常见换热器结构及优缺点
u 形管式换热器型式与基本参数

U形管式换热器是一种常用的换热设备,其结构简单、换热效率高,广泛应用于化工、石油、电力等工业领域。
本文将从型式和基本参数两个方面对U形管式换热器进行介绍。
一、型式1. 单U管式换热器单U管式换热器是最简单的一种型式,其U形管只有一根,并且通过管板上的单侧进出口管束进行热交换。
适用于换热量小、压力低的场合。
2. 双U管式换热器双U管式换热器有两个并排的U形管,各自通过管板上的进出口进行热交换。
其结构相对复杂,但换热效率更高,能够承受更高的压力和温度。
适用于换热量大、压力高的场合。
3. 四通管式换热器四通管式换热器是在U形管两端分别连接两根直管,形成四通管结构,通过这种结构可以更方便地进行清洗和维护。
四通管结构也使得换热器的使用寿命更长。
二、基本参数1. 管束数目管束数目是指U形管束的数量,不同的使用场合要求不同的管束数目,一般情况下,管束数目越多,换热效率越高,但同时也会增加设备的成本和维护难度。
2. 材质U形管式换热器的材质一般为碳钢、不锈钢、合金钢等,根据工作介质的特性和工作条件的要求选择合适的材质,以确保设备的安全稳定运行。
3. 温度和压力温度和压力是决定U形管式换热器工作参数的重要因素,根据工作介质的温度和压力要求选择适当的换热器型号和材质,确保在工作过程中设备能够稳定运行。
4. 面积换热器的换热面积直接影响了其换热效率,根据需要确定换热面积大小,一般情况下,换热面积越大,换热效率越高。
U形管式换热器的型式和基本参数是决定其工作性能和应用范围的关键因素,正确选择合适的型式和基本参数对于设备的稳定运行和高效工作至关重要。
在实际应用中,根据具体使用场合和工艺要求,认真选择合适的U形管式换热器型式和基本参数,才能更好地发挥其换热效果。
U形管式换热器作为一种常见的换热设备,其结构简单,运行稳定,换热效率高,因此在工业生产中得到了广泛的应用。
本文将继续对U形管式换热器的工作原理、优缺点和应用领域等方面进行扩写,并对其未来发展趋势进行分析。
换热器分类和特点

换热器分类和特点
1. 板式换热器啊,那可是换热器家族里的小巧精灵!就像你家里那精致的小摆件,体积不大但功能强大。
你看,在一些需要紧凑空间的地方,它就能大显身手啦!比如说小型的暖通系统。
2. 管式换热器,这可是个厉害的家伙!像个大力士一样,能承受很大的压力和温度呢!大型化工厂不就经常用它嘛,那可真是稳定运行的保障啊!
3. 翅片管式换热器,哎呀呀,就像是给换热器穿上了超级保暖的羽绒服!加大了换热面积呢。
汽车的散热器不就是用它来保证汽车不“发烧”嘛!
4. 螺旋板式换热器,这多特别呀,像一条盘旋的巨龙!弯曲的设计让它在一些特殊工况下表现超棒的哟,想想那些不走寻常路的工业流程就懂啦!
5. 板翅式换热器,嘿,这就是个结合体呀!兼具了板式和翅片式的优点呢,难道不是很牛?航天领域用它来保障设备的正常运行,厉害吧!
6. 沉浸式换热器,哇哦,就像人泡在温泉里一样,那是全方位的接触换热呀!在一些需要简单直接换热的场合,它可不会让人失望,好比家用的热水器啊。
7. 喷淋式换热器,你想想,就像给换热器冲了个舒服的热水澡!让换热更加高效快速。
食品加工行业很多就靠它来保持温度呢!
8. 蓄热式换热器,这可是个能“存能量”的宝贝呀!就好像你存钱一样,把热量存起来等需要的时候再用。
钢铁厂的余热回收不就常用它嘛。
9. 混合式换热器,那真的是各种方式都来一点呀,超级灵活的呢!像个多面手一样。
在一些复杂的工艺中,它能自如应对,多厉害呀!
总之呀,换热器的种类这么多,各有各的特点和用处,我们可真得好好了解它们,才能让它们在合适的地方发挥最大的作用呀!。
常见换热器的种类及特点

常见换热器的种类及特点换热器是将热量从一个物质传递到另一个物质的设备,常见的换热器种类包括壳管式换热器、板式换热器、螺旋板式换热器、换热管束和换热器组件等。
每种换热器都有其独特的特点和适用场景。
1. 壳管式换热器壳管式换热器是最常见的一种换热器,由一个外壳和多个内置管子组成。
热传导通过管壁实现,热量从热源通过管内流体流向冷却介质。
壳管式换热器具有结构简单、适用性广、换热效率高的特点。
常见的壳管式换热器有固定式和浮动式两种,固定式适用于高温高压场合,浮动式适用于温差较大的情况。
2. 板式换热器板式换热器由多个金属板组成,热传导通过板之间的薄层流体实现。
板式换热器具有体积小、传热效率高、清洗方便等特点。
板式换热器适用于低温低压场合,如冷却水、空调系统等。
3. 螺旋板式换热器螺旋板式换热器是将螺旋板组装在两个端盖上形成的,通过螺旋板的旋转实现热传导。
螺旋板式换热器具有体积小、传热效率高、清洗方便等特点。
螺旋板式换热器适用于高温高压场合。
4. 换热管束换热管束是将多根直径较小的管子束缚在一起,通过管壁实现热传导。
换热管束具有结构紧凑、传热效率高、适用性广的特点。
换热管束适用于高温高压场合。
5. 换热器组件换热器组件是由多个换热器组成的系统,可以根据不同的需求组合和调整。
换热器组件具有灵活性高、适应性强的特点。
换热器组件适用于需要灵活配置和调整的场合。
以上是常见的换热器种类及其特点。
根据不同的工作条件和需求,选择适合的换热器可以提高换热效率,降低能耗,实现更加有效的热量传递。
容积式换热器及类型构造和优缺点

容积式换热器及类型构造和优缺点容积式换热器及类型构造与优缺点有哪些?容积式换热器重要由贮水罐体、换热盘管管束、热媒进出口、冷热水进出口及各种仪表和安全阀接口等构成。
容积式换热器可省掉热水箱(罐),热媒通人盘管管束与罐体内的水进行换热,使罐内水温上升而达到使用热水要求,属间接加热方式。
容积式换热器种类很多,从外型上可分立式和卧式换热器;从热媒性质可分汽水型和水水型,即热媒可采纳蒸汽或高温水;从罐体内结构而分有容积式和半容积式(半即热浮动盘管式)等类型。
容积式换热器,其罐体内充分水,冷水自换热器底部进入,热水从罐体顶部流出。
在水流动过程中会形成局部滞流区(冷水区),换热不充分,水温上升较慢,尤其在卧式容积式换热器中更为明显。
容积式换热器的盘管管束固定在罐体内,通入热媒,换热较差。
同时,盘管管束上极易结水垢,水垢又导致传热本领降低,所以在运行中需常常检修除垢,加添维护和修理的难度和工作量。
目前,较少采纳该种形式的换热器。
容积式换热器因换热效率较低,又罐体较大,占地或占空间位置较大,一般卧式容积式换热器可设在高位(或低位)混凝土支墩上,立式可安装在地面混凝土墩上。
容积式换热器具有贮水量大,供水安全稳定的优点。
为提高换热本领,盘管管束可采纳紫铜管制作。
半容积浮动盘管又称半即热浮动盘管换热器,重要由罐体、浮动盘管管束、冷热水进出口、热媒(高压蒸汽或高温水)进出口、压力表、温度计、温度调整阀、压力调整调、电控箱、安全阀等构成。
半容积浮动盘管换热器的罐体内贮有较少的水量(又称有限量贮水),热媒进人浮动盘管管束内与从罐体底部进人的被加热的冷水进行热交换,被热媒加热后的水从罐体顶部流出以充足用户的要求。
虽贮水量较少但却能快速补充热量,通过温度调整阀等掌控,一般在热媒流量较为稳定时也会达到较好的效果,由于热媒和被加热的冷水的流动采纳了加强传热的措施,同时因盘管管束是在水中处于浮动状态,使被加热的水在罐体内产生扰动,这种扰动强化了传热效果,使盘管传热效率提高。
四种换热器的结构特点及优缺点

四种换热器的结构特点及优缺点3、四种换热器的结构特点及优缺点。
(1)固定管板式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管等。
结构特点:管板与壳体之间采用焊接连接。
两端管板均固定,可以是单管程或多管箱,管束不可拆,管板可延长兼作法兰。
优点:结构简单,制造方便,在相同管束情况下其壳体内径最小,管程分程较方便。
缺点:壳程无法进行机械清洗,壳程检查困难,壳体与管子之间无温差补偿元件时会产生较大的温差应力,即温差较大时需采用膨胀节或波纹管等补偿元件以减小温差应力。
(2)浮头式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管、钩圈、浮头盖等。
结构特点:一端管板与壳体固定,另一端管板(浮动管板)与壳体之间没有约束,可在壳体内自由浮动。
只能为多管程,布管区域小于固定管板式换热器,管板不能兼作法兰,一般有管束滑道。
优点:不会产生温差应力,浮头可拆分,管束易于抽出或插入,便于检修和清洗。
缺点:结构较复杂,操作时浮头盖的密封情况检查困难。
(3)U形管式换热器组成:管箱、管板、U形换热管、壳体、折流板或支撑板、拉杆、定距管等。
结构特点:只有一个管板和一个管箱,壳体与换热管之间不相连,管束能从壳体中抽出或插入。
只能为多管程,管板不能兼作法兰,一般有管束滑道。
总重轻于固定管板式换热器。
优点:结构简单,造价较低,不会产生温差应力,外层管清洗方便。
缺点:管内清洗因管子成U形而较困难,管束内围换热管的更换较困难,管束的固有频率较低易激起振动。
(4)填料函式换热器组成:管箱、管板、管束、壳体、折流板或支撑板、拉杆、定距管、填料函等。
结构特点:一侧管箱可以滑动,壳体与滑动管箱之间采用填料密封。
管束可抽出,管板不兼作法兰。
优点:填料函结构较浮头简单,检修清洗方便;无温差应力,(具备浮头式换热器的优点,消除了固定管板式换热器的缺点)。
缺点:密封性能较差,不适用于易挥发、易燃、易爆和有毒介质。
各种类型换热器结构原理及特点(图文并茂)

各种类型换热器结构原理及特点(图文并茂)板式换热器的构造原理、特点板式换热器是由许多波纹形的传热板片,按一定的间隔,通过橡胶垫片压紧组成的可拆卸的换热设备。
板片组装时,两组交替排列,板与板之间用粘结剂把橡胶密封板条固定好,其作用是防止流体泄漏并使两板之间形成狭窄的网形流道,换热板片压成各种波纹形,以增加换热板片面积和刚性,并能使流体在低流速成下形成湍流,以达到强化传热的效果。
板上的四个角孔,形成了流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。
板式换热器结构图螺旋板式换热器的构造原理、特点“螺旋板式换热器是用薄金属板压制成具有一定波纹形状的换热板片,然后叠装,用夹板、螺栓紧固而成的一种换热器。
工作流体在两块板片间形成的窄小而曲折的通道中流过。
冷热流体依次通过流道,中间有一隔层板片将流体分开,并通过此板片进行换热。
螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
”结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
螺旋板式换热器结构图列管式换热器的构造原理、特点列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图管壳式换热器的构造原理、特点管壳式换热器(shell and tube heat exchanger)又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构简单、造价低、流通截面较宽、易于清洗水垢;但传热系数低、占地面积大。
可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是应用最广的类型。
管壳式换热器有固定管板式汽-水换热器、带膨胀节管壳式汽-水换热器、浮头式汽-水换热器、U形管壳式汽-水换热器、波节型管壳式汽-水换热器、分段式水-水换热器等几种类型。
换热器基本结构及性能特点

shell-and tube heat exchangers
(管壳式换热器)
封头shell cover 固定管法兰stationary head flange-channel
放气接口vent connection
膨胀节expansion joint
壳体shell
管程tube(side)pass
壳体接管
换热器的基本结构 和性能特点
换热器的基本结构和性能特点
在工业生产中,要实现热量的传递,须采用一定 的设备,此种传递热量的设备,称换热器或热交换 器。
换热器广泛应用于各种工业生产过程中,其主要 用途适用于加热、冷却、蒸发、冷凝、干燥等方面, 因其使用的条件不同,其容量、压力、温度等变动 范围较大,为了适应不同的用途,存在各种形式及 结构的换热器。
正三角形排列:
优点:管子较多,传热系数较大; 缺点:管外机械清洗较为困难,管外流体的流动阻力较大。
正方形排列:
(1)在相同的管板面积上可配置的传热管最少 (2)易于用机械清洗管外壁
同心圆排列:
(1)靠近壳体的地方管子分布比较均匀; (2)在壳体直径很小的换热器中可排列的管子数目比正三角形多。
换热器的基本结构和性能特点
主要由壳体、管束、管板、折流挡板和封头等组成。一 种流体在管内流动,其行程称为管程;另一种流体在管外流动, 其行程称为壳程。管束的壁面即为传热面。
目前工业生产中采用的主要有固定管板式,浮头式和U型 管式三类。其主要构造都是在一圆筒形壳体内设置许多平行管 组成的管束构成的。 换热器的基本结构和性能特点
换热器的基本结构和性能特点
按换热器传热面形状和结构分类
(1)管式换热器:管式换热器通过管子壁面进行传热,按传热管 的结构不同,可分为列管式换热管、套管式换热器、蛇管式换 热器和翅片管式换热器等几种。管式换热器应用最广。 (2)板式换热器:板式换热器通过板面进行传热,按传热板的结 构形式,可分为平板式换热器、螺旋板式换热器、板翅式换热 器和热板式换热器。 (3)特殊形式换热器:这类换热器是指根据工艺特殊的要求而设 计的具有特殊结构的换热器。如回转式换热器、热管式换热器、 空气冷却器等。
十一种换热器工作原理和特点图文讲解

十一种换热器工作原理和特点图文讲解一、换热器1、U形管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了消除热应力。
性能特点:(1)优点此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
(2)缺点是管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。
这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。
2、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。
根据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。
(1)优点这是一种古老的换热设备。
它结构简单,制造、安装、清洗和维修方便,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。
(2)缺点由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。
为提高传热系数,容器内可安装搅拌器。
3、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。
性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
四种管壳式换热器的结构特点

四种管壳式换热器的结构特点管壳式换热器是一种常见的换热设备,广泛应用于工业生产和能源领域。
根据不同的结构特点,可以将管壳式换热器分为四种类型:固定管板式、浮动管板式、固定管束式和浮动管束式。
固定管板式换热器是最常见的一种结构类型。
它由一个壳体和多个平行排列的管板组成。
管板上开有管孔,通过这些管孔将管子固定在板上。
流体通过管子流动,进行换热。
固定管板式换热器的主要优点是结构简单、制造成本较低,适用于一般的换热任务。
然而,由于管子固定在板上,清洗和维修时比较困难。
浮动管板式换热器是在固定管板式换热器的基础上改进而来的。
它的管板不再固定,而是可以上下浮动。
这样,在清洗和维修时,可以通过松开法兰螺栓,将管板抬起,方便清理管道内部。
浮动管板式换热器的结构稍复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
固定管束式换热器是将管子固定在壳体内部的一个管束上的换热器。
管束通常由多个平行排列的管子组成,管束两端通过管板与壳体连接。
流体在管束内流动,进行换热。
固定管束式换热器的优点是结构紧凑,热效率高,适用于对换热效果要求较高的场合。
然而,由于管束固定在壳体内部,清洗和维修时比较困难。
浮动管束式换热器是在固定管束式换热器的基础上改进而来的。
它的管束可以上下浮动,方便清洗和维修。
浮动管束式换热器的结构复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
四种管壳式换热器的结构特点分别是:固定管板式换热器结构简单、制造成本低;浮动管板式换热器清洗和维修方便;固定管束式换热器热效率高;浮动管束式换热器清洗和维修方便。
每种结构类型都有其适用的场合,选择合适的换热器结构可以提高换热效率,降低维护成本,确保设备的正常运行。
换热器的结构与性能特点

(1)沉浸式蛇管换热器
多以金属管弯绕而成,制成适应容器的形状,沉浸在容器内的液体中。两种 流体分别在管内、管外进行换热。
.
蛇管的形状主要取决于容器的形 状和生产队要求。如化工生产中 的反应器内的加热或冷却管,多 做成圆盘形或螺旋形的;氨冷的 冷冻盐水槽中的换热管,则多用 长的蛇形管构成。实际上,蛇管 可以制成任意需要的形状。如图 所示。 蛇管可以由钢管,铜管,银管或 其它有色金属和非金属材料如玻 璃,陶瓷,石墨和塑料等制成。
.
一、夹套式换热器
夹套式换热器是最简单的板式换热器, 它是在容器外壁安装夹套制成,夹套 与容器之间形成的空间为加热介质或 冷却介质的通路。这种换热器主要用 于反应过程的加热或冷却。在用蒸汽 进行加热时,蒸汽由上部接管进入夹 套,冷凝水由下部接管流出。作为冷 却器时,冷却介质(如冷却水)由夹 套下部接管进入,由上部接管流出。 特点:
几种常用的蛇管形状
沉浸式蛇管换热器的优点:结构简单、价格低廉、便于防腐蚀、能承受高压。 缺点:由于容器的体积较蛇管的体积大得多,管外流体的传热膜系数较小, 故常需加搅拌装置,以提高其传热效率. 。 多应用于小型容器内的液体换热。
(2)喷淋式蛇管换热器
喷淋式换热器也为蛇管式换热器,多用作冷却 器。这种换热器是将蛇管成行地固定在钢架上, 热流体在管内流动,自最下管进入,由最上管 流出。冷水由最上面的淋水管流下,均匀地分 布在蛇管上,并沿其两侧逐排流经下面的管子 表面,最后流入水槽而排出,冷水在各排管表 面上流过时,与管内流体进行热交换。这种换 热器的管外形成一层湍动程度较高的液膜,因 而管外对流传热系数较大。另外,喷淋式换热 器常放置在室外空气流通处,冷却水在空气中 汽化时也带走一部分热量,提高了冷却效果。
常见换热器结构及优缺点

常见换热器结构及优缺点6.7 换热器换热器是化⼯、⽯油、⾷品及其他许多⼯业部门的通⽤设备,在⽣产中占有重要地位。
化⼯⽣产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应⽤甚为⼴泛。
由于⽣产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
根据冷、热流体热量交换的原理和⽅式基本上可分为三⼤类:混合式、蓄热式、间壁式。
6.7.1 直接接触式(混合式)在这类换热器中,冷热两种流体通过直接混合进⾏热量交换。
在⼯艺上允许两种流体相互混合的情况下,这是⽐较⽅便和有效的,且其结构⽐较简单。
直接接触式换热器常⽤于⽓体的冷却或⽔蒸汽的冷凝。
6.7.2 蓄热式蓄热式换热器⼜称为蓄热器,它主要由热容量较⼤的蓄热室构成,室中可填耐⽕砖或⾦属带等作为填料。
当冷、热两种流体交替地通过同⼀蓄热室时,即可通过填料将得⾃热流体的热量,传递给冷流体,达到换热的⽬的。
这类换热器的结构简单,且可耐⾼温,常⽤于⽓体的余热及其冷量的利⽤。
其缺点是设备体积较⼤,⽽且两种流体交替时难免有⼀定程度的混合。
6.7.3 间壁式这⼀类换热器的特点是在冷热两种流体之间⽤⼀⾦属壁(或⽯墨等导热性好的⾮⾦属)隔开,以使两种流体在不相混合的情况下进⾏热量交换。
由于在三类换热器中,间壁式换热器应⽤最多,因此下⾯重点讨论间壁式换热器。
(1)夹套式换热器结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为⼀种流体的通道。
优点:结构简单,加⼯⽅便。
缺点:传热⾯积A⼩,传热效率低。
⽤途:⼴泛⽤于反应器的加热和冷却。
为了提⾼传热效果,可在釜内加搅拌器或蛇管和外循环。
(2)沉浸式蛇管换热器结构:蛇管⼀般由⾦属管⼦弯绕⽽制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进⾏换热。
优点:结构简单,便于防腐,能承受⾼压。
缺点:传热⾯积不⼤,蛇管外对流传热系数⼩,为了强化传热,容器内加搅拌。
(3)喷淋式换热器结构:冷却⽔从最上⾯的管⼦的喷淋装置中淋下来,沿管表⾯流下来,被冷却的流体从最上⾯的管⼦流⼊,从最下⾯的管⼦流出,与外⾯的冷却⽔进⾏换热。
换热器类型与结构简介

换热器广泛应用于化工、石油、制药、 能源等工业生产过程中,其主要用途适用 于加热、冷却、蒸发、冷凝、干燥等方面, 因其使用的条件不同,其容量、压力、温 度等变动范围较大,为了适应不同的用途, 故要采用各种形式及结构的换热器。
换热器分类
一. 按传热特征分: 间壁式:冷、热流体由固体间壁隔开,传热面积固定, 热量传递为对流-导热-对流的串联过程。 混合式:通过冷、热两流体的直接混合来进行热量交换。 蓄热式 (蓄热器):由热容量较大的蓄热室构成,使冷、 热流体交替通过换热器的同一蓄热室。 二. 按用途分:加热器、冷却器、冷凝器、蒸发器和再沸器 等。 三. 按结构分:夹套式、浸没式、喷淋式、套管式和管壳式 等。 选取换热器时,应根据工艺要求选用合适的类型,还应 按传热基本原理选定合理的换热流程,确定换热器的传热面 积、结构尺寸以及校核流体阻力等。
常见的间/D(浮头式列管换热器)
常见的间壁式换热器 六.板式换热器
板式换热器工作原理示意图
板式换热器的特点
(1). 结构紧凑,占用空间小 很小的空间即可提供较大的换热面积,不 需另外的拆装空间;相同使用环境下,其占地面积和重量是其他类型换热 器的1/3~1/5。 (2). 传热系数高 雷诺准数>10时,即可产生剧烈湍流,一般总传热系数 可高达3000~8000W/m2.K。 (3). 端部温差小 逆流换热,可达到1℃的端部温差。 (4). 热损失小 只有板片边缘暴露,不需保温,热效率≥98%。 (5). 适应性好,易调整 通过改变板片数目和组合方式即可调节换热能 力,与变化的热负荷相匹配。 (6). 流体滞留量小,对变化反应迅速,拆装简单,容易维护 板片是独 立的单元体,拆装简单,可将密封垫密闭的板片拆开、清洗。 (7). 结垢倾向低 高度紊流、光滑板表面,使积垢机率很小,且具自清 洁功能,不易堵塞。 (8). 低成本 使用一次冲压成型的波纹板片装配而成,金属耗量低,当 使用耐蚀材料时,投资成本明显低于其他的换热器。
六种换热器的原理及介绍

介绍
管式换热器在各种工业和民用领域中得到广泛应用,如石油化工、电力、供暖等。其优点 包括结构简单、易于制造、成本低、适应性强等。然而,管式换热器的流体阻力较大,需 要较高的泵送功率。此外,其热传导效率相对较低
3
原理
壳管式换热器是一种通过将热流体和冷流体分别流过相互平行的壳体和管束来实现热量交 换的设备。热量通过管壁传导给壳体中的冷流体,从而实现热量交换。壳管式换热器具有 较高的传热效率和较强的适应性
感谢观看
20XX年XX月
介绍
螺旋板式换热器在各种工业领域 中得到广泛应用,如石油化工、 电力等。其优点包括较高的紧凑 性、较低的流体阻力、能够处理 高温高压流体等。然而,螺旋板 式换热器的制造和维护较为复杂 ,成本相对较高。此外,其传热 效率相对较低
5
原理
翅片式换热器是一种通过在金属表面加工出翅片来增强传热效果的设备。它通过将冷热流 体分别流过翅片表面,通过翅片的扩展表面来增大传热面积,从而实现热量交换。翅片式 换热器具有较高的传热效率和较强的适应性
介绍
壳管式换热器在各种工业和民用 领域中得到广泛应用,如制冷、 化工等。其优点包括较高的传热 效率、较强的适应性、能够处理 各种类型的流体等。然而,壳管 式换热器的体积较大,需要较大 的安装空间。此外,其成本相对 较高
4
原理
螺旋板式换热器是一 种由两块螺旋形金属 板组成的热交换器。 它通过将冷热流体分 别流过金属板的内外 侧,通过金属板的热 传导和流体之间的对 流来实现热量交换。 螺旋板式换热器具有 较高的紧凑性和较低 的流体阻力
介绍
板式换热器在各种工业和民用领域中得到了 广泛应用,如供暖、制冷、工业制程中的加 热和冷却等。其优点包括高效能量转换、低 成本、易于维护和清洁等。然而,板式换热 器的流体阻力较大,对流体的清洁度要求较 高
换热器结构类型与损坏2

通气口
通液口
图6-22 折流板缺口布置
52
(B)卧式换热器的壳程介质为气液相共存或液体中含有固
体颗粒时,折流板缺口应垂直左右布置,并在折流板 最低处开通液口
通液口
图6-22 折流板缺口布置
53
4.折流板布置 位置:管束两端的折流板尽量靠近进出口接管 间距: Lmin不小于0.2Di,且不小于50mm;(特殊情况下 也可以取较小的间距) Lmax不大于Di;
管、壳壁温差较大或壳程介质易结垢需要 应用 清洗,又不宜采用浮头式和固定管板式的 场合。特别适用于管内走清洁而不易结垢 的高温、高压、腐蚀性大的物料。
11
结构
四、填料函式
填料函式密封
(d) AFP填料函双壳程换热器
12
优点
结构较浮头式简单,加工制造方便; 节省材料,造价比较低廉; 管束从壳体内可抽出; 管内、管间都能进行清洗,维修方便。
及无明显应力腐蚀等场合。
38
胀接机理
方法
非均匀胀接 均匀胀接
管子硬度一般须低于管板硬度, 若达不到,可进行管头退火处理
39
2.强度焊
保证换热管与管板连接的 密封性能及抗拉脱强度的焊接。
用于整体管板 图6-20 强度焊接管孔结构 用于复合管板40
强度焊
不易用于有较大振动及有间隙腐蚀的场合
41
优点 缺点 应用
箱盖 箱盖 箱箱 盖盖
(2)(2)(2)(2) 箱箱盖盖箱盖 箱盖
隔隔板板隔板 隔板
(a()a) ((aa(()aa()))a) ((bb) ) ((bb)) (( (b(b)b)b) )(b)
(c(()c(c)c()c())c)((c(c)c))
常见换热器结构及优缺点

6.7 换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。
由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。
6.7.1 直接接触式(混合式)在这类换热器中,冷热两种流体通过直接混合进行热量交换。
在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。
直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。
6.7.2 蓄热式蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。
当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。
这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。
其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。
6.7.3 间壁式这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。
由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。
(1)夹套式换热器结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。
优点:结构简单,加工方便。
缺点:传热面积A小,传热效率低。
用途:广泛用于反应器的加热和冷却。
为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。
(2)沉浸式蛇管换热器结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。
优点:结构简单,便于防腐,能承受高压。
缺点:传热面积不大,蛇管外对流传热系数小,为了强化传热,容器内加搅拌。
(3)喷淋式换热器结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。
十三种类型换热器结构原理及特点(图文并茂)

十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。
板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。
压紧板上有本设备与外部连接的接管。
板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。
人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。
并采用特殊结构,保证两种流体介质不会串漏。
板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。
结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。
广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。
特别是在石油炼制和化学加工装置中,占有极其重要的地位。
换热器的型式。
管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。
它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。
钢壳内衬铜的厚度一般为1.0mm。
钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。
此阀除非定期检修是绝对不能取消的。
部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。
换热器的结构和分类

换热器的结构与分类换热器的分类➢按用途分类:加热器、冷却器、冷凝器、蒸发器与再沸器➢按冷热流体热量交换方式分类:混合式、蓄热式与间壁式➢主要内容:1、根据工艺要求,选择适当的换热器类型;2、通过计算选择合适的换热器规格。
间壁式换热器的类型一、夹套换热器➢结构:夹套式换热器主要用于反应过程的加热或冷却,就是在容器外壁安装夹套制成。
➢优点:结构简单。
➢缺点:传热面受容器壁面限制,传热系数小。
为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。
也可在釜内安装蛇管。
二、沉浸式蛇管换热器➢结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。
➢优点:结构简单,便于防腐,能承受高压。
➢缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。
三、喷淋式换热器➢结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。
在下流过程中,冷却水可收集再进行重新分配。
➢优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好➢缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。
➢用途:用于冷却或冷凝管内液体。
四、套管式换热器➢结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。
➢优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。
➢缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。
➢用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。
五、列管式换热器列管式换热器又称为管壳式换热器,就是最典型的间壁式换热器,历史悠久,占据主导作用。
➢优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。
换热器形式和优缺点

固定管板换热器先进行壳程试压,同时检查换热管与管板连接接头,然后进行管程试压;
U形管式换热器、釜式重沸器(U形管束)及填料函式换热器先用试验压环进行壳程试压,同时检查接头,然后进行管程试压;
浮头式换热器、釜式重沸器(浮头式管束)先用试验压环和浮头专用工具进行管头试压,对于釜式重沸器尚应配备管头试压专用壳体,然后进行管程试压,最后进行壳程试压;
备料--划线--切割--边缘加工(探伤)--成型--组对--焊接--焊接质量检验--组装焊接--压力试验
2质量检验
化工设备不仅在制造之前对原材料进行检验,而且在制造过程中要随时进行检查。
3质量检验内容和方法
设备制造过程中的检验,包括原材料的检验、工序间的检验及压力试验,具体内容如下:
(1)原材料和设备零件尺寸和几何形状的检验;
产部门中。
按照用途的不同,可将混合式热交换器分成以下几种不同的类型:
(1)冷却塔(或称冷水塔)
在这种设备中,用自然通风或机械通风的方法,将生产中已经提高了温度的水进行冷却降温之后循环使用,以提高系统的经济效益。例如热力发电厂或核电站的循环水、合成氨生产中的冷却水等,经过水冷却塔降温之后再循环使用,这种方法在实际工程中得到了广泛的使用。
蓄热式换热器一般用于对介质混合要求比较低的场合。
随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。完善的换热器在设计或选型时应满足以下基本要求:
(1) 合理地实现所规定的工艺条件;
(2) 结构安全可靠;
(3)可在高温、高压下工作,一般温度小可用于结垢比较严重的场合;
常见一般换热器结构、优缺点及适用范围

一般常见换热器结构、优缺点及适用范围浮头换热器结构:两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。
浮头由浮头管板,钩圈和浮头盖组成,是可拆连接,管束可从壳体中抽出。
管束与壳体的热变形互不约束,不会产生热应力。
优点:可抽式管束,当换热管为正方形或转角正方形排列时,管束可抽出进行机械清洗,适用于易结垢及堵塞的工况。
一端可自由浮动,无需考虑温差应力,可用于大温差场合。
缺点:结构复杂,造价高,设备笨重,材料消耗大。
浮头端结构复杂影响排管数。
浮头密封面在操作时,易产生内漏。
适用范围:适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
浮头换热器在炼油行业或乙烯行业中应用较多,由于内浮头结构限制了使用压力和温度一般情况Pmax≤6.4MPa,Tmax≤400℃。
固定管板换热器结构:管束连接在管板上,管板与壳体相焊。
优点:结构简单紧促,能承受较高压力,造价低,管程清洗方便,管子损坏时方便堵管或更换。
排管数比U 形管换热器多。
缺点:管束与壳体的壁温或材料的线胀系数相差较大时,壳体和管束中将产生较大热应力,为此应需要设置柔性元件(如膨胀节)。
不能抽芯无法进行机械清洗。
不能更换管束,维修成本较高。
适用范围:壳程侧介质清洁不易结垢,不能进行清洗,管程与壳程两侧温差不大或温差较大但壳侧压力不高的场合。
管壳式换热器的管子是换热器的基本构件,它为在管内流过一种流体和穿越管外的另一种流体之间提供传热面。
根据两侧流体的性质决定管子材料,将具有腐蚀性,水质差的海水放在管内流动,水质较好的除盐水放在管子外壳侧,这样管子只需采用耐海水腐蚀的钛管,同时清洗污垢较为方便,管径从传热流体力学角度考虑,在给定壳体内使用小直径管子,可以得到更大的表面密度但大多数流体会在管子表面上沉积污垢层,尤其管内冷却水水质较差,泥沙和污物及海生物的存在,都可能会在管壁上形成沉积物,将传热恶化并使定期的清洗工作成为必要,管子清洗限制管径最小约为20 mm,钛管一般采Φ25 mm,对给定的流体,污垢形成主要受管壁温度和流速的影响,为得到合理的维修周期,管内侧水的流速应在2 m/s左右(视允许压降的要求)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.7 换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。
由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。
6.7.1 直接接触式(混合式)在这类换热器中,冷热两种流体通过直接混合进行热量交换。
在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。
直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。
6.7.2 蓄热式蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。
当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。
这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。
其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。
6.7.3 间壁式这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。
由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。
(1)夹套式换热器结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。
优点:结构简单,加工方便。
缺点:传热面积A小,传热效率低。
用途:广泛用于反应器的加热和冷却。
为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。
(2)沉浸式蛇管换热器结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。
优点:结构简单,便于防腐,能承受高压。
缺点:传热面积不大,蛇管外对流传热系数小,为了强化传热,容器内加搅拌。
(3)喷淋式换热器结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。
在下流过程中,冷却水可收集再进行重新分配。
优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好。
缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。
用途:用于冷却或冷凝管内液体。
(4)套管式换热器结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。
优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。
缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。
用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。
(5)列管式换热器(管壳式换热器)列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。
主要由壳体、管束、管板、折流挡板和封头等组成。
一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。
管束的壁面即为传热面。
优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。
为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。
折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。
常用的折流挡板有圆缺形和圆盘形两种,前者更为常用。
壳体内装有管束,管束两端固定在管板上。
由于冷热流体温度不同,壳体和管束受热不同,其膨胀程度也不同,如两者温差较大,管子会扭弯,从管板上脱落,甚至毁坏换热器。
所以,列管式换热器必须从结构上考虑热膨胀的影响,采取各种补偿的办法,消除或减小热应力。
根据所采取的温差补偿措施,列管式换热器可分为以下几个型式。
(1)固定管板式壳体与传热管壁温度之差大于50 C,加补偿圈,也称膨胀节,当壳体和管束之间有温差时,依靠补偿圈的弹性变形来适应它们之间的不同的热膨胀。
(2)浮头式两端的管板,一端不与壳体相连,可自由沿管长方向浮动。
当壳体与管束因温度不同而引起热膨胀时,管束连同浮头可在壳体内沿轴向自由伸缩,可完全消除热应力。
特点:结构较为复杂,成本高,消除了温差应力,是应用较多的一种结构形式。
(3)U型管式把每根管子都弯成U形,两端固定在同一管板上,每根管子可自由伸缩,来解决热补偿问题。
特点:结构较简单,管程不易清洗,常为洁净流体,适用于高压气体的换热。
6.7.4 管壳式换热器的设计和选用(1)设计和选用时应考虑的问题除了前面讲过流体的流向,流速和流体出口温度的选择外,还应考虑:① 冷热流体流动通道的选择a 、不洁净或易结垢的液体宜在管程,因管内清洗方便,但U 形管式的不宜走管程;b 、腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀;c 、压力高的流体宜在管内,以免壳体承受压力;d 、饱和蒸汽宜走壳程,饱和蒸汽比较清洁,而且冷凝液容易排出;e 、被冷却的流体宜走壳程,便于散热;f 、若两流体温差大,对于刚性结构的换热器,宜将给热系数大的流体通入壳程,以减小热应力;g 、流量小而粘度大的流体一般以壳程为宜,因在壳程100>Re 即可达到湍流。
但这不是绝对的,如果流动阻力损失允许,将这种流体通入管内并采用多管程结构,反而会得到更高的给热系数。
以上各点常常不可能同时满足,而且有时还会相互矛盾,故应根据具体情况,抓住主要方面,作出适宜的决定。
② 流动方式的选择除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。
当流量一定时,管程或壳程越多,对流传热系数越大,对传热过程越有利。
但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。
因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。
当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正。
③ 换热管规格和排列选择换热管直径越小,换热器单位容积的传热面积越大。
因此对于洁净的流体管径可取得小些。
但对于不洁净或易结垢的流体,管径应取的大些,以免堵塞。
为了制造和维修的方便,我国目前试行的系列标准规定采用φ19×2mm 和φ25×2.5mm 两种规格,管长有1.5、2.0、3.0、6.0m ,排列方式:正三角形、正方形直列和错列排列。
各种排列方式的优点: ⎪⎩⎪⎨⎧,给热系数大,管外流体湍流程度高等边三角形:排列紧凑热系数正方形错列:可提高给但给热效果较差正方形排列:易清洗, ④ 折流挡板安装折流挡板的目的是为提高壳程对流传热系数,为取得良好的效果,挡板的形状和间距必须适当。
对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。
由图可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。
挡板的间距对壳体的流动亦有重要的影响。
间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。
一般取挡板间距为壳体内径的0.2~1.0倍。
a.切除过少b.切除适当c.切除过多挡板切除对流动的影响 (2)管壳式换热器的给热系数给热系数包括管内流动的给热系数和壳程给热系数,管内流体的给热系数前面已经学过,而壳程的给热系数与折流挡板的形状、板间距,管子的排列方式、管径及管中心距等因素有关。
壳程中由于设有折流挡板,流体在壳程中横向穿过管束,流向不断变化,湍动增强,当100>Re 即可达到湍流状态。
(3)流体通过换热器的阻力损失① 管程阻力损失包括各程直管阻力损失1f h 、回弯阻力损失2f h 及换热器进出口阻力损失3f h 构成,其中3f h 可忽略不计。
p 21)(N f h h h t f f ft +=式中 t f —— 管程结垢校正系数,对三角形排列取1.5,正方形排列取1.4;p N ——管程数;221i i f u d l h λ= 式中 l ——换热管长度,m ; 2322i f u h = (2f h 包括回弯和进出口局部阻力及封头内流体转向的局部阻力之和,取阻力系数为3)管程阻力损失也可写成232p i t i t u N f d l p ρλ⎪⎪⎭⎫ ⎝⎛+=∆ 由于p N u i ∝,所以3P N p t ∝∆。
对同一换热器,若单程改为双程,阻力损失剧增为原来的8倍,而给热系数只增为原来的1.74倍,因此在选择换热器管程数时,应该兼顾传热与流体压降两方面的得失。
② 壳程阻力损失壳程由于流动状态比较复杂,结构参数较多,提出的公式较多,但可归结为22o u h fs ζ= 不同的计算公式,决定ζ和o u 的方法不同,计算结果往往不一致。
(4)对数平均温差的修正前面学过的对数平均温差m t ∆仅适用于纯并流或纯逆流的情况,当采用多管程或多壳程时,由于其内流动形式复杂,平均推动力m t ∆的计算式相当复杂。
为了方便,可将这些复杂流型的平均推动力的计算结果与进出口温度相同的纯逆流相比较,求出修正系数ψ,即逆m m t t ∆=∆ψ其中ψ的求法为:冷流体温升热流体温降=两流体最初温差冷流体温升=--=--==12211112),(t t T T R t T t t P R P f ψ 根据P ,R 值由图查出各种情况的ψ值。
在设计时注意应使ψ>0.8,为什么?因为①经济上不合理;②操作温度略有变动,则ψ下降很快,使操作不稳定。
(5)管壳式换热器的设计和选用步骤① 由已知条件计算传热量及逆流平均温差逆m t ∆逆m m t KA t KA Q ∆=∆=ψ由上式可知,要求A ,必须知道K ,ψ;而K 和ψ则是由传热面积A 的大小和换热器结构决定的。
因此,在冷、热流体的流量及进出口温度已知的条件下,选用或设计换热器必须通过试差计算。
② 初选换热器的尺寸规格a 、初步选定流体流动方式,由冷热流体的进出口温度计算温差修正系数ψ,应使ψ>0.8,否则应改变流动方式,重新计算;b 、依据经验估计总传热系数估K ,估算传热面积估A ;c 、根据估A ,根据系列标准选定换热管的直径、长度及排列;如果是选用,可根据估A 在系列标准中选用适当的换热器型号;③ 计算管程的压降和给热系数;a 、根据经验选定流速,确定管程数目,并计算管程压降t p ∆,若t p ∆>允t p ∆,必须调整管程数目重新计算。
b 、计算管内给热系数2α,若2α<估K ,则应改变管程数重新计算;若改变管程数使t p ∆>允t p ∆,则应重新估计估K ,另选一换热器型号进行试算。
④ 计算壳程压降和给热系数;a 、根据流速范围确定挡板间距,并计算壳程压降s p ∆,若s p ∆>允s p ∆,可增大挡板间距。