工业大数据 构建制造型企业新型能力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业大数据:构建制造型企业新型能力
文/美林数据技术总监于洋
工信部的数据显示:“中国制造业约占整个世界制造业20%的份额,在500余种主要产品中,我国有220多种产量位居世界第一。2014年,我国共有100家企业入选‘财富世界500强’,其中制造业企业占56家”。但长期粗放式发展之后,中国制造业发展面临着稳增长和调结构的双重困境,进入了“爬坡过坎”的关键时刻。正如国务院发布的《中国制造2025》提到,“新一代信息技术与制造业深度融合,正在引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点,但我国仍处于工业化进程中,与先进国家相比还有较大差距。制造业大而不强”。
与此同时,德国提出了工业4.0,美国提出了工业互联网的概念希望藉此实现制造业的复兴。中国提出《中国制造2025》正是要推动制造业向中高端迈进,以大数据、物联网、云计算等新一代信息技术将引爆这一轮产业变革,加速传统制造企业的转型升级。
第一节工业大数据与德国工业4.0、中国制造2025的关系 工业4.0、中国制造2025的核心是工业大数据
2013年4月,德国政府汉诺威工业博览会上正式推出“工业4.0”战略,其目的是为了提高德国工业的竞争力,在新一轮工业革命中占领先机。该战略通过充分利用信息通讯技术和网络空间虚拟系统(信息物理系统Cyber-Physical System)相结合的手段,将制造业向智能化转型。
2015年5月8日,国务院公布《中国制造2025》,这是中国版的“工业4.0”规划。该规划提到“加快推动新一代信息技术与制造技术融合发展,把智能制造作为两化深度融合的主攻方向;着力发展智能装备和智能产品,推进生产过程智能化,培育新型生产方式,全面提升企业研发、生产、管理和服务的智能化水平。
无论是“德国工业4.0”还是“中国制造2025”,都提到了智能化和互联网化,而智能化和互联网化的核心是:一方面利用互联网技术实现传统的以产品为中心变为以客户为中心,加强客户需求预测并尝试让客户参与产品研发,提供个性化的产品、服务及体验;另一方面采集大量消费数据动态调整生产方式以快速适应客户需求变化,即变大规模批量生产为大规模定制生产;最后一方面利用企
业内部营销、科研、生产、采购等经营数据,为企业经营解决提供依据,实现企业经营透明。随着企业智能化和互联网化水平的提升,企业拥有了越来越多的数据,而这些数据反过来有提升了企业智能化和互联网化的水平。
利用大数据驱动业务发展,打造企业新型能力
制造型企业面临着客户需求个性化,产品上市时间短,研制成本提高等巨大挑战。这种挑战本身更多体现在企业与企业之间如何以更低的成本、更高的质量、更快的速度满足客户多样的需求。所以传统方式很难解决大数据时代的企业问题,需要有创新的手段来解决。目前越来越多的企业通过大数据来驱动业务创新,提升产品质量、降低研制成本、加快上市周期。
全球航空发动机制造企业劳斯莱斯公司,在飞机引擎的制造和维护过程中,都配备了劳斯莱斯引擎健康模块。所有的劳斯莱斯引擎,不论是飞机引擎,直升机引擎还是舰艇引擎都配备了大量的传感器,用来采集引擎的各个部件,各个系统,以及各个子系统的数据。这些信息通过专门的算法,进入引擎监控模块的数据采集系统中。利用这些数据的分析结果,不仅可以帮助劳斯莱斯提前发现故障,还可以帮助客户更及时有效地安排引擎检测和维修。通过算法的不断改进,劳斯莱斯如今已经可以通过数据分析预测可能出现的技术问题。
劳斯莱斯引擎使用寿命在过去30年里延长了10倍,比同行类似引擎的寿命长10年左右;尤其重要的是飞行安全得到了更大的保障。成功之处在于打破了制造业和服务业的界线,并使两者相得益彰:技术先进的制造部门为售后服务提供可靠的技术保证。优质的售后服务不仅巩固现有销售市场份额,还不断挖掘越来越大的潜在市场。
●“盘活存量数据、用好增量数据”,推动企业转型升级
制造型企业在信息化的每个发展阶段都会有大量的数据处理要求并且会因
为大量的业务活动产生各式的数据各样,只要采用数据驱动业务的方式进行业务活动就是大数据,大数据是企业信息化发展到当前阶段的必然结果。所以工业大数据的利用不仅仅是信息化基础设施建设,更重要的是采用数据思维来管理和创新业务,大数据应是管理创新的手段,优化全业务流程和提供业务管理工具。所以制造型企业大数据应用的难点是打通企业数据采集、集成、管理、分析的产业链条,帮助业务人员养成使用数据的习惯。在这方面互联网企业走在前面,值得制造型企业学习。
2012年12月,阿里宣布在集团管理层面设立首席数据官(Chief Data Officer)岗位,负责全面推进阿里巴巴集团成为“数据分享平台”的战略并成立了数据委员会,委员会的成员是各个数据部门的领导。该数据委员会主要职责是协同不同数据部门的工作,制定整个集团数据应用的方向和规划,协同各个部门使用数据,打通商业运营、做(基础)数据、(构建)数据模型等产业链条各环节。避免传统上做数据的人不知道别人怎么用,用数据的人不知道数据怎么来的;而做数据模型不知道数据是否稳定;用数据模型的人不知道数据模型究竟是怎样的,甚至不相信数据模型的问题。
第二节工业大数据的产生及特点
工业大数据是制造型企业创新转型的驱动力和催化剂,随着三维设计、3D
打印、机器人技术等在制造型企业广泛应用。工业大数据广泛分布在产品设计、制造、物流、服役等各环节,具体如下:
●数字化设计:如飞机全数字化设计:波音公司利用CATIA软件设计波音
777的300万个零部件的尺寸和形状数据;
●智能化制造:以智能工业机器人为典型代表的智能制造装备已经开始在
多个领域得到应用;我国今年的工业机器人超过日本。
●网络化监控:大型工业装备运行状态网络化远程动态监测:例如,波音
737发动机在飞行中每30分钟产生10TB数据;陕鼓动力实现数百台旋转机械远程在线监测及故障诊断。
●物联化管理:工业生产过程开始大量使用RFID实现零件与产品管理。