生产物流系统建模及仿真-课程设计报告
物流仿真设计实验报告
一、实验背景随着经济全球化的发展,物流行业在企业经营中的重要性日益凸显。
为了提高物流系统的运行效率,降低成本,优化资源配置,物流仿真设计成为了物流管理的重要工具。
本实验旨在通过Flexsim仿真软件,对某一物流系统进行建模、仿真和分析,从而为物流系统的优化提供参考依据。
二、实验目的1. 熟练掌握Flexsim仿真软件的操作方法。
2. 建立合理的物流系统模型,并进行仿真分析。
3. 分析物流系统存在的问题,提出优化方案。
三、实验内容1. 系统描述本实验以某企业物流系统为研究对象。
该系统包括原材料采购、生产加工、仓储、配送和客户服务等环节。
实验的主要任务是优化物流系统的运行效率,降低物流成本。
2. 模型建立(1)数据收集:通过查阅相关资料和实地调研,收集了原材料采购、生产加工、仓储、配送和客户服务等方面的数据。
(2)模型构建:根据收集到的数据,在Flexsim软件中建立了物流系统模型。
模型包括以下主要模块:- 原材料采购模块:模拟原材料供应商的供货过程,包括原材料到达、检验和入库等环节。
- 生产加工模块:模拟生产线的生产过程,包括生产节拍、产品检验和入库等环节。
- 仓储模块:模拟仓库的存储和管理过程,包括原材料和成品的入库、出库和库存管理等环节。
- 配送模块:模拟配送中心的配送过程,包括订单处理、货物装载、运输和配送等环节。
- 客户服务模块:模拟客户服务过程,包括订单处理、产品交付和售后服务等环节。
3. 仿真分析(1)运行仿真:在Flexsim软件中运行仿真模型,观察系统运行情况,包括生产节拍、库存水平、配送时间等指标。
(2)数据分析:对仿真结果进行分析,找出系统存在的问题,如库存积压、配送延迟等。
四、实验结果与分析1. 库存积压问题仿真结果显示,原材料和成品的库存积压现象较为严重。
通过分析,发现主要原因如下:- 生产计划不合理,导致原材料采购过多。
- 生产节拍与市场需求不匹配,导致成品库存积压。
2. 配送延迟问题仿真结果显示,配送延迟现象较为明显。
物流中心建模与仿真课程设计报告
物流中心建模与仿真课程设计报告模型进行描述我们这次物流模拟实训的主要内容是通过物流的模拟操作,使大家对物流这门课程有更加深刻的印象。
物流的模拟实验里面主要的成分有:直线传送带,部件生成器,部件消失器,笼车,机器人,自动立体仓库,智能导向物,等一系列的物体对于造成的物流传输。
通过一开始的部件生成器生成的部件,然后通过分流传输带进行分流,之后在靠合流带进行整和。
几个部件一起通过装货平台传送,之后在靠简单的分流:通过自动机器的传输,然后进入托盘,进入自动仓库,进行整合以后再通过仓库出来同样通过传输带,再进行分配。
而之后的滑车轨道和环形轨道使得流程传送更加的复杂,也更加的使得流程看起来方便简单。
进入托盘控制,最后再到分流传输带,进行机器人的分配,再到笼车的最后的整合。
模型设计过程与结果这次的模拟立体仓库要在先前的几个模拟实验里面加上环形轨道的滑车。
老师在事先将操作的流程发给了我们。
于是我们按照来时发的WORD一步一步的操作。
点击设备栏的[直线轨道]按钮,使直线轨道表示出来。
使右侧自动立体仓库的IO部件(In mode) 的右下角和直线轨道的入口处大致对齐,将第2条直线轨道的入口移向第1条直线轨道的出口使其自动连接上。
同样地,使第3 条直线轨道也自动连接上。
点击设备栏的[左曲轨道]按钮,使左曲轨道表示出来。
将左曲轨道移到第3条直线轨道的出口,使其自动连接上。
选择第3条直线轨道后,用复制粘贴再增加1条轨道并使其旋转180度。
将直线轨道移到左曲轨道的出口,使其自动连接上。
选择第4条直线轨道,然后用复制粘贴再增加1条轨道。
将第5条轨道移到第4条轨道的出口,使其自动连接上。
选择成为半圆形的左曲轨道后,用复制粘贴的操作来再增加下面要做成的模型概要是从自动立体仓库出库的托盘上的货物卸下后,再将货物送出滑车分流出货。
由于滑车铁轨和环形轨道一起模拟对我来说是在困难。
所以我决定舍弃了铁轨滑车。
这样反而简单方便。
心得体会在这次的物流实训中,虽然我们从未学过有关物流方面的知识。
物流系统建模与仿真报告
物流系统建模与仿真报告一、引言物流系统是指将物品从供应商处运送到客户处的整个过程,涉及到供应链的各个环节,包括采购、仓储、运输、配送等。
为了提高物流系统的效率和准确性,建立一个合理的物流系统模型,并进行仿真分析,对于优化物流系统的设计和运作具有重要意义。
二、物流系统建模物流系统建模是指将物流系统的各个环节和流程进行抽象和描述,以便于分析和优化。
物流系统建模可以采用不同的方法和工具,如流程图、数据流图、Petri网等。
1. 流程图流程图是一种图形化的表示方法,可以清晰地展示物流系统的各个环节和流程。
通过绘制流程图,可以直观地了解物流系统的运作过程,发现潜在的问题和改进点。
例如,可以绘制采购流程图、仓储流程图、运输流程图等,以便于对不同环节进行分析和优化。
2. 数据流图数据流图是一种描述物流系统中数据流动和处理过程的图形表示方法。
通过数据流图,可以清楚地了解物流系统中的数据来源、处理和输出,帮助分析和优化物流系统的数据流程。
例如,可以绘制供应商数据流图、客户数据流图等,以便于对数据流进行分析和优化。
3. Petri网Petri网是一种数学工具,可以用于描述物流系统中的并发和同步过程。
通过Petri网的建模,可以更准确地分析物流系统的并发性和同步性问题,提高系统的效率和稳定性。
例如,可以建立仓储系统的Petri网模型,分析货物的进出和仓库容量的限制等问题。
三、物流系统仿真物流系统仿真是指通过计算机模拟物流系统的运作过程,以评估和比较不同策略和方案的效果。
物流系统仿真可以使用专门的仿真软件,如Arena、AnyLogic等,也可以使用编程语言进行自主开发。
1. 仿真参数设定在进行物流系统仿真之前,需要设定一些参数,如供应商的数量和位置、客户的数量和位置、运输工具的数量和速度等。
这些参数的设定将直接影响仿真结果的准确性和可靠性。
2. 仿真过程仿真过程是指根据设定的参数,通过模拟物流系统的运作过程,得到各个环节的数据和指标。
物流系统建模与仿真实验报告
物流系统建模与仿真实验报告物流系统建模与仿真实验报告一、引言物流系统是现代经济运行的重要组成部分,对于提高生产效率、降低成本、提供优质服务具有重要意义。
为了更好地理解物流系统的运行机制和优化策略,本次实验旨在通过建模与仿真的方法,对物流系统进行深入研究。
二、实验目标本次实验的主要目标是通过建立物流系统的数学模型,并通过仿真实验验证模型的有效性。
具体而言,我们将关注以下几个方面:1. 研究物流系统中的关键节点和流程,分析其对整体运行效果的影响;2. 优化物流系统中的资源配置和调度策略,提高物流效率;3. 分析物流系统中的瓶颈问题,并提出相应的解决方案。
三、实验方法本次实验采用建模与仿真的方法,具体步骤如下:1. 数据收集:收集物流系统的相关数据,包括物流节点、运输路径、货物流动情况等。
2. 建立数学模型:基于收集到的数据,建立物流系统的数学模型,包括节点间的关系、运输路径的选择规则、货物流动的概率等。
3. 参数设定:根据实际情况,设定模型中的参数,如节点的处理能力、运输路径的容量等。
4. 仿真实验:利用仿真软件,对建立的模型进行仿真实验,观察物流系统的运行情况,并记录相关数据。
5. 数据分析:对仿真实验得到的数据进行分析,评估物流系统的性能,并找出改进的方向。
6. 优化策略:根据数据分析的结果,提出相应的优化策略,如调整节点的处理能力、优化运输路径等。
7. 仿真实验验证:将优化策略应用于模型中,进行再次仿真实验,验证优化效果。
四、实验结果与分析通过多次仿真实验,我们得到了大量的数据,并进行了详细的分析。
以下是部分实验结果的总结:1. 关键节点分析:我们发现物流系统中存在一些关键节点,其处理能力对整体物流效率有较大影响。
通过增加关键节点的处理能力,可以显著提高物流系统的处理能力和响应速度。
2. 运输路径分析:不同的运输路径对物流系统的运行效果有显著影响。
通过优化运输路径的选择规则,可以降低物流系统的运输成本,并缩短货物的运输时间。
物流系统建模与仿真配送中心系统仿真设计实验报告
合肥工业大学实验报告课程名称:物流系统建模与仿真实验名称:配送中心系统仿真设计姓名:fly学号:专业:指导老师:实验地点:二○一二年二月十二日一、实验目的:1)了解供应链仿真的设计。
2)熟悉动态表格的设计。
3)了解Conveyor作为生产缓存的方法。
4)了解拉动式系统的设计。
5)研究不同配送策略的利润情况。
二、实验环境电子商务实验室,计算机、Witness 2004 Educational Version 仿真软件三、实验内容与步骤:1、元素定义(Define)本系统的元素定义如表1-1所示。
元素定义后的witness页面截图如图1-1:图1-1 元素定义后的witness页面2、元素可视化(Display)设置各个实体元素的显示特征定义设置如图1-2所示:图1-2 各个实体元素的显示特征1)Part Buffer元素可视化的设置在元素选择窗口选择P1元素,鼠标右键点击Display出现如图3所示对话框,设置它的Text、Icon和Style属性项。
图1-3 Display对话框2)Buffer元素可视化的设置选择Zhongxin元素,设置它们的Text、Icon、Part queue和Rectangle属性项,分别如图1-4、图1-5、图1-6、图1-2所示。
图l-4 Display Text对话框图1-5 Icon对话框图1-6 Display Part Queue对话框图1-7 Text对话框3)Machine元素可视化的设置在元素选择窗口选择Factory1元素,鼠标右键点击Display出现如图11-1所示对话框,设置它的Text、Icon(机器图标)、Icon(可随状态改变颜色的图标),Part Queue。
如图1-7、图1-8、图1-9、图1-2所示。
图1-8 Icon对话框1-9 Icon对话框类似,在元素选择窗门选择Factory2、Factory3、Factory21,Factory22、Factory23元素,鼠标右键点击Display出现如图1-1所示对话框,设置它们的Text、Icon(机器图标)、Icon(可随状态改变颜色的图标)、Part Queue。
生产物流系统建模仿真实验报告
系统建模仿真实验报告一、实验目的 (1)二、实验内容及要求 (2)三、实验内容与步骤 (2)生产制造系统建模与仿真基础知识研究: (2)建立实验模型: (2)系统建模及初步的仿真运行调试: (3)四、系统仿真与分析 (5)五、实验心得 (11)一、实验目的本实验围绕生产物流实验系统展开,进行制造系统的建模、仿真分析与设计优化研究实践。
重点研究运用仿真软件Flexsim,对生产物流实验系统的生产运行过程进行建模、仿真和分析,并进行系统改造的方案论证。
二、实验内容及要求对照实验系统,参考有关系统资料及参考案例,在对系统的基本布局、工作特点、工作流程、及实验生产设备等进行详细研究的基础上,运用Flexsim工具进行建模,并对其生产过程进行仿真。
通过仿真分析了解有关生产实验系统方案是否满足预期运行目标的需要,并且针对仿真生产过程中所表现出来的缺陷与瓶颈问题,提出改进方案。
最终完成对于该生产系统的整体产能及物流运作分析,为系统改造决策提供参考依据。
三、实验内容与步骤生产制造系统建模与仿真基础知识研究:结合有关实验系统的生产运作原型,深入研究制造系统的运作控制,及其系统建模与仿真相关知识;熟悉掌握Flexsim建模仿真工具及其安装运行环境,为具体的实验与分析应用做好前期的理论与技术知识准备。
建立实验模型:本实验所涉及的是一个柔性制造系统的生产线(如图1-1所示),它主要有四条流水线组成,同时加工两种不同原材料(以下称原材料a和原材料b),最后把加工后的两种半成品和另一种原材料(以下称原材料c)装配起来,成为成品d。
在模型中,设有存放原材料a、b和成品d的组合式货架,存放原材料c的货栈,它们分别通过堆垛机和AGV小车与生产线相联通,组成系统。
具体物流过程简述如下:(1) 组合式货架用来存放待加工的原材料和成品,货架配备堆垛机,用于从货架上取下原材料,并运到生产线上进行加工。
货架上混合存放a、b两种货物,堆垛机随机取出货物,放入出货台。
物流仿真实验报告结论(3篇)
第1篇一、实验背景物流仿真实验实训报告通常用于评估学生在《物流规划与设计》课程中对于物流仿真软件操作和物流系统建模的理解与掌握程度。
通过实验,学生能够了解物流系统的运作,掌握物流仿真软件的应用,并能够运用所学知识解决实际问题。
二、实验目的1. 掌握仿真软件操作:通过使用Flexsim等仿真软件,学生能够熟悉软件的基本操作,包括建模、运行和结果分析。
2. 进行物流仿真建模:学生通过软件进行物流系统的仿真建模,了解不同物流环节的运作方式。
3. 记录仿真过程与结果:详细记录仿真过程中的每一步,包括设置参数、运行仿真、分析结果等。
4. 总结学习感受与收获:通过实验,学生可以总结自己的学习感受,反思实验过程中的收获和不足。
三、实验设备实验设备通常包括PC机、操作系统(如Windows XP)、仿真软件(如Flexsim教学版)等。
四、实验步骤1. 搭建模型:从软件库中拖出发生器、暂存区、处理器等组件,放置在正投影视图中。
2. 连接端口:通过拖拽的方式连接各个组件,确保物流流程的顺畅。
3. 设置参数:根据实体行为特性,设置不同实体的参数,如到达速率、容量、操作时间等。
4. 运行仿真:编译并运行仿真,观察物流系统的运作情况。
5. 分析结果:对仿真结果进行分析,评估物流系统的性能。
五、实验内容1. 物流系统要素辨析:通过观察快递公司和超市的包装处理方式,理解物流流动要素中流体和载体的概念。
2. 载体运费承担方案:探讨关于载体运费承担的解决方案。
3. 系统思维应用:运用系统思维分析和解决物流问题。
4. 团队合作与PPT制作:通过团队合作和PPT制作,提高学生的团队协作能力和演示能力。
六、实验总结通过物流仿真实验实训,学生能够:1. 掌握物流仿真软件的基本操作。
2. 了解物流系统的运作机制。
3. 提高物流系统建模和优化能力。
4. 培养团队合作和沟通能力。
总之,物流仿真实验实训是一种有效的教学手段,有助于学生将理论知识应用于实践,提高学生的综合素质。
物流系统仿真实验报告
一、实验目的1. 熟悉和掌握物流系统仿真的基本原理和方法。
2. 利用仿真软件Flexsim建立物流系统模型,分析系统的运行状态和性能。
3. 通过仿真实验,优化物流系统的布局和流程,提高物流效率。
二、实验内容本次实验采用Flexsim软件,对某企业物流系统进行仿真分析。
主要内容包括:1. 系统建模:根据实际企业物流系统,建立Flexsim模型,包括仓库、货架、输送线、设备、人员等元素。
2. 参数设置:对模型中的各个参数进行设置,如货架容量、输送线速度、设备故障率等。
3. 仿真运行:启动仿真实验,观察系统运行状态,记录关键指标数据。
4. 结果分析:对仿真结果进行分析,评估系统性能,找出系统瓶颈。
三、实验过程1. 系统建模:- 根据企业物流系统实际情况,绘制系统布局图。
- 在Flexsim软件中,创建相应元素,如仓库、货架、输送线、设备、人员等。
- 设置元素属性,如货架容量、输送线速度、设备故障率等。
2. 参数设置:- 根据实际企业数据,设置模型参数,如货架容量、输送线速度、设备故障率等。
- 考虑系统运行过程中的随机性,设置随机数生成器。
3. 仿真运行:- 设置仿真时间、运行次数等参数。
- 启动仿真实验,观察系统运行状态,记录关键指标数据。
4. 结果分析:- 分析系统关键指标,如系统吞吐量、平均等待时间、设备利用率等。
- 找出系统瓶颈,如货架容量不足、输送线速度慢等。
- 针对系统瓶颈,提出优化方案,如增加货架、提高输送线速度等。
四、实验结果与分析1. 系统关键指标:- 系统吞吐量:每小时处理订单数。
- 平均等待时间:订单在系统中等待的平均时间。
- 设备利用率:设备实际工作时间与理论工作时间的比值。
2. 系统瓶颈:- 通过仿真实验,发现系统瓶颈为货架容量不足,导致订单在系统中等待时间较长。
3. 优化方案:- 增加货架数量,提高货架容量。
- 调整输送线速度,提高系统吞吐量。
五、结论1. 通过本次实验,掌握了物流系统仿真的基本原理和方法。
物流系统建模与仿真课程设计
《物流系统建模与仿真》课程设计一、课程设计目的:本课程设计是《物流系统建模与仿真》课程的实践环节,占1学分。
根本目的在于巩固、提高学生使用离散事件系统建模与仿真的方法和步骤进行物流系统分析研究的能力,可细分为以下几点:1、进一步熟悉、掌握仿真软件的基本功能和建立仿真模型的操作过程。
2、学习、应用示例材料中的相关物流工程专业知识,配合仿真这一工具,共同解决生产实际中的问题。
3、以相关理论为指导,进行仿真结果的分析。
针对示例案例,进行方案的优化和改进。
二、课程设计素材:针对以上目的,结合物流工程的专业特点,本课程设计有以下三个题目,学生可根据自己实际情况选做其中一题。
根据个人兴趣和实际情况,前两个题目独立完成,第三个题目以小组的形式完成。
1、生产物流系统仿真研究2、配送中心仿真研究3、自选实际系统进行仿真研究具体素材请根据以上题目自行从期刊网下载相关硕士论文或期刊论文。
具体的内容安排见下表:三、课程设计要求:为确保学生能够达到教学实践的预定目标,要求学生按以下过程安排实践:1)通过查找文献和复习相关课程的内容,明确实践中出现的专业术语所代表的含义和内涵。
2)通过查阅文献,学习并规范分析问题的方法、步骤。
3)结合实际问题、理论联系实际。
按仿真的步骤要求分析问题。
四、考核方式及评分依据:1、提交正确的仿真模型。
(50分)2、应用物流工程专业相关知识配合仿真工具解决了系统中的实际问题。
(30分)3、态度端正,课程设计报告格式规范。
(20分)五、补充说明:1、时间:本次课程设计历时5天,周五提交报告。
如有问题,可在本周每天上班时间联系。
2、选择同一题目的同学可以在仿真模型的建立环节互相交流。
3、请勿抄袭,一经发现,均以0分计。
物流系统建模与仿真实验报告
物流系统建模与仿真实验报告物流系统建模与仿真实验报告一、引言物流系统是现代工业化与信息化相结合的产物,它包括了物质流动、信息流动与控制系统优化等多个方面。
本实验旨在通过模拟物流系统的运行,深入理解物流系统的构建、运作机制以及优化方法。
在此过程中,我们将利用数学建模和仿真技术,以实际物流系统为参考,构建一个简化的计算机模型,并对不同场景进行模拟和分析。
二、物流系统模型构建在构建物流系统模型的过程中,我们主要考虑了以下几个关键因素:货物供应、运输、存储和需求。
其中,货物供应和需求代表了系统的输入和输出,运输和存储则描述了货物的流动和暂存。
我们用随机过程生成货物供应和需求,用队列模拟运输和存储环节。
系统的运行状态用一组状态变量来描述,系统的行为则由一系列根据状态变化的规则来描述。
三、物流系统仿真实验在构建模型之后,我们对不同的场景进行了仿真实验。
首先,我们模拟了在货物供应和需求稳定的情况下,物流系统的运行状况。
然后,我们在供应和需求出现波动的情况下,观察了系统的响应。
此外,我们还测试了系统在出现故障(如运输故障)时的表现。
四、实验结果与分析实验结果显示,在稳定环境下,物流系统能够有效地处理货物供应和需求。
然而,当环境出现波动时,系统的表现会受到影响,尤其是当供应或需求出现突然增加或减少时。
此外,系统在应对故障时的能力也有限,如运输故障往往会导致货物积压和延迟。
我们的分析表明,为了提高物流系统的性能,可以考虑引入更多的运输资源,或者优化存储策略以应对供应和需求的波动。
此外,开发更有效的故障恢复机制也是必要的。
五、结论与展望通过本次实验,我们成功地构建了一个简化的物流系统模型,并对其进行了仿真实验。
实验结果揭示了物流系统在稳定和不稳定环境下的表现,并指出了可能的改进方向。
展望未来,我们希望进一步探索更复杂的物流系统特性。
例如,引入更多的货物种类、考虑货物的可替代性、优化运输策略等。
此外,我们还可以研究如何利用先进的算法和技术,如机器学习和,来提高物流系统的效率和性能。
物流系统仿真_实验报告(3篇)
第1篇一、实验目的本次实验旨在通过使用Flexsim仿真软件,对物流系统进行建模、仿真和分析,以评估系统性能,找出潜在瓶颈,并提出优化方案。
通过本实验,我们希望达到以下目标:1. 熟悉Flexsim软件的基本操作和功能。
2. 学会根据实际需求设计物流系统模型。
3. 利用仿真技术分析物流系统性能,找出系统瓶颈。
4. 提出优化方案,提高物流系统效率。
二、实验内容本次实验选取了一个典型的物流系统——某电商企业的仓库配送系统,进行仿真分析。
以下是实验内容的具体描述:1. 模型建立:- 设计物流系统模型,包括收货区、存储区、拣选区、打包区、发货区等模块。
- 定义各个模块的实体类型、数量、处理时间等参数。
- 设置仿真时间、运行时间等仿真参数。
2. 仿真运行:- 使用Flexsim软件运行仿真模型,收集系统运行数据。
- 分析系统运行过程中的关键指标,如订单处理时间、系统吞吐量、库存水平等。
3. 性能分析:- 分析仿真结果,找出系统瓶颈,如拣选区拥堵、打包区等待时间过长等。
- 分析系统性能与仿真参数之间的关系,如订单处理时间与订单量、存储容量等。
4. 优化方案:- 针对系统瓶颈,提出优化方案,如调整拣选路径、增加拣选人员、优化存储策略等。
- 重新运行仿真模型,评估优化方案的效果。
三、实验结果与分析1. 系统性能指标:- 订单处理时间:平均订单处理时间为45分钟。
- 系统吞吐量:平均每小时处理订单量为10单。
- 库存水平:平均库存量为150件。
2. 系统瓶颈分析:- 拣选区拥堵:由于拣选路径不合理,导致拣选人员频繁往返,导致拥堵。
- 打包区等待时间过长:打包区设备数量不足,导致订单积压。
3. 优化方案:- 调整拣选路径:优化拣选路径,减少拣选人员往返次数,提高拣选效率。
- 增加打包区设备:增加打包区设备数量,缩短订单打包时间。
- 优化存储策略:采用先进先出(FIFO)存储策略,减少库存积压。
4. 优化效果评估:- 优化后的订单处理时间缩短至30分钟。
物流系统建模与仿真报告
物流系统建模与仿真报告一、引言物流系统是现代社会经济发展的重要组成部分,它涉及到商品的生产、仓储、运输、配送等环节。
为了提高物流系统的效率和准确性,降低成本和风险,建立一个合理的物流系统模型是非常必要的。
本报告旨在介绍物流系统建模与仿真的方法和应用,为相关研究和实践提供参考。
二、物流系统建模物流系统建模是将现实世界的物流系统抽象成数学模型的过程。
在建模过程中,需要考虑物流系统的各个环节和流程,并确定其关键要素、输入和输出。
常用的物流系统建模方法包括流程图、数据流图、Petri网等。
在建模过程中,需要考虑物流系统的复杂性和动态性,以及与外部环境的交互作用。
三、物流系统仿真物流系统仿真是通过计算机模拟实际物流系统的运行过程和结果,以评估系统性能和优化方案的有效性。
仿真可以通过调整系统的参数和策略,模拟不同的场景和情况,从而找到最优的物流方案。
常用的物流系统仿真软件有Arena、AnyLogic等。
四、物流系统建模与仿真的应用1. 物流网络优化:通过建立物流系统的网络模型,优化物流节点的位置和布局,降低物流成本和运输距离。
2. 运输路径规划:通过建立物流系统的路径模型,找到最短的运输路径和最优的配送方案,提高配送效率和准确性。
3. 仓储容量规划:通过建立物流系统的仓储模型,确定合理的仓储容量和库存策略,提高仓储利用率和服务水平。
4. 运输调度优化:通过建立物流系统的调度模型,优化运输车辆的调度和路线规划,降低运输成本和提高运输效率。
5. 物流风险评估:通过建立物流系统的风险模型,评估物流系统的脆弱性和风险程度,制定相应的风险应对策略。
五、物流系统建模与仿真的挑战与展望物流系统建模与仿真面临着一些挑战,例如复杂性高、数据量大、模型验证困难等。
未来,随着信息技术的发展和物联网的普及,物流系统建模与仿真将更加精细化和智能化。
同时,物流系统建模与仿真还可以与其他领域的模型和方法相结合,如人工智能、大数据分析等,为物流系统的优化和智能化提供更多可能性。
物流系统建模与仿真实验报告
缓存区的下一级必须是对应组别的每一台机器,以便于存在缓存区的产品在本组处理器有空闲时能继续加工。
四、实验中存在的问题、解决方法及进一步的想法等
存在问题:在本次建模中,我遇到的最大的问题就是发生器的实体属性触发器中没有设置颜色,造成产品通过处理器的时候都是一样的,不能区别每个产品。
相关数据如下:
发生器到达速率:normal(20,2)秒;
暂存区最大容量:25个临时实体;
检验时间:exponential(0,30)秒;
传送带速度:1米/秒;
2.创建实体。
先将各部分原件实体找出并拖拽到工作区并放在恰当的位置上,构成基本框架。
3.端口连接。
将各部分原件实体重新编号,按住键盘上的“A”键并同时根据题目要求,用鼠标点击左键,按方向依次将实体连接起来。
由于缓存区默认值为先进先出处理器1处理器2处理器规则的队列排序所以此项不需修改缓存区的最大容量为25在实际运行中绝对不能满足大多用户需缓存区的下一级必须是对应组别的每一台机器以便于存在缓存区的产品在本组精品欢迎下载10处理器有空闲时能继续加工
实验报告
课程名称:物流系统建模与仿真
系部名称:xxxxxxxxxxxxxx学院
4.设置各个固定资源类实体的属性。
(1)、发生器
(2)、暂存区
(3)、处理器1,2,3
(4)、传送带1,2 3
5.运行模型。
6.找出模型瓶颈之处,提出解决方案。
一种原料达到车间时,发现该组机器全部处于工作状态,该原料就在该组机器处服从先进先出处理器1、处理器2、处理器3规则的队列排序,大大降低了处理器工作效率。
物流系统建模及仿真课程设计报告
〔任务起止日期:2014.09.01 至2014.09.12 〕
设计的主要内容
1.案例背景
本案例以北京某公司的牛奶仓库为实例,该仓库系统目前已经配置了一些设备,但是现法估计其最大处理能力。
②公司考虑在明年扩大产能,仓库的入库量将较现在大幅度增加,因此用怎样的方法来对入库量增加过后的仓库系统进展优化也是现在急需考虑的问题。
(2)〔纯牛奶〕暂存区利用情况:
可知:暂存区域的空闲率高达82.4%。其中17.6%的货物在等待运输。
在企业物流系统中,仓储贯穿于整个物流过程的始终。企业物流目标是使物流各环节的运作、衔接畅通无阻,以保证企业物流高效率地进展,减少无效物流和冗余物流,做到按需运送、零库存、短在途和无缝隙的传送,降低流通本钱,提高库存水平。仓储的关键是零库存。以以下图片为仓储整个流程,以及我们所标注的重点研究局部.
1.1物流仓储流程
发货单位、发货时间、出库品种、出库数量、金额、出库方式选择、运算结算方式、提货人鉴字、成品库主管鉴字。
1.2 物流仓储在经济建立中的作用
1.现代仓储是保证社会再生产顺利进展的必要条件
2.是国家满足急需特需的保障
国家储藏是一种有目的社会储存,主要用于应付自然灾害、战争等人力不可抗拒的突发事变对物资的急需特需,否那么就难以保证国家的平安和社会的稳定。储存是平衡市场供求关系、稳定物价的重要条件。流通储存可在供过于求时吸纳商品,增加储存,供不应求时吐放商品,以有效地调节供求关系,缓解矛盾。这样既可保证生产的稳定性,又可防止物价的大起大落,防止生产供应的恶性循环。
7.综合以上内容,提交一份完整的课程设计报告书,并且提交优化前后的仿真模型。
学生签名: 教师签名:
物流系统仿真——实验报告
物流系统仿真——实验报告实验报告:物流系统仿真一、实验目的本实验的目的是通过对物流系统的仿真,探究不同因素对物流运输效率的影响,以及如何优化物流系统,提高运输效率。
二、实验原理物流系统是指通过协调物流资源,实现从供应商到消费者的物流运输过程。
在物流系统中,货物从供应商处出发,经过多个运输节点,最终到达消费者手中。
物流运输效率是衡量物流系统优劣的关键指标之一、通过仿真实验,我们可以模拟各种情况下物流系统中的运输过程,分析各个因素对运输效率的影响。
三、实验步骤1.设定实验参数:包括供应商数量、运输节点数量、货物数量、货物到达时间间隔等。
2.构建物流系统模型:根据设定的参数,构建物流系统模型,包括供应商节点、运输节点和消费者节点。
3.设置运输规则:根据实际情况,设置货物的运输规则,如货物可以通过哪些运输节点进行运输、每个节点的运输能力等。
4.进行仿真实验:根据设定的参数和运输规则,进行多次仿真实验,观察不同因素对运输效率的影响。
5.分析实验结果:对仿真实验结果进行统计和分析,得出结论,提出优化建议。
四、实验结果与分析在实验中,我们设置了不同的实验参数和运输规则,观察了以下几个因素对运输效率的影响:1.供应商数量:增加供应商数量可以分担运输压力,提高运输效率。
2.运输节点数量:增加运输节点数量可以减少货物等待时间,提高运输效率。
3.货物数量:增加货物数量会导致运输压力增加,降低运输效率。
4.货物到达时间间隔:合理设置货物到达时间间隔可以平衡供需关系,提高运输效率。
通过对实验结果的分析,我们可以得出以下结论:1.在合理范围内,增加供应商和运输节点数量可以提高物流系统的运输效率。
2.合理控制货物数量,避免运输压力过大,可以提高运输效率。
3.合理设置货物到达时间间隔,可以平衡供需关系,提高运输效率。
五、优化建议基于实验结果的分析,我们提出以下优化建议:1.增加供应商和运输节点数量:根据实际情况,优化物流系统的布局,增加供应商和运输节点数量,以提高运输效率。
生产物流系统建模仿真》-课程设计报告
.《生产物流系统建模与仿真》课程设计2012-2013学年度第一学期姓名孙会芳学号 099094090班级工093指导老师暴伟霍颖目录一、课程任务书 (3)1.题目............................................................... (3)2.课程设计内容 (3)3.课程设计要求 (4)4.进度安排 (4)5.参考文献 (4)二、课程设计正文 (5)1、题目 (5)2、仿真模型建立 (5)(1)实体元素定义 (5)(2)元素可视化的设置 (6)(3)元素细节设计 (8)(4 ) 模型运行和数据................................................................... (10)(5)模型代码 (12)(6)模型改进 (16)3.实验感想 (17)三、参考文献 (18)《生产物流系统建模与仿真》课程设计任务书1. 题目离散型流水作业线系统仿真2. 课程设计内容系统描述与系统参数:(1)一个流水加工生产线,不考虑其流程间的空间运输。
(2)两种工件A,B分别以正态分布和均匀分布的时间间隔进入系统,A进入队列Q1, B进入队列Q2,等待检验。
(学号最后位数对应的仿真参数设置按照下表进行)(3)操作工人labor1对A进行检验,每件检验用时2分钟,操作工人labor2对B进行检验,每件检验用时2分钟。
(4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A的合格率为65%,B的合格率为95%。
(5)工件A送往机器M1加工,如需等待,则在Q3队列中等待;B送往机器M2加工,如需等待,则在Q4队列中等待。
(6)A在机器M1上的加工时间为正态分布(5,1)分钟;B在机器M2上的加工时间为正态分布(8,1)分钟。
(7)一个A和一个B在机器M3上装配成产品,需时为正态分布(5,1)分钟,装配完成后离开系统。
生产系统建模与仿真实验报告
学生实验报告实验项目:生产线物流路径系统及物流成本分析班级:学号:姓名:成绩:指导教师:年月日一、实验描述及目的物流路径在实际生产中有着非常高的利用率。
物流路径的合理选择对物流成本以及生产线的运行效益有着重要的影响。
路径是一个单元,部件和劳动力(或其他资源)能沿着它从一个单元但另一个单元。
在模型中它用来表示真实世界种路径的长度和物理性质。
当两个操作的时间间隔相当重要时,路径的增加模型的准确度上是十分有用的。
在这个模型中。
椅子由靠背back,坐垫seat,椅腿leg组装完成之后,沿着一个路径被送到喷漆部门,喷成红色,绿色或者黄色,然后送去检查,有部分由于喷漆不合格,被送回重新喷漆,其他的被送去包装,相同颜色的4把椅子打成一包,然后被运走。
仿真目的:1)了解生产线物流路径系统设计2)学会使用Match命令和Perent命令3)分析物流成本的构成及其应影响因素二、实验步骤1.定义元素通过菜单项window/control...修改布局窗口的名称为paths。
通过在系统布局窗口单击鼠标右键,将弹出元素定义窗口,由此定义下列元素:●Part:back,seat,legs●Buffer:b1,b2,b3,paint_Q,inspection_Q,packing_Q●Path:path1,path2,path3,path4,path5●Machine:assembly,painting,inspection,packing●Labor:inspector●Variable:X (type:integer)●Attribute:C(type:string,group number:1)得到如下截图:定义效果截图2.元素可视化(display)的设置模型的可视化效果如下图:生产线物流路径系统可视化效果①.绘制成品椅子图根据教材提示得到如下:图标编辑窗口②.part和buffter元素可视化的设置:Display对话框Display Part Queue 对话框③.machine元素可视化设置根据提示得到如下:可随状态改变颜色的Icon设置④.path元素可视化设置根据提示得到如下:Display Path 对话框3.各个元素细节(detail)设计①.对part元素细节设计属性定义:●Seat. Arrival Type=Active●......●...得到如下截图:Detail part对话框②.对machine元素assembly细节设计Detail Machine assembly 对话框Detail path对话框④.对machine元素painting细节设计⑤.对path元素path3细节设计⑥.对machine元素inspection细节设计⑦.对path元素path4细节设计⑨.对machine元素packing细节设计⑩.对path元素path5细节设计11.对buffer元素packing_Q细节定义三、数据运行、处理及分析仿真运行该模型机器工作状态统计表路径工作状态统计表劳动者工作状态统计表缓冲区工作状态统计表通过这些报表可以看出,流水线上的机器利用率越来越低,劳动者的劳动时间比例比较高,从path1,path2,path3,path4次序看,路径上的零部件通过量也是逐步减少,这是因为零部件的加工时间和在路径上的行进时间较长造成的结果。
物流系统建模与仿真(实训报告)总结
物流系统建模与仿真实习报告班级:__________________姓名:__________________学号:__________________姓名:__________________学号:__________________ 日期:___________________基于WITNESS的生产系统仿真实验一、实验目的1.通过WITNESS系统提供的Designer Elements模板,快速的建立WITNESS模型。
2.通过学习,要能够掌握part、machine、conveyor、labor实体元素、variable 逻辑元素的使用;3.掌握可视化输入、输出关系的建立。
4.掌握report工具栏的使用和分析。
5.熟悉管材的生产线流程特点。
6.对该系统进行必要的分析。
二、实验内容模拟管材的加工流程,存在三种不同精度要求的管材加工过程,我们从原料上将其分为原料1、原料2、原料3,它们经过的程序如下图所示。
三、实验步骤1. 元素定义如下表所示铣弧口machine 1 机器打扁machine 1 机器钻孔machine 1 机器去毛刺machine 1 机器检验machine 1 机器清洗machine 1 机器烘干machine 1 机器输送链1 conveyor 1 输送链输送链2 conveyor 1 输送链输送链3 conveyor 1 输送链输送链4 conveyor 1 输送链输送链5 conveyor 1 输送链输送链6 conveyor 1 输送链在WITNESS软件中创建machine,conveyer,part,拖动到想要的位置上。
2.显示元素由于是动画仿真系统,因此对系统的每一个对象要进行可视化定义。
选定各个对象,然后对其定位。
3.建模元素详细设计。
(1)双击PART001图标,得到元素细节设计对话框。
输入新的名称原料1覆盖掉系统默认的名字。
对PART002和PART003做相同设置。
物流系统建模与仿真实验报告
利用计算机模拟技术,对物流系统进 行模拟运行,以便评估和优化系统的 性能。
学习物流系统建模的方法和步骤
方法
包括离散事件仿真、连续仿真、混合仿真等。
步骤
确定研究问题、选择合适的建模方法、建立模型、模型验证与修正、模型应用与优化。
掌握仿真实验的流程和操作
流程
包括问题定义、模型建立、模型验证、仿真运行、结果分析等步骤。
物流系统建模与仿真 实验报告
汇报人: 202X-01-07
目录
• 实验目的 •实验原理 • 实验步骤 • 实验结果与分析 • 结论与展望
CHAPTER 01
实验目的
理解物流系统建模与仿真的基本概念
物流系统建模
通过数学模型或计算机模型对物流系 统进行抽象描述,以便分析和预测系 统的性能和行为。
物流系统仿真的应用场景
物流网络规划
通过仿真实验评估不同规划方案的效果,为 决策者提供参考依据。
物流系统优化
通过仿真实验找到最优的资源配置和调度策 略,提高物流系统的效率。
物流风险管理
通过仿真实验评估潜在风险和不确定性因素 ,制定有效的风险应对措施。
物流服务质量管理
通过仿真实验评估服务质量水平,优化服务 流程和提升客户满意度。
建议一
针对物流系统效率问题,建议采用先进的路径规划算法优化物流路径,同时提高运输工具 的装载率,减少空驶现象。
建议二
为了降低物流成本,可以引入智能调度系统,实现运输资源的合理配置和优化利用。此外 ,加强与供应商的合作,实现信息共享和资源整合也是降低成本的有效途径。
建议三
提高物流系统可靠性需要从多个方面入手。首先,应定期对运输工具进行维护和保养,确 保其正常运行。其次,加强仓储设施的维护和管理,确保货物安全。最后,优化物流信息 管理系统,实现信息的实时更新和共享,提高系统的透明度和可靠性。
物流系统建模与仿真指导书及报告
物流系统建模与仿真实验指导书实验四、五:物流运输数学模型的建立与应用(4学时)一、实验目的1.掌握物流运输数学模型建立的原理、方法。
2.熟悉运输问题线性规划的方法及步骤。
3.应用EXCEL 统计分析软件对物流运输问题进行数学模型的建立与应用。
二、实验仪器设备计算机、EXCEL 软件三、实验原理这类问题可用数学语言描述如下: (1)产销平衡的运输问题:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥=====∑∑∑∑====),,2,1;,,2,1(0),,2,1(),,2,1(..1111n j m i xij n j b x m i a x t s x cMinZ m i j ij nj i ij mi nj ijji (销量约束)(产量约束)满足约束条件:目标函数:(2)产大于销的运输问题:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥===≤=∑∑∑∑====),,2,1;,,2,1(0),,2,1(),,2,1(..1111n j m i xij n j b x m i a x t s x cMinZ m i j ij nj i ij mi nj ijji (销量约束)(产量约束)满足约束条件:目标函数:(3)销大于产的运输问题:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥=≤===∑∑∑∑====),,2,1;,,2,1(0),,2,1(),,2,1(..1111n j m i xij n j b x m i a x t s x cMinZ m i j ij nj i ij mi nj ijji (销量约束)(产量约束)满足约束条件:目标函数:四、实验内容与步骤1.收集问题的数据,列出数据关系表,确定决策变量、目标函数和约束条件。
2.在电子表格中输入已知数据(数据单元格)。
3.确定决策变量单元格(可变单元格)。
4.输入约束条件左边的公式(输出单元格),在单元格内建立约束条件左边的公式表达。
5.输入目标函数公式(目标单元格),在单元格内建立目标函数的公式表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生产物流系统建模与仿真》课程设计2012-2013学年度第一学期姓名会芳学号099094090班级工093指导老师暴伟霍颖目录一、课程任务书 (3)1.题目 (3)2.课程设计容 (3)3.课程设计要求 (4)4.进度安排 (4)5.参考文献 (4)二、课程设计正文 (5)1、题目 (5)2、仿真模型建立 (5)(1)实体元素定义 (5)(2)元素可视化的设置 (6)(3)元素细节设计 (8)(4 ) 模型运行和数据 (10)(5)模型代码 (12)(6)模型改进 (16)3.实验感想 (17)三、参考文献 (18)《生产物流系统建模与仿真》课程设计任务书1. 题目离散型流水作业线系统仿真2. 课程设计容系统描述与系统参数:(1)一个流水加工生产线,不考虑其流程间的空间运输。
(2)两种工件A,B分别以正态分布和均匀分布的时间间隔进入系统,A进入队列Q1, B进入队列Q2,等待检验。
(学号最后位数对应的仿真参数设置按照下表进行)(3)操作工人labor1对A进行检验,每件检验用时2分钟,操作工人labor2对B进行检验,每件检验用时2分钟。
(4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A的合格率为65%,B的合格率为95%。
(5)工件A送往机器M1加工,如需等待,则在Q3队列中等待;B送往机器M2加工,如需等待,则在Q4队列中等待。
(6)A在机器M1上的加工时间为正态分布(5,1)分钟;B在机器M2上的加工时间为正态分布(8,1)分钟。
(7)一个A和一个B在机器M3上装配成产品,需时为正态分布(5,1)分钟,装配完成后离开系统。
(8)如装配机器忙,则A在队列Q5中等待,B在队列Q6中等待。
(9)连续仿真一天的系统运行情况,每个队列最大容量为1000。
3. 课程设计要求根据上述系统描述和系统参数,应用Witness仿真软件建立仿真模型并运行,查看仿真结果,分析各种设备的利用情况,发现加工系统中的生产能力不平衡问题,然后改变加工系统的加工能力配置(改变机器数量或者更换不同生产能力的机器),查看结果的变化情况,确定系统设备的最优配置。
(1)每位同学必须独立完成课程设计任务,对照学号最后一位选择参数,不得抄袭或找人代做,否则成绩以不及格记。
(2)课程设计说明书必须包括必要的文字描述、模型流程图、系统建立与运行过程中各环节的截图、模型代码和Excel格式的标准报告。
其中截图主要包括模型建立、主要参数设置、系统运行、统计数据的截图。
(3)课程设计说明书的装订顺序依次为封面、设计任务书、目录、正文、参考文献。
(4)课程设计说明书以班级为单位进行汇总上交,上交时间为第16周周一下午,地点为B-110,如有特殊情况需要推迟上交,务必做出说明,需在2013年1月10日前完成上交。
4. 进度安排本课程设计为期一周。
进度安排如下表所示。
5. 主要参考文献[1] 晓萍,石伟,玉坤主编. 物流系统仿真. :清华大学, 2008.[2] 程光, 邬洪迈,永刚编著. 工业工程与系统仿真. :冶金工业,2007《生产物流系统建模与仿真》课程设计1、学号最后位数对应的仿真参数设置按照下表进行A(正态分布参数):(10,1)、B(均匀分布参数):(10,20)2、根据以上条件建立以下仿真模型:(1):实体元素定义根据课程设计任务书中的叙述,可对本系统有如下表所示的元素定义。
C2 Variable(type:real) 1 Q2临时库存C3 Variable(type:real) 1 Q3临时库存C4 Variable(type:real) 1 Q4临时库存C5 Variable(type:real) 1 Q5临时库存C6 Variable(type:real) 1 Q6临时库存(2):元素可视化设置各个实体元素的显示特征定义设置如下图:A、part元素可视化设置设置其Text、Icon,其方法和上图part元素的设置一样。
B、buffer元素可视化设置设置其Text、Rectangle,其中text设置方法和上图part元素的设置一样。
后者设置方法如上图所示。
同理设置Q2、Q3、Q4、Q5、Q6。
C、Machine元素的可视化设置设置其Text、Icon,其方法和上图part元素的设置一样。
D、V ariable元素的可视化设置设置其Text、Value,如下图所示同理建立其他元素。
E、界面上表格的建立过程设置其Rectangle、Line,如下图所示:(3)元素细节设计。
1、对part元素的细节设计,如下图所示2、对buffer元素的细节设计同理设置M13、对machine元素的细节设计对labor1的细节设计,如下图所示:同理设置其他其中M3和他们有很大区别,其语句如下所示(4)模型运行和数据报告要观察连续仿真一天的系统运行情况,所以取1440仿真时间单位。
得到以下结果。
(5)模型代码ELEMENT NAME: AElement Type: PartType: Variable attributesGroup number: 1Inter Arrival Time: NORMAL (10,1,3)First Arrival at: 0.0Maximum Arrivals: UnlimitedInput / Output RulesOutput: PUSH to Q1_____________________________________________________________ELEMENT NAME: BElement Type: PartType: Variable attributesGroup number: 1Inter Arrival Time: UNIFORM (10,20,3)First Arrival at: 0.0Maximum Arrivals: UnlimitedInput / Output RulesOutput: PUSH to Q2_____________________________________________________________ELEMENT NAME: Iabor1Element Type: MachineQuantity: 1Priority: LowestType: SingleCycle Time: 2.0Input / Output RulesInput: PULL from Q1Output: PERCENT /3 Q3 65.00 ,SHIP 35.00Labor RequirementsCycle: labor1_____________________________________________________________ELEMENT NAME: labor2Element Type: MachineQuantity: 1Priority: LowestType: SingleCycle Time: 2.0Input / Output RulesInput: PULL from Q2Output: PERCENT /4 Q4 95.00 ,SHIP 5.00Labor RequirementsCycle: labor2_____________________________________________________________ELEMENT NAME: M1Element Type: MachineQuantity: 1Priority: LowestType: SingleCycle Time: NORMAL (5,1,2)Input / Output RulesInput: PULL from Q3Output: PUSH to Q5_____________________________________________________________ELEMENT NAME: M2Element Type: MachineQuantity: 1Priority: LowestType: SingleCycle Time: NORMAL (8,1,2)Input / Output RulesInput: PULL from Q4Output: PUSH to Q6_____________________________________________________________ELEMENT NAME: M3Element Type: MachineQuantity: 1Priority: LowestType: SingleCycle Time: NORMAL (5,1,2)Input / Output RulesInput: MATCH/ANYQ5 #(1) AND Q6 #(1)Output: PUSH to SHIPActionsFinish: OP = OP + 1_____________________________________________________________ELEMENT NAME: OPElement Type: VariableQuantity: 1_____________________________________________________________ELEMENT NAME: Q1Element Type: BufferQuantity: 1Capacity: 1000Input Option: C1=C1 + 1Output Option: C1=C1 - 1Search From: Front_____________________________________________________________ELEMENT NAME: Q2Element Type: BufferQuantity: 1Capacity: 1000Input Option: C2=C2 + 1Output Option: C2=C2 - 1Search From: Front_____________________________________________________________ELEMENT NAME: Q3Element Type: BufferQuantity: 1Capacity: 1000Input Option: C3=C3 + 1Output Option: C3=C3 - 1Search From: Front_____________________________________________________________ELEMENT NAME: Q4Element Type: BufferQuantity: 1Capacity: 1000Input Option: C4=C4+ 1Output Option: C4=C4 - 1Search From: Front_____________________________________________________________ELEMENT NAME: Q5Element Type: BufferQuantity: 1Capacity: 1000Input Option: C5=C5 + 1Output Option: C5=C5 - 1Search From: Front_____________________________________________________________ELEMENT NAME: Q6Element Type: BufferQuantity: 1Capacity: 1000Input Option: C6=C6 + 1Output Option: C6=C6 - 1Search From: Front_____________________________________________________________ ELEMENT NAME: C1Element Type: VariableQuantity: 1_____________________________________________________________ELEMENT NAME: C2Element Type: VariableQuantity: 1_____________________________________________________________ ELEMENT NAME: C3Element Type: VariableQuantity: 1_____________________________________________________________ELEMENT NAME: C4Element Type: VariableQuantity: 1_____________________________________________________________ELEMENT NAME: C5Element Type: VariableQuantity: 1_____________________________________________________________ELEMENT NAME: C6Element Type: VariableQuantity: 1_____________________________________________________________(6)模型优化由图15可知,设备的闲置时间太多,不能有效利用,导致生产力不平衡以及生产率低下,故对系统以下的参数进行了调整:a、将工件B的到达件数改为2件b、将A在机器M1上的加工时间改为正态分布(7,1)分钟;B在机器M2上的加工时间为正态分布(9,1)分钟。