聚羧酸减水剂复配技术

合集下载

聚羧酸减水剂的复配技术与应用分析

聚羧酸减水剂的复配技术与应用分析

聚羧酸减水剂的复配技术与应用分析摘要:随着混凝土化学外加剂的飞速发展,聚羧酸系减水剂的性能也越来越趋于成熟,因其自身具有的良好的减水和保坍作用,其在工程实际中的应用愈加广泛,本文就聚羧酸减水剂在生产应用中的复配与应用问题进行分析,为保证混凝土工程质量具有现实意义。

关键词:混凝土;聚羧酸减水剂;复配;应用1聚羧酸系减水剂聚羧酸系减水剂属于高性能减水剂,其主要构成物质是接枝聚合物,试剂呈浅褐色,具流动性,梳形分子结构,分散性能好。

聚羧酸系减水剂掺加到混凝土中,本身不跟水泥发生化学反应,也不会产生新的水化产物。

其作用机理是减水剂分子在水泥颗粒上的吸附作用,极性较弱的长链吸附在水泥颗粒的表面上,而使水泥颗粒带负电荷的是极性部分。

聚羧酸减水剂作为新型高性能减水剂,具有掺量低、减水率高、分散性好、生产过程无污染、碱含量和氯离子含量低,混凝土收缩小等优点,克服了其他减水剂的一些弊端。

由于聚羧酸系减水剂在高性能混凝土中发挥了不可替代的优势,在工程上应用范围越来越广。

2聚羧酸减水剂的复配技术聚羧酸减水剂的复配方案包括聚羧酸减水剂的不同母液之间的组合使用,以及聚羧酸减水剂母液与缓凝、引气、状态调节剂等功能组分(常指小料)的物理性复配。

2.1聚羧酸减水剂母液的复配聚羧酸减水剂属于高性能减水剂,通过根据混凝土的实际拌合状态决定附加某些小料的方法来改善性能,笔者认为前提是通过母液的复配来达到基本的要求,然后通过小料进行微调。

母液的复配,可以使产品的分子侧链密度得到调节,取长补短,产品设计的多元化是良好复配的基础,也可以引入具有特殊性能的母液以改善质量。

如引入保坍性良好的母液,或者引入缓释型的保坍剂。

当需要降低成本时,可采用引入经济型的聚羧酸减水剂。

母液的复配有些是性能的加权平均,有些可获得1+1>2的叠加效应。

单个母液所不能达到的效果,或许多种母液组合能发挥所需要的作用。

混凝土的坍落度损失是聚羧酸减水剂面临的最重要的问题,母液(含保坍剂)的复配是满足保坍性的最好手段,并能较好适应混凝土原材料(特别是砂)的质量优劣或者波动等。

聚羧酸减水剂应用中产生的问题

聚羧酸减水剂应用中产生的问题

聚羧酸系高性能减水剂应用中的几个问题随着高性能混凝土技术的发展,特别是今后混凝土不但性能要高,而且必须向着绿色的,与环境和谐相处的可持续发展方向发展。

聚羧酸系减水剂做为第三代减水剂,由于它在高性能混凝土中发挥了不可替代的优势,本身与环境友好的特点,在国内外已得到了普遍的认可。

聚羧酸系减水剂从1986年日本触媒公司首次将产品打入市场至今也不过短短的20年时间。

国内近几年来(进入21世纪以后),也给予极大的关注,最近这些年发展势头更加汹涌。

仅仅四五年时间,进入商品领域的生产厂家由几家发展到了几十家。

不少科研单位,高等院校都拥有了自主的知识产权,产品进入了各种工程用混凝土领域。

国内发达地区近年建设的一些标志性工程几乎都使用了聚羧酸系高减水剂,如上海磁悬浮列车轨道梁工程,北京奥运主场馆工程、三峡工程、首都国际机场扩建工程、杭州湾跨海大桥工程,大小洋山深水港工程,北京——天津城际轨道交通工程等,都取得了满意的效果,同时也积累了许多的应用技术方面的经验,也发现了不少应用技术中的新问题。

铁道部为即将开工的京沪高速铁路制定的高性能混凝土技术条件,空军的军用机场自密实水泥混凝土道面施工技术规范,在这些混凝土中也都考虑主要使用聚羧酸系高减水剂,为此,从06年就开展了相关的试验研究工作。

我们有机会接触到了一些聚羧酸系高性能减水剂应用技术工作,在叹服聚羧酸系高性能减水剂优越性能的同时,也发现了一些应用当中出现的各种问题,这些现象的出现对长期习惯于应用以萘系为主的高效减水剂的人会感到非常不合常理、或者叫做在我们的预料之外,这与我们对聚羧酸系高减水剂原来过高的期望值产生了差距。

人们原本期望新的外加剂不但性能优越而且能解决混凝土其它组分的在的一些问题,因为聚羧酸系高减水剂的“适应性”很好。

过去已经习惯了一种好的外加剂应当能解决一切混凝土性能方面的问题,当混凝土出现了性能方面的问题,人们首先向外加剂供应方提出要求,而外加剂厂商也习惯了立即用各种复配手段来满足要求,很少或不能去考虑其它方面的原因,只能在复配原料及相对参量上去做文章,往往是事倍而功半。

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。

聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。

聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。

聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。

对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。

1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。

聚羧酸减水剂生产工艺的制作方法

聚羧酸减水剂生产工艺的制作方法

图片简介:本技术介绍了一种聚羧酸减水剂生产工艺,在常温状态下,往反应箱内加入占总溶液总比重20%50%的聚醚时,后加入占总溶液总比重30%71.7%的水进行溶解,自由基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到8085摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄氏度下,保温一个半小时至两个小时。

技术要求1.一种聚羧酸减水剂生产工艺,其特征在于:在常温状态下,往反应箱(1)内加入占总溶液总比重20%-50%的聚醚时,后加入占总溶液总比重30%-71.7%的水进行溶解,自由基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%-7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到80-85摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%-10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄氏度下,保温一个半小时至两个小时;其中,所述的反应箱(1)侧壁上设有出料管(11),所述反应箱(1)设有加热块(13),所述反应箱(1)内设有传动轴(14),所述传动轴(14)上设有搅拌杆(141),所述反应箱(1)侧壁上设有保温层(12),所述反应箱(1)顶部设有多个进料口(15),所述反应箱(1)顶部设有多个与所述进料口(15)相配合的连接管(3),所述连接管(3)顶部设有储料箱(2),所述连接管(3)侧壁上设有第一通槽,所述第一通槽内设有固定板(31),所述连接管(3)内设有支撑板(5),所述支撑板(5)上设有连接轴(4),所述连接轴(4)穿设于所述储料箱(2)内,所述支撑板(5)底部设有导块(55),所述支撑板(5)上设有下料口(54),所述下料口(54)设于所述导块(55)上方;在制备聚羧酸减水剂时,将聚醚和水加入到反应箱(1)内,传动轴(14)带动搅拌杆(141)转动,聚醚与水在反应箱(1)内混合;将丙烯酸放入到其中一个储料箱(2)内,再将巯基乙酸、硫酸铵和水的混合物放入另外的储料箱(2)内,推动连接轴(4)带动支撑板(5)移动,根据需要滴加的量确定支撑板(5)的位置;当支撑板(5)位置确定后,储料箱(2)内的液体进入到连接管(3)内,连接管(3)内的液体从下料口(54)处往下运动,液体粘沿导块(55)往下滑落,将液体滴入到反应箱(1)内,根据先后顺序依次将相应的液体加入到反应箱(1)内,当聚羧酸减水剂制备完成后,将聚羧酸减水剂出料管(11)内排出,获得初成品聚羧酸减水剂。

聚羧酸减水剂的复配

聚羧酸减水剂的复配

聚羧酸减水剂的复配
聚羧酸减水剂是一种常用的混凝土添加剂,它能够显著降低混凝土的用水量,提高混凝土的流动性和可泵性,同时还能够改善混凝土的力学性能。

在混凝土施工过程中,聚羧酸减水剂的复配是非常重要的环节,它直接影响着混凝土的质量和性能。

聚羧酸减水剂的复配是指将聚羧酸减水剂与其他混凝土添加剂进行配比和混合的过程。

在复配过程中,需要考虑到混凝土的用水量、初凝时间、凝结时间、强度发展等因素,以及聚羧酸减水剂与其他添加剂之间的相容性。

复配过程中需要注意的一点是避免使用不同品牌或型号的聚羧酸减水剂进行混合,因为不同品牌或型号的聚羧酸减水剂可能具有不同的性能和配比要求,混合使用可能会导致混凝土性能的不稳定。

在复配过程中还需要注意聚羧酸减水剂的用量控制。

使用过多的聚羧酸减水剂可能会导致混凝土的流动性过大,影响混凝土的抗渗性和抗冻性;使用过少的聚羧酸减水剂则可能无法达到预期的减水效果,影响混凝土的强度和耐久性。

因此,在复配过程中需要根据具体的施工要求和混凝土性能要求,合理控制聚羧酸减水剂的用量。

复配过程中还可以考虑添加其他的混凝土添加剂,如缓凝剂、早强剂、粉煤灰等,以进一步改善混凝土的性能。

但是,在使用其他添加剂时也需要注意相容性和配比要求,避免出现不良的化学反应或
影响混凝土的性能。

聚羧酸减水剂的复配是混凝土施工过程中非常重要的一环。

合理的复配可以提高混凝土的性能,保证工程质量。

因此,在进行聚羧酸减水剂的复配时,需要考虑混凝土的要求,合理控制用量,并注意与其他添加剂的相容性,以获得最佳的施工效果。

聚羧酸减水剂的掺量

聚羧酸减水剂的掺量

聚羧酸减水剂的掺量聚羧酸减水剂的掺量【引言】聚羧酸减水剂是一种广泛应用于混凝土工程中的化学添加剂,它能够显著降低混凝土的水泥用量、提高流动性和强度,被誉为现代混凝土技术的革命性进展。

然而,正确的聚羧酸减水剂掺量选择对于混凝土工程的质量和性能至关重要。

本文将从深度和广度两个方面对聚羧酸减水剂的掺量进行全面评估,为读者提供深入理解和灵活应用聚羧酸减水剂的指导。

【深度:聚羧酸减水剂的工作原理】在混凝土中,水泥颗粒之间存在着静电排斥力和极化作用,这使得混凝土难以流动和维持一定的强度。

而聚羧酸减水剂作为一种表面活性剂,在混凝土中形成了一层吸附膜,能够改善水泥颗粒之间的相互关系,降低内部摩擦力,使混凝土更易于流动和流平,从而提高施工性能。

聚羧酸减水剂还能与水泥颗粒发生化学反应,形成致密的凝胶,有效填充孔隙,提高混凝土的强度和耐久性。

【深度:聚羧酸减水剂的掺量影响因素】聚羧酸减水剂的掺量选择受多个因素的影响,包括混凝土的配合比、施工环境条件、预期的混凝土性能等。

一般来说,随着聚羧酸减水剂掺量的增加,混凝土的流动性和工作性会显著改善,然而过量的添加会导致混凝土流动性过大、气泡过多,影响混凝土的强度和耐久性。

在实际应用中,需要综合考虑多个因素来选择适宜的掺量。

【深度:聚羧酸减水剂的掺量测定方法】确定聚羧酸减水剂的掺量需要借助实验室测试和实际生产中的经验。

常见的掺量测定方法包括塔巴试验、稀释法、电导率法等。

这些方法能够通过测定混凝土的流动性、坍落度和电导率等指标,来评估聚羧酸减水剂的效果和适宜的使用量。

【广度:聚羧酸减水剂掺量的应用实例】1. 根据混凝土的预期性能选择掺量:需要保证较高强度的混凝土,在掺量上应该适当增加聚羧酸减水剂的使用量,以提高强度和耐久性。

2. 根据施工环境条件选择掺量:当施工温度较高或水泥含水率较高时,聚羧酸减水剂的掺量应适当增加,以提高流动性和减少开裂的风险。

3. 根据经验选择掺量:在实际生产中,经验和试验结果是选择聚羧酸减水剂掺量的重要依据。

聚羧酸减水剂复配计算方法

聚羧酸减水剂复配计算方法

减水剂复配方法:
1、母液固含40%,则固含为6%的减水剂1吨里复配母液需=(1000/40)*6=150kg.
简单记忆25kg母液为1个固含.也就是配7个固含直接算25*7=175的母液即可.
至于其他小料,如夏天每吨减水剂复配葡钠20‰,即每吨加葡钠20kg 即可。

2、在搅拌站试配时复配少量的外加剂算法为:复配固含为6%的减水剂400g,母液需=(6%/40%)*400=60g。

简单记忆,每配400g多少固含的外加剂,即加母液固含*10即可。

例配400g固含为8的外加剂加母液80g。

如果配500g固含为8的外加剂加母液=(80/400)*500=100.
同理可复配其他重量外加剂
至于小料:如夏天每吨减水剂复配葡钠20‰,则复配400g减水剂时加葡钠=400*20‰=8g。

同理,复配800g减水剂,纤维素掺量为1.5‰,则加纤维素=800*1.5‰=1.2g。

混凝土外加剂合成与复配技术详解

混凝土外加剂合成与复配技术详解

混凝土外加剂合成技术复配技术的工程应用在众多高性能减水剂中,具有梳形分子结构的聚羧酸系减水剂由于其具有减水率高,混凝土坍落度经时损失小,掺量低。

等优点,已成为国内外外加剂研究与开发的热点[1~3]。

本文在总结现有聚羧酸系减水剂合成方法的基础上,采用了一种新的合成途径,试验合成了一代号为NKY的聚羧酸系减水剂。

1 现有的合成方法通常是丙烯酸或甲在聚醚上引入活性双键,200至3000之间的活性大单体,然后由该大单体与各种羧酸单体共聚而得。

T.Hirate等人网采用不同链长的甲氧基聚乙二醇醚与甲墓丙烯酸缩合,再由该大单体与甲基丙烯酸共聚而得一混凝土坍落度保持性很好的外加剂。

M.Ki-noshitam等人先合成了甲基封端的聚氧乙烯丙烯酸酯,然后与丙烯酸钠、烯丙基磺酸钠在水溶液中共聚,制得水溶性共聚物,作为混凝土外加剂使用时,只需添加0.01%—0.2%,便可改善混凝土的和易性,提高了混凝土的强度。

清华大学的李崇智[3]则用过量的丙烯酸与不同分子量的聚乙二醇部分酯化,得到系列的聚乙二醇单丙烯酸酯,再与(甲基)丙烯酸及(甲基)丙烯磺酸钠共聚,所合成减水剂的水泥净浆流动度1h基本无变化。

华东理工大学包志军等的[6]合成方法如下:第一步在四口烧瓶中依次按配比加入聚乙二醇单甲醚、对苯二酚、对甲苯磺酸和甲基丙烯酸,加热搅拌,并升温至110~C,反应5h,得到大分子单体(MAMPEC);第二步同时滴加MAMPEG、丙烯酸和过硫酸铵水溶液经共聚反应后得成品,该产品在0.8内的研究者大多采用此种方法。

链都会相对减少,这必然会影响到流动性;若阻聚剂量过大,在第一步中虽然能充分起到阻聚作用,但过量的阻聚会影响之后的聚合,使得产物的转化率和分子量都会降低,从而减小流动度。

另外,该方法中间产物需经分离提纯后转入第二个反应釜进行共聚合反应,工艺比较复杂,操作不方便,成本较高,影响了该成果转化为工业化生产。

1.2先共聚后缩合先共聚后缩合是指第一步将一种或几种羧酸类单体在溶液中均聚或共聚成高聚物,分子量由几千至几万不等,第二步由该高聚物与单甲氧基聚乙二醇醚在催化剂作用下发生缩合反应,在高分子主链上引入聚醚侧链。

现场复配减水剂施工技术

现场复配减水剂施工技术

Equipment technology 装备技术169现场复配减水剂施工技术刘彬(中铁十四局集团第五工程有限公司,山东兖州 272117)中图分类号:K928 文献标识码:B 文章编号1007-6344(2018)03-0169-02摘要:本文主要介绍了现场复配减水剂的工艺,并结合混凝土工程的施工要求,简要论述了如何根据施工温度的变化以及进场原材料的变化对减水剂配方进行适当调整。

从而使得混凝土的和易性满足各种环境下的施工要求,以达到保证混凝土工程施工质量、降低施工成本的目的。

关键词:复配;减水剂;技术0引言由于目前减水剂种类较多,市场相对混乱,没有统一的定价规则,市场上购买的减水剂性能不稳定,给混凝土质量带来巨大的隐患。

为解决此类问题,我们尝试进行在现场复配减水剂,即直接购买减水剂母液以及其他掺和料,在施工现场进行配制减水剂,与现场的水泥进行相容性比对,这样既能保证减水剂的质量,又能降低减水剂的投入成本。

下面以国道308项目外加剂现场复配为例,介绍减水剂现场复配工艺及成本情况。

1工程概况国道308冀鲁界至南宫段改建工程第2标段,起讫桩号为:K489+600-K496+600,路线长度7.0Km;清河支线起讫桩号分别为ZK0+000-ZK2+075.777,路线长度2.076Km,均为新建。

整个标段全长9.076公里。

主要内容为:路基、路面,桥涵、互通区、防护、交通沿线设施、绿化及其他工程的全部工作。

其中混凝土方量共计约4万m3,含C25、C30、C35、C40、C50五个标号,预计使用减水剂约160吨。

2场地建设减水剂复配需要场地建设约150平米,选址需方便减水剂生产,并使生产的减水剂达到最大利用率,厂房内设原材料存放区、减水剂复配区。

在复配区安置称重仪器,称重仪器上安装减水剂复配灌,根据对减水剂平均使用率,选择满足使用减水剂储存罐。

3减水剂的复配加工3.1原材料混凝土常规使用的化学外加剂主要由有机质表面活性剂组成的减水剂,以及减水剂为主要组分复合了少量保坍落、缓凝、引气、早强、增稠等功能组成的复合型减水剂。

聚羧酸系高性能减水剂及其应用技术.doc

聚羧酸系高性能减水剂及其应用技术.doc

聚羧酸系高性能减水剂及其应用技术1、概述近几十年以来,我国商品混凝土工程技术取得了很大进步,商品混凝土拌合物性能从干硬性到塑性和大流动性、商品混凝土强度从中低强度到中高强度、商品混凝土的综合性能从普通性能开始向中高性能方向发展。

商品混凝土减水剂技术的应用与发展对商品混凝土工程的这些巨大技术进步,起了决定性作用,没有商品混凝土减水剂技术的应用与发展,就不可能有现代商品混凝土技术的发展。

例如,在商品混凝土原材料方面,和几十年前我国的干硬性商品混凝土技术阶段相比,目前的水泥、砂子、石子等质量基本上没有质的变化,如果说有变化,某些地区的砂石质量还有所下降,有些地区还可能下降幅度较大,水泥的质量由于换标也发生了较大的变化波动,但总体上说,我国的商品混凝土技术仍有很大提高,这主要是因为商品混凝土外加剂技术特别是商品混凝土减水剂技术在此期间得到了较广泛应用的缘故。

现代商品混凝土减水剂技术的发展,是现代商品混凝土技术发展的关键,并对于商品混凝土技术发展具有决定性的作用,所以商品混凝土减水剂技术的创新与发展一直是商品混凝土外加剂行业发展的重点与热点。

一般认为,减水剂的发展分为以下三个阶段:以木钙为代表的第一代普通减水剂阶段、以萘系为主要代表的第二代高效减水剂阶段和目前以聚羧酸盐为代表的第三代高性能减水剂阶段。

当然减水剂的这三个发展阶段并不是截然分开的,而是相互交叉的发展过程。

目前国内使用最广泛的高效减水剂是萘系高效减水剂,市场占有率达高达90%以上。

对总体综合性能而言,以木钙为代表的第一代普通减水剂和以萘系、蜜氨系为代表的第二代高效减水剂均难以满足实际商品混凝土工程特别是高性能商品混凝土对减水剂的性能要求。

与萘系等第二代高效减水剂相比,第三代聚羧酸系高性能减水剂的性能与质量有了质的提高,基本能够满足高性能商品混凝土对减水剂的性能要求,该类产品基本具备了取代萘系高效减水剂的技术性能优势与经济条件。

所以我国目前正在向以聚羧酸系高性能减水剂为代表的第三代高性能减水剂方向发展。

聚羧酸高性能减水剂的复配和应用

聚羧酸高性能减水剂的复配和应用
分类
根据化学成分和性能特点,聚羧酸高 性能减水剂可分为标准型、缓凝型、 早强型和引气型等。
发展历程及现状
发展历程
聚羧酸高性能减水剂经历了从第一代木质素磺酸盐类、第二代萘系到第三代聚羧酸系的发展历程,性能不断提升。
现状
目前,聚羧酸高性能减水剂已成为混凝土外加剂的主导产品,广泛应用于建筑、水利、交通等基础设施建设领域。
高性能化
随着建筑行业对高性能混凝土的需求 增加,高性能减水剂的市场需求也将 持续增长。
智能化
借助人工智能、大数据等先进技术, 实现减水剂生产的智能化管理和优化, 提高生产效率和产品质量。
国际化
加强国际合作与交流,推动减水剂技 术的国际化发展,拓展海外市场。
06 实验研究及案例分析
实验设计思路和方法
VS
复配目的
通过复配,可以改善单一减水剂的缺陷, 提高减水率、保坍性、增强效果等,同时 降低成本,实现高性能减水剂的高效、经 济应用。
常见复配组分选择
聚羧酸系高性能减水剂
具有高减水率、低掺量、保坍 性好等优点,是复配中的主要 组分。
脂肪族高效减水剂
减水效果较好,价格较低,但 保坍性较差,可作为经济型复 配组分。
绿色生产技术创新
原料选择
采用可再生、低毒、低污染的原料,从源头上减少对 环境的影响。
生产工艺优化
改进生产工艺,提高资源利用效率,减少废弃物排放, 降低能耗和物耗。
产品性能提升
通过研发新型高效减水剂,提高混凝土的工作性能和 耐久性,减少对环境的负荷。
未来发展趋势预测
绿色化
未来减水剂的发展将更加注重环保性 能,推动绿色化生产和使用。
1 2 3
高性能混凝土
聚羧酸高性能减水剂可显著提高混凝土的流动性, 降低水灰比,制备出高强度、高耐久性的高性能 混凝土。

聚羧酸减水剂复配及工程案例讲课四 ppt课件

聚羧酸减水剂复配及工程案例讲课四 ppt课件
✓ 2. 3 将甲乙丙⋯⋯等几种不同品种外加剂按不同厂家推荐的掺量进行复配。 原来的外加剂有不同的长处,比如说减水率比任何一种都高,坍落度的经时损失, 不论在任何干燥炎热气候条件下,在现定的施工条件下,损失最小,甚至在规定的 时间内坍落度和流动性都还稍有增加,仍然有良好的可泵性,还有自密免振自流 平的高工作性能,而且使混凝土强度成倍增长,不裂纹,这种复配效应是高性能混 凝土所2)与辅助功能型组分的复配:即通常所述的小料复配。
与萘系高效减水剂的复配基础是基本相同的,但复配技术 有所区别。
复配的成分:
缓凝成分:葡萄糖酸钠,酒石酸钠、柠檬酸、白糖、六偏 磷酸钠
消泡成分:主要看互溶性及消泡的效果,0.002~ 0.0008%,掺量按外加剂计算:每吨外加剂0。2~0.8kg。
3d强度 7d强度
160
60min坍落度 35 30
28d强度
150
25
140
20
1
2
3
4
1234
北京麦凯特科技有限实公验司编号
实验电编话号:010-
外加剂复配-葡萄糖酸钠
图1 为相同配合比条件下,随着葡萄糖酸钠掺量的变化,初始坍落 度和60min 坍落度的试验对比结果。由图1 可知,随着葡萄糖酸 钠掺量的增大,混凝土的初始坍落度呈增长趋势,60min 坍落度呈 增长趋势,但经时损失均较小。在试验中还发现,如果葡萄糖酸钠 过饱和,混凝土也容易出现泌浆和沉底现象 图2 为相同配合比条件下,随着葡萄糖酸钠掺量的变化,3d、7d、 28d 抗压强度的试验对比结果。由图2 可知,各组混凝土3d 强度 都达到30~40MPa ,28d度都达到50~60MPa 。可见葡萄糖酸 钠虽然能延缓水泥水化过程,但并不影响早期强度的增长。而且 由于粉煤灰的火山灰活性以及聚羧酸系减水剂的使用,混凝土 28d 强度也较高。

聚羧酸系高性能减水剂

聚羧酸系高性能减水剂

聚羧酸系高性能减水剂一、简介water-reducing admixture是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。

根据其减水及增强能力,分为普通减水剂(又称塑化剂)及高效减水剂(又称超塑化剂),并又分别分为一等品、合格品。

按组成材料分为:(1)水质素磺酸盐类;(2)多环芳香族盐类;(3)水溶性树脂磺酸盐类。

普通减水剂宜用于日最低气温5℃以上施工的混凝土。

高效减水剂宜用于日最低气温0℃以上施工的混凝土,并适用于制备大流动性混凝土、高强混凝土以及蒸养混凝土。

目前市场上常用的几种减水剂为:萘系高效减水剂,脂肪族高效减水剂,氨基超速高性能减水剂,减水激发剂,葡萄糖酸钠,木质素磺酸钠,木质素磺酸该,膨胀剂等。

聚羧酸系高性能减水剂聚羧酸系高性能减水剂是目前世界上最前沿、科技含量最高、应用前景最好、综合性能最优的一种混凝土超塑化剂(减水剂)。

聚羧酸系高性能减水剂是羧酸类接枝多元共聚物与其它有效助剂的复配产品。

经与国内外同类产品性能比较表明,聚羧酸系高性能减水剂在技术性能指标、性价比方面都达到了当今国际先进水平。

一、性能特点1、掺量低、减水率高,减水率可高达45%;2、坍落度轻时损失小,预拌混凝土坍落度损失率1h小于5%,2h小于10%;3、增强效果显著,砼3d抗压强度提高50~110%,28d抗压强度提高40~80%,90d抗压强度提高30~60%;4、混凝土和易性优良,无离析、泌水现象,混凝土外观颜色均一。

用于配制高标号混凝土时,混凝土粘聚性好且易于搅拌;5、含气量适中,对混凝土弹性模量无不利影响,抗冻耐久性好;6、能降低水泥早期水化热,有利于大体积混凝土和夏季施工;7、适应性优良,水泥、掺合料相容性好,温度适应性好,与不同品种水泥和掺合料具有很好的相容性,解决了采用其它类减水剂与胶凝材料相容性差的问题;8、低收缩,可明显降低混凝土收缩,抗冻融能力和抗碳化能力明显优于普通混凝土;显著提高混凝土体积稳定性和长期耐久性;9、碱含量极低,碱含量≤0.2%,可有效地防止碱骨料反应的发生10、产品稳定性好,长期储存无分层、沉淀现象发生,低温时无结晶析出;11、产品绿色环保,不含甲醛,为环境友好型产品;12、经济效益好,工程综合造价低于使用其它类型产品,同强度条件下可节省水泥15-25%。

聚羧酸减水剂的合成及复配技术综述

聚羧酸减水剂的合成及复配技术综述

1引言高效减水剂等作为混凝土外加剂在整个工程建设中发挥着重要作用,减水剂的发展可分为三个阶段:以木钙为主的普通减水剂,到以萘系为主的高效减水剂,再到以聚羧酸系为代表的高性能减水剂,而聚羧酸高效减水剂相比前两者具有良好的环保性能和技术优势,被广泛用于现代化混凝土工程中,其含有有害物质量较少,且减水率高,掺量较少,能显著提升混凝土强度,因而快速获得建筑工程应用,比如三峡工程等多个建筑工程中均使用了聚羧酸减水剂。

2国内外研究综述首先,1986年由日本研发了亲水性官能团聚羧酸减水剂,这种减水剂具有低坍损速度和高效减水率,之后将其运用于混凝土工程中。

1995年后,相比其他类型的减水剂,这种聚羧酸高效减水剂在工程中实现了广泛应用,占据整个建筑工程的80%。

日本将这种减水剂作为高性能AE减水剂,并在之后纳入了国家行业标准中,欧美对于聚羧酸高效减水剂的相关研究滞后于日本,由于美国等发达国家发现,将聚羧酸高效减水剂加入混凝土后会影响减水性能以及混凝土沁水性能,因此使用量较少,仅达到20%左右。

从国内研究上来看,21世纪我国在建设工程和工业生产中才开始使用和研究聚羧酸高效减水剂,早期主要使用马贝、西卡等减水剂产品,但由于这种材料成本高,无法实现广泛应用,只能够利用一些大型工程建设中。

伴随着科学技术发展,对于减水剂原材料,分子结构,工艺设计进行改进优化,之后使其成本降低可用于一般工程建设中。

如根据郭广仁等研究学者,研发了聚羧酸高效减水剂,这种减水剂相比其他减水剂来说能够显著降低掺量达到 1.50%,其含气量达5%,同时减水率能够达到30%以上。

国内目前聚羧酸减水剂相关研究已经获得很多进展,但由于这种减水剂会发生化学反应和本身存在敏感性等问题,国内外研究学者纷纷针对聚羧酸减水剂的工艺进行优化筛选,深入探讨其与水泥的适应性等问题。

3在实际应用中聚羧酸减水剂的问题分析在混凝土预拌过程中原材料差异性,地域性以及技术人员使用,理论知识等相关因素均会影响其使用效果。

聚羧酸减水剂合成工艺配方方案

聚羧酸减水剂合成工艺配方方案

聚羧酸减水剂合成工艺配方方案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。

通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。

关键词:聚羧酸减水剂;水泥净浆;流动度;配方;工艺;合成聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。

本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。

通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。

并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。

1 实验原材料丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,,重庆腾辉江津水泥厂产。

聚羧酸减水剂的合成方法将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。

在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。

反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。

正交试验设计采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。

聚羧酸系高效减水剂

聚羧酸系高效减水剂

合成工艺优化
改进合成工艺,降低生产 成本,提高生产效率,实 现大规模生产。
作用机理研究
深入研究聚羧酸系高效减 水剂的作用机理,为新产 品研发提供理论支持。
市场前景与竞争格局
市场需求持续增长
随着基础设施建设的不断 推进,聚羧酸系高效减水 剂的市场需求将持续增长 。
产品质ห้องสมุดไป่ตู้竞争
各厂家在产品质量上展开 竞争,通过提高产品质量 和性能来获取更大的市场 份额。
合成工艺流程
2. 将混合液加热至 一定温度,加入链 转移剂;
4. 反应结束后,将 产物冷却至室温, 调节pH值至中性;
1. 将单体、催化剂 、引发剂等原料混 合均匀;
3. 继续加热并保持 一定时间,使聚合 反应进行;
5. 经过滤、干燥等 步骤,得到聚羧酸 系高效减水剂成品 。
合成影响因素与控制方法
聚羧酸系高效减水剂
汇报人: 2023-11-17
目录
• 聚羧酸系高效减水剂概述 • 聚羧酸系高效减水剂的合成与制备 • 聚羧酸系高效减水剂的性能与测试方法 • 聚羧酸系高效减水剂的应用领域与效果 • 聚羧酸系高效减水剂的发展趋势与挑战 • 聚羧酸系高效减水剂的案例分析与应用实

01
聚羧酸系高效减水剂概述
催化剂和引发剂用量
催化剂和引发剂用量不当可能导致聚合反应进行不均匀, 影响产物质量。控制方法为选择合适的催化剂和引发剂用 量。
03
聚羧酸系高效减水剂的性 能与测试方法
物理性能测试
颗粒度
聚羧酸系高效减水剂的颗粒度应 符合规范要求,以确保其在使用 过程中具有良好的分散性和流动
性。
密度
聚羧酸系高效减水剂的密度应稳 定,且与混凝土的配合比设计相 匹配,以确保混凝土的抗压强度

聚羧酸系减水剂的合成原理与复配技术课件

聚羧酸系减水剂的合成原理与复配技术课件
不饱和单体是合成聚羧酸系减水剂的主要原料,常见的有丙 烯酸、甲基丙烯酸等。
聚羧酸系减水剂的合成方法
聚羧酸系减水剂的合成方法主要包括自由基聚合和离子聚 合。自由基聚合是常用的合成方法,通过引发剂引发单体 聚合,形成高分子聚合物。离子聚合则是通过离子交换剂 的作用,使单体离子化后再聚合。
聚羧酸系减水剂的合成过程中,温度、压力、反应时间等 工艺参数也会影响其性能和产率。因此,选择合适的工艺 参数对于合成高性能的聚羧酸系减水剂至关重要。
高性能混凝土
高性能混凝土是一种新型混凝土材料,具有高强度、高耐久性和高工作性等特点。聚羧酸系减水剂在高性能混凝土中的应用 可以提高混凝土的工作性能和耐久性,降低水灰比,减少收缩和开裂。
聚羧酸系减水剂可以与其他外加剂如缓凝剂、引气剂等配合使用,进一步改善高性能混凝土的性能。
自密实混凝土
自密实混凝土是一种不需要振捣即可自行密 实的混凝土,具有高流动性和稳定性。聚羧 酸系减水剂在自密实混凝土中的应用可以提 高混凝土的流动性和稳定性,减少离析和泌 水现象。
与其他外加剂的复配
聚羧酸系减水剂与缓凝剂的复配
01
通过复配缓凝剂,可以调整混凝土的凝结时间,满足工程需求。
聚羧酸系减水剂与引气剂的复配
02
引气剂可以提高混凝土的抗冻性和耐久性,但需注意控制气泡
含量。
聚羧酸系减水剂与增稠剂的复配
03
增稠剂可以改善混凝土的工作性,提高坍落度。
与不同水泥的适应性研究
聚羧酸系减水剂与通用水泥的适应性
减水剂分子具有较强的抗硬水能力, 能够在不同水质条件下保持稳定的减 水效果。
03
聚羧酸系减水剂的应用领 域
混凝土预制构件
预制构件是建筑行业中的重要组成部 分,聚羧酸系减水剂在混凝土预制构 件中的应用可以提高混凝土的流动性, 降低用水量,减少构件表面气泡和裂 纹,提高构件的耐久性和力学性能。

聚羧酸高性能减水剂复配试验

聚羧酸高性能减水剂复配试验

THANKS
谢谢您的观看
04
复配试验过程及结果分析
试验步骤与操作规范
01
02
03
04
试验准备
准备好聚羧酸高性能减水剂、 各种添加剂、搅拌器、滴定管
等试验设备和试剂。
复配操作
按照一定比例将聚羧酸高性能 减水剂与其他添加剂进行混合
,用搅拌器搅拌均匀。
滴定分析
对复配后的减水剂进行滴定分 析,测定其浓度、密度等参数

试验记录
详细记录试验过程中的操作、 数据及异常情况。
搅拌时间对聚羧酸高性 能减水剂的性能也有影 响。应保证足够的搅拌 时间,使减水剂与混凝 土充分混合,发挥最佳 性能。
温度对聚羧酸高性能减 水剂的性能也有影响。 应控制混凝土的出机温 度和入模温度,避免温 度过高或过低对混凝土 性能的影响。
聚羧酸高性能减水剂的 储存条件对其性能也有 影响。应选择干燥、阴 凉、通风良好的地方储 存减水剂,避免阳光直 射和高温环境。
02
原材料准备与试验设备
原材料种类及性能要求
01
聚羧酸高性能减水剂
主要原材料,具有高减水率、低 掺量、高分散性等特点。应选用 质量稳定、性能良好应符合相应国 家标准。
02
各种掺合料
如粉煤灰、矿渣粉等,用于改善 混凝土性能,应符合相应国家标
准。
04
砂、石
用于制备混凝土,应符合相应国 家标准。
聚羧酸高性能减水剂复配试 验
汇报人: 2023-12-20
目录
• 引言 • 原材料准备与试验设备 • 聚羧酸高性能减水剂配方设计 • 复配试验过程及结果分析 • 性能评价与影响因素分析 • 结论与展望
01
引言
聚羧酸高性能减水剂概述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塌损大
外加剂 适应性
可 泵 性
降强
火 成 岩
沉 积 岩
石:由天然
岩石经破碎
筛选粒径大 于5mm的岩
变 质 岩
石颗粒或卵
石、碎卵石
比重 吸水性 方园状
2020/10/3 针棒状
花 岗 岩、长 岩 致密长 石
玄 武 岩、辉 绿 岩、辉 长 岩 橄 榄岩
石 灰 岩、白 云 石





岩、 角 砾 石

引气品种对降强影响
脂肪醇酸钠
小于
烷基苯酚聚氧二烯醚
烷基苯黄酸钠松香皂
小于
松香热聚物
小于
烷基磺酸钠
OP-8 OP-9 OP-10








粉 煤 灰
硅 灰
矿 粉
性价比
各类减水剂 适应性
配技术








2020/10/3
配 合 比 设 计
施 工 要 求


胶 凝 材 料
掺 合 料
2020/10/3
聚羧酸减水剂复配技术
2020/10/3



减水剂合成技术






泵送剂复配技术
2020/10/3
萘系减水剂 氨基减水剂 脂肪族减水剂 聚羧酸减水剂
萘系、氨基系、脂肪 族系、三聚氰胺系 聚羧酸系减水剂
磺化
缩合
中合
烘干复合
硫酸+工业萘
磺化液+甲醛 缩合物+碱



水 剂 合
萘 酸 比
温 度
时 间
P.O 普通硅酸盐水泥定义为凡由硅酸盐水泥熟料、6%
~15%混合材料、适量石膏磨细而成的水硬性胶凝材料 ,简称普通水泥。
P.S 矿渣硅酸盐水泥定义为凡由硅酸盐水泥熟料和粒
化高炉矿渣、适量石膏磨细而成的水硬性胶凝材料,简 称矿渣水泥。
P.P 火山灰质硅酸盐水泥定义为凡由硅酸盐水泥熟料
和火山灰质混合材料、适量石膏磨细而成的水硬性胶凝 材料,简称火山灰水泥。

片 岩、 片 麻 岩 石英岩 大理石 蛇级岩 闪岩 板岩
硬度 粒径 表面密度 形态 杂质有害物 含泥量 石粉含量
强度 可泵性 流动性
混凝土强度 石子强度

自流平性能

高密度钢筋通透性

塌落度 扩展度



凝 土













2020/10/3
配合比设计
使

合理使用外加剂



性价比的合理分析
水泥中混合材料总掺加量按质量分数计应大于15%, 但不超过50%。
粉煤灰 硅灰 其它
硅酸三钙 C3S (3CaO·SiO2)
硅酸二钙 C2S (2CaO·SiO2)
铝酸三钙 C3A (3CaO·Al2O3)
铁铝酸四钙
C4AF
(4CaO·Al2O3 .Fe2O3)
C-S-H凝胶 60%-70% 钙矾石 20%-25% 氢氧化钙 20%-25% 其它类 水灰比 0.35-0.4
木质素类减水剂
其它减水剂 萘系减水剂
脂肪族减水剂
木钠
引气
木镁 木钙 碱木素
减水 缓凝
单糖
低聚糖 多糖
常见品种
纤维及其衍生物
氨基磺酸盐减水剂
各类
减水
三聚氰胺减水剂
剂几
种分
直线型
蒽系减水剂
子形

聚羧酸水剂
木浆 竹浆 苇浆 草浆 糖密减水剂 糖钙减水剂 糖钠减水剂
齿型 链状
糖类及碳水化合物
缓凝剂
多元醇及其衍生物
掺非活性混合材料时,最大掺量不得超过10%。
水泥中粒化高炉矿渣掺加量按质量分数计为20%~70%。 允许用石灰石、窑灰、粉煤灰和火山灰质混合材料中的 一种材料代替矿渣,代替数量不得超过水泥质量的8%, 替代后水泥中粒化高炉渣不得少于20%。
水泥中火山灰质混合材料掺量分数计为20%~50%。
水泥中粉煤灰掺量按质量分数计为20%~40%。
有害物质:砂中含有害物,如云母不得大于2%;轻物质如煤、贝壳等不大于1%; 硫化物及硫酸盐按SO3重量计不大于1%。 使用海砂时,钢筋混凝土位于水位变动区、潮湿或露天条件下则氯离子含量 不得大于0.1%,位于水下或干燥环境则不限制。
风 化 砂
2020/10/3
泌水
质轻 表面密度低
多微裂孔 强度低
粘聚性 保水性 减水率 干缩 强度 塌落度 外观
P.F 粉煤灰硅酸盐水泥定义为凡由硅酸盐水泥熟料和
粉煤灰、适量石膏磨细而成的水硬性胶凝材料,简称粉 煤灰水泥。
P.C 复合硅酸盐水泥定义为凡由硅酸盐水泥熟料、两
种或两种以上规定的混合材料、适量石膏磨细而成的水 硬性胶凝材料,简称复合水泥。
掺活性混使材料时,最大掺量不得超过15%,其中允许 用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活 性混合材料来代替。
羟基羧酸盐类
无机盐类
葡糖蔗乙

糖 酸
糖密糖钙
多 元 醇
胺 类 衍 生 物
纤 维 素 类
葡洒柠水乳 萄 糖石檬杨 酸 钠酸酸酸酸
磷 酸 盐
亚 硫 酸 盐
硼 酸 盐
硫 酸 亚 铁
锌 盐
其 它 硫 酸 盐
阴离子型



自然物
非离子型
2020/10/3
松香热聚物及松香皂 烷基苯磺酸钠 脂肪醇硫酸钠
三帖皂苷
烷基酸聚氧乙烯醚
高抗拉抗析混凝土
抗磨混凝土
低温、高温环境施工混凝土
耐久性混凝土 聚合物混凝土
纤维混凝土 耐酸混凝土 水下不分散混凝土 防辐射混凝土 抗海水混凝土 其它类
基本材料 多种能材料
设备 工艺 施工工艺 检测评定



人 员



评 定
外加剂的选择
1.1 各种外加剂都有其特性,如改善混凝土和易 性、调节凝结时间、提高强度、改善耐久性等。 使用者应根据外加剂的特点,结合使用目的, 如节约水泥、改善混凝土性能、加快模板周转 等综合指标来考虑,即通过技术、经济比较来 确定外加剂的使用品种。

山砂

河砂


江砂
5mm 海砂


特细砂 细砂 中砂 粗砂
吸水、湿胀(干缩):含水5%—8%湿胀最大(20%—3%体积)
砂率:骨料总生量中细骨料的所占比率
含泥量:砂中的含泥量规定:≥C30级混凝土或有抗冻、抗渗或其他特殊要求的 混凝土用砂,其含泥量均不得大于3%;≤30级混凝土,砂含泥量不得大于5%

合 成
提高性价比



性能研究

工艺研究


节约生产成本




新产品开发
砂、石含泥量 增加掺量与保塑 压款外购利息利润 自建外加剂复配厂利润
自建外加剂复配厂,降 低使用成本



功能性外加剂
的 利

抗裂保水外加剂















储 备
品 种



2020/10/3
高强混凝土
高抗渗混凝土
压 力
压 力
温 度
稠 度
缩 合 空 间
中 和 反 应
温 度
时 间


艺 多多 种酸
双 缩 合
磺 化 液
多 次 扩 溶
多羧 酸基
苯根
根物
环磺 物化
大分子量 多组分基因
介介 入入
2020/10/3
高适应
高减水
成 品 + 复 合 物
多 组 份 减 水 剂
普 通 减 水 剂
减 水 剂
高 效 减 水 剂
2020/10/3
相关文档
最新文档