第9章电位分析法.

合集下载

电位分析法

电位分析法
电极的主要组成部分是电极 下端的玻璃泡,它是电极的 敏感膜,是在SiO2基质中 加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。利用 玻璃膜的组成不同可制成对 不同阳离子有响应的玻璃电 极。对H+有响应的电极叫 pH玻璃电极,它是问世最 早(1906年)的离子选择 性电极,也是人们研究较多 的离子选择性电极。
电位分析法按原理分类
直接电位法和电 位滴定法。 直接电位法是通 过测量电池电动 势,从而确定指 示电极电位,然 后根据Nernst方 程,计算被测物 含量。

电位滴定法是通 过测量在滴定过 程中指示电极电 位的变化来确定 滴定终点,再按 滴定中消耗的标 准溶液的体积和 浓度计算待测物 质含量,实质上 是一种容量分析 方法。
第二节 离子选择性电极(ISE)概述
离子选择性电极由三部分组成:
离子选择性电极由三部分组成:①敏感膜:对
给定离子响应; ②内参液:含有与膜及内参 比电极响应的离子;③内参比电极。 也有的膜电极不用内参液和内参比电极,在 压膜时,在膜上压一层银粉,焊上一根金属 导线,或用导电胶将导线与膜粘在一起,或 把敏感膜涂在金属丝或片上制成涂层电极。
φm = K RT ln α FF
氟离子选择性电极的使用范围

一般在1~10-6 mol· -1范围内电极电位符合能斯特方程;检测 L 下限由单晶膜的溶度积决定,LaF3饱和溶液中F-离子浓度 约为10-7 mol· -1,因此氟电极在纯水体系中最低检测下限为 L 10-7 mol· -1左右;实验中要用F-离子的标准溶液校正电极。 L 电极在低活度范围内响应时间为~3min,而后在高活度范围 内响应迅速。氟电极的选择性较好,PO43-,CH3COO-,X -,NO -,SO 2- ,HCO -等离子不干扰,主要干扰离子 3 4 3 -。干扰的原因是在膜表面产生如下反应: 是OH LaF3 + 3OH- = La(OH)3 + 3F- 产生的F-离子对测定造成正干扰,而La(OH)3 层也对 测定有干扰. 在酸度较高时,会形成HF,HF2-,HF32-,而使F-离子浓 度降低,因此测定时应控制pH值在5~6之间。

9 电位分析法习题

9 电位分析法习题

第九章 电位分析法6.pH 玻璃电极和饱和甘汞电极组成如下测量电池:pH 玻璃电极 | H +(a = x ) SCE在25 ˚C 时,测得pH 为5.00 标准缓冲溶液的电动势为0.218V ;若用未知溶液代替标准缓冲溶液,测得电动势为0.06V ,计算未知溶液的pH 。

解:答:的值为解得可得由电池 2.32pH pH059.00.06 5.000.0590.218pH 059.0×+=×+=+=K K K E7.用镁离子选择性电极测定溶液中Mg 2 +,其电池组成如下:镁离子选择性电极 | Mg 2 +(1.15×10– 2 mol·L – 1) SCE 在25˚C 测得该电池的电动势为0.275 V ,计算:(1) 若以未知浓度的Mg 2 +溶液已知代替溶液,测得电动势为0.412 V ,求该未知溶液的pM ;(2) 若在(1)的测定中,存在±0.002 V ,的液接电位,此时测得的Mg 2+的浓度可能在什么范围内?解:答:的值为解得可得由电池 6.64pM 51.6pM 2059.0002.00.412pM 2059.0002.0412.0)2(57.6pM pM 2059.0412.0)1015.1lg (2059.00.275)1(pM 059.0212<<+=−+=++=×−+=+=−K K K K K E8. 有一玻璃膜钾电极,在浓度为0.1000 mol·L –1 NaCl 溶液中测得电位为67 mV ,而在同样浓度的KCl 溶液中电位为 113 mV ,计算:(1) 电极的选择系数 K K +, Na + ;(2) 在 1.00 × 10–3 mol·L –1 NaCl 和 1.00 × 10–2 mol·L –1 KCl 混和溶液中测定误差是多少(电极斜率为 59 mV /pK )?解:答:测量误差)(解得,)(%70.1%1001000.11000.117.0%100][K ]Na [217.0lg 059.0067.0lg 059.0113.0123K ,Na K ,Na 11K ,Na K =××××=×==+=+=−−+++++++++K K a K K a K 9.以甘汞电极和氟离子选择电极组成如下电池:SCE 试液或标准溶液 | 氟离子选择性电极当氟离子浓度为0.001 mol·L –1 时,测得的电动势为0.158 V ;于同样的电池中,放入未知浓度的含氟试液,测得的电动势为0.217V ,计算未知溶液的氟离子浓度。

电位滴定法(常用离子选择性电极直接电位法电位滴定法电分析化学其他方法)

电位滴定法(常用离子选择性电极直接电位法电位滴定法电分析化学其他方法)

RT E K ln a nF 常 数 f (a )
Walther Nernst 1864-1941
工作电池的电动势E仅与待测物质的含量(活度a)有关
第9章 电位分析法
分析化学
http://chemcenter.tongji. /analchem
常用参比电极
1 甘汞电极
2 银-氯化银电极
电极电位关系式:推导过程类似于玻璃电极
R T K l n a F 电 极 F F
'
第9章 电位分析法
/analchem
9.2.2 氟离子选择电极(单晶膜电极)
干扰
选择性高的经典ISE电极
LaF3+3OHLa(OH)3 +3F-
Ag-AgCl电丝(内参比电极) 0.1mol/L HCl溶液(内参比溶液)
组合了ISE与参比电极 已构成了工作原电池
浓度一定的KCl溶液 (参比电极的内部溶液)


(-) Ag,AgCl︱HCl溶液︱膜︱H+(x)‖KCl (饱和)︱Hg2Cl2,Hg (+)
指示电极
待测溶液
外参比电极
3/9/2019 1:41 PM
第9章 电位分析法
/analchem
9.2.1 氢离子选择性电极(玻璃膜电极Glass electrode)


R T " K l n a K 0 . 0 5 9 1 p H + 膜 试 样 H F
"
结论: 在一定条件下(pH 1
/analchem
9.2.1 氢离子选择性电极(玻璃膜电极Glass electrode)
第9章 电位分析法

第九章++电位法和永停滴定法(人卫第8版)

第九章++电位法和永停滴定法(人卫第8版)
惰性金属电极(零类电极) • 膜电极:也称离子选择性电极:符合Nernst方程式 参比电极 • 饱和甘汞电极(第二类电极) • 银-氯化银电极(第二类电极)
第三节 直接电位法
直接电位法
Direct Potentiometric Method
• 选择合适的指示电极与参比电极,浸入待测溶液中组成 原电池,测量原电池的电动势,根据Nernst方程直接求 出待测组分活(浓)度的方法。
原电池
Zn棒 V Cu棒
CuSO4
ZnSO4
电解池:Daniell电池
V Zn棒
Cu棒
盐桥
ZnSO4
CuSO4
化学电池
• •
原电池:电极反应自发进行,化学能转变为 电能。 电解池:电极反应不能自发进行,必须有外加电压电极 反应方可进行,电能转 变为化学能的装置。
原电池与电解池的比较
原电池
作用 条件 电极名称 电极反应 电子流动 方向 化学能转变为电能 电极反应可自发进行
根据在滴定过程中电池电动势的变化来确定滴定终点的一
类滴定分析滴定装置
1.滴定管 2.参比电极 3.指示电极
4.电磁搅拌器 5.电子电位计
二、滴定终点的确定
(一)图解法
• • •
E-V曲线法
ΔE/ΔV-V曲线法
Δ2E/ΔV2-V曲线法
(二)二阶导数内插法


加入11.30ml滴定剂时,Δ2E/ΔV2=5600;加入11.35ml时,
二、指示终点的三种电流变化曲线
第一节 电化学分析法概述
一、电化学和电分析化学
Electrochemistry and Electroanalytical Chemistry • 电化学:将电学与化学有机结合并研究二者之间相互关系 的一门学科。 • 电分析化学:依据电化学原理和物质的电化学性质建立的 一类分析方法。

电位分析法

电位分析法

电位分析法一、概论:电位分析法是通过化学电池的电流为零的一类方法二、电位分析法指示电极分类1、第一类电极:金属及其离子溶液2、第二类电极:金属及其难溶盐(或络合离子)3、第三类电极:金属与具有两种共同阴离子的难溶盐或难解离的络合离子4、第零类电极:惰性金属Pt 、Au 、C 等三、参比电极与盐桥1、参比电极1标准氢电极:在任何温度下电位值都为零,但一般不使用,因为操作麻烦又贵。

2甘汞电极和银-氯化银电极:电极电位可从P362查表获得甘汞电极:)/(|)(),(22L xmol KCl s Cl Hg l Hg 银-氯化银电极:)/(|)(),(L xmol KCl s AgCl s Ag 2、盐桥1作用:联通电路,消除或减小液接电位2使用条件:不含被测离子、正负电子迁移率基本相等、离子浓度尽可能大,减少液接电位。

四、离子选择电极1、膜电电位E 膜=in Dd out D E E E ++=l in l out a a nF RT k ln '±(d E :扩散电位,D E :界面电位,a :活度)2、离子选择电极电位:l out ISE a nF RT const E ln '±=(负离子➕,正离子➖)l out ISE SCEBattery a nFRT K E E E ln ±=-=(负离子➖,正离子➕)ISE :离子选择电极,SCE :参比电极3、离子选择电极类型及其相应机理1玻璃电极:玻璃在纯水或稀酸中浸泡时,玻璃中的+Na 与溶液里的+H 发生交换,在玻璃表面形成水化胶层。

此时玻璃的结构为:内外水化胶层+中间干玻璃层;干玻璃层靠+Na 导电,而水化胶层靠+H 扩散导电。

2晶体膜电极A 、氟离子单晶电极:敏感膜为3LaF 的单晶薄片,氟离子能扩散进入膜相的缺陷空穴,膜中的氟离子也可以进入溶液,因而在两相界面上产生了膜电位。

B 、硫、卤素离子电极。

09第九章 电分析化学法导论

09第九章  电分析化学法导论
池外加电压增加。当电流 i 很小时,电极可视为可逆,没有所谓的 “极化”现象产生。
9-5-1 浓差极化
有电流通过时,电 极表面电活性物质的 消耗若得不到有效补 充,电极电位将变得 与平衡电位不同。此 称浓差极化
平衡电位 指由Nernst方程按 本体溶液浓度计算 得到的电位。
9-5-1 浓差极化
对于还原反应,浓差极化将使电极电位变得更负。对于氧化反应, 浓差极化将使电极电位变正。
AgCl /Ag AgCl /Ag
'
RT ln aCl F
甘汞电极 Hg Hg2Cl2(s) KCl(a=xmol/L)
SCE 0.242
将Pt插入汞与甘汞的糊状物中,内充液多为饱和KCl,也可为0.1 或1.0mol/LKCl。内充液一般用Hg2Cl2饱和。盐桥为充满内充液的 多孔陶瓷。
9-5-3 超电位
由于极化,使实际电位和可逆电位之间存在差异 ,此差异即为 超电位 对于阳极和阴极,分别有阳极超电位a和阴极超电位c。对于单个 电极,超电位为浓差超电位和电化学超电位之和
= 浓差+电化
9-5-3 超电位
影响因素: a) 电流密度,
b) T,
c) 电极化学成份不同,不同。与电活性物质和电极材料 亲和力有关
≈ 右 - 左≈ c - a
当E>0,为原电池;E<0为电解池。
9-2 液接电位与盐桥
9-2-1 液接电位 Ej
因各离子迁移速度不同而产生 对于类型1的1:1型电解质接界:
RT a1 E j t t ln F a2
设a1=0.01,a2=0.1。则t+=0.83、t-=0.17, 25 ℃时

第九章电位分析法

第九章电位分析法

第九章 电位分析法1、试以pH 玻璃电极为例简述膜电位的形成机理。

答:纯SiO 2制得的石英玻璃不具有响应H +的功能,在石英中加入Na 2O ,引起Si -O -Si 键断裂,形成荷电的硅氧交换Si -O -Na +位。

当玻璃电极浸泡水中,H +可进入玻璃膜与Na +交换,占据Na +的点位,当电极与试液接触时,由于H +活度不同发生扩散,产生相界电位。

‘,,lg059.0外外外外+++=H H aa K E‘,,lg059.0内内内内+++=H H a a K E内外内外膜,,lg 059.0++=-=H H a a E E E作为为玻璃电极整体,而E 参和内,+H a为常数,合并常数项pH K a K E E E H 059.0lg 059.0,-=+=+=+外膜内参玻2、在用电位法测量溶液pH 时,为什么必须使用标准缓冲溶液。

答: E 玻 = K - 0.059pH 由于K 无法测量,实际测定中,未知液pH x 的测量是与标准缓冲溶液的pH s 相比较测定的,且E 玻须与参比电极组成电池,通过E 电池测定。

若SCE 为正极:pHK a K E K E E E E E E E E E E 外H 膜膜AgCl Ag SCE SCE 059.0lg 059.0,/+=-=-=++--=++-=++液接不对称液接不对称玻电池由 E x = K +0.059pH x E s = K +0.059pH s 整理得: 059.0sx s x E E pH pH -+=3、在下列滴定体系中应选择什么电极作指示电极? (1)用S 2-滴定Ag +; (2)用Ag +滴定I -;(3)用F -滴定Al 3+;(4)用Ce 4+滴定Fe 2+ 答:(1)银电极; (2)银电极; (3)Al 3+选择性电极; (4)铂电极4、用玻璃电极作指示电极,以0.2000mol/L KOH 溶液滴定0.0200mol/L 苯甲酸溶液。

第九章--电位分析法(2014)PPT课件

第九章--电位分析法(2014)PPT课件

H水 合层 H溶 液
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
.
13/6193
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
同一玻璃电极,膜内外表面性质可以看成是相同 的,所以常数K内=K外;
属于非晶体膜电极。 最早使用的离子选择性电极。 核心部分是玻璃膜。
.
6/696
玻璃膜的不同组成可制成对不同 阳离子响应的玻璃电极。
pH玻璃膜电极的敏感膜是在SiO2 基质中加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。厚度约为 100 mm左右。
原理:玻璃膜产生的膜电位与待 测溶液的pH值有关。
.
19/6199
3.3 pH值的测定
pHlogH[] pH loagH
饱和甘汞电极为参比电 极 , 玻 璃 电 极 作 为 H+ 活 度 指 示电极,两者插入溶液中组 成电池:
A A g ,0 . g 1 m C L 1 H ol 玻 lC 试 l 璃 K ( 饱 液 C ) 膜 ,H 2 C l 和 2 H g l
.
34/6394
二氧化碳气敏电极
电极浸入待测液,试液中 待测CO2通过透气膜扩散 ,直到透气膜内外CO2的 分压相等。
CO2引起的内电解质溶液 pH变化用pH玻璃电极指 示,由此测定试液中CO2 的浓度。
.
35/6395
气敏电极一览表:
.
36/6396
7. 酶电极
将 生物酶 涂剂:二癸基磷酸钙+苯基磷酸二辛酯溶液。
.
32/6392

第九章 电位分析法

第九章 电位分析法

的活度大1000倍 时, 两者产生相同的电位。 倍 两者产生相同的电位。 的活度大 选择性系数严格来说不是一个常数, 选择性系数严格来说不是一个常数,在不同离子活度条 Kij仅能用来估计干扰离子存在时产生的测定误差或确定 仅能用来估计干扰离子存在时产生的测定误差 估计干扰离子存在时产生的测定误差或确定 件下测定的选择性系数值各不相同。 件下测定的选择性系数值各不相同。 电极的适用范围。 电极的适用范围。
三、其他电极
1.其他玻璃电极 1.其他玻璃电极 根据玻璃膜组成不同, 根据玻璃膜组成不同,可以制备其他阳离 子的玻璃电极。 子的玻璃电极。 如课本P139的表9 P139的表 如课本P139的表9-1。 2.晶体膜电极 2.晶体膜电极 F电极 3.液膜电极 3.液膜电极 4.气敏电极 4.气敏电极 测定气体样品的浓度 5.酶电极 5.酶电极 测定葡萄糖、 测定葡萄糖、乳酸等 注意:无论什么电极,原理都是建立在膜的响应 注意:无论什么电极, 上。
二、pH玻璃电极 pH玻璃电极
核心部分:玻璃膜( 厚度0.5mm 核心部分:玻璃膜( 厚度0.5mm ) 基质中加入Na CaO烧结而成 SiO2基质中加入Na2O和CaO烧结而成 的特殊玻璃膜。 的特殊玻璃膜。 内参比溶液:0.10M的HCl。 内参比溶液:0.10M的HCl。 内参比电极:AgCl-Ag电极。 内参比电极浓(活)度测定方法
一、浓度和活度 二、标准曲线法 三、标准加入法
例3 某硝酸根电极对硫酸根的选择系数: 某硝酸根电极对硫酸根的选择系数: K NO3-, SO42-=4.1×10 -5 × 用此电极在1.0mol/L硫酸盐介质中测定硝酸根 如果要求测量 硫酸盐介质中测定硝酸根,如果要求测量 用此电极在 硫酸盐介质中测定硝酸根 误差不大于5%,试计算可以测定的硝酸根的最低活度为多少 试计算可以测定的硝酸根的最低活度为多少? 误差不大于 试计算可以测定的硝酸根的最低活度为多少 解:

第九章 电位分析法

第九章  电位分析法

a' H +

aH +

a' H +

p 28
式中:
aH+外, aH+内为待测溶液和内参比溶液中氢离子活度。 aH+外’, aH+内’为外水化胶层和内水化胶层中的氢离子活 度。k外、k内为玻璃外,内膜性质决定常数。若膜内外表 面性质相同,则k外=k内, aH+外‘ = aH+内’ ,则
E膜 E道,外 E道,内 0.0592 lg
EE
0 Ce 4 Ce 3
4

3
0.059 lg
aCe 4 aCe 3
p9
第二节
离子选择性电极
膜电极,又称离子选择性电极(Ion Selective Electrode,ISE) (1)敏感膜:对特定的离子有选择性的响应
(2)响应机理:与金属指示电极区别,没有电子的得失(即 氧化还原反应)
p 31
产生原因
由于玻璃膜内外结构、性质并不完全一致,导致
内外水化胶层中aH+外’ ≠ aH+内 ’ ,在这种情况下, 即使aH+外 = aH+内时, E膜也不为0。 消除或减小、稳定不对称电位方法: 在水中长时间浸泡(24h); 用标准缓冲溶液校正。
p 32
(2)碱差(钠差) 定义:普通玻璃电极的适应范围为1-10,当用 玻璃电极测定pH>10的溶液或钠离子浓度较高的溶液 时,测量值与实际值相比偏低,这种现象称为碱差
电极可用符号记为:
Hg 2C2O4 , CaC2O4 , Ca2 Hg
汞电极的电位可有下式确定
0 E EHg 2 / Hg 0.059 lg aHg 2

9第9章 电分析化学法导论

9第9章    电分析化学法导论

9-2-2 盐桥-液接电位的消除
盐桥中KCl浓度相应的液接电位
KCl盐桥作用
0.01mol· L-1 0.1mol· L-1
CKCl/ mol· L-1 0.1 0.2 0.5 1.0 2.5 3.5 饱和
液接电位/ mv 27 20 13 8.4 3.4 1.1 <1
液 1.2mV
作用:隔离、接通电路、减小液接电位
① H+ + e = H
② H+ H+ =H2+ 慢,决定整个反应速度
③ H2++e=H2↑ 要使反应 ② 加快,必须增加活化能,使
φc→负
9-5-3 超电位
定义:由于极化,使实际电位和可逆电位之间存在差异,此
差异即为 超电位
影响因素: ⑴电流密度, ⑵T, ⑶电极材料不同,不同 ⑷产物是气体的电极,其大,析出物为金属其小
第9章 电分析化学法导论
9-1 电化学电池
9-2 9-3 9-4 9-5 9-6
液体接界电位与盐桥 电极电位 一般电极反应过程 电极的极化和超电位 电极的类型
电分析化学法
又称电化学分析法---
应用电化学原理和实验技术建立起来的一类分析方
法的统称。 依据被测物溶液的电化学性质及其变化而建立起来 的分析方法。 根据电学参数可分为:电导法、电位法、电解分析法、 库仑分析法、伏安法和极谱法等
1.反应中的氧化剂与还原剂必须分隔开来,不能使其直接 接触,并保持两种溶液都处于电中性
2.电子由还原剂传递给氧化剂,要通过溶液之外的导线 (外电路) 反应装置-电化学电池(化学电池)
9-1-1 原电池与电解池
1.原电池 (以Cu-Zn原电池为例) 自发地将本身的化学能转变成电能的装置-化学电池

《分析化学》课件——9 电位分析法

《分析化学》课件——9 电位分析法
9
甘汞电极(calomel electrode)
Hg,Hg2Cl2(s) KCl
2
1
2
1
3
3
4
4
1
Pt
7
Hg Hg2Cl2
5
5
6
6
8 6
6
(a)
(b)
(c)
(a)232型甘汞电极; (b)内部电极结构; (c)217型甘汞电极。 1.导线; 2.绝缘帽; 3.加液口; 4.内部电极; 5.饱和氯化钾溶液; 6.多孔性物质; 7.可卸盐桥磨口; 8. 可卸盐桥液接溶液
33
标准曲线法
配制一系列含不同浓度的待测离子标液; 插入ISE和参比电极,测定各电池电动势E; 半对数坐标纸上绘制E-lgc曲线; 用同一对电极测定待测溶液的电动势Ex ; 从标准曲线上查出相应的浓度cx。
34
标准曲线法
注意 标液和试液皆要加入同 样量的TISAB。 E-lgc关系曲线需经常重 新测定和绘制。
10
甘汞电极
Hg2Cl2 +2e- → 2Hg + 2Cl-
Hg 2 Cl2 /Hg
θ Hg 2 Cl2 /Hg
- 0.059 lg aCl-
温度一定时,随溶液中的aCl-变化而变化 固定KCl浓度,电极电位为一定值
使用条件:≤80 ℃
使用饱和KCl溶液,称为饱和甘汞电极 (Sturated Calomel Electrode ,SCE) ,25℃时为0.2438V 。
pH标准溶液
配制方法 pH(25℃)
(g·L-1水)
0.05 mol·L-1 KHP
10.12
4.004
0.025 mol·L-1磷酸二氢钾 0.025 mol·L-1磷酸氢二钠

电位分析法

电位分析法
通过改变玻璃组成(如向玻璃膜中引入三价元素Al、Ga、B 等氧化物),制成对其它一价阳离子具有选择性的pM电极。
主要响 应离子
Na+
K+ Ag+
玻璃膜组成(摩尔分数,%) Na2O Al2O3 SiO2 11 18 71 27 11 28.8 Li2O 15 5 18 19.1 25 68 71 52.1 60
外,D
RT α外 k 外,D ln ZF α'外
内, D
RT 内 k内, D ln ZF '内
RT 外 '内 膜 k外, D k内, D ln ZF 内 '外 RT 外 ln ZF 内
(膜内外表面相同,k外,D=k内,D α’外= α’内)
RT 电 极 k' ln X F
AgX+2CN
-
= Ag(CN)2-+
X
-
可用于测定CN-
三、流动载体(液膜)电极
(一)种类
带电荷(正、负)的液膜电极 中性液膜电极
Ag-AgCl电极
内参比溶液(凝胶)
液体离子交换剂 (活性物质溶液)
(二)构造
多孔膜
(三) 带电荷的液膜电极
响应机理

活性物质(缔合物)在有机相和水相中的分配系
数,分配系数越大,灵敏度越高。 流动载体
测定阳离子采用带负电荷的流动载体,测定阴离 子采用带正电荷的流动载体,形成离子缔合物
例:Ca2+电极 电活性物质:二癸基磷酸钙 溶剂:苯基磷酸二正辛酯;内参比溶液:CaCl2
(四) 中性液膜电极
O
O
O
O
O
H3C
CH 3

第9章 电位分析法

第9章 电位分析法
灵敏度高、选择性高、误差较大、操作简便、 灵敏度高、选择性高、误差较大、操作简便、 样品用量少、 样品用量少、价格高
5.仪器分析测定一般过程是什么? 5.仪器分析测定一般过程是什么? 仪器分析测定一般过程是什么
待测试样x——转换器 待测试样x——转换器——电信号——测定电信号求出被 转换器——电信号 电信号——测定电信号求出被 测物质含量。 测物质含量。
一般R 一般 入≥109欧姆 ?? 电极R 电池 R內≈电极 內 电极 R內 E电 ∵ i= E电 / (R內 + R入 ) U示= i · R入 I R入 U示
∴当 E电= 1000 mV , R內 =108 欧姆
R入=108 欧姆 U示= 1000×108/(108+108) = 500 mV (≈ E电/2) × R入=1011欧姆 U示= 1000×1011/(108+1011) ≈ 1000 mV (≈ E电 ) × 结论: 结论: 当 R入 / R內 ≥ 103 时 ,才能使⊿U示 / U示<0.1%
Zn→Zn 2++2e 氧化反应 (25℃,1mol/L) ℃
E= ϕ Zn /Zn 2+= e (H2) Pt H+ (H2) Pt H+
Ag+ +e →Ag 还原反应(25℃ 还原反应 ℃,1mol/L)
E= ϕAg/Ag+= + 0.779 V e
- 0. 673 V
Zn→Zn 2+
Ag +→Ag

9章
电位分析法 及离子选择性电极
Potentiometry and Ion Selective Electrade
仪器分析
1、什么是仪器分析? 什么是仪器分析?

电位分析法

电位分析法

扩散电位
相互接触但浓度不同的溶液,如HCl, 由于浓度差异产生扩散,同时由于离子 迁移速率的差异,导致溶液界面的电荷 分布不均,产生电位梯度 出现电位差。 相同电荷的溶液与离子间,存在静电排 斥,使扩散达到平衡,溶液界面有稳定 的界面电位,即液接电位。
液接电位不仅出现在液-液界,也出现在 固-液界面
• The relationship between the ionic concentration (activity) and the electrode potential is given by the Nernst equation:
• 离子选择性电极主要包括(1)敏感膜, 是最关键部分(2)内参溶液,含有与膜 及内参电极响应的离子(3)内参电极, 一般用Ag|AgCl
离 子 选 择 性 电 极 构 造 示 意 图
BASIC THEORY OF ISE MEASUREMENTS.
Ion-Selective Electrodes are part of a group of relatively simple and inexpensive analytical tools which are commonly referred to as Sensors. The pH electrode is the most well known and simplest member of this group and can be used to illustrate the basic principles of ISEs.
0 0.55 0.75
Rel.Vol, %
S2-2 14.41 5.90 34.90 16.60 24.33 3.38 0.47

电位分析法的定义、分类和特点

电位分析法的定义、分类和特点

电位分析法的定义、分类和特点1、电位分析法的定义、分类和特点定义:利用测得电极电位与被测物质离子浓度的关系求得被测物质含量的方法叫电位分析法。

分类:直接电位法――利用专用的指示电极――离子选择性电极,选择性地把待测离子的活度(或浓度)转化为电极电位加以测量,依据Nernst方程式,求出待测离子的活度(或浓度),也称为离子选择电极法。

这是二十世纪七十时代初才进展起来的一种应用广泛的快速分析方法。

·电位滴定法――利用指示电极在滴定过程中电位的变化及化学计量点相近电位的突跃来确定滴定尽头的滴定分析方法。

电位滴定法与一般的滴定分析法的根本差别在于确定尽头的方法不同。

特点:应用范围广――可用于很多阴离子、阳离子、有机物离子的测定,尤其是一些其他方法较难测定的碱金属、碱土金属离子、一价阴离子及气体的测定。

由于测定的是离子的活度,所以可以用于化学平衡、动力学、电化学理论的讨论及热力学常数的测定。

·测定速度快,测定的离子浓度范围宽。

·可以制作成传感器,用于工业生产流程或环境监测的自动检测;可以微型化,做成微电极,用于微区、血液、活体、细胞等对象的分析。

2.化学电池化学电池是由两组金属—溶液体系构成的。

每一个化学电池有两个电极。

分别浸入适当的电解质溶液中,用金属导线从外部将两个电极连接起来,同时使两个电解质溶液接触,构成电流通路。

电子通过外电路导线从一个电极流到另一个电极,在溶液中带正负电荷的离子从一个区域移动到另一个区域以输送电荷,*后在金属—溶液界面处发生电极反应,即离子从电极上取得电子或将电子交给电极,发生氧化—还原反应。

假如两个电极浸在同一个电解质溶液中,这样构成的电池称为无液体接界电池;假如两个电极分别浸在用半透膜或烧结玻璃隔开的或用盐桥连接的两种不同的电解质溶液中,这样构成的电池称为有液体接界电池。

用半透膜、烧结玻璃隔开或用盐桥连接两个电解质溶液,是为了避开两种电解质溶液的机械混合,同时又能让离子通过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玻璃电极使用前,必须在水溶液中浸泡,生成三层结 构,即中间的干玻璃层和两边的水化硅胶层:
E膜 = E外 - E内 = 0.059V lg( a1 / a2) 由于内参比溶液中的H+活度( a2)是固定的,则: E膜 = K´ + 0.059V lg aH+= K´ - 0.059 VpH试液
玻璃电极电位应是内参比电极电位和玻璃膜电位之和;
过程,从而限制了除待测离子外的 其它离子,显示出离子选择性电极 的选择性。
四、液膜电极(流动载体电极)(10.20) 构成:多孔膜+液体离子交换剂+内参比 机理:膜内活性物质(液体离子交换剂)与待测离子 发生离子交换。这种离子之间的交换将引起相界面电荷 分布不均匀,从而形成膜电位。 几种流动载体电极 :
如果: a1= a2 ,则理论上E膜=0,但实际上E膜≠0
产生的原因: 玻璃膜内、外表面含钠量、表面张力以及 机械 和化学损伤的细微差异所引起的。其对pH测定的影响 可通过充分浸泡电极和用标准pH缓冲溶液校正的方法加以
消除。长时间浸泡后(24hr)恒定(1~30mV);
2、酸差:当用pH玻璃电极测定pH<1的强酸性溶液或高 盐度溶液时,电极电位与pH之间不呈线性关系,所测定的
化来确定滴定终点, 根据滴
定试剂的消耗量间接计算待 测物含量的方法(测总量)。
第一节
离子选择性电极的分类及响应机理
离子选择性电极又称离子敏感电极,它是一种电化 学传感器。 特点:仅对溶液中特定离子有选择性响应。 膜电极的关键:是一个称为选择膜的敏感元件。
敏感元件:单晶、混晶、液膜、功能膜及生物膜等
三、LaF3晶体膜电极 构 成: 内电极(Ag-AgCl电极+NaCl,NaF液)+LaF3膜
晶体膜电极作用的机理是:
由于晶格缺陷(空穴)引起离
子的扩散作用,接近空穴的可移动 离子移动至空穴中。一定的感应膜, 按其空穴大小、形状、电荷分布, 只能容纳一定的可移动离子,而其
它离子则不能进入也不能参与导电
值比实际的偏高:因为H+浓度或盐份高,即溶液离子强度
增加,导致水分子活度下降,即H3O+活度下降,从而使 pH测定值增加。 3、碱差或钠差:当测定较强碱性溶液pH值时,玻璃膜除 对 H+ 响应,也同时对其它离子如 Na+ 响应。因此 pH 测定结果 偏低。当用Li玻璃代替Na玻璃吹制玻璃膜时,pH测定范围可 在1~14之间。
未知水样pH的测定
由上所述可知:E电池= K*-0.059pH
其中K*为未知数。 配制标准缓冲溶液,对pH读数校正: E标= K*-0.059pH标 然后再对未知水样测定: E未= K*-0.059pH未 二者之差为:E未- E标= 0.059pH标-0.059pH未 即:pH未= 0.059pH标+△E/0.059
构成。 膜电位:膜内外被测离子活度的不同而产生电位差
一、离子选择性电极(ion selective electrode)分类 离子选择性电极(又称膜电极)。
1976年IUPAC基于膜的特征,推荐将其分为以下几类: 原电极
晶体膜电极
均相膜电极 非均相膜电极
非晶体膜电极
刚性基质电极 流动载体电极 敏化电极 气敏电极 酶电极
电极、参比电极和待测溶液构成原电池.
E电池=E(+) – E(-)+ E(液接)
电位分析法分为电位法和电位滴定法

直接电位法:测定原电池的
电动势或电极电位,利用
Nernst方程直接求出待测物 质含量的方法。(测平衡浓 度)

电位滴定法:向试液中滴加 可与被测物发生氧化还原反 应的试剂,以电极电位的变
E玻璃=E内参+E膜
E内参= EAg/AgCl - 0.059Vlga(Cl-)
E膜 =K´ - 0.059 VpH试液
E玻璃= EAg/AgCl - 0.059Vlga(Cl-)
+ K’ - 0.059V pH试液 E玻璃=K- 0.059V pH试液
(三)玻璃电极的特性:
1、不对称电位:
E膜 = E外 - E内 = 0.059 lg( a1 / a2)
(四)pH值的测定 pH测定的电池组成为:
Ag,AgCl 内参比溶液 玻璃膜 pH试液KCl(饱和) Hg2Cl2,Hg
E电池=ESCE-E玻璃+E不对称+E液接
E电池=K +0.059V pH试液
标准比较法测定 Es = K + 0.059VpHs Ex = K + 0.059VpHx 将两式相减,得:pHx = pHs + (Ex-Es)/0.059V 因此用电位法测定溶液的pH值时,应先用标准缓冲溶液 定位,然后直接在pH计上读出溶液的pH值。
电位法测定PH值的原理(小结)
Ag,AgCl 内参比溶液 玻璃膜 pH试液KCl(饱和) Hg2Cl2,Hg E电池=ESCE-E玻璃+E液接=K -E玻璃 E玻璃=E内参+E膜+E不对称 E内参= EAg/AgCl - 0.059Vlga(Cl-) =K1 E玻璃= K1+ K2-0.059pH+E不对称 = K3-0.059pH
二、玻璃电极(非晶体膜电极) (一)玻璃电极的构造 玻璃电极是最早使用的膜电极, 其构造:球状玻璃膜 (Na2SiO3,0.1mm厚)+[内参比电极 (Ag/AgCl)+内充液 ] (二)玻璃电极的响应原理 当内外玻璃膜与水溶液接触时, Na2SiO3晶体骨架中的Na+与水中的 H+发生交换:G-Na+ + H+ === G-H+ + Na+,因为平衡常数很大,因此, 玻璃膜内外表层中的Na+的位置几 乎全部被H+所占据,从而形成所谓 的“水化层”。
E膜 = E外 - E = 0.059 lg( a1 / a2) 其中a2为内参比溶液的H+浓度, E电池= K -E玻璃 = K + K3-0.059pH 为一常数: = K*-0.059pH 故: E膜 = E外 - E = K2+0.059 lg( a1 ) 其中K*包括未知的液接电 位及玻璃膜的不对称电位 = K2-0.059pH
第九章
电位分析法
第一节,离子选择性电极的分类及响应机理
第二节 第三节 第四节 离子选择性电极性能参数 测定离子活(浓)度的方法 电位滴定法
电位分析法是电分析化学的一个重要分支 电位分析原理: 电位分析是通过在零电流条件下测定两电极间的电 位差(电池电动势)所进行的分析测定。通常是由指示
相关文档
最新文档