电子科大讲义课堂信号与系统考卷

合集下载

杭州电子科技大学信号与系统真题2000-2009

杭州电子科技大学信号与系统真题2000-2009

7. 已 知 线 性 时 不 变 系 统 的 输 入 — 输 出 方 程 为
r (t ) = ∫ e −(t −τ ) e(τ )dτ 则其冲击响应 h(t)为________
−∞
8.
e −αt u (t ) * sin tu (t ) = ________
9. 已知某连续系统的零点为 1;极点为 0,-3;冲激响应的终
要求:1 画出其信号流图; 2 写出其状态方程。(12 分)
某些地方难免出错,敬请见谅。 其中2001年真题以及历年答案本人没有找到, 如果谁有可以跟我联系。 做出一份比较完整的考研试卷帮助大家Q:305942916
7/26
杭州电子工业学院 2003 年攻读硕士学位研究生入学考试 《信号与系统》 (共九大题)
e − t u (t ) * sin t u (t ) =_______
3 £ [(1 + 2t )e −t ] = ________ 4 £ −1 ⎢
⎤ s+3 ⎥ =________ 3 ⎣ ( s + 1) ( s + 2) ⎦ ⎡
5 若 F [ f (t )] = F ( w) ,则 F[(1-t)f(1-t)]=_________ 6 已 知 系 统 函 数 H(s)= r(t)=_________
五. (8 分)系统如图所示,试画出其流图表示,并求转移函数 H(s) =
Y (s) 。 X ( s)
六. (10 分)信号的频谱如图所示,若此信号通过下图系统,试绘出 A、B、C、D 各点信号的频谱图形,设理想滤波器截止频率均为 W 0 ,
2/26
通带内传输值为 1,相移为零,且 W 0 >>W c .
值为-10,则该系统函数为 H(S)=________

电子科技大学信号与系统-信号与系统考题

电子科技大学信号与系统-信号与系统考题

信号与系统1、求积分⎰+∞∞-++dt t t )2()1(2δ 的值。

(5分)2、 如果()x t 如图1所示,画出)22(-t x 和t dx )(的波形. (10分)图13、一个线性时不变系统的输入]2[2][]1[2][-+-+=n n n n x δδδ,单位冲激响应]1[]1[][--+=n n n h δδ,求系统的输出][n y 。

(5分)t4、一个线性时不变系统的输入为)(1tx时,输出为)(1ty。

若输出信号为)(2tx,求输出信号)(2ty。

各信号如图2所示。

(5分)图25、已知)1()()(--=tututx,)2/()(txth=,求)(*)()(thtxty=。

(5分)6、一个线性时不变系统的单位冲激响应为 )2sin 8(sin 1)(t t tt h πππ-=, 如果输入信号为 t t t x ππ6sin 4cos 1)(++=, 求输出信号()y t .(10分)7、 设 ()x t 是一个带限信号,()x t 的频谱满足()0 for 100X j ωωπ=>。

现对)()(2t x t y =冲激串采样,得到()()()p n y t y nT t nT δ+∞=-∞=-∑求采样间隔 T 的范围使得 ()t y 能由信号()t y p 恢复。

(10分)8、(15分)一个稳定的线性时不变系统,其微分方程如下)()()(6)(5)(22t x dtt dx t y dtt dy dtt y d +=++1) 求系统函数H(S),决定H(S)的收敛域。

2)求系统的单位冲激响应()h t ,判定系统是否因果。

3)画出系统的模拟方框图。

电子科大11-12-1信号半期考试

电子科大11-12-1信号半期考试

………密………封………线………以………内………答………题………无………效……电子科技大学二零 一 一 至二零 一 二 学年第 一 学期期 中 考试SIGNALS AND SYSTEMS 课程考试题 卷 ( 120 分钟) 考试形式: 闭卷 考试日期 20 11 年 月 日课程成绩构成:平时 10 分, 期中 20 分, 实验 10 分, 期末 60 分1(56points).Each of the following questions may have one or two right answers, justify your answers and write it in the blank. (1)()cos 221πδ+∞-∞-=⎰t t dt ( ).(a) 1 (b) -1 (c) 0.5 (d) -0.5 (2) The fundamental period of the signal[]23cos sin 32ππ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦x n n n is ( ). (a) 12N = (b) 6N = (c) 8N = (d) 24N =(3) Let ()1tx t e -= and ()()()14k x t x t t k δ+∞=-∞=*-∑. The Fourier series coefficients of ()x t may be ( ).(a) {} and Im 0-==k k k a a a (b) {} and Im 0-=-=k k k a a a (c) {} and Re 0-==k k k a a a (d) {} and Re 0k k k a a a -=-=(4) Consider an LTI system with unit impulse response ()h t illustrated in Figure 1, if the input is ()()d t x t dtδ= , the output () 0.5t y t =- is( ).(a) -1 (b) 1 (c) -0.5 (d) 0.5(5) The convolution integral ()222tte e u t -*=( ).(a) 2 (b)214t e (c) 212t e (d) ()212t e u t(6) Which of the following systems is an linear system ( ). In each example, []y n denotes the system output and []x n is the systeminput.(a) [][][]cos y n n x n = (b) [][]{}cos 3y n x n = (c) [][]()ln y n x n = (d) [][]2y n x n =(7) Which of the following systems are causal and stable system ( ). In each example, ()h t denotes the impulse response of thefollowing systems.(a) ()()()13h t t t δδ=-+- (b) ()()()0.5cos 2t h t t e u t =- (c) ()()()13h t t t δδ=+++ (d) ()()()cos 2t h t t e u t -=-(8) Determine which of the following signals with finite total energy ( ). (a) []()[]1x n n u n =+ (b) ()()23tx t e u t -=+(c) []()[]1cos /32nx n n u n π⎛⎫= ⎪⎝⎭(d) () , tx t e t =-∞<<+∞tFigure 1………密………封………线………以………内………答………题………无………效……(9) Consider a continuous-time LTI system whose frequency response is ()()sin /2H j ωωω=. If we know the output ()y t to some periodicinput signals are ()0y t =. The fundamental period of the input signal may be ( ). (a) 1T = (b) 2T = (c) 0.5T = (d) 3T =(10) The completely equivalent definition of the unit impulse function()δt are ( ).(a) We can define ()δt as the signal for which ()()()δ=*x t x t t for any ()x t . (b) ()sin limωωδπ→∞=c c tt t(c) () 0 00 0δ≠⎧=⎨≠=⎩t t t and()1δ+∞-∞=⎰t dt(d) () 0 0δ≠⎧=⎨∞=⎩t t t2(12points). A continuous-time signal ()32-+x t is illustrated in Figure 2. (a) Determine the signal ()x t . (b) Sketch and label carefully ()x t .3(10 points).Consider an LTI system whose response to the signal ()t x 1 in Figure 3 is the signal ()t y 1 illustrated in Figure 4. Determine the response of the system to the input ()t x 2 depicted in Figure 5 .Figure 3tFigure 2………密………封………线………以………内………答………题………无………效……4(12 points). Consider a continuous-time LTI system whose frequency response ()H j ω is illustrated in Figure 6. If the input signal()1cos3sin6ππ=++x t t t , determine the output ()y t of the system.14(10points). Consider an LTI system whose input []x n and unit impulse response []h n are given by []{}1,0,1,1,0,1x n n =-=-,[]{}2,1,3,2,2,3,4,5h n n ==. Determine the output [][][]n h n x n y *= of this system.ωFigure 6。

第九章考题电子科技大学信号与系统858期末复习

第九章考题电子科技大学信号与系统858期末复习

Solution
5. H (S)
S
,3 Re{S} 2
(S 3)(S 2)
6. Consider a stable LTI systemwith rational systemfunction H (S)
for whichthe pole - zero plot is shownin Figure.
is this systemcausal? c).Determni e the output y(t) with theinput x(t) e2tu(t) . d).Determine the output y(t) with theinput x(t) 1.
x(t)
+
1/s
1/s
y(t)
is this systemcausal? c).Determni e the output y(t) with theinput x(t) e2t .
1/(s+2)
x(t)
+
1/s
+
y(t)
-3
Solution
11. H (S) 2S 5 , Re{S} 2 (S 3)(S 2)
Chapter 9
Determine x(t)
1. Determine thefunctionof time, x(t), for theLT transform
X (S) and its associatedregions of convergence :
X
(S)

es
1 es
Re{s} 0.
Solution
4. H (S) S 3 ,4 Re{S} 1 (S 4)TI systemwith systemfunction

电子科技大学2014-2015 学年第 1 学期信号与系统期 末 考试 A 卷

电子科技大学2014-2015 学年第 1 学期信号与系统期  末  考试  A  卷

电子科技大学2014-2015 学年第 1 学期期末考试A 卷课程名称:信号与系统考试形式:一页纸开卷考试日期:20 15年 1 月 15 日考试时长: 120 分钟课程成绩构成:平时 10 %,半期考试 20 %,实验 10 %,期末 60 %本试卷试题由二部分构成,共 5 页。

题号一二合计1234得分得分一、选择填空题(共30分,共 6问,每问5分)1.Consider two signals and , as shown in Figure 1. The Fourier transform of is . Then the Fourier transform ofshould be().(a)(b)(c)(d)Figure 1 The waveforms of and2. The convolution sum ( ).(a) (b) (c) (d) not existed3. Consider a stable discrete-time system, whose system function is a rational function and has only two poles:. The positions of zeros are unknown. The impulse response of the system must be ( ).(a) finite duration (b) right-sided (c) left-sided (d) two sided4.The relation between the input and the output of a causal continuous-time LTI system is described by the differential equation . The system is ().(a) Low-pass filter (b) Band-pass filter (c) High-pass filter (d) Band-stop filter5.The Fourier transform of the signal is shown in Figure 2.The signal may beFigure 2(a) real and even (b) real and odd(c) pure imaginary and odd (d) pure imaginary and even6. The Laplace Transform of is ().(a) , (b) ,(c) , (d) ,二、计算题(共70分)得分1.(15 points)Suppose and are both band-limited signals, where.Impulse-train sampling is performed on to obtain , as shown inFigure 3 where .Deduce the value of so that for .Specify the range ofvalues for the sampling period T which ensures that =.32.( 18 points ) Consider an LTI system with unit impulseresponse .The input signal ,where is the unit stepfunction.得分(a) Sketch. (b) Determine the magnitude and phase responseof this system. (c) Determine the output .3(17分)A causal continuous-time LTI system is given in Figure 4.(a)Determine the range of the constant K toensure that the system is stable.(b)If K=2, determine the unit step response.1/S-31/S-2KFigure 44(20 分)Suppose that we are given the following information about a causal discrete-time LTI system:(1)If the input is ,then the output is .(2)The value of the unit impulse response at n=0 is .Solve the following problems:(a) Determine the system function ,and indicate its ROC.(b) Draw a block diagram representation of this system.(c) Determine the unit impulse response .(d) Suppose. Determine the range of real numberso that is the unit impulse response of a stable system.。

电子科大信号与系统习题解答1

电子科大信号与系统习题解答1

信号与系统习题解答11.1 用代数式表达下列复数:已知形式为θj re ,要求表达形式为jy x +,采用公式:θcos r x =,θsin r y =。

解: 2121-=πj e 2121-=-πj ej e j =2π j e j -=-2πj ej=25πj ej+=124π j ej+=1249πj ej -=-1249π j ej-=-124π1.2 用极式表达下列复数:已知形式为jy x +,要求表达形式为θj re ,采用公式:22y x r +=,()πθπθ≤<-=-xytg 1。

解:055j e = πj e 22=- 233πjej -=-()2242221ππjj e e j --=⎪⎪⎭⎫ ⎝⎛=- ()442221πππjjje eej j =⋅=--2442211πππjjje ee jj ==-+-1234223122πππjj je e ej j -==++1.54 (a )证明表达式 ⎪⎩⎪⎨⎧≠--==∑-=111110αααααN N n nN证: 因为 1=α 时,1=n α (n 为任意值时)所以,1=α 时,N N n n =∑-=10α因为 ()()NN ααααα-=++++--1 (111)2所以,当1≠α时,()ααααα--=++++-11 (11)2NN 原式得证。

(b) 证明:1<α时,αα-=∑∞=110n n 证:因为 1<α时,0lim ==∞→NN α所以:αααα-=--=∞→∞=∑1111lim 0N N n n(c )证明:1<α时,()21ααα-=∑∞=n nn 证:令()αααf n n=-=∑∞=11为α的连续函数对上式进行微分运算可得:()()2111αααα-==∑∞=-n n n d df 同时乘以α就可以得到:()21αααααα-==∑∞=n nn d df (d )当1<α时,计算?=∑∞=kn nα解: 因为∑∑∑∞=-=∞=+=kn nk n n n n ααα100所以:αααααααα-=----=-=∑∑∑-=∞=∞=1111110kk k n nn nk n n1.55 计算下列和式,采用代数式表达。

电子科大信号与系统期中考试试卷及答案11-12学年

电子科大信号与系统期中考试试卷及答案11-12学年

………密………封………线………以………内………答………题………无………效……电子科技大学二零 一 一 至二零 一 二 学年第 一 学期期 中 考试SIGNALS AND SYSTEMS 课程考试题 卷 ( 120 分钟) 考试形式: 闭卷 考试日期 20 11 年 月 日课程成绩构成:平时 10 分, 期中 20 分, 实验 10 分, 期末 60 分1(56points).Each of the following questions may have one or two right answers, justify your answers and write it in the blank. (1)()cos 221πδ+∞-∞-=⎰t t dt ( d ).(a) 1 (b) -1 (c) 0.5 (d) -0.5(2) The fundamental period of the signal []23cos sin 32ππ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦x n n n is ( a ). (a) 12N = (b) 6N = (c) 8N = (d) 24N = (3) Let ()1tx t e -= and ()()()14k x t x t t k δ+∞=-∞=*-∑. The Fourier series coefficients of ()x t may be ( a ).(a) {} and Im 0-==k k k a a a (b) {} and Im 0-=-=k k k a a a (c) {} and Re 0-==k k k a a a (d) {} and Re 0k k k a a a -=-=(4) Consider an LTI system with unit impulse response ()h t illustrated in Figure 1, if the input is ()()d t x t dtδ=, the output () 0.5t y t =- is( b ).(a) -1 (b) 1 (c) -0.5 (d) 0.5(5) The convolution integral ()222t te e u t -*=( c ).(a) 2 (b)214te (c)212te (d)()212te u t(6) Which of the following systems is an linear system ( a ). In each example, []y n denotes the system output and []x n is the systeminput.(a) [][][]cos y n n x n = (b) [][]{}cos 3y n x n = (c) [][]()ln y n x n = (d) [][]2y n x n =(7) Which of the following systems are causal and stable system ( ad ). In each example, ()h t denotes the impulse response of thefollowing systems.(a) ()()()13h t t t δδ=-+- (b) ()()()0.5cos 2t h t t e u t =- (c) ()()()13h t t t δδ=+++ (d) ()()()cos 2t h t t e u t -=-(8) Determine the following signals which have finite total energy ( bc ). (a) []()[]1x n n u n =+ (b) ()()23tx t eu t -=+(c) []()[]1cos /32nx n n u n π⎛⎫= ⎪⎝⎭(d) () , tx t e t =-∞<<+∞tFigure 1………密………封………线………以………内………答………题………无………效……(9) Consider a continuous-time LTI system whose frequency response is ()()sin /2Hj ωωω=. If we know the output ()y t to some periodicinput signals are ()0y t =. The fundamental period of the input signal may be ( ac ). (a) 1T = (b) 2T = (c) 0.5T = (d) 3T =2(12points). A continuous-time signal ()32-+x t is illustrated in Figure 2.(a) Determine the signal ()x t . (b) Sketch and label carefully ()x t .3(10 points).Consider an LTI system whose response to the signal ()t x 1 in Figure 3 is the signal ()t y 1 illustrated in Figure 4. Determine the response of the system to the input ()t x 2 depicted in Figure 5 .4(12 points). Consider a continuous-time LTI system whose frequency response ()H j ω is illustrated in Figure 6. If the input signal()1cos 3sin 6ππ=++x t t t , determine the output of the system.12Figure 3ωFigure 6tFigure 2………密………封………线………以………内………答………题………无………效……14(10points). Consider an LTI system whose input []x n and unit impulse response []h n are given by []{}1,0,1,1,0,1x n n =-=-,[]{}2,1,3,2,2,3,4,5h n n ==. Determine the output [][][]n h n x n y *= of this system.《信号与系统》半期考试评分标准说明1.填空题(56分)⑴. (d) ⑵ (a) ⑶ (a) ⑷ (b) ⑸ (c) ⑹ (a) ⑺ (ad) ⑻ (bc) ⑼ (ac) ⑽ (ab) 本部分评分规则:1) 选择题共14个正确答案,1-6题为单选,7-10题为双选; 2) 若只填写了1个答案,正确得4分,错误得0分;3) 若填写了2个答案,2个正确得8分,1个正确、1个错误得4分,2个错误得0分;4) 若填写了3个答案,2个正确、1个错误得4分,1个正确、2个错误得2分,3个错误得0分; 5) 若填写了4个答案,得0分。

电子科大《信号与系统》考卷汇总

电子科大《信号与系统》考卷汇总


x t
cos 4 t

2
w t
H ( j )

2
w t
5 4
1

4
5
0
1
y t
H ( j )
X j
1

4
0
Figure 2 5
0
y t
5 4
Figure 1
0
信号与系统试卷
2004年7月
2. (
10points来自G j 15 X j for 0 ,
x t
h 1 t
r1 t
r2 t
H 2 j
y t
p t
Figure 2
信号与系统试卷
4. (15 points) The system function of an LTI system is
2
(a)Specify the range of values for the sampling period T which ensures that r1 t is recoverable from
r2 t .
(b) If T
1 second, sketch the spectrum of r1 t and r2 t . 20
Attention: You must answer the following questions in English.
信号与系统试卷 2005 1.( 12 points)The spectrum X j of the signal x t is depicted in Figure 1.
the output y t 1 . (a) Determine the system function H s , then indicate the ROC of H s . (b) Determine the unit impulse response h t of this system, is this system causal? (c) For the input x t te u t , compute the output y t .

电子科大《信号与系统》考卷汇总

电子科大《信号与系统》考卷汇总

高通滤波器
允许高频信号通过,抑制低频信号,用于提 取高频成分。
带通滤波器
允许某一频段的信号通过,抑制其他频段的 信号,用于提取特定频率范围的信号。
陷波滤波器
抑制特定频率的信号,用于消除特定频率的 干扰。
05
CATALOGUE
系统的频域分析
系统的频域响应
频域响应的定义
系统的频域响应是指在频域中描述系统对输入信号的响应特性。
实现信号处理算法的工具
实现信号处理算法需要使用专业的工具和软件,如MATLAB、Python等。这些工具提供了丰富的函数库 和工具箱,方便用户进行信号处理和分析。
系统设计中的信号处理技术
系统设计中的信号处 理需求
在系统设计中,信号处理技术是 必不可少的。系统中的信号可能 受到噪声、干扰和其他因素的影 响,导致信号质量下降。因此, 需要进行信号处理以提取有用信 息,提高信号质量。
过程。
02
调制解调技术的分类
调制解调技术可以分为模拟调制和数字调制两大类,模拟调制包括调频
、调相和调幅等,数字调制包括振幅键控、频率键控和相位键控等。
03
调制解调技术的应用
调制解调技术广泛应用于通信、雷达、声呐和遥控等领域,是实现信号
传输和处理的关键技术之一。
06
CATALOGUE
信号与系统的综合应用
信号的时移
将信号在时间轴上移动一定的时间,可以得到一 个新的信号。
信号的展缩
将信号的幅度进行放大或缩小,可以得到一个新 的信号。
信号的反转
将信号在时间轴上进行翻转,可以得到一个新的 信号。
03
CATALOGUE
系统的时域分析
系统的时域响应
瞬态响应

西安电子科技大学811信号与系统通信原理专业课考研真题答案 74页

西安电子科技大学811信号与系统通信原理专业课考研真题答案 74页

A2
σ
2 n
得 Pe
1 2
erfc(
A 2σn
)
1 2
erfc
r 2
3. (1) 框图见附录;
(2) 见图 12-2;
(3)
B 1.5 fc , η
RB B
fc 1.5 f
c
2 3
B/Hz
sMSK (t) 0 1 1 0 0 1 t
4. (1) 789 为正→ C1 1 ; 512 789 1024
9. 3;3【解析】码重指码组中非零元素的个数;码距指两个码组 ci 、 cj 之间不同比特的个数。
10. 载波同步、位同步、帧同步 【解析】载波同步是相干解调的基础;位同步是正确取样判决的基础; 而接收端在收到比特流后,必须能够正确地找出帧定界符,以便知道哪些比特构成一个帧,接收端 找到了帧定界符并确定帧的准确位置就是完成了帧同步。
二、简答题
1. ①幅度失真、相位失真;②见附录;③均衡技术。 2. ①见附录;② +1 0 0 0 +V -1 +1 -B 0 0 -V +1 0 0 0 -1
【解析】编码规则见附录。 3. ①原理框图见附录;
·3·
②工作原理:以 2PSK 信号为例,来分析采用平方环的情况。2PSK 信号平方后得到
θ (t)
→位于第七段→ C2C3C4 110 ;
π
789 512 32
8
......
21 →位于序号为
8
的量化级
2
t
→ C5C6C7C8 1000

∴编码器的输出码组为 11101000。
由 D(n1) D(n2 ) σ 2 以及概率论知识, D(x) D(an1 bn2 ) a2D(n1) (b)2 D(n2 ) σ2 (a2 b2 )

第四章考题电子科技大学信号与系统858期末复习

第四章考题电子科技大学信号与系统858期末复习
c).X (0) 4
2012
11. (16 points) Let X ( j) denotethe Fourier transformof
the signal x(t) depicted in Figure 1.
a).Determine the expression of ReX ( j).
b). Determinethe valueof h2 (t)dt. -
c).Determinethe convolution integral
y(t)

k 0
k
1 1
sin(2kt
)

h(t).
Solution
16.
a)H(j
)

j,
0,
2 , if the input x(t) is
t
depictedin Figure,determinetheoutput y(t).
x(t)
…… -3
1
-1
1
……
3
5
t
Solution
17. y(t) cos2t cost
18. x(t) e j0t ,
h(t) u(t 1) u(t 1),
Solution
1.H(jω)来自 j,
0
0, 0
x(t)

e j0t

1
e j30t

1
e j30t

1
j 0 t
e4

1
j0 t
e4
2j
2j
2
2
y(t)


ak H (
k

第十章考题电子科技大学信号与系统858期末复习

第十章考题电子科技大学信号与系统858期末复习

4
4
22
2. How many signals havea z - transformthat may be expressed as
z 2
in its region of convergence?
(1 1 z2 )(1 1 z2 )
4
4
a)1
b)2
c)3
d) 4
ZT and LTI system
b).Find thesystemfunction H (Z ), then indicate the ROC of H (Z ). c).For theinput x[n] (2)n u[n], comput theoutput y[n].
Solution
12.
H(Z)
1 (Z 1)(Z 2)
1 2
[n
1]
a).Determine thesystemfunction H (Z ), then indicate the ROC of H (Z ).
b).Determine the unit impulse responseof this systemh[n],
is this systemstable ?
1. Consider a causalLTI systemwith thesystemequation
y[n] 3 y[n 1] 1 y[n 2] x[n] 1 x[n 1].
2
2
2
a).Find thesystemfunction H (Z ), indicate the ROC of H (Z ).
c).Determni e the output y[n] with theinput x[n] cosn .

电子科大讲义课堂信号与系统考卷

电子科大讲义课堂信号与系统考卷
编辑课件
causal and stable?
h t sin 2 t cos 7 t , if the input is
t
xt t n , determine the output n
y t .
6. (20 points) Consider an LTI system with input xt t e3tutand output
yt etu t .
(a) Determine the system function H s , then indicate the ROC of H s .
(b) Determine the unit impulse response ht of this system, is this system
3. (10 points) If we know xt ut , and ht is illustrated in Figure 4. Please
determine x t h t .
ht
t2
1
0
1
23
t
Figure 4
4. (10 points) 4. (10 points)
Compute Compute
4. (10 points) Compute the convolution yn xnhn , where
xn 3,1,5,n 1,2,3
hn 1,0,2,n 0,1,2
5. (20 points) Consider an LTI system with unit impulse response
indicate the ROC of H z .
(b) Determine the unit impulse response hn , is this system stable?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

causal and stable?
(c) For the input xt 2 , compute the output y t .
(d) Determine the differential equation of this system.
a
5
xn 3,1,5,n 1,2,3
hn 1,0,2,n 0,1,2
(d) Draw a block diagram representation of this system.the system function H s , then indicate the ROC of H s .
(b) Determine the unit impulse response ht of this system, is this system
a
4
causal and stable?
ht sin 2t cos 7t , if the input is
t
x t t n , determine the output n
y t .
6. (20 points) Consider an LTI system with input xt t e3tu t and output
7. (20 points) A causal LTI system is described by the difference equation
yn 1 yn 1 xn 1 xn 1
2
2
(a) Find the system function H z , sketch the pole-zero pattern of H z , then
x1(t) 1
y1(t) 1
x2 (t) 1
01
t
Figure 1
01 2
Figure 2
t
01 2 3
t
Figure 3
2. ( 10 points ) Consider a continous-time system with input xt and output
y t related by
indicate the ROC of H z .
(b) Determine the unit impulse response hn , is this system stable?
(c) Compute the output of this system, if the input signal is xn cos n .
yt x2t 1
a
, is this system
1
2. ( 10 points ) Consider a continous-time system with input xt and output
yt related by yt x2t 1 , is this system
(a) Linear? (b) Time-invariant? (c) Memoryless? (d) Causal? (e) Stable?
ht sin 2t cos 7t , if the input is
t
x t t n , determine the output n
y t .
6. (20 points) Consider an LTI system with input xt t e3tu t and output
1. (10 points) Consider an LTI system whose response to the signal x1t in
Figure 1 is the signal y1t illustrated in Figure 2. Determine and sketch
carefully the response of the system to the input x2 t depicted in Figure 3.
the the
convolution convolution
yynn
xxnnhhnn,,
where where
xxnn33,,11,,55,,nn
1, 2,3 1, 2,3
hhnn 11,,00,,22,,nn00,,11,,22
57.. (2(200poipnotisn)tAs)cauCsoanlsLidTeIrsyastnemLisTdI essacyrsibteemd bywtihthe diufnfeirtenicmepeuqlusaetiornesp3onse
4. (10 points) Compute the convolution yn xnhn, where
xn 3,1,5,n 1,2,3
hn 1,0,2,n 0,1,2
5. (20 points) Consider an LTI system with unit impulse response
y t etu t .
(a) Determine the system function H s , then indicate the ROC of H s .
(b) Determine the unit impulse response ht of this system, is this system
3. (10 points) If we know xt ut , and h t is illustrated in Figure 4. Please
determine xt ht .
ht
t2
1
0 1 23
t
Figure 4
4. (10 points) 4. (10 points)
Compute Compute
3. (10 points) If we know xt ut , and h t is illustrated in Figure 4. Please
determine xt ht .
ht
t2
1
0 1 23
t
Figure 4
a
2
(a) Linear? (b) Time-invariant? (c) Memoryless? (d) Causal? (e) Stable?
相关文档
最新文档