无功补偿器用户手册

无功补偿器用户手册
无功补偿器用户手册

智能无功补偿器用户手册

青岛盘古电气有限公司

2009年10月20日

智能无功补偿器用户手册

1.产品概述

PGC / PGZ系列低压无功补偿控制器是本公司最新研制成功的高新技术产品,其采用了新型控制技术和高速微处理芯片,具有体积小、外形合理美观、功能完善、抗干扰能力强、运行稳定可靠、补偿精度高等优点,是目前国内同类无功补偿控制器中,性价比较高的产品之一。产品可配套无功补偿装置,用于补偿电网无功功率,提高功率因数,降低线路损耗,提高电网的供电质量和负载能力。

根据用户需求,产品从功能上分为共补型(PGC)和混补型(PGZ)两种型号。从控制投切路数上分为:4路、8路、12路、16路四种规格。

2.执行标准

装置中的所有电器元件均符合以下国家标准或行业标准:

JB/T9663-1999 低压无功功率自动补偿控制器

DL/T 842-2003 低压并联电容器装置使用技术条件

DL/T 597-1996 低压无功补偿控制器订货技术条件

3.使用条件及适用范围

1 本产品适用于220V/380V低压配电网络,户内使用。

2 海拔不超过2500米。

3 环境温度-40℃~+60℃。

4 相对湿度 40℃时不超过95%。

5 工作周围环境无明显导电性尘埃及无易燃、易爆介质及腐蚀性气体。

6 安装地点无剧烈振动,不受阳光直接照射,无雨雪侵蚀。

7 工作电源工频为50Hz,电压幅度波动不超过额定值的±20%。

4.技术参数及说明

额定工作电压: 220V±20% 50Hz

额定工作电流:≤ 5A 50Hz

输出继电器容量: AC220V 10A

功率因数测量精度: 0.5级

投切延时: 1秒~9999秒

控制回路:可设定(最大16路)

外壳防护等级: IP40

5.主要功能及特点

功能:

□电容组投切状态指示。

□电容预投入、预切除;电网过压、欠流故障指示。

□电力参数可选择显示(功率因数、电压、电流、有功功率、无功功率)。

□控制器补偿类型:

PGC(共补模式)——同时对三相电路无功功率进行补偿。

PGZ(混补模式)——先对三相电路无功功率进行补偿,然后再根据各相实际功率

因数和无功功率单独进行补偿。

□投切时间:控制器判定需要投入或切除电容到实际接触器控制电容组投切需要的时间,按用户需要设定。

□控制方式:自动投切控制/手动投切控制。

◆自动投切:控制器自动进行优化投切,选取最接近所缺或所超无功功

率的那组电容投切,这样既保证了功率因数接近1,又减少了每天投切

的次数。等容量模式中采用先投先切原则,即先投入的电容先切断,电

容器组轮流工作,提高电容组的工作寿命。

◆手动投切:用户根据实际电网情况,手动对电容组进行投切操作,达

到所需功率因数。退出手动模式后,已投电容继续工作。

□电容器投入切除门限:cos0.5~0.99

=(连续可调)

□防止振荡投切功能:在无功功率较低时,防止电容组振荡投切工作,保护电容。

□过压欠流保护功能:当电网电压超过设定过压值或电流低于设定欠流值,控制器开

始逐级切除电容,直至稳定。

特点:

□输出路数自定义:例PGC-12J,可自设定1~12路的输出路数,其他同理类推。

□控制参考量:功率因数、有功功率和无功功率三者结合。

□接入电压电流极性自适应。

□过压、欠流数值动态设定。

□ 4位一体LED数码管显示。

注:上述设置参阅详细菜单

6.面板介绍及操作方法

智能无功补偿器控制面板示意图

投切指示(左侧):指示灯显示投切继电器的组数,以PGC-16J为例,1~16路可调分别指

示每组电容器的投切状况。当第n个指示灯发亮时,则表示该组电容器

组处于投入状态,反之则处于切出状态。

设置菜单(右侧):设置菜单对P01~P16组菜单功能进行说明,便于用户在补偿装置投入运

行之前,设置控制器工作参数。

按键菜单(中侧):按键菜单有四个按键:“设置”键进行菜单选择和参数设定,“︽”、“︾”

键进行每一级菜单的选择或参数的设置,“确认”键对设置参数保存和返

回上级菜单。

按键操作说明:★显示功能——无功补偿控制器正常工作时,数码管显示电网A相线路功率因数值,按“︽”、“︾”键可选择显示三相电网参数——功率因

数(PFA,PFB,PFC);无功功率(OA,OB,OC);有功功率(PA,PB,PC);

电压(UA,UB,UC);电流(IA,IB,IC)。按“设置”键将进入设置菜

单功能选择状态,按“确认”键无操作。

★设置功能——按“设置”键进入设置功能菜单选择状态,数码管显

示值“P01”,按“︽”、“︾”键可以选择P01~P31各组菜单。按“设置”

键将进入当前菜单内容设置状态,可对该级菜单内容进行设置,再按“确

认”键可保存修改信息并返回。

实例:控制器运行时,按“设置”键后进入设置菜单功能选择状态,显示“P01”,按“︽”、“︾”键可选择至“P09”菜单。按“设置”键

选择“P09”菜单,进入后数码管显示“0020”(默认出厂值),表示当

前值为20。数码管第一位闪烁,代表处于可调状态,按“︽”、“︾”键

可以使该位调整为0~9范围内的数值。该位调整完成后,按“确认”

键后,数码管第二位变成闪烁可调状态,调整方式同上。第三、四位调

整亦同。依次调节完4位数值后,按“确认”键返回至“P09”菜单。

至此,“P09”菜单的内容调整完成。

★手动说明——在设置功能菜单选择状态中设置P01菜单的值为1,

控制器将工作在手动模式下。LED数码管将自动循环显示功率因数(PFA,

PFB,PFC);无功功率(OA,OB,OC);有功功率(PA,PB,PC);电压

(UA,UB,UC);电流(IA,IB,IC)相应数值。同时,4个工作状态指

示灯将同步闪烁显示。需要投切时,按“︽”键一次投入一组电容,按

“︾”键切除一组电容,采用先投先切原则。

详细菜单如下:

? P01-自动、手动设置

00为自动状态(出厂设置),01为手动状态。

? P02—共补、混补选择

PGZ型:00为共补状态(出厂设置),01为混补状态。

PGC型:00为共补状态(出厂设置),无混补状态。

? P03—共补电容组数

设置接入共补电容组数,出厂设置为最大电容组数,例PGC-16J,最大电

容组数为16。

? P04—首组电容量值

设置第一组电容容量(单位:kvar),出厂设置为0。

? P05—电容组成方式

00为等容量状态(出厂设置),01为用户自定义状态。

? P06—电容组数目

设置接入电容数目,出厂设置为最大电容组数,例PGC-16J,电容组数为

16。

? P07—功率因数(PF)感性限

设置感性负载下需要达到的功率因数值,出厂设置为0.96。

? P08—功率因数(PF)容性限

设置容性负载下需要达到的功率因数值,出厂设置为0.96。

? P09—投入延迟时间

设置电容组从判断需要投入到实际投入时间值(单位:s),出厂设置为20s。

? P10—切除延迟时间

设置电容组从判断需要切除到实际切除时间值(单位:s),出厂设置为20s。

? P11—电压互感器一次侧额定值

设置电压互感器一次侧额定值,出厂设置为20。

? P12—电压互感器二次侧额定值

设置电压互感器二次侧额定值,出厂设置为20。

? P13—电流互感器一次侧额定值

设置电流互感器一次侧额定值,出厂设置为5。

? P14—电流互感器二次侧额定值

设置电流互感器二次侧额定值,出厂设置为5。

? P15—过压下限值

设置电网电压过压最大值(单位:V),超过该值控制器将切除已投电容,

出厂设置为266V。

? P16—欠流上限值

设置电网电流欠流最小值(单位:A),低于该值控制器将切除已投电容,出

厂设置为2A。

? P17~P31—第2至第16组各电容组容量值

设置第2至第16组各电容组容量值,出厂设置值为0。

注:P17~P31属于选择设置菜单,需根据控制器最大电容组数选择设置对

应回路电容组容量值,例,PGC-12J,最大电容组数为12,只需设置P17~

P27组菜单,共11组。

用户需设值:本控制器不设任何参数,上电后可正常工作。但为了使无功补偿投切控制更为精确以及防止振荡投切,用户需设置首组电容值(P04);在PGZ系列的各

电容组容量用户定义模式,用户根据实际路数需要设置(P17~P31)。为了

确保显示电网有功、无功、电压、电流等参数正确,用户需设置电压互感器

一次、二次侧额定值(P11、P12)和电流互感器一次、二次侧额定值(P13、

P14)。

工作状态显示:工作时对电网电压、电流状态进行实时监控,正常工作时显示预投预切状态,出现过压或欠流时将退出投切状态。用户可根据实际要求对监控参数进

行选择观察。

7.安装接线

安装注意:将固定附件的挂钩插入侧面孔内,旋附件螺钉可将控制器固定在箱体。

标号示意:标号接线内容

UA/UB/UC 三相电网电压

IA/IB/IC 三相电网电流

UN/IN 电压/电流中线

L AC220V火线

N AC220V零线

1~16 输出控制线,例4路接1~4,8路接1~8,依次类推

COM 交流接触器控制电源总线(三相中任意一相火线)

接线示意图

★ 4路输出接线:

★ 8路输出接线:

★ 12路输出接线:

★ 16路输出接线:

系统故障排除

因一些容易忽视的错误,会造成整个电容器补偿系统不能正常运行。现将常见的故障现象及检查排除方法举例分述:

1.电容器不投入,“欠流”指示灯亮应作以下判断:负载电流小于欠流设定值属于正常工作。当大于欠流设定值则需检查电流回路是否接通。

2.未投入电容器,功率因数未到设定限值应作以下判断:a 电网无功负荷较小,无需操作;

b 电容组容量值过大,应更换电容组。

3.手动模式中不能投到最大电容组数,应判断:电容组数或共补电容组数设置是否正确。4.电容器出现振荡投切时应作以下判断:a 首组容量(P04)是否正确设置;b 电容组容量大于当前无功容量,需更换电容组容量。

5.不便判断问题出在控制器还是出在外接线路时,可换一台控制器,如出现相同的故障现象,请您务必按照前面提示,检查线路。

8.维护及注意事项

□维护:

装置运行中,要定期观察工作电源灯及投切指示灯,如出现异常情况,请立即停机检查,或与公司客服部门联系。

□注意事项:

▲本装置严禁非电工人员操作使用。

▲安装使用前要对预接电网电压进行测量,严格按电力管理规定要求进行。

▲检修时,必须先停电,等电容器放电完毕,方可进行。

注:本装置随机附件包括使用说明书、出厂合格证,请用户开箱后核对,如有不符可与我方联系。

补偿无功功率节电原理

补偿无功功率节电原理 在交流电路中,由电源供给负载率有两种:一种是有功功率,一种是无功功率。 有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照明。有功功率的符号用P 表示,单位有瓦(W )、千瓦(KW )、兆瓦(MW )。 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。无功功率的符号用Q 表示,单位为乏(Var )或千乏(kVar )。 无功功率决不是无用功率,它的用处很大。电动机的转子磁场就是靠从电源取得无用功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。为了形象地说明问题,现举一个例子:农村修水利需要挖土方运土,运土时用竹筐装满土,挑走的土好比是有功功率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么运到堤上呢? 在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用点设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。 无功功率对供、用电产生一定的不良影响,主要表现在: (1) 降低发电机有功功率的输出。 (2) 降低输、变压设备的供电能力。 (3) 造成线路电压损失增大和电能损耗的增加。 (4) 造成底功率因数运行和电压下降,使电气设备容量得不到充分发挥。 从发电机和高压电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是电网需要装设无功补偿装置的道理。 2、功率因数 电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cos φ来表示。Cos φ称为功率因数,又叫力率。功率因数是反映电力用户设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。三相功率因数的计算公式为: P= UI θcos 3 Q=3UIcos θ S=3UI cos θ=P/S

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

动态无功补偿设备(SVG)技术协议详情(实用标准)

35kV静止无功发生器成套装置 技术协议

第一节技术协议 一. 总则 1. 本技术协议书仅适用于中铝能源太阳山风电厂五期110kV升压站主变扩建工程动态无功补偿装置(SVG)的加工制造和供货。技术协议中提出了对设备本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求。 2. 本技术协议提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规的条文,供方应提供符合本技术规引用标准的最新版本标准和本技术协议技术要求的全新产品,如果所引用的标准之间不一致或本技术协议所使用的标准如与供方所执行的标准不一致时,按要求较高的标准执行。 3. 本技术协议将作为订货合同的附件,与合同具有同等的法律效力。本技术协议未尽事宜,由合同签约双方在合同谈判时协商确定。 4. 供方保证提供的产品符合安全、健康、环保标准的要求。供方对成套设备(含辅助系统与设备)负有全部技术及质量责任,包括分包(或采购)的设备和零部件。 5. 本技术协议提出了对SVG技术参数、性能、结构、试验等方面的技术要求。 6. 若供方所提供的技术资料协议前后有不一致的地方,以有利于设备安装运行、工程质量为原则,由需方确定。 二. 标准和规 1. 合同设备包括供方向其他厂商购买的所有附件和设备,这些附件和设备应符合相应

的标准规或法规的最新版本或其修正本的要求。 2. 除非合同另有规定,均须遵守最新的国家标准(GB)和国际电工委员会(IEC)标准以及国际单位制(SI)标准,尚没有国际性标准的,可采用相应的生产国所采用的标准,但其技术等方面标准不得低于国家、电力行业对此的各种标准、法规、规定所提出的要求,当上述标准不一致时按高标准执行。 3. 供方提供的设备和配套件要符合以下最新版本的标准,但不局限于以下标准,所有设备都符合相应的标准、规或法规的最新版本或其修正本的要求,除非另有特别说明外,合同期有效的任何修正和补充都应包括在。 DL/T672-1999 《变电所电压无功调节控制装置订货技术条件》 DL/T597-1996 《低压无功补偿控制器订货技术条件》 GB/T 11920-2008《电站电气部分集中控制设备及系统通用技术条件》 GB 1207-2006 《电磁式电压互感器》 SD 325-89 《电力系统电压和无功电力技术导则》 DL/T 840-2003 《高压并联电容器使用技术条件》 GB 50227-2008 《并联电容器装置设计规》 GB 311.1-1997 《高压输变电设备的绝缘配合》 GB 311.2-2002 《绝缘配合第2部分:高压输变电设备的绝缘配合使用导则》GB 311.3-2007 《绝缘配合第3部分:高压直流换流站绝缘配合程序》 GB/T 311.6-2005 《高电压测量标准空气间隙》 GB/T 11024.2-2001《标称电压1kV以上交流电力系统用并联电容器第2部分:耐久性 试验》 JB/T 8170-1995 《并联电容器用部熔丝和部过压力隔离器》 GB 50227-2008 《并联电容器装置设计规》

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

静态与动态无功补偿

**********. 静态补偿与动态补偿区别是什么? 动态补偿,是近几年发展起来是一类先进的补偿装置,静态补偿是相对于动态补偿来说的。以前我们常见的补偿柜或者补偿箱,大多用接触器做电容的开关。因为接触器的反应慢,又要考虑电容器的放电时间,所以这类补偿装置的一个共同特点是投切间隔较长,最快也不过在5秒左右。 这样的速度,对于电焊机、行吊、锯木机,等等机器来说,就不能很好的补偿了。 为了解决这个问题,就采用了可控硅来做电容开关,可以将反应速度提高到毫秒,也就是可以跟踪负载的变化,级数先进的产品,几乎达到同步补偿的水平。这样的快速补偿装置,我们叫它“动态补偿”。 目前,国家对动态补偿的要求还比较低: 国家标准GB/T15576-2008《低压成套无功功率补偿装置》中“6?13”的规定:动态补偿的响应时间不大于1秒。 JB/T 10695-2007《低压无功功率动态补偿装置》中“6?12?8”的规定:动态补偿的响应时间不大于2秒。 因此,按目前的标准,动态补偿就是:对电网功率因数变化,能在2秒以内反应并投切的补偿装置。 早期动态的补偿装置,因工作时没有接触器动作,没有吸合或释放产生的巨大响声,所以又称静止补偿。 那么,响应时间长的传统补偿装置,就是静态补偿了。 动态补偿的优点:反应快,补偿效果好,特别适用于负载波动剧烈的场合。动态补偿通常还有分补功能,可以对不平衡的负载做良好的补偿。 动态补偿的不足:价格高,可靠性还不够,自身耗能很大。在负载比较稳定的场合没有优势。静态补偿的优点:技术成熟,价格低廉,工作可靠,在一般场合补偿效果良好。所以使用很广泛。 静态补偿的不足:反应慢,对于负载波动大的设备无法补偿。静态补偿因成本限制,通常没有分补功能表。 特别指出:采用复合开关的补偿柜,不能算动态补偿,只能算静态补偿的改进产品,或者是介于动态补偿与静态补偿之间的改良产品。详见:第“20、复合开关是什么开关?” ************SVC&&SVG 止无功补偿器(Static Var Compensator——SVC)等。其中,SVC是用于无功补偿 典型的电力电子装置,它是利用晶闸管作为固态开关来控制接入系统的电抗器和 电容器的容量,从而改变输电系统的导纳。按控制对象和控制方式不同,分为晶 闸管控制电抗器(Thyristor Controlled Reactor——TCR)和晶闸管投切电容器 (Thyristor Switching Capacitor——TSC)以及这两者的混合装置(TCR+TSC)、 TCR与固定电容器(Fixed Capacitor)配合使用的静止无功补偿装置(FC + TCR) 和TCR与机械投切电容器(Mechanically Switch Capacitor——MSC)配合使用的 装置(TCR+MSC)。 为静止无功发生器(Static Var Generator——SVG)。它既可提供滞后的无功功 率,又可提供超前的无功功率。SVG分为电压型和电流型两种,图3给出了SVG装置

无功补偿及低压补偿装置原理简介

无功补偿及低压补偿装置原理简介 一、一次电路 一次电路的构成如下图所示,包括隔离开关QS、10组熔断器FUI~FUIO、接触器KM1~KMIO、热继电器FRl~F'R10、补偿电容器CI~CIO.另外还有电流互感器TAa、TAh和TAc.避雷器BLI、BL2和BL3。其中熔断器和热继电器用于对电容器进行短路及过电流保护;接触器是对电容器进行手动或自动投入、切除的开关器件;电流互感器获取的电流信号用于测量无功补偿柜补偿电流的大小:避雷器用子吸收电容器投入、切除操作时可能产生的过电压,是一种额定电压为AC220V的低压避雷器。 二、二次控制电路 包括一个物理结构分为7层的转换开关2SA、无功补偿自动控制器(以下简称补偿控制器)等元器件。转换开关2SA用来手动控制投入或切除1~10路补偿电容器,并完成自动控制器电压信号、电流信号的接人或退出。补偿控制器可以根据功率因数的高低或无功功率r与用蠛的大小自动投入或切除电容器,并在系统电压较高时自动切除电容嚣。具体电路见下图。 转换开关2SA有一个操作手柄,出下图可见,该手柄有自动、零位和手动l~lo共12个挡位,每旋转30°即可转换一个挡位。 在每个挡位,会有桐应的转换开关触点接通.2SA共可转换13对触点,分别是(7)、(8)、(9)、(10)等等,一直到下部的(1)、(2)触点。为了标示出转换开关2SA在不同的挡位与各组触点之问的对应关系,与12个挡位相对应的有12条纵向虚线,虚线与每一组触点(略偏下、无形相交的位置,可能标注有圆点或不标注圆点。标注有圆点的,表示转换开关旋转至该档位时,圆点(略偏上)位

置的一组触点是接通的,否则该组触点星开路状态。例如,在触点(7)、(8)略偏下位置,手动1.手动IO挡位时均标注有圆点,表示这10个挡位时触点(7)、(8)均接通。而在手动l挡位,只在触点(7)、(8)和(1)、(2)位置标注有圆点,说明在该挡位这两组触点是接通的。 无功补偿屏如欲进入自动控制投切状态,需给补偿控制器接人进线柜或待补偿电路总进线处A相电流互感器二次的电流信号I^,B桐、C相电压信号,以及接触器线圈吸合所需的工作电源。具体接线见下图中补偿控制器接线端子图。 图中US1、US2端干连接的103、104号线即是B相、C相电压信号(转换开关2SA在自动挡位时,103号线经2SA的(3)、(4)触点、熔断器FU13、X12端子、隔离开关Qs,连接至B桐电源;104号线沿类似线路连接至C相电源);ISI、IS2端子连接的即是进线柜的电流信号(经由转换开关2SA转接).COM端连接的l 号线即是接触器线圈吸合所需的丁作电源(1号线经熔断器FU11、XI1端子、隔离开关Qs,连接至A桐电源)。B相、C桐电压信号及A相电流信号在补偿控制器内部经过微处理器运算判断后,计算出功率因数的高低、无功功率的大小,一方面经过LED显示器显示功率因数值,同时发送电容器投切指令,例如补偿控制器发出投入电容器CI的指令时,其接线端子中的1号端子经内部继电器触点与COM端(1号线.A相电源)连通,该端子经3号线连接至接触器KMI线圈的左端,线圈的右端经热继电器FR1的保护触点接至2号线.即电源零线N。接触器KM1线圈得电后,主触点闭合.将电容器CI投入,实现无功补偿。此同时.KMI的辅助触点闭合,接通指示灯HL1,指示第一路电容器已经投入.如果无功功率数值较大,补偿控制器则控制各路电容器依次投入,直到功率因数补偿到接近于1。每一路电容器投入时的时间间隔是可调的,通常将其调整为几秒至儿十秒之间。补偿控制器遵

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

动态无功补偿技术的应用现状及发展 刘宪栩

动态无功补偿技术的应用现状及发展刘宪栩 发表时间:2018-05-31T10:36:53.397Z 来源:《电力设备》2018年第2期作者:刘宪栩王云昊刘楠 [导读] 摘要:在电力系统输送电能的过程中,无功功率不足,将使系统中输送的总电流增加、使变压器的输出力减少、供电线路及系统设备有功功率损耗增大、线路末端电压下降。 (国网天津市电力公司城西供电分公司天津市 300190) 摘要:在电力系统输送电能的过程中,无功功率不足,将使系统中输送的总电流增加、使变压器的输出力减少、供电线路及系统设备有功功率损耗增大、线路末端电压下降。对于电力用户来说,过多地从电网中吸取无功,不仅使电网损耗增加,也影响自身的用电和生产。可见无功功率对供电系统和负荷的运行都十分重要。但是,近些年来,随着我国工业的迅速发展,一些大功率非线性负荷的不断增多,对电网的冲击和谐波污染也呈不断上升趋势,缺乏无功调节手段造成了母线电压随运行方式的变动很大,引发了多种电能质量问题。主要包括:功率因数低、谐波含量高、三相不平衡、功率冲击、电压闪变和电压波动。 关键词:动态无功补偿技术;应用现状;发展 引言 在电力系统的运行中,系统运行的安全性、可靠性和经济性、输送电能的质量是其最根本的问题。一些大功率负荷的投入、退出,或者系统局部故障等,都会造成系统中有功功率和无功功率的大幅扰动,从而对电网的稳定性和经济性产生影响。特别是如电弧炉等冲击负荷、非线性负荷容量的不断增加,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。另外,现在的直流输电工程日益发展,大功率换流装置(无论整流或逆变)都需要系统提供大量无功功率。特别是一端为弱系统或临近的交流系统发生故障时,如果不能迅速补偿大幅度波动的无功功率,就会导致系统失控或瓦解。快速有效地调节电网的无功功率,使整个电网负荷的潮流分配更趋合理,这对电网的稳定、调相、调压、限制过电压等等方面都是十分重要的。 1动态无功补偿技术的现状 性能优良的SVC(静止无功补偿器)和技术更为先进的STATCOM(静止同步补偿器)已大规模应用于电力系统及工矿企业。 1.1同步调相机 早期的动态无功功率补偿装置主要为同步调相机,是传统的动态无功补偿设备,多为高压侧集中补偿,一般装于电力系统的枢纽变电站中,以减少因传输无功功率引起能量的损耗和电压降落。由于它是旋转电机,运行中的损耗和噪声都比较大,维护复杂费用高,且响应速度慢,所以难以满足快速动态补偿的要求。目前已逐渐退出动态无功补偿领域,在现场中仅有少量使用。 1.2静止无功补偿器(SVC) 静止无功补偿器(SVC)于20上世纪70年代兴起,现在是已经发展的很成熟的FACTS(柔性交流输电系统)装置,其被广泛应用于现代电力系统的负荷补偿和输电线路补偿(无功和电压补偿)。SVC装置的典型代表有:晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)和滤波器组(FC)。随着电力电子技术的不断发展和控制技术的不断提高,SVC向高压大容量多套并联的方向发展,以满足电力系统对无功补偿和电压控制的要求。南瑞继保在SVC的技术发展中做出了很大贡献,为国内外电网提供了多套大容量SVC系统。安装于新疆-西北联网工程第二通道750kV沙州变电站的SVC系统容量为-360Mvar(感性)~360Mvar(容性),由两套配置相同的SVC组成,直接接入变电站同一条66kV母线,每套SVC包含TCR(-360Mvar)×1,滤波器组(+180Mvar)×1。本工程SVC系统TCR单体容量达到360Mvar,直接接入电压等级高达66kV,开启了我国输电系统大容量、高电压动态无功补偿器的新篇章。 1.3静止同步补偿器(STATCOM) STATCOM系统基于电压源型变流器,采用目前最为先进的无功补偿技术,将IGBT构成的桥式电路经过变压器或电抗器接到电网上,适当地调节桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态调整控制目标侧电压或者无功的目的。同时如果需要STATCOM在补偿无功的基础上对负载谐波进行抑制,只要令STATCOM输出与谐波电流相反的电流即可。因此,STATCOM能够同时实现补偿无功功率和谐波电流的双重目标。 南瑞继保研制的百兆乏直流换流站动STATCOM在南方电网±500kV/3000MW永富直流富宁换流站顺利投运,该项目是大容量STATCOM装置应用于高压直流输电领域中的首个成功案例。此STATCOM系统包含协调控制系统和两套35kV/±100MVArSTATCOM成套设备。换流阀采用多电平电压源型换流器结构,成套设备占地面积小、功率密度高,具备快速暂态无功补偿、目标电压控制、交流系统故障穿越、协调控制等功能,是缓解直流换相失败、无功电压调节等的最佳解决方案,代表着柔性交流输电和用户电能质量领域的前沿方向。 2动态无功补偿技术的发展 2.1电力有源滤波器 电力有源滤波器的基本原理如图1所示。 图1 电力有源滤波器的基本原理 电力有源滤波器的交流电路分为电压型和电流型,目前实用的装置90%以上为电压型。从与补偿对象的连接方式来看,电力有源滤波器可分为并联型和串联型。并联型中有单独使用、LC滤波器混合使用及注入电路方式,目前并联型占实用装置的大多数。但电力有源滤波器现仍存在一些问题,如电流中有高次谐波,单台容量低,成本较高等。随着电力半导体器件向大容量、高频化方向发展,这类既能补偿谐波又能补

SVC静态无功补偿装置的原理和应用

1、引言 S V C 全称为静态无功补偿装置即Static Var Compensator ,主要型式有TCR 和TSC 以及两者结合。输配电系统装设SVC 的主要用途是在动态或稳态情况下提供系统电压支持和HVDC 换流站的无功控制,同时也用于阻尼输电系统的功率振荡、平衡系统的三相电压和抑制由于负荷变化引起的波动。一般SVC 装置通过降压变压器对35KV 电压等级进行补偿。 2、SVC 原理概述 2.1 SVC 主接线 图1为220KV 干练变电站SVC 回路主接线示意图,该回路共由三个支路组成,其中包括TCR 支路(即称晶闸管和电抗器组成)的相控支路、三次滤波支路和五次滤波支路。TCR 支路为SVC 中最重要的组成部分,我们可以通过对晶闸管导通关断角大小的控制来改变该回路所输出感性电流的大小从而改变输出的感性无功。由于TCR 支路中所输出的电流包含一定量大小的谐波成分以三、五次为主,因此需要对输出的电流进行必要的滤波从而防止本地电能质量的下降。之所以把TCR 支 SVC 静态无功 补偿装置的原理和应用 沈小平 上海交通大学 路接成三角形也考虑到谐波的问题因为三角形接线可以使三次谐波不向外流出,但实际情况并没有那么理想因此需要三次滤波支路进行必要的滤波。 2.2 TCR 控制原理 我们都知道晶闸管阀导通时,阀两端电压为零,流经阀的电流全部流过TCR 支路。以半个周波为例当触发角为110°时,导通角为70°此时阀两端无压范围角为70°;当触发角165°时,导通角为15°此时阀两端无压范围角为15°;因此当触发角越小导通角越大,由于回路中串有电感,电流大小不能突变,导通角越大时阀导通电流有相对宽裕的范围升高到较大值,当导通角为30°或更小时,阀电流升到较大值的范围小,有时甚至没有升到较大值时阀已截止,即导通角越大电流越大。一般SVC 晶闸管阀正相触发角在110°~165°之间, 负相触发角在290°~345°之间。图2为晶闸管导通关断时电流示意图。 图2 这里必须指出TCR 触发角a 的可控范围是90度到180度。当触发角为90度时,晶闸管全导通,此时TCR 中的电流为连续正弦波形。当触发角从90度变到接近180度时,TCR 中的电流呈非连续脉冲波形,对称分布于正半波和负半波。当触发角低于90度时,将在电流中引入直流分量,从而破坏并联阀正负半波的对称运行。而当触发角为180度时,电流减小到零。为了能保证正负半波对称波形的质量,干练站SVC 图1

动态无功补偿装置

随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。 本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。 1 并联无功补偿 1.1 同步调相机 同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。但调相机的反应速度较慢,因此对瞬时电压波动效果较差。他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。 1.2 静止无功补偿器(static var compansator,SVC) 平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。 静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器

静止型动态无功补偿成套装置技术规范

35kV SVG型静止型动态无功补偿成套装置技术规范 1总则 1.l 本设备技术规范书适用于XXXXXXXXXXXXXXXXXXXX工程XXkV 动态无功补偿与谐波治理装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本协议要求的优质产品。 1.3 如果供方没有以书面形式对本技术规范书的条文提出异议,则意味着供方提供的设备完全符合本技术规范书的要求。 l.4 本设备技术规范书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本设备技术规范书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜,由甲、乙双方协商确定。 2工程概况 2.1环境条件 周围空气温度 最高温度 ℃ 37.8 最低温度 ℃ -37 最大日温差 K 25 1 日照强度 W/cm2 (风速 0.5m/s) 0.1 2 海拔高度 m 1805 最大风速 m/s 23.7 3 离地面高10m处,30年一遇10min平均最大风速 4 环境相对湿度(在25℃时)平均值 65% 地震烈度(中国12级度标准) 8 水平加速度 g 0.30 垂直加速度 g 0.15 5 地震波为正弦波,持续时间三个周波,安全系数1.67 污秽等级 III 泄漏比距 3.1cm/kV 6 最高运行电压条件下,制造厂根据实际使用高海拔进行修正,并提供 高海拔修正值 7 覆冰厚度(风速不大于15m/s时) 10 批注 [s1]: 需根据现场实际情况进行更改 第1页

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

动态无功补偿基础知识

动态无功功率补偿基础知识 一、什么叫无功 电源能量与感性负载线圈中磁场能量或容性负载电容中的电场能量之间进行着可逆的能量交换而占有的电网容量叫无功,无功功率 表达式如下: 式中无功量 的单位为Var (乏),线电压的单位为V (伏),视在电流I 单位为A (安)。 二、无功及分类 1、感性无功:电流矢量滞后电压矢量90度, 如:电动机、变压器线圈、晶闸管变流设备等; 2、容性无功:电流矢量超前电压矢量90度, 如:电容器、电缆输配电线路、电力电子超前控制设备等; 3、基波无功:与电源频率相等的无功; 4、谐波无功:与电源频率不相等的无功。 三、什么是无功补偿 1、无功补偿: 指根据电网中的无功类型,人为地补偿容性无功或感性无功来抵消线路中的无功功率。 2、无功功率有那些危害: ——无功功率不做功,但占用电网容量和导线截面积,造成线路压降增大,使供配电设备过载,谐波无功使电网受到污染,甚至会引起电网振荡颠覆。 四、什么是动态无功补偿 1、动态无功补偿 根据电网中动态变化的无功量实时快速地进行补偿。 2、为什么要进行无功功率补偿 ? sin UI Q =Q Q

——是为了减小供配电线路中往复交换的无功功率,提高供配电线路的利用率。五、进行就地动补的意义是什么 ——是能将用电设备至发电厂全程供配电设备、线路、都得到补偿,降损节能效果显著,特别是低压线路及变压器的损耗大幅度降低,企业和用户直接受益。 六、就地动补的有功节能是什么 ——减小供配电设备线路损耗,变压器损耗等一切无功电流引起的发热功率。这部分损耗功率Ps可由下式表达: Ps=i2rΣ 式中i为视在电流,rΣ为供配电设备线路电阻和。 七、使用就地动补后线路损耗的节能比 ——补偿后视在电流的平方与补偿前视在电流的平方之比。 即:I22rΣ:I12rΣ 式中 I1为补偿前视在电流,I2为补偿后视在电流,rΣ为供配电设备线路电阻之和八、动补与静补的主要区别及优点 ——静补投切速度慢,不适合负载变化频繁的场合,容易产生欠补或者过补偿,造成电网电压波动,损坏用电设备;并且有触点投切设备寿命短,噪声大,维护量大,影响电容器使用寿命。 ——动补可对任何负载情况进行实时快速补偿,并有稳定电网电压功能,提高电网质量,无触点零电流投切技术增加了电容器使用寿命,同时具备治理谐波的功能。 九、什么是谐波 1、谐波 ——指电网中非基波(50Hz中国)的其他频率的电流或电压,如高次谐波,谐波 亦属于无功类别。 2、谐波的危害 ——谐波是供配电系统中的公害,可造成供配电线路,用电设备发热,产生趋肤效

相关文档
最新文档