反数,而-1的相反数为+1,所以-(-1)=+1=1.多重符号化简的结果是由“-〞号的个数决定的.如果“-〞号是奇数个,那么结果为负;如果是偶数个,那么结果为正.可简写为“奇负偶正〞.归纳:化简一个数就是把多重符号化成单一符号,假设结果是“+〞号,一般省略不写.四、应用迁移,运用新知1.相反数的代数意义例1见课本P10例3.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.2.相反数的几何意义例2(1)数轴上离原点3个单位长度的点所表示的数是______,它们的关系为______.(2)在数轴上,假设点A和点B分别表示互为相反数的两个数,点A在点B的左侧,并且这两个数的距离是,那么A=______,B=______.解析:(1)左边距离原点3个单位长度的点所表示的数是-3;右边距离原点3个单位长度的点所表示的数是3,所以距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)因为点A和点B分别表示互为相反数的两个数,所以原点到点A与点B的距离相等,原点到点A和点B的距离都等于 6.4.因为点A在点B的左侧,所以这两点所表示的数分别是-,6.4.方法总结:此题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等.3.相反数与数轴相结合的问题例3如图,图中数轴(缺原点)的单位长度为1,点A,B表示的两数互为相反数,那么点C所表示的数为()A.2B.-4C.-1D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,所以点C所表示的数为- 1.方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等.4.多重符号的化简例4化简以下各数:(1)-(-8)=______;1-(+15)=______;8-[-(+6)]=______;3(4)+(+5)=______.解析:(1)-(-8)表示-8的相反数;11-(+158)表示158的相反数;先看括号内-(+6)表示+6的相反数,即-6,所以-[-(+6)]=-(-6);正数前面的“+〞号可以省略.13解:(1)8;(2)-158;(3)6;(4)5.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,假设有偶数个,那么结果为正;假设有奇数个,那么结果为负.五、尝试练习,掌握新知课本P10练习第1、2、3题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等.七、深化练习,稳固新知课本P12习题第1、2、5题.第3课时绝对值1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.重点正确理解绝对值的概念,能求一个数的绝对值.难点正确理解绝对值的几何意义和代数意义.一、复习旧知,导入新知回忆:(1)在数轴上分别标出-5,,0及它们的相反数所对应的点.(2)在数轴上找出与原点距离等于6的点.(3)相反数是怎样定义的?引导学生从代数与几何两方面的特点出发答复相反数的定义.从几何方面可以说在数轴上原点两旁,离原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.三、师生互动,理解新知探究点一:绝对值的代数与几何意义1问题1:在练习本上画一个数轴,并标出表示-4,2,0及它们的相反数的点.学生活动:一个学生板演,其他学生在练习本上画.提问:-4与4是相反数,它们只有符号不同,它们什么相同呢?学生活动:思考讨论.教师归纳:在数轴上标出到原点距离是4个单位长度的点,显然A点(表示4的点)到原点的距离是4,B点(表示-4的点)到原点距离同样是4个单位长度,两者相同,我们把这个距离叫+4与-4的绝对值.-4的绝对值是表示-4的点到原点的距离,-4的绝对值是4;4的绝对值是表示4的点到原点的距离,4的绝对值是4.11呢?(2)思考:a的绝对值呢?学生活动:(1)2的绝对值表示什么?-2呢?0教师小结归纳:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值,记作|a|.探究点二:绝对值的非负性思考:从上面结果中,你能发现什么规律?(小组讨论,合作学习).引导学生得出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.因为正数可用>0来表示,负数可用a <0来表示,所以上述三条可改写成:a(1)如果a>0,那么|a|=a,如果a<0,那么|a|=-a,如果a=0,那么|a|=0.上面这几个式子可合并写成:〔a>0〕|a|=0〔a=0〕a〔a<0〕由上面的几个式子可以看出,不管a取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a而言,总有:|a|≥0.这是一条非常重要的性质,这里的“非负〞就是“不是负数〞,而有可能是正数或者是0.上面的这几个式子还告诉咱们怎样求一个数的绝对值:如果求一个正数的绝对值,根据法那么,就直接写出结果即可.如果求一个负数的绝对值,根据法那么,就需要找它的相反数.而就“0〞而言,它的绝对值就是它本身.四、应用迁移,运用新知1.求一个数的绝对值例1见课本P11例4.例2-3的绝对值是()11A.3B.-3C.-3D.3解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是 3.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.利用绝对值求有理数2例3如果一个数的绝对值等于3,那么这个数是______.解析:因为2或-2的绝对值都等于332,所以绝对值等于32的数是32或-233.方法总结:绝对值等于某一个数(0除外)的值有两个,它们互为相反数.3.绝对值的非负性及应用例4假设|a-3|+|b-2021|=0,求a,b的值.解析:由绝对值的性质可得|a -3|≥0,|-2021|≥0.b解:由题意得 |a-3|≥0,|b-2021|≥0,又因为|a-3|+|b-2021|=0,所以|a-3|0,|b-2021|=0,所以a=3,b=2021.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.4.含绝对值的化简计算3例5化简:-5=______;|-1.5|=______;|-(-2)|=______.33;-|-1.5|=-;|-(-2)|=|2|=2.解析:-5=5方法总结:根据绝对值的意义解答.即假设>0,那么||=;假设a=0,那么||=0;假设a a a a a<0,那么|a|=-a.5.绝对值在实际问题中的应用例6第53届世乒赛于2021年4月26日至5月质量有严格的规定,下表是6个乒乓球质量检测的结果为正数).3日在苏州举办,此次比赛中对球的(单位:克,超过标准质量的克数记一号球二号球三号球四号球五号球六号球-0--请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)假设规定与标准质量误差不超过g的为优等品,超过g但不超过g的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0,正好等于标准的质量,五号球,|-0.08|=,比标准球轻克,二号球,|+0.1|=,比标准球重克;(2)一号球|-0.5|=,不合格,二号球|+0.1|=,优等品,三号球|0.2|=,合格品,四号球|0|=0,优等品,五号球|-0.08|=,优等品,六号球|-0.15|=,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.五、尝试练习,掌握新知课本P11~12练习第1~5题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了绝对值的概念,了解了绝对值的非负性,并认识了绝对值的性质,即正数的绝对值是它本身;0的绝对值是0;负数的绝对值是它的相反数.互为相反数的两个数的绝对值相等.七、深化练习,稳固新知对爸爸的印象,从记事的时候,就有了,他留给我的印象就是沉默少言的,但是脸上却始终有微笑,不管家里遇到了什么样的困难,只要有爸爸在,一切都能够雨过天晴的,小时候,家里很穷,可是作为孩子的我们〔我和哥哥〕,却很幸福。
北师大版七年级数学上册:2.2数轴(教案)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
我也在思考,如何在接下来的课程中更好地帮助学生突破难点。可能我需要设计更多的互动环节,比如让学生们上台来亲自操作数轴,讲解他们的思考过程。这样不仅能够加深他们对知识的理解,还能锻炼他们的表达能力和逻辑思维。
此外,学生在小组讨论中分享的成果也让我收获颇丰。他们从不同的角度看待问题,提出了许多有创意的想法。这让我意识到,作为教师,我要更多地倾听学生的声音,给他们提供展示自己的平台。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数轴相关的实际问题,如如何用数轴表示银行账户的存款和取款。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用数轴来模拟解决一个简单的一元一次方程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
-数轴上的数的大小比较:学生应掌握数轴上数的大小关系,了解左边的数总是小于右边的数。
-数轴在求解方程和不等式中的应用:学生需要学会使用数轴来表示方程的解集,以及不等式的解集。
-举例:
-解释数轴上的点3.5与实数3.5的对应关系。
-比较数轴上-2和2.5的大小,并说明原因。
-利用数轴求解方程x-2=0,以及不等式x>3。
在实践活动中,我鼓励学生们分成小组讨论数轴在日常生活中的应用,并进行了实验操作。这个环节中,学生们积极参与,热烈讨论,展示了他们对数轴应用的探索和理解。但我也注意到,有些小组在操作过程中还是遇到了一些困难,尤其是在解决一些稍微复杂的问题时。这说明学生们在将理论知识应用到实际问题中还需要更多的练习和指导。
数轴的教案小学
数轴的教案小学教学目标:1. 让学生理解数轴的概念,学会在数轴上表示正负数。
2. 培养学生运用数轴比较数的大小的能力。
3. 培养学生观察、分析、概括的能力,提高学生的逻辑思维能力。
教学重点:用数轴表示数。
教学难点:借助数轴表示数的大小。
教学准备:电脑课件、数轴图示。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的正负数知识,复习正负数的意义。
2. 提问:你们知道正负数在日常生活中的应用吗?二、新课讲解(15分钟)1. 介绍数轴的概念,讲解数轴的构成:原点、正方向、单位长度。
2. 讲解如何在数轴上表示正负数,举例说明。
3. 引导学生通过数轴比较数的大小,讲解数轴在比较数的大小方面的应用。
三、课堂练习(15分钟)1. 让学生在数轴上表示给定的正负数,并比较它们的大小。
2. 学生互相交换答案,讨论正确性,教师进行点评。
四、拓展与应用(15分钟)1. 让学生运用数轴解决实际问题,如:小明从家出发,向正北方向走了5公里,又向正西方向走了3公里,请问小明现在在哪里?2. 学生分组讨论,展示解题过程,教师进行点评。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结数轴的概念及应用。
2. 提问:你们认为数轴在数学学习中有什么作用?如何运用数轴提高自己的数学能力?教学反思:本节课通过讲解数轴的概念、正负数的表示及数轴在比较数的大小方面的应用,使学生掌握了数轴的基本知识。
在课堂练习环节,学生通过实际操作,进一步巩固了数轴的应用。
在拓展与应用环节,学生运用数轴解决实际问题,提高了学生的动手操作能力和解决问题的能力。
总体来说,本节课达到了预期的教学目标。
但在教学过程中,要注意引导学生积极参与,提高学生的课堂互动性,激发学生的学习兴趣。
苏教版七年级数学上册《数轴》第1课时课件
从-n到n有________个整数。(n为正整数)
9.学校、书店和图书馆坐落在一条南北走
向的大街上,书店位于学校南边200米处,
图书馆位于学校北边100米处,小红从学校
沿街向南走了50米,接着又向北走了
-150米,此时,小红的位置在( )
A、书店
B、学校
C、图书馆 D、学校南100米
n
小结:
例5.在数轴上画出表示下列各数的点:
1, 100
3 100
,
0,
1 50
活动四: 1.画一个面积为 2 的正方形,边长记作 a ,a 是______数. 2.你能在数轴上画出表示 a 的点吗?
练一练:
1.下面给出的4条“数轴”,正确的是 ()
2.距原点3个单位长度的点有____个,它 所表示的有理数是_________。
√
• 例1.如图,指出数轴上点A、B、C表 示的数。
例2.在数轴上画出表示下列各数的点:
2,1.5 ,0 , 3 ,1.5 , 3 1
5
2
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
从文字、图形、图表获取信息是信息 社会的基本要求
从数轴上获取有关信息是解有关有理 数问题的基本方法,它主要包括:
(1)数轴上的点所表示的数的正负性
(2)数轴上的点到原点的距离
心中有数 不如心中有图
数形结合
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021
人教版七年级数学上册《数轴》教案
1.2.2 数轴【教学目标】知识技能1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
情感态度通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】从直观认识到理性认识,从而建立数轴的概念。
【情景引入】1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。
”提疑:医生为什么通过体温计就可以读出任意一个人的体温?(体温计上的刻度)2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?(正数、零、负数)3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。
然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。
(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。
【教学过程】一.数轴的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右(或上)为正方向(箭头所指的方向),那么从原点向左(或下)为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…根据画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.二.数轴的相关概念1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.(说明:数轴像一支平放的温度计。
人教版七年级数学上册:1.2.2《数轴》说课稿2
人教版七年级数学上册:1.2.2《数轴》说课稿2一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的内容,数轴是数学中的一种重要工具,对于学生理解数学概念,解决数学问题具有重要意义。
本节课主要让学生了解数轴的定义,掌握数轴的基本性质,学会在数轴上表示数,以及利用数轴解决一些简单的数学问题。
二. 学情分析七年级的学生已经具备了一些初步的数学知识,例如实数的运算,但是他们对数轴的认识还比较模糊,需要通过本节课的学习,使学生对数轴有一个清晰的认识,能够熟练地在数轴上表示数,并解决一些实际问题。
三. 说教学目标1.知识与技能目标:使学生了解数轴的定义,掌握数轴的基本性质,学会在数轴上表示数,以及利用数轴解决一些简单的数学问题。
2.过程与方法目标:通过观察、思考、交流等活动,培养学生的抽象思维能力,提高学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生体验到数学在生活中的作用。
四. 说教学重难点1.教学重点:数轴的定义,数轴的基本性质,以及在数轴上表示数的方法。
2.教学难点:数轴在实际问题中的应用,以及解决相关问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生主动探究,合作交流,发现数轴的性质,掌握数轴的知识。
2.教学手段:利用多媒体课件,生动形象地展示数轴的定义和性质,以及利用数轴解决实际问题的过程。
六. 说教学过程1.导入新课:通过一个实际问题,引入数轴的概念,激发学生的学习兴趣。
2.自主探究:学生分组讨论,探究数轴的性质,总结数轴的基本性质。
3.教师讲解:教师讲解数轴的定义,以及在数轴上表示数的方法。
4.实践操作:学生分组进行实践操作,在数轴上表示给定的数,并解决一些实际问题。
5.课堂小结:教师引导学生总结本节课所学内容,巩固数轴的知识。
6.布置作业:布置一些有关数轴的练习题,巩固所学知识。
七. 说板书设计板书设计如下:•定义:规定了原点、正方向、单位长度的直线1.数轴上任意一点都有对应的实数2.数轴上的点与实数是一一对应的3.数轴上到原点距离相等的点表示的数相等八. 说教学评价通过课堂表现、作业完成情况、课后测试等方式,对学生的知识与技能、过程与方法、情感态度与价值观进行评价。
华师大版七年级上册《数轴》教案
华师大版七年级上册《数轴》教案《华师大版七年级上册《数轴》教案》这是优秀的教学设计文章,盼望可以对您的学习工作中带来协助!(一)、数轴的概念、画法[师]你能读出以下温度计所表示的温度吗?(学生读出温度计所示温度,并比拟温度的凹凸)点评:通过形象生动的动态演示,勾起学生的探究欲望,激发学生对学习本节课的深厚爱好。
[师再问](1)温度计刻度的正负是怎样规定的?以什么为基准?基准刻度线表示多少摄氏度?(2)每摄氏度两条刻度线之间的距离有什么特点?[生][师]温度计上的刻度,使我们能便利地读出温度的度数,直观地判定温度的凹凸.类似地,我们可以用直线上的点来表示数.[师]与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,详细做法如下:第一步:画直线定原点,原点表示0(相当于温度计上的0℃)。
其次步:规定从原点向右的为正方向,那么相反的方向(从原点向左)那么为负方向。
(相当于温度计上0℃以上为正,0℃以下为负)。
第三步:选择适当的长度为单位长度,(相当于温度计上每1℃占1小格的长度)。
(老师边讲解边示范,学生跟着一起画图。
造就学生动手、动脑和实际操作实力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法。
)让学生视察画好的直线,思索以下问题:(出示幻灯片)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?(依据教师画图的步骤,学生思索在一条水平的直线上都画出什么?然后归纳出数轴的定义。
学生活动:同学们思索,并要求同桌相互表达,相互订正补充,语句通顺后举手答复。
大家思索打算更正或补充。
通过视察类比思索概括表达呈现学问的形成是从感性相识上升到理性相识的过程,让学生在获得学问的过程中,领悟数学思想和思维方法,并有意识地训练学生归纳概括和口头表达实力。
七年级数学上册 《数轴》教案(高效课堂)2022年人教版数学精品(新版)新人教版
1.2.2 数轴教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
重点数轴的概念和用数轴上的点表示有理数难点数轴的概念和用数轴上的点表示有理数教学环节导学过程学习过程二次备课自主探究教师通过实例、课件演示得到温度计读数.问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?(多媒体出示3幅图,三个温度分别为零上、零度和零下)问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度创设问题情境,激发学生的学习热情,发现生活中的数学点表示数的感性认识。
点表示数的理性认识。
尝试应用做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?补偿提高问题3:1,你能举出一些在现实生活中用直线表示数的实际例子吗?2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?4,每个数到原点的距离是多少?由此你会发现了什么规律?(小组讨论,交流归纳)归纳出一般结论,教科书第12的归纳。
北京课改版-数学-七年级上册-教案:2用数轴表示有理数
授课日期9月3日课型新授课授课教师单大禹教学课题总课时:第 1 课时教学目标知识与技能:通过实例了解数轴的概念和数轴的画法;知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应,知道互为相反数的一对数在数轴上的位置关系。
过程与方法:通过探究活动,使学生从直观认识到理性认识。
从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法。
情感态度价值观:通过本课的学习使学生体会到数学知识与现实世界的联系,体现数学充满着探索性,培养学生良好的数学兴趣,能够在师评,生评,自评的影响下,树立学习数学的自信心。
教学重点会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
教学难点数轴的引入教学方法讲授法教学准备电脑课件、三角板、温度计教学过程教师活动设计学生活动设计设计意图时间安排一、情境创设导语:大家在日常生活中见过温度计吗?你知道它的用途是什么吗?教师评价学生的回答后,出示问题(出示幻灯片一)三个温度计,其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面上0刻度。
三个温度计所表示的温度是多少?教师对学生的回答给予鼓励性评价。
一、结合温度计,探索数轴:(出示幻灯片二)温度的大小可以用温度计来表示,温度计上的读数是有限的,我们前面学习的有理数是无限的,如果要表示有理数的大小的话,把有理数要放在什么上好呢?教师针对学生回答情况给予评价,若存在困难,可适当启发,:小学中已学过用一条直线表示自然数,这里也可以用一条直线来表示有理数,从而引出课题。
(板书:2.2数轴(出示幻灯片三)观察与思考:这条直线上须添加上什么条件和要素才能用来表示有理数?教师参与学生讨论,适时加以引导、启发,对学生的大胆想象加以鼓励,表扬,最后归纳总结出数轴的概念。
(板书:在黑板上画一条数轴)学生小组讨论相互交流可自由发言。
学生仔细观察温度计,类似比较,同桌之间相互讨激情导入,激发学生的兴趣考查学生的生活经验,培养学生的观察能力,同时为引入新课作下铺垫培养学生用类比的方法去思考问题,同时为引出数轴的概念作好准备通过学生的观察讨论,培养学生的观察能力、类比想象能力和合作探究意识。
数轴与动点专题(教师版)
数轴与动点专题1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b-4|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.【答案】解:(1)∵|a+2|+|b-4|=0;∴a=-2,b=4,∴点A表示的数为-2,点B表示的数为4,故答案为:-2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4-2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.②当0<t≤2时,得t+2=4-2t,解得t=23;当t>2时,得t+2=2t-4,解得t=6.故当t=23秒或t=6秒时,甲乙两小球到原点的距离相等.故答案为:5,2.2.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;(2)数轴上表示x和-1的两点A和B之间的距离是,如果|AB|=2,那么x为;(3)当代数式|x+1|+|x-2|取最小值时,此时符合条件的整数x为;(4)若点A表示的数为x,则当x为时,|x+1|与|x-2|的值相等.【答案】解:(1)由题意得:|5-2|=3;|-2-(-5)|=|-2+5|=3;|1-(-3)|=|1+3|=4;故答案为:3,3,4;(2)数轴上表示x和-1的两点A和B之间的距离是:|x-(-1)|=|x+1|;∵|AB|=2,∴|x+1|=2,∴x+1=2或x+1=-2,∴x=1或x=-3;故答案为:1或-3;(3)∵当代数式|x+1|+|x-2|取最小值时,数x表示的点在-1和2之间的线段上,∴-1≤x≤2,∴整数x为-1或0或1或2.故答案为:-1或0或1或2;(4)由题意得:|x+1|=|x-2|,∴x+1=x-2或x+1=2-x,∴1=-2,无解或x=12.故答案为:12.3.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.【答案】解:(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是π;故答案为:无理,π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或-4π;故答案为:4π或-4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3,∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远,故答案为:4,3;②∵|+2|+|-1|+|+3|+|-4|+|-3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(-1)+(+3)+(-4)+(-3)=-3,(-3)×2π=-6π,∴此时点A所表示的数是:-6π,故答案为:26π,-6π.4.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和1的两点之间的距离是,一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于-2与5之间,则|a+2|+|a-5|的值为;(3)若x表示一个有理数,且|x-1|+|x+3|>4,则有理数x的取值范围;(4)若将数轴折叠,使得1表示的点与-3表示的点重合,此时M、N两点也互相重合.若数轴上M、N两点之间的距离为2020(M在N的左侧),则M、N两点表示的数分别是M:;N:.【答案】解:(1)数轴上表示5和1的两点之间的距离是|5-1|=4,依题意有|a-(-2)|=3,所以a+2=3或a+2=-3,解得a=1或-5.故答案为:4,1或-5;(2)∵表示数a的点位于-2与5之间,∴-2<a<5,∴|a+2|+|a-5|=a+2-(a-5)=a+2-a+5=7.故答案为:7;(3)当x<-3时,原式=-x+1-x-3=-2x-2>4,解得x<-3;当-3<x<1时,原式=-x+1+x+3=4,不符合题意,故舍去;当x>1时,原式=x-1+x+3=2x+2>4,解得x>1.故有理数x的取值范围是x<-3或x>1.故答案为:x<-3或x>1;(4)∵数轴上M、N两点之间的距离为2020,∴点M,N到对称中心的距离为2020÷2=1010,∵将数轴折叠,使得1表示的点与-3表示的点重合,∴对折点是(1-3)÷2=-1,∴点M表示的数是-1-1010=-1011,点N表示数-1+1010=1009.故答案为:-1011,1009.5.如图1,在数轴上有一条线段AB,两端点表示的数分别是6和-9.(1)如图1,若将线段AB的一端平移到原点处,则平移的距离为;(2)如图2,C为线段AB上一点,以点C为折点,将此数轴向右对折后,若点B到点C的距离是点B到点A距离的2倍,求C点对应的数;(3)如图3,线段AB上有一点C,动点P从点B出发,以每秒5个单位的速度沿数轴向右运动,到达A点停留片刻后立即以每秒3个单位的速度沿数轴返回到B点,共用了9秒,其中从C到A,返回时从A到C(包括在A点停留的时间)共用2秒,求C点表示的数.【答案】解:(1)当A平移到原点时,平移距离为6;当B平移到原点时,平移距离为9.故答案为:6或9;(2)①对折后点B在A点的左侧,BC=2BA,2BC+BA=15,得CB=6,C点对应的数是-3;②对折后点B在A点的右侧,BC=2BA,BC+CA=15,即BC+BC-AB=15,AC=5,C点对应的数是1.故C点对应的数是1或-3;(3)P从B到A的时间为3秒,P从A到B的时间为5秒,所以到达A点停留的时间为1秒,所以由C到A再由A到C时间为1秒,设由C到A的时间为t秒,依题意有5t=3(1-t),解得t=0.375,则5t=1.875,故C表示的数为6-1.875=4.125.6.如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.【答案】解:(1)点P表示的数为-8+2×2=-8+4=-4,P、Q间的距离为:1×2+12-2×2=2+12-4=10;(2)若相向而行,则2t+t=12,解得t=4,若点P、Q同向向右而行,则2t-t=12,解得t=12,综上所述,经过4或12秒后,点P、Q重合;故答案为:(1)-4,10;(2)4或12;(3)①点P向左,点Q向右移动,则2t+t+12=14,解得t=23;②点P、Q向右都向右移动,则2t-(t+12)=14,解得t=26,③点P、Q都向左移动,则2t+12-t=14,解得t=2,④点P向右,点Q向左移动,则2t+t=12+14,解得t=263,综上所述,经过23,26,2,263秒时,P、Q相距14个单位.7.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:经过几秒钟,A、B两点之间相距4个单位长度?【答案】解:(1)设点A的速度为每秒3t个单位长度,则点B的速度为每秒2t个单位长度.依题意有:3t×3+2t×3=15,解得t=1,答:点A的速度为每秒3个单位长度,点B的速度为每秒2个单位长度.(2)3×3=9,2×3=6,画图:;(3)设x秒时,点A、B之间相距4个单位长度.①根据题意,得3x-2x=15-4,解得:x=11,②根据题意,得3x-2x=15+4,解得:x=19,③2x+3x=15+4解得:x=195,④2x+3x=15-4,解得:x=115,19 5或115秒时,点A、B之间相距4个单位长度.即运动11、19、。
第02讲 数轴 相反数(六类知识点+八大题型+强化训练)(教师版) 24-2025学年六年级数学上册
第02讲数轴相反数(八大题型)学习目标1、了解数轴的概念,掌握数轴的画法;2、会用数轴上的点表示有理数;3、知道相反数与互为相反数的概念;4、掌握多重符号的化简。
一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km 、m 、dm 、cm 等.二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.三、用数轴的点表示有理数例如,2可以用数轴上位于原点右边、距离原点2个单位长度的点表示,3.4可以用数轴上位于原点右边、距离原点3.4个单位长度的点表示,-3可-3以用数轴上位于原点左边、距离原点3个单位膝度的点表示.四、数轴与有理数的关系每一个有理数都可以用数轴上唯一的一个点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如.要点:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(3)一般地,在数轴上表示的两个数,右边的数总比左边的数大.五、由数轴上离原点距离相等的点引出相反数概念在数轴上,与原点的距离是3个单位长度的点有几个?这些点表示的数分别是多少?可以发现,数轴上与原点距离3个单位长度的点有两个,它们表示的分别是3和-3。
七年级数学上册 第一章《数轴》课案(教师用) 新人教版
(教师用)1.2.2 数轴(新授课)【理论支持】在小学的时候,学生已有这样的知识基础:温度计、位置关系图,直线和非负有理数.进入中学之后非负有理数扩充为有理数.这时候4个知识(温度计、位置关系图、直线、有理数)是彼此无关的,特别是在有理数与直线之间,差异非常显著.数轴学习的过程,就是沟通有理数与直线的联系的过程.首先由温度计、位置关系图提炼出数轴的几何结构,然后建立有理数与直线上点的对应,这就得出数轴.而这个数轴作为桥梁就把看上去无关的两个无穷集合建立起联系,一方面数的性质可以直观地表示在图形上,另一方面在图形上又可以形象而具体地研究数的性质.本节是在引进了负数及分析了有理数的分类后给出的.数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想.对以后的知识概念及实际问题的解决起着举足轻重的作用. 在数轴上表示出相应的有理数以【教学重难点】1. 重点:正确掌握数轴画法和用数轴上的点表示有理数.2. 难点:有理数和数轴上的点的对应关系.【课时安排】一课时【教学设计】课前延伸一、基础知识填空及答案.1. 如果节约用水30吨记为+30吨,那么浪费20吨记为 吨.2. 如果4年后记作+4,那么8年前记作 .3. 如果运出货物7吨记作-7吨,那么+100吨表示 .4. 给出下列说法:①0是整数;②312 是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的有_______________(填写序号). 〖答案〗 1.-20;2.-8;3.运进货物100吨;4.①②⑤.〖设计说明〗温故而知新.通过这一题组使学生回忆已建立起来的的正、负数的概念,进一步理解用正、负数表示具有相反意义的量.同时结合生活中的实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为学生理解用数轴上的点来表示有理数打下基础,为顺利完成教学任务作了思想上的准备.二、预习思考题及答案.1.每个有理数都可以用数轴上的以下哪项来表示().A.一个点 B.线 C.单位 D.长度2.数轴上原点表示的数是______.3.学校、家、书店在一条南北走向的大街上,学校在家南边20m,书店在家北边100m,张明同学从家出发,向北走50m,接着又向北走-70m,此时张明在__________.〖答案〗1.A;2.0;3.学校.〖设计说明〗预习能增强求知欲望,带着预习中的问题听课,就能启动好奇心和求知欲,能调动学习的积极性,同时也培养学生的自学的能力.通过这一题组训练,可以使学生对用数轴上的点来表示有理数有感性的认识,这为学生解决探索新知,进一步理解有理数与数轴上的点的对应关系打下伏笔.课内探究一、回忆旧知,创设情境,引入新课前面我们通过温度计、海平面等(课件显示温度计和海平面示意图)引进了负数的概念,从而将小学学过的数扩充到有理数.请问:什么叫做有理数?学生回答后教师拿出一演示温度计,请大家看,这是一支温度计,它的用途大家是知道的.但是你会读温度计吗?请前面的一位同学们读出此时教室里的温度.师生讨论后提出问题:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(方向、距离)?如图,我们画一条直线表示马路,从左到右表示从西向东的方向,在直线上任取一个点O表示汽车站的位置,规定1个单位长度(线段OA的长)代表1m长.于是点B表示柳树的位置,与点O距离3个单位长度.柳树可以用点O右边,与点O距离3个单位长度的点B 来表示.杨树可以用点O右边,与点O距离7.5个单位长度的点C来表示;槐树可以用点O 左边,与点O距离3个单位长度的点D来表示;电线杆可以用点O左边,与点O距离4.8个单位长度的点E来表示.(板书课题:1.2.2 数轴)〖设计说明〗创设情境,呈现温度计,位置线图等思维材料,让学生从生活中发现数学问题,同时也让学生感受到可用数轴来表示生活中的位置关系,非常简洁明了,激发学生的求知欲.二、探索新知,讲授新课不知大家注意到没有,在我们的大屏幕上的图形和这个温度计,它们虽然形状、位置、物质的构成等都很不相同,但却有共同的性质,就是通过图线从数量上表示事物,如表示温度、位置等.(板书:用图线来表示事物的数量特征)为了表示事物的数量特征,这些图线应该有便于表示数量的构造,大家仔细观察一下温度计,其刻度线在结构上都有些什么特点?(讨论稍事停顿)通过观察,总结出来的两个结构特征非常好.(板书:有计算的起点.(0℃;汽车站),有表示相反意义的方向.(上、下;东、西))一格就是一个测量温度的单位,叫做度,有了起点,有了单位,就可以去测量了,用测量出来的数值就可以表示温度了.所以,用图线表示事物的数量特征还要有一个单位长度.(板书:有计算的单位.(度;米)这是一条水平放置的特殊直线,可以用来表示数,其上有温度计或位置线图的那3个特征:(1)有相当于0℃或汽车的点,即图中的O点,叫做原点.(2)规定了方向.图中从原点向右为正方向,向左为负方向,相当于温度计中0℃以上为正,0℃以下为负.(3)选取了适当长度作为单位长度,相当于温度计上每1℃占1小格的长度.这样的直线比原先多了原点、正方向、单位长度,我们给它起个新名字,叫做数轴.(板书:规定了原点、正方向和单位长度的直线叫做数轴)三、动手操作,巩固新知有了数轴的名称和定义之后,我们来介绍数轴怎么画,然后说数轴有什么用.在数轴的定义中出现了4个词:原点、正方向、单位长度、直线,画数轴主要就是落实这4个词,大家先对照屏幕上的图画一条数轴,然后总结步骤.教师巡视,学生画完数轴,教师点评例1 判断下列图形哪些图形是数轴.(1) (2) (3)(4) (5)解:第(1)个图不是数轴,因为它没有箭头第(2)个图不是数轴,因为它缺少单位长度.第(3)个图不是数轴,因为原点两边的单位长度不一致.第(4)个图不是数轴,因为它还缺少原点.第(5)个图是数轴.根据数轴的定义,只有具备了原点、正方向、单位长度的直线才是数轴,我们把原点、正方向、单位长度称为数轴的三要素.(板书:数轴的三要素).数轴的三素缺一不可.四、解决问题、拓展创新了解数轴不是目的,我们应该掌握两个方面的能力:将已知数在数轴上表示出来;说出数轴上已知点表示的数.首先我们用数轴来表示数.分两步进行:第1步,表示整数.如图将整数放在数轴的刻度点上,0与原点对应,正整数与原点右方的刻度点对应,负整数与原点左方的刻度点对应(即将整数分为三类放到数轴上).于是,每一个整数都可以在数轴上找到一个刻度点;反之,每一个刻度点都可以找到一个整数.不同的整数对应不同的刻度点,不同的刻度点对应不同的整数.第2步,表示分数.由于每一个分数都一定在某两个相邻的整数之间,于是,我们就在这两个相邻的整数所对应的相邻刻度点之间表示分数.这样,所有的有理数都可以用数轴上的点来表示.请看下面的题目例2 画出一个单位长度是1厘米的数轴,并在数轴画出表示下列各数的点:2,-1.5,0,-2,2.5.数2在原点右方第2个刻度处,我们在该刻度上画一实心黑点,并在黑点的上方记上2.数-1.5在原点左方第1与第2个刻度之间,我们取-2与-1的中点画一实心黑点,并在黑点上方记上-1.5.数0在原点处,将原点画成实心黑点,并在黑点上方记上0.数-2在原点左边第2个刻度处,在该刻度上画一实心黑点,并在黑点上方记上-2.数2.5原点右边第2与第3个刻度之间,在2与3的中点画一实心黑点,并在黑点上方记上2.5.如图,例3 如图,(1)写出数轴上的A 、B 、C 、D 、E 、F 点表示的有理数.(2)点G 使线段BG 的长度是单位长度的54,点H 使线段HA 的长度是单位长度的65,试求出点G 、H 表示的有理数.解:(1)A 点表示数-3,B 点表示数5.5,C 点表示数3,D 点表示数-1.5,E 点表示数-3.5,F 点表示数0.(2)B 点表示数5.5,而G 使线段BG 的长度是单位长度的54,由于点G 既可能在点B 的左边,也可能在点B 的右边,因此点G 表示的数应该是5.5+0.8=6.3或5.5-0.8=4.7,也就是说点G 表示的数是6.3或4.7.点H 使线段HA 的长度是单位长度的65,点H 可能在点A 的左边也可能在其右边,因此点H 表示的数是-3-65=-623或-3+65=-613,也就是说点H 也有两解,表示的数是-623或-613. 〖设计说明〗本问题主要考察学生对数轴的理解能力以及数形结合的初步认识,同时考察学生的分类讨论的思想的应用,因此问题较为复杂,在解决的过程中教师应适当的点拨和启发,使学生能够顺利完成讨论.五、课堂小结:1.掌握数轴的定义及数轴的三要素:原点、单位长度、正方向.2.掌握用数轴上的点表示有理数的方法.3.数轴上原点右边的点表示正数;原点左边的点表示负数,原点表示数0,是正、负数的分界点.〖设计说明〗课堂小结可以使通过小结回顾新知识,加强学生的记忆,巩固新知识;并使有关的教学内容系统连贯和相对完整;更使学生感到“言已尽而意无穷”,跨越课堂教学和课后休闲的时空界限,课后学生还会自觉“回味咀嚼”,获得更多教益.B C D E F A六、查预习情况:明确检查方法学生口答后点评.七、课堂反馈训练:1.在数轴上原点左边的点表示_____数, 原点右边的点表示 数, 原点表示的数是 . 〖参考答案〗负,正,0.2.在数轴上与原点距离2个单位长度的点表示的数有 个,为 .〖参考答案〗两,2和-2.3.如图所画出的数轴正确的是 ( )〖参考答案〗C .4.在数轴上,原点及原点右边的点表示的数是( )A. 正数B. 负数C. 正整数D. 非负数.〖参考答案〗D .5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6B .-3C .+3D .-9〖参考答案〗C .〖设计说明〗当堂训练,当堂反馈的这一环节的实施不但使学生对所学的新知识得到及时巩固和提升,同时又使得还存在模糊认识的学生得到进一步澄清,这就让学生在学习新知识的第一时间得到最清晰的认识,这正是高效的价值所在.课后提升课后练习题及答案:1.在数轴上,表示-5的数在原点的 侧,它到原点的距离是 个单位长度.2.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是 .3.下列结论正确的有( )个.① 规定了原点,正方向和单位长度的直线叫数轴;② 最小的整数是0;③ 正有理数、负有理数和零统称有理数; ④ 数轴上的点都表示有理数.A . 0B .1C .2D .34.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点( )A .向左移动5个单位B .向右移动5个单位C .向右移动4个单位D .向左移动1个单位或向右移动5个单位5.在数轴上画出表示下列各数的点 .-3,-1,212,-14,0,+3,431 . 6.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来.0 0 0 1 1 1 2 A B C D〖参考答案〗1.左,5; 2.-2; 3.C; 4.B;5.6.-12,-11,-10,-9,-8,11,12,13,14,15,16,17.。
华师大版数学七年级上册(教学设计)《2.2.2在数轴上比较数的大小》
《2.在数轴上比较数的大小》本课是在学习了正负数的意义和数轴的概念后,利用数轴比较有理数的大小;数轴作为数形结合的典范,是用“长度”度量各类量的抽象。
本课的学习将对理解相反数,绝对值的概念具有承上启下的作用,同时为推导有理数的运算法则,求不等式组的解集,以及研究平面直角坐标系等奠定了坚实的基础;另外,数轴概念的产生所渗透的类比、化归等数学思想方法对学生今后的数学学习也有着重要的意义。
【知识与能力目标】1.理解利用数轴上的点的位置关系比较有理数大小的法则;2.理解负数小于零、正数大于零的合理性。
【过程与方法目标】通过对温度计的观察和用数轴上的点来表示有理数,探索有理数大小的比较法则,进一步感受数形结合的思想方法。
【情感态度价值观目标】1、使学生初步了解数学来源于生活实践,反过来又服务于生活;2、通过画数轴,给学生以图形美的教育感受,同时由于数形的结合,学生会得到和谐美的享受。
负数和零的大小比较【教学难点】如何启发学生自己得到有理数的大小比较的约定,并认识其合理性。
教师准备:课件、多媒体、三角板学生准备:三角板、直尺一.创设情境和学生一起讨论:(1)数轴怎么画?它包括哪几个要素?(2)任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?(3)大于0的数在数轴上位于原点的哪一侧?小于0的数呢?二、探索归纳在小学里,我们已学会比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有理数的大小呢?例如,1与-2哪个大?-3与-4哪个大?想一想:1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上为怎样的情形?把温度计横过来放,就好比一条数轴.从中能否发现在数轴上怎样比较两个有理数的大小?让学生从讨论中发现,在数轴上表示的两个数,右边的数总比左边的大。
由此容易得到以下的有理数大小的比较法则:正数都大于零,负数都小于零,正数大于负数。
三.实践应用四.例1:将有理数3、0 、-4、516按从小到大的顺序排列,用“<”号连接起来。
2023—2024学年浙江省宁波市江北区江北区实验中学七年级上学期期中数学试卷
2023—2024学年浙江省宁波市江北区江北区实验中学七年级上学期期中数学试卷一、单选题1. 的倒数是()A.B.C.D.2. 餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克 3. 下列各式中,符合代数式书写规则的是()A.B.C.D.4. 由四舍五入法得到的近似数42.3万精确到的数位是()A.十分位B.十位C.百位D.千位5. 下列计算中,正确的是()A.B.C.D.6. 若 a 和 b 互为相反数,且 a≠0 ,则下列各组中,不是互为相反数的一组是()A.–2a3和–2b3B.a2和b2C.–a和–b D.3a和3b7. 下列各式计算正确的是()A.B.C.D.8. 估计无理数的值应在()A.到之间B.到0之间C.0到1之间D.1到2之间9. 有一个数值转换器,原理如图所示,若开始输入x的值是5,可发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,依次继续下去,第2025次输出的结果是()A.1B.2C.4D.810. 有理数a,b,c在数轴上对应的点如图所示,则下列各式正确的有()个.①;②;③;④;⑤.A.1B.2C.3D.4二、填空题11. 如果水位升高6 m时水位变化记作+6 m,那么水位下降6 m时水位变化记作 _ m.12. 当k= ________ ,n= ________ 时,(k−1)x 3−x n+x−5是二次三项式.13. 已知,,,.若n为整数且,则n值为 ________ .14. 现有几种说法:①倒数等于本身的数是0,1,②的平方根是③近似数1.80所表示的准确数a的范围是④算术平方根是他本身的数是0,1⑤其中正确的说法有 _______ .(请填写序号)15. 用“*”表示一种新运算:对于任意正实数a* b=,例如10*21==11,则*(*2)的运算结果为 _____ .16. 某学校组织初一n名学生秋游,有4名教师带队,租用55座的大客车若干辆,共有3个空座位,那么用n的代数式表示租用大客车的辆数为________________ .17. 若,,且已知,则代数式的值=________________ .18. 若a是不为2的有理数,我们把称为a的“牛顿数”.如3的“牛顿数”是,的“牛顿数”是,已知,是的“牛顿数”,是的“牛顿数”,是的“牛顿数”,…,依此类推,则__________ .三、解答题19. 计算:(1) ;(2) ;(3) ;(4) .20. 先化简再求值:,其中,21. 已知七个实数,,4,,,0,.其中五个数已在数轴上分别用点A、B、C、D、E表示.(1)点A表示数,点B表示数,点C表示数,点D表示数;(2)在数轴上准确地表示数(提示:注意观察正方形APQR的面积),并将所有的数用“”连接;∴.(3)将上面7个数分别填入相应括号的横线上:整数:{ ⋯};分数:{ ⋯};无理数:{ ⋯}.22. 已知代数式,请按照下列要求分别求值:(1)当,时,求代数式的值;(2)当,时,求代数式的值;(3)当时,代数式的值是m,则当时,求的值(结果用m表示).23. 某城市自来水收费标准如下表:注:每月居民用水缴费包括实际用水的水费和污水处理费两部分;②以上表中的价格均不包括1元/吨的污水处理费.(1)某用户12月份用水9吨,则该用户需缴水费多少元?(2)某用户月用水量为吨,请用含的代数式表示该用户月所缴的水费.24. 如图1.在数轴上点M表示的数为m,点N表示的数为n,点M到点N的距离记为.我们规定:的大小用位于右边的点表示的数减去左边的点表示的数表示,即.请用上面的知识解答下面的问题:如图2:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数.且a,c满足与互为相反数.(1) ,,;(2)若将数轴折叠,使得A点与C点重合,则点B与表示数的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟后.①请问:的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值;②探究:若点A,C向右运动,点B向左运动,速度保持不变,的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.。
1.2.2 数轴 教学设计 人教版数学七年级上册 (13)
1.2.2 数轴教材分析本节内容主要是数轴的概念,是在前面学习了正数、负数的概念和意义,及有理数的概念和分类的基础上学习的.数轴是初中数学学习和研究的重要工具,它主要应用于有理数的大小比较、相反数、绝对值概念的理解,有理数运算法则的推导及不等式的求解.本节内容有着承上启下的作用,既承接了小学阶段所学的用有刻度的直线表示0和正数,及初中有理数的知识,又为接下来相反数、绝对值、有理数的大小比较等内容的学习作铺垫.同时,数轴也是以后学习二维的平面直角坐标系的根底.数轴是数形结合思想的产物,是继正数、负数、有理数概念之后学习的一个新的概念.引进数轴后,可以用数轴上的点直观地表示有理数.其中体现出的数形结合思想,是学生进入初中数学学习后较早接触的数学思想方法之一.同时,数轴又能将数的分类直观地表示出来,体现了分类思想.本节教材从画图表示汽车站牌及其他物体的位置这一实例出发,结合标有刻度的温度计表示温度高低,找寻共同点,引出数轴的画法和概念,并用数轴上的点表示数,初步向学生渗透数形结合的数学思想,以使学生学会借助图形来直观地表示很多与有理数有关的问题.本节内容在教学过程中,应注重发展学生的抽象能力、几何直观、模型观念.数轴是初中阶段数与形结合应用的起点,强调应用意识和创新意识的培养;要结合生活实例,让学生感受数学与生活的紧密联系;要注重学生的情感体验,让他们在轻松愉快的氛围中学习数学.学情分析七年级学生刚刚学习了有理数中的正数、负数,对正数、负数的概念理解并不深刻.同时,学生第一次遇到用“形”表示“数”的问题,困难在于理解其中蕴含的思想,在教学时可以借鉴引入负数时的经验,以及学生的生活经验,借助情境使学生获得体验后再进行模仿式举例.本节内容中,学生对数轴概念和数轴的三要素不易理解,画数轴时容易出现丢三落四的现象,教学中教师应给予简单明白、深入浅出的分析.七年级学生好动、注意力易分散,在教学中教师应抓住学生这一特点,一方面运用直观生动的形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学习的主动性.教学建议教学时,可以根据本节内容特点,先利用生活中的实例或情境,引导学生感受在直线上表示有理数的合理性,直入主题.再通过由特殊到一般的问题引导,鼓励学生动手操作、画图实践、交流思考、表达评价,最终生成数轴的概念,发现数轴的三要素.通过启发、引导学生进行探索,让学生感受到数轴在生活中的实际应用;利用温度计等直观教具,加深学生对数轴的理解;通过设计不同难度的问题和练习,让每个学生都能在原有基础上得到提升.此外,教学中建议重视多元化评价,促进教一学一评一体化.以活动任务群或问题串相结合的方式引导学生多角度思考解决问题,总结经验,层层深入.布置有创意的数学活动,充分发展学生的数学思维,体现课堂的开放性和高效性.通过课堂教学活动,使学生在学习过程中充分发展抽象能力、几何直观、模型观念,培养应用意识和创新意识.教学目标1.理解数轴的概念,知道数轴的三要素,会画数轴;能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.通过动手实践感知数轴概念生成的过程,初步体会数形结合的思想方法,发展抽象能力、几何直观、模型观念,培养应用意识和创新意识.3.在数轴的学习过程中,认识事物之间的联系,感受数学与生活的联系.重点难点重点数轴的概念和画法,体会数轴的三要素.难点教学设计教学准备课件、直尺等.导入1.2.2 数轴.如果把数用我们学过的图形元素-“点”来表示,那么在线段、射线、直线哪种图形上表示有理数比较合理呢?为什么?学情预设:学生基本能表达出在直线上表示有理数比较合理.【设计意图】通过对前面所学内容的简单回顾,让学生初步体会面对数域的扩充需要考虑的问题.同时将数与形联系起来,为本节课的学习打下基础.高效课堂活动一:操作展示,交流评价,归纳总结,生成概念问题1:你能根据你的理解在一条直线上表示出-3,-2,-1,0,1,2,3这几个数吗?师生活动:要求学生小组讨论后展示成果,并解释这样画的道理和需要关注的地方,同学之间互相交流评价.学生根据自己的想法在直线上表示预设好的几个数.在画图的过程中,感受数“0”的位置、正数和负数表示的方向及相邻两个数之间的距离这几个必备条件的重要性.在表述过程中与同学交流,互相评价,不断修改提炼关键要素.【设计题图】通过动手画图,感知在一条直线上表示负数、0、正数时需要关注的几个条件,为下面进一步提出用直线上的点表示有理数并归纳总结出数轴的概念及数轴的三要素打下基础.问题2:能否用一条直线上的点来表示有理数呢?表示时需要注意哪些方面?学情预设:学生通过画图发现,在直线上要有一个表示数0的点(即原点),要规定一个正方向,还要有刻线,相邻刻线等距日意义相同(即单位长度).从而生成数轴的概念;在数学中,可以用一条直线上的点表示数,它满足以下三个条件:(1)在直线上任取一个点表示数0,这个点叫作原点:(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1、2、3,···;从原点向左,用类似方法依次表示-1,-2.-3,···.像这样,规定了原点、正方向和单位长度的直线叫作数轴.教师强调数轴的三要素:原点、正方向和单位长度.教师指出:原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.【设计意图】引导学生通过小组讨论、合作交流、及时评价,集众人智慧归纳总结出数轴的概念及三要素,实现教-学一评一体化.问题3:你知道生活中有哪些与数轴有关的事物?学情预设:学生回答生活中见到的和数轴有关的事物,比如温度计、直尺等.【双计意图】将数学模型与生活中的实物进行联系,让学生感受到数学与现实生活联系密切.活动二:理解概念,辨析概念,应用概念,深化概念问题1:观察下面图形,哪些是数轴,哪些不是?为什么?学情预设:学生能准确判别以上图形是否为数轴,作出辨析的同时再次说出数轴的三要素.活动:画一个数轴,同桌两人相互检查.【设计意图】让学生对数轴进行识别和判断.强调对于数轴的每一个细节都要注意,确保数轴是准确和完整的,加深学生对数轴三要素的认识,通过动手画数轴,让学生熟练掌握数轴的画法.问题2:思考一下,有理数是否都可以用数轴上的点表示出来?学情预设:学生讨论发现,有理数都可以用数轴上的点表示出来.追问1:设a是一个正数,则在数轴上表示数a和-a的点在数轴的什么位置?与原点的距离是多少个单位长度?学情预设:一般地,设a是一个正数,则数轴上表示数a的点在数轴的正半轴上,与原点的距离是a个单位长度;表示数-a的点在数轴的负半轴上,与原点的距离是a个单位长度.教师指出:数轴上与原点的距离是a个单位长度的点,简称为数轴上与原点的距离是a的点.追问2:数轴上的每个点都对应一个有理数吗?有理数能填满整个数轴吗?学情预设:学生讨论发现,数轴上的点不一定对应有理数,可能对应无限不循环小数.所以,有理数填不满整个数轴.【设针题圈】回到最初引入数轴的初衷,思考如何在数轴上表示数.通过对有理数在数轴上的表示方法的研究,得出有理数与数轴上点的对应关系.例1如图,数轴上A,B,C,D各点分别表示什么数?师生活动:教师提出问题,让学生自己解决问题.解:数轴上点A表示数-3,点B表示数-1,点C表示数0,点D表示数2,教师指出:本题就是点(形)→数.【设计意图】通过找数轴上的点表示的数,实现从形到数的转化,巩固数轴上的点与数的对应关系.例2画出数轴,并用数轴上的点表示下列各数:−52,−1.5,23,2,3.5.思考:用数轴上的点表示一个有理数时,应注意什么?学情预设:先画数轴,要完整、适当;再找位置,即定左右、定距离;最后描点、标数,要画实心圆点,在数轴上方标记.师生活动:教师提出思考问题,引导学生分析解决问题应注意的事项.然后让学生自己画图,指名板演,集体核对结果.解:如图所示.教师指出:本题就是数→点(形).教学提示:在整个过程中要关注数轴的完整性和所标点的位置的正确性,确保将所要标出的点一个不落地标在数轴上,实现从数到形的转化.【设计意图】通过在数轴上找有理数对应点的位置,实现从数到形的转化,进一步巩固理解数轴上的点与数的对应关系.课堂评价数学游戏:全班同学分成6组,以小组为单位进行活动.小组讨论后,根据本节课所学知识试着命制习题,其他组抢答.进行两轮,抢答正确题量最多的小组胜出,给予集体奖励.【设计意图】利用审辩式教学方式,结合小组合作讨论,让学生在不断提出问题和解决问题的过程中加深对本节课所学知识的理解和应用.同时,在数学游戏中培养学生的应用意识和创新意识.课堂总结1.请叙述数轴的概念以及数轴的三要素.2.数轴有什么作用?3.通过本节课的学习,你有哪些数学思想方法和能力素养上的收获?你还有什么疑问?【设计宽图】通过回顾本节课学习的主要内容,增强学生对本节课所学知识的理解,使学生体会数学思想方法和核心素养在数学学习中的重要性.作业设计基础性作业:教材练习第1,2题.提高性作业:教材练习第3,4题.实践性作业:使用卡纸、指针等材料制作数字表盘,手工完成一个数轴手表.本课评价评价指标具体要点得分(0~10分)学生互评小组互评教师评价参与意识有主动探索的欲望能力发展掌握数轴相关知识点实践成果能用数轴上的点表示有理数总结展示清晰流利汇报教学特色1.数形结合,直入主题负数的引入让学生体会数域的第一次扩充.本教学案例设计课始就提出问题,探究如果把数用我们学过的图形元素-“点”来表示,在哪种图形上表示有理数比较合理,从而引导学生感受在直线上表示有理数的合理性,直入主题.2.以生为本,教一学一评一体化本教学案例设计通过由特殊到一般的问题引导,鼓励学生动手操作、画图实践、交流思考、表达评价,最终生成数轴的概念,发现数轴的三要素.同时,课堂中给出了多元化评价,充分体现以生为本,实现了教一学一评一体化.3.问题导向,层层深入本教学案例设计以活动和问题串相结合的方式引导学生多角度思考、解决问题,总结经验,从而理解概念,辨析概念,应用概念,深化概念.4.审辩教学,高效课堂本教学案例设计通过让学生发现并介绍生活中与数轴有关的事物,运用所学的新知随机提出问题并合作解决问题等数学活动,充分发展学生的数学思维.因问而审,以审启思,因思生辩,以辩促辨,体现了课堂的开放性和高效性.5.提升素养本教学案例设计通过课堂教学活动的设置,使学生在学习过程中充分发展抽象能力、几何直观、模型观念,培养应用意识和创新意识.。
数轴及其应用 题集【B】(教师版)--初中数学《四维三难》
数轴及其应用 题集【B】A. B. C. D.1.【解析】【标注】实数在数轴上对应的点如图所示,则,,的大小关系正确的是( ).【答案】D由数轴上的位置可知,;设,则,∵,∴,故选项,,错误,选项正确.故选:.【知识点】有理数比较大小-利用数轴A. B. C. D.2.【解析】【标注】实数,在数轴上的对应点的位置如图所示,则正确的结论是( ).【答案】D 项,,故项错误.项,,即,故项错误.项,因为,所以,又因为,所以,故项错误.项,同项可知,, 故项正确.【知识点】有理数比较大小-利用数轴A.B.C.或D.不能确定3.在数轴上把对应的点向某一方向移动个单位后,所得的对应点表示的数是( ).【解析】【标注】【答案】C 向右移动个单位为,向左移动个单位为.【知识点】数轴上点的平移4.【解析】【标注】数轴上表示点的数是最大的负整数,则与点相距个单位长度的点表示的数是 .【答案】或点的数是最大的负整数,点表示数,在点左侧,与点相距个单位长度的点表示的数是,在点右侧,与点相距个单位长度的点表示的数是,故答案为:或.【知识点】数轴上两点间距离A.个或个B.个或个C.个或个 D.个或个5.【解析】【标注】在数轴上表示整数的点称为整数点,某数轴的单位长度是,若在这个数轴上随意画出一条长为的线段,则被线段盖住的整数有( ).【答案】D如果线段的端点恰好与数轴上整数点重合则能覆盖住个整数;否则能覆盖住个整数.【知识点】数轴上整点覆盖问题6.【解析】【标注】比较大小(用“”,“”或“”填空): .【答案】两个负数比较大小,绝对值大的反而小.∴,,∴.【知识点】有理数比较大小-利用有理数正负性7.方法一:方法二:【解析】【标注】比较大小:.【答案】∵,∴,∴,∴.,∴.【知识点】有理数比较大小-利用有理数正负性8.【解析】【标注】一个点从数轴上表示的点开始,先向右平移个单位长度,再向左平移个单位长度,则此时这个点表示的数是 .【答案】从表示的点开始向右平移个单位长度,该点表示的数是,再向左平移个单位长度,该点表示的数是.【知识点】数轴上点的平移(1)(2)(3)(4)9.已知有理数.若在数轴上的位置如图所示,请在数轴上表示.若与互为相反数,求 的值.若是大于且小于的整数,求出的所有取值.若是大于且小于的数,那么的相反数是在什么范围内?【答案】(1)(1)(2)(3)(4)【解析】【标注】(2)(3)(4).,,,,,..∵的相反数是,∴,.由题意知,,取整数,得,,,,,.∵,∴的相反数.【知识点】由不等式(组)的解集求参数的范围(1)(2)(3)10.对数轴上的点作如下操作:将点表示的数乘以,再把所得的点向左平移个单位,得到点,我们称这样的操作为对点作一次变换,如图:点表示的数为,经过一次变换得到,则表示的数是:,再经过一次变换得到,则表示的数是:,即点经过两次变换后表示的数是.若数轴上的点表示的数为,经过一次变换后得到,则表示的数为__________,再经过一次变换得到,则表示的数为__________.若数轴上的点经过一次变换后得到点表示的数为,求点表示的数.若数轴上的点经过一次变换后得到点,点在点的右侧,且点与点的距离为,求点表示的数.【答案】(1)(2)(3);.点表示的数是.点表示的数是.(1)(2)(3)【解析】【标注】;.根据题意,设点表示的数为,,解得.故表示的数是.∵在数轴上点在点的右侧,且点与点的距离为.∴设表示的数为,则表示的数为根据题意,解得.故点表示的数是.【知识点】常规一元一次方程解法(1)(2)(3)11.(1)(2)【解析】已知、两地相距单位长度,小李从地出发去地,以每分钟单位长度的速度行进,第一次他向左单位长度,第二次他向右单位长度,第三次再向左单位长度,第四次又向右单位长度,,按此规律行进,如果地在数轴上表示的数为.地在数轴上表示的数为 .若地在原点的右侧,经过第八次行进后,小李到达点,此时点与点相距 单位长度,八次运动完成后一共经过 分钟.若经过次(为正整数)行进后,小李到达点,在数轴上点表示的数如何表示?(直接写出结果)【答案】(1)(2)(3)或;运动次后,点所表示的数为(为奇数)或(为偶数).若地在地左侧,则所表示的数位;若地在地右侧,则所表示的数位.故地在数轴上表示的数位或.若地在地右侧,则地在数轴上表示的数位.小李经过次运动到达点,则表示的数为,与点相距(单位长度).总路程为(单位长度),所需时间(分钟).(3)【标注】观察可知,若为偶数,则每两次运动向右移动单位长度,则点表示的数为.若为奇数,则为偶数,运动次后,到点,第次运动,向左运动个单位长度,则点表示的数为.综上,运动次后,点所表示的数为(为奇数)或(为偶数).【知识点】数轴上的规律探究12.【解析】【标注】如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点、、、对应的数分别为整数、、、,且.试问:数轴上原点在哪一点上.【答案】点.由题可知,,在数轴上表示的点向左移个单位表示的数为,此时与相距个单位长度,且在左侧,则,,∴,,,,∴原点在点.【知识点】数轴上点的平移13.等边三角形在数轴上的位置如图所示,点,对应的数分别是和,若三角形绕着顶点顺时针方向在数轴上连续翻转,翻转一次后,点所对应的数是,则翻转次后,点所对应的数是多少?( )A. B. C. D.【解析】【标注】【答案】A结合数轴发现翻折的次数,发现对应的数字依次是:,,;,,;,,…即第一次和第二次对应的都是,第四次和第五次对应的都是,第七次和第八次对应的都是.根据这一规律,因为,所以翻转次后,点所对应的数是.【知识点】数轴上的规律探究A. B. C. D.14.【解析】【标注】如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为个单位长度,且在圆周的三等分点处分别标上了数字,,),先让原点与圆周上所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上,,,,所对应的点分别与圆周上,,,,所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.若圆周上数字与数轴上的数对应,则数字的值是( ).【答案】A ,则与数字重合.【知识点】数轴上的规律探究。
数轴 - 教师版
数轴预习归纳1.规定了___________、____________和___________的直线叫数轴.2.所有的有理数都可以用数轴上_______的一个点来表示,但数轴上的点并不都表示________.【答案】1.原点、正方向、单位长度;2.唯一,有理数基础过关知识点一:数轴的定义及画法1.关于数轴,下列说法最准确的是( )A .一条直线B .有原点、正方形的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线【答案】D2.下列数轴画法正确的是( ) A . B .C .D .【答案】D知识点二:数轴上的点与有理数的关系1.如图,在数轴上点M 表示的数可能是( )A .1.5B . 1.5-C . 2.4-D .2.4【答案】C2.如图,点A 表示________,点B 表示________,点C 表示________,点D 表示________.【答案】1,1-,2.5, 1.5-3.数轴上的A 点到表示1-的点的距离为3,则A 点表示的数为( )A .4-B .2C .3D .4-或2【答案】D4.在数轴上表示2-的点与原点的距离等于( )A .2B .2-C .2±D .4【答案】A5.在数轴上与原点的距离为4个单位长度的点表示的数为( )A .4B .4-C .4或4-D .0或4【答案】C6.在数轴上,一个点从2开始向左移动3个单位长度后表示的数是( )A .5B .1-C .5-D .2-【答案】B7.数轴上的点A 表示的数是1,将点A 向左移动4个单位长度后得到点B ,则点B 表示的数是________.【答案】3-8.在数轴上表示4-的点位于原点的_______边,与原点的距离是________个单位长度.【答案】左、49.在数轴上,点A ,B 分别表示5-和2,则点A 与点B 的距离是_______个单位长度.【答案】710.在数轴上表示出5-, 2.5-,0,4,132.【答案】略11.如图,指出数轴上的点A ,B ,C 所表示的数,并把4-,32,5这三个数用点D ,E ,F 分别在数轴上表示出来.【答案】A 2.5-,B 0;C 4;能力提升1.点A 为数轴上表示2-的点,将点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数是( )A .1B .6-C .2或6-D .不同以上答案【答案】C2.不大于3的正整数有_____________.【答案】1,2,33.数轴上与表示2+的点距离为3个单位长度的点有_______个,它们分别表示的数是_______.【答案】2,5或1-4.在数轴上与表示1-的点距离3个单位长度的点表示的数是__________.【答案】4-或25.小红在做作业时,不小心将两滴墨水洒在一个数轴上,如下图所示,根据图中标出的数值,试判断墨水盖住的整数有哪几个.【答案】12-,11-,10-,9-,8-,11,12,13,14,15,16,176.在数轴上,点A 到原点的距离为3,点B 到原点的距离为5.(1)求点A 表示的数;(2)求点B 表示的数;(3)利用数轴求A ,B 两点间的距离为多少?画数轴说明.【答案】(1)3±;(2)5±;(3)2或8综合提升1.如图,数轴上标出的所有点中,任意两点间的距离都相等.已知点A 表示16-,点G 表示8.(1)表示原点的是点 ,点C 表示的有理数是 ;(2)数轴上有两点M ,N ,点M 到点E 距离为4,点N 到点E 距离为4,则点M ,N 之间的距离为 .(3)点P 为数轴上一点,且表示的数是整数,点P 到A 点的距离与P 点到G 点的距离之和是24,则这样的点P 有 个.【答案】(1)E ,8-(2)8,0;【解析】当E 在线段MN 上时,448MN ME NE =+=+=,当E 在线段MN 的反向延长线上时,440MN NE ME =-=-=,综上所述:8MN =,0MN =,(3)25【解析】8(16)24AG =--=Q ,故P 为AG 之间的所有整数,共有25个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在数轴上正确表示数
班别:组名:姓名:
年级:六年级单元:第一单元课型:导学课主备课人:陈伟平
【学习目标】我能在数轴上表示正数、0、负数。
【学习过程】
【导入:同学们,我们昨天学习了什么数?他们有什么关系?今节课我们继续研究正数和负数的相关知识(板书课题)。
昨晚我们已经完成了导学案,通过这一节课的再学习,我们就可以进一步理解和掌握今节课的学习内容了。
下面请同学们通过自学、对学、群学来学习这节课。
】
一、自主学习
(一)阅读课本第5页,把关键的词句用——画一画。
(二)挑战自学能力
1、通过阅读与理解,我知道了图中的四个同学以( )为起点,小红向( )走( )m,记作( ),小明向( )走( )m,记作( );小丽向( )走( )m.记作( ),小东向( )走( )m,记作( )
【质疑:】
①、他们都是以哪里为起点?
②、他们的运动方向分别是什么?有什么关系?
③、在我们学习的数中哪些数具有这样的特点?
2、分析与解答
(1)根据第5页例3的情境图,我能在下面的直线上表示出他们运动后的情况。
【质疑:】
①、以大树为起点,在直线上用什么来表示?
②、向东、向西的方向你是怎样确定的? ③、正数的方向在哪边? ④、在直线上你怎样确定1米的长度? ⑤、说说你是怎样找出他们运动后的位置的?
(2)通过学习我知道:含有( )、( )、( )的直线叫做数轴。
(3)我还能在上面所画的数轴上表示出—1.5、2
1;并知道-1.5表示以大树为起点,向( ),2
1表示( )。
【质疑:】
、这两个数分别是什么数?
2、它们表示的运动方向是什么?
3、它们表示的意义是什么?
4、说说你是怎样找出这两个数的位置的?
【补充说明:这样的数是难点,要让学生理解意义,掌握好方法。
】
3、活用知识:
我能在数轴上表示以下温度.(单位:C o )
—1.5 4 0 —5 2.5 —3
【强调方法:】
1、把数轴补充完整;
2、看清正、负数的方向;
3、找出正确位置点上点并标出数据;
4、注意点小数的方法。
我发现:在数轴上, 。
【总结:在数轴上从左到右的顺序,就是从小到大的顺序。
(板书)】
二、目标检测
1、我能写出A 、B 、C 、D 、E 、F 点表示的数。
2、我会填。
(1)在数轴上,从表示0的点出发,向右移动3个单位长度到A 点,A 点表示的数是( );从表示0的点出发向左移动6个单位长度到B 点,B 点表示的数是( )。
(2)向东行为“正”,向西行为“负”;小华开始的位置在0处。
A 、小华从0点向东行5米,表示为( )米;那么从0点向西行3米,表示为( )米。
B 、如果小华的位置是+6米,说明他是向( )行( )米。
C 、小华先向东行5米,又向西行8米,这时小华的位置在( )米处。
(3)以明明家为起点,向东走为正,向西走为负。
如果明明从家走了+30米,又走了-30米,这时明明离家的距离是( )米。
(4)某一天白天的温度是5C 0,到了晚上下降了6C 0,晚上的温度是( )。
(5)某一天白天的温度是4C 0,晚上的温度是—5C 0,这一天的温差是( )。
【注意:对于一些相对复杂的题目可引导学生结合数轴去分析解答。
】。