大高变位齿轮传动的动力学
机械齿轮传动系统的动力学分析与优化

机械齿轮传动系统的动力学分析与优化齿轮传动是一种常见的动力传递机构,具有传递力矩大、传动效率高等优点,在工业生产中得到广泛应用。
但是,由于齿轮传动系统存在着一些固有的问题,如齿轮啮合时的振动和噪音、齿面磨损等,因此对其进行动力学分析和优化是非常重要的。
1. 动力学分析1.1 齿轮啮合的动力学模型齿轮啮合过程中,齿轮之间存在着瞬时的压力、速度和加速度变化。
可以通过建立齿轮啮合的动力学模型来分析其动态特性。
常用的方法包括等效单齿转动法和有限元法。
通过分析齿轮齿面接触应力和应力分布,可以预测系统的振动和噪音水平,为后续的优化提供依据。
1.2 动力学参数的测量和计算为了进行动力学分析,需要测量和计算一些关键参数,如齿轮的啮合刚度、传递误差、滚子轴承的刚度等。
其中,传递误差是影响齿轮传动系统性能的重要因素之一,其大小与齿轮加工质量、啮合配合、齿轮轴向和径向跳动等因素有关。
通过合理的测量方法和计算模型,可以准确地获取这些参数,并对系统进行分析。
2. 动力学优化2.1 齿轮传动系统的振动和噪音控制由于齿轮啮合时的动态特性,齿轮传动系统常常会产生振动和噪音。
为了减小振动和噪音的水平,可以从多个方面进行优化,如合理设计齿形、减小啮合间隙、提高齿轮加工精度等。
此外,也可以采用减振装置,如弹性联轴器、减震器等,来降低系统的振动能量传递。
2.2 传动效率的提高传动效率是衡量齿轮传动系统性能的重要指标之一。
为了提高传动效率,可以从减小传动误差、改善齿轮表面质量、减小传动间隙等方面入手。
此外,合理选择润滑方式和润滑油,也可以有效地降低系统的摩擦和磨损,提高传动效率。
2.3 齿轮传动系统的寿命预测齿轮传动系统的寿命是评估其使用寿命和可靠性的重要指标。
通过综合考虑齿轮的强度、疲劳寿命和磨损等影响因素,可以建立寿命预测模型,对系统进行寿命预测和优化设计。
此外,还可以通过监测齿轮的工作状态和健康状况,进行实时的故障诊断和维护。
3. 总结齿轮传动系统的动力学分析和优化是提高其性能和可靠性的重要手段。
变位齿轮中变为传动的高度变位和角变位

变位齿轮中变为传动的高度变位和角变位【摘要】变位齿轮是一种重要的传动装置,通过其结构中的高度变位和角变位实现传动的功能。
高度变位是指齿轮轴心之间的距离随着旋转变化,而角变位则是指齿轮轴线之间的夹角随着旋转变化。
这两种变位方式共同作用于传动系统中,实现了传动装置的灵活性和精准度。
高度和角变位的应用广泛,包括汽车变速箱、机器人等领域。
相较于其他传动装置,变位齿轮具有结构简单、传动平稳、传动效率高等优点。
变位齿轮在工业生产中具有重要的应用价值。
变位齿轮通过高度和角变位的方式实现传动功能,广泛应用于各个领域,为工业生产提供了便利和效率。
【关键词】变位齿轮、传动、高度变位、角变位、结构、原理、应用、优点、总结1. 引言1.1 引言变位齿轮是一种常用的传动元件,具有高度变位和角变位的特性。
高度变位是指齿轮轮齿的变化,而角变位则是指齿轮轴线的变化。
这种变位设计可以实现齿轮传动的平稳性和可靠性。
在实际应用中,高度和角变位的组合可以满足不同的传动需求,提高传动效率和传动精度。
本文将从变位齿轮的结构、高度变位原理、角变位原理、高度和角变位的应用以及变位齿轮的优点等方面进行探讨。
通过对这些内容的分析和讨论,可以更好地理解变位齿轮的工作原理和应用特点。
在工程设计和制造中,变位齿轮起着重要的作用,可以实现复杂传动系统的正常运转。
通过本文的介绍,希望读者能够对变位齿轮的相关知识有更深入的了解,为工程实践提供参考和指导。
2. 正文2.1 变位齿轮的结构变位齿轮是一种特殊的齿轮机构,其结构与普通直齿轮不同。
在变位齿轮中,齿数和模数不等的两个齿轮啮合,使得齿轮轴线的相交点在啮合中心线之上或之下,这就是变位齿轮特有的压力角变化的结构特点。
变位齿轮的结构包括两个部分:主动轮和被动轮。
主动轮齿数多,模数小,被动轮齿数少,模数大。
两者之间通过啮合连接,实现了高度和角度的变位传动。
主动轮和被动轮之间的啮合能够传递动力并实现传动的效果。
在变位齿轮的结构中,齿轮的牙廓形状也是非常重要的。
齿轮传动过程中的动力学分析

图1 单对啮合齿轮三维模型 图2 直齿圆柱齿轮轮齿受力图根据力平衡条件和各力之间的几何关系计算齿轮所受力,即:圆周力:1122100010020tT F N N d ×=== (1)图3 圆周动态啮合力仿真曲线图4 径向动态啮合力仿真曲线图5 法向动态啮合力仿真曲线通过图6可得出主动轮2所受力矩,而齿轮1负载力矩为1000N·mm。
齿轮2所受力矩根据力的大小围绕1000N·mm波动,所以齿轮在传动过程中所输出力矩并不是一个恒定值,而是会随齿轮动态啮合力大小不断变化。
图6 齿轮2所受力矩仿真曲线图7 齿轮1角速度仿真曲线4 结语首先,根据齿轮传动过程中所受力的大小,由公式计算齿轮的静态啮合力。
其次,利用仿真软件对齿轮实际运动过程中的工况进行动力学仿真,得到实际工况下的动态啮合力和速度图像。
最后,通过得到的动力学图像与静力学条件下计算得到的静态力进行对比验证,并分析了齿轮运动过程中的工况。
参考文献[1]夏永.基于ADAMS的风电齿轮箱动力学仿真分析[D].大连:大连理工大学,2014.[2]江志祥,朱增宝,季军.基于UG与ADAMS的行星齿轮减速器动力学仿真分析[J].煤矿机械,2013,(6):43-44.[3]张白鸽,岑海堂.基于ADAMS的椭圆齿轮动力学仿真分析[J].机械工程与自动化,2016,(2):98-100.[4]陈涛.风力发电机组齿轮箱传动系统动力学仿真与分析[D].北京:华北电力大学,2015.[5]钱直睿,黄晓燕,李明哲,李东平.多轴齿轮传动系统的动力学仿真分析[J].中国机械工程,2006,(3):241-244.Dynamic Analysis of Gear TransmissionMA Minbo, CUI Huanyong, WANG Cheng, SUN Hao(School of Mechanical Engineering, University of Jinan, Jinan 250022)Abstract: In this paper, a pair of meshing teeth, for example, through the formula to calculate the static force between the teeth, and the establishment of its three-dimensional model, in the simulation software for its dynamic simulation. The results of simulation are compared with those obtained by statics, and the laws of motion are found.Key words:gear force, dynamic meshing force, dynamic simulation。
齿轮啮合刚度及齿轮动力学

THANKS
谢谢您的观看
。
边界元法具有较高的计算精度和效率, 适用于求解复杂几何形状和多种材料组
成的齿轮系统的动态响应问题。
有限差分法
在齿轮动力学分析中,有限差分法可以用于模拟齿轮 系统的动态响应和振动问题。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文 ,单击此处添加正文,文字是您思想的提炼,为了最 终呈现发布的良好效果单击此4*25}
03
齿轮动力学模型
一维模型
描述
一维模型假设齿轮在接触线上的变形是唯一的变形形式,忽略了 齿面摩擦和齿根弯曲变形的影响。
优点
计算简单,适用于初步设计和分析。
缺点
与实际情况存在较大误差,不能准确反映齿轮动态性能。
二维模型
描述
二维模型考虑了齿面摩擦和齿根 弯曲变形的影响,但仍忽略了齿 面接触变形和齿轮体内部振动。
优化设计的方法
1 2
数学建模
建立设计问题的数学模型,包括目标函数和约束 条件。
数值计算
利用数值计算方法求解数学模型,得到最优解。
3
计算机辅助设计
利用计算机辅助设计软件进行优化设计,提高设 计效率。
齿轮动力学优化设计实例
实例一
01
行星齿轮传动系统的优化设计,提高系统的承载能力和效率。
实例二
02
斜齿轮传动系统的优化设计,减小振动和噪音。
外部激励
如电机、传动轴等外部激 励因素,也可能引起齿轮 振动。
齿轮动力学在工程中的应用
故障诊断
通过分析齿轮振动的频率 、幅值等信息,判断齿轮 的故障类型和位置。
优化设计
利用齿轮动力学理论,优 化齿轮设计,提高齿轮的 动态性能和承载能力。
齿轮传动系统动力学建模

齿轮传动系统动力学建模是一个复杂的过程,需要考虑齿轮的啮合刚度、齿侧间隙、重合度等多种因素。
下面将详细介绍建模过程。
一、齿轮传动系统动力学概述齿轮传动系统是机械传动的重要组成部分,具有高精度、高效率、高可靠性等特点。
然而,齿轮传动过程中,由于齿轮的啮合刚度、齿侧间隙、重合度等多种因素的影响,会产生振动和噪声,严重时会影响传动系统的性能和寿命。
因此,建立齿轮传动系统动力学模型,研究其动态特性,对于优化设计、提高传动系统性能和寿命具有重要意义。
二、齿轮传动系统动力学建模建立模型齿轮传动系统动力学模型包括啮合刚度模型、齿侧间隙模型、重合度模型等。
其中,啮合刚度模型用于描述齿轮在啮合过程中的刚度变化,齿侧间隙模型用于描述齿轮齿侧间隙的大小和分布规律,重合度模型用于描述齿轮的重合度变化。
这些模型可以基于实验和理论分析建立,也可以通过数值模拟得到。
动力学方程根据建立的模型,可以建立齿轮传动系统动力学方程。
该方程通常是一个非线性微分方程组,描述了齿轮在啮合过程中的动态特性。
通过求解这个方程组,可以得到齿轮在不同时刻的位置、速度和加速度等动态响应。
动态特性分析通过分析动力学方程的解,可以研究齿轮传动系统的动态特性。
例如,通过频谱分析可以确定齿轮振动的频率成分和幅值;通过时域分析可以观察齿轮振动的时域波形;通过稳定性分析可以判断系统的稳定性等。
这些分析结果可以为优化设计提供依据。
三、数值模拟方法在建立齿轮传动系统动力学模型时,通常采用数值模拟方法进行求解。
常用的数值模拟方法包括有限元法、有限差分法、边界元法等。
其中,有限元法是一种常用的求解微分方程组的方法,具有适应性强、精度高等优点。
有限差分法是一种将微分方程转化为差分方程组的方法,适用于求解偏微分方程组。
边界元法是一种将边界条件考虑在内的数值模拟方法,适用于求解具有复杂边界条件的微分方程组。
四、实例分析以一个减速器为例,介绍如何建立其动力学模型并进行分析。
该减速器由输入轴、中间轴和输出轴组成,每个轴上安装有直齿圆柱齿轮。
齿轮机械传动动力学研究文献综述完整版

基于齿轮传动的机械动力学研究文献综述摘要:本文结合相关文献对机械动力学中齿轮传动动力学部分的研究进行了综述。
综合文献对齿轮传动动力学研究现状和发展趋势有了整体把握。
关键词:动力学;齿轮传动;综述;The Literature Review of Mechanical Dynamics based on gear transmissionAbstract:In this paper, the studies of mechanical dynamics of gear transmission were reviewed. On the whole, we grasp the studies status anddevelopment trend of gear transmission.Keywords: Dynamics;Gear transmission;Review1.前言随着机械向高效、高速、精密、多功能方向发展,对传动机械的功能和性能的要求也越来越高,机械的工作性能、使用寿命、能源消耗、振动噪声等在很大程度上取决于传动系统的性能。
因此必须重视对传动系统的研究。
机械系统中的传动主要分为机械传动、流体传动(液压传动、液力传动、气压传动、液体粘性传动和高等优点机械传动的形式也有多种,如各种齿轮传动、带(链)传动、摩擦传动等。
齿轮传动是机械传动中的主要形式之一。
在机械传动中占有主导地位。
由于它具有速比范围大、功率范围广、结构紧凑可靠等优点,已广泛应用于各种机械设备和仪器仪表中。
成为现有机械产品中所占比重最大的一种传动。
齿轮从发明到现在经历了无数次更新换代,主要向高速、重载、平稳性、体积小、低噪等方向发展。
2. 齿轮动力学的发展概述齿轮的发展要追溯到公元前,迄今已有3000年的历史。
虽然自古代人们就使用了齿轮传动,但由于动力限制了机器的速度。
因此齿轮传动的研究迟迟未发展到动力学研究的阶段。
第一次工业革命推动了机器速度的提高,Euler提出的渐开线齿廓被广泛运用,这属于从齿轮机构的几何设计角度来适应速度的提高。
三校生《机械基础》高考模拟试题(Ⅰ)

牟定县职业高级中学“三校生”升学考试高考模拟试题(Ⅰ)专业:机械类、科目:《机械基础》命题教师:曹云、考试时间:120分钟、满分:150分班级姓名考号得分一、选择题:(每题1分,共20分)1、下列机构中属于工作机的是:…………………………………………………………【】.A、铣床;B、电动机;C、机床主轴;D、内燃机;2、平带传动:……………………………………………………………………………【】。
A、结构复杂、不适宜于两轴中心距较大的场合;B、富有弹性、能缓冲、吸震、传动平稳、噪声低; C、外廓尺寸紧凑,传动效率较高;D、过载时能打滑,起安全保护作用,并能保持准确的传动比;3、普通螺旋传动机构:…………………………………………………………………【】.A、机构复杂;B、传动效率高;C、传动精度低;D、承载能力强;4、当要求链传动的速度高且噪声小时,宜选用:……………………………………【】。
A、滚子链;B、多排链;C、齿形链;D、精密滚子链;5、能够传递较复杂运动的运动副的接触形式是:……………………………………【】。
A、螺旋副接触;B、带与带轮接触;C、活塞与汽缸壁接触;D、凸轮接触6、下列对渐开线性质描述正确的是:……………………………………………………【】。
A、基圆越大,基圆内的渐开线越趋平直;B、渐开线上各点的曲率半径相等;C、渐开线上各点的齿形角相等,并等于20度; D 、基圆相同,渐开线形状也相同7、模数m:………………………………………………………………………………【】。
.A 、等于齿距除以π所得到的商,是一个无单位的量;B、是齿轮几何尺寸计算中最基本的一个参数;C、一定时,齿轮的几何尺寸与齿数无关;D 、一定时,不同齿数的齿轮齿距p相等,基圆半径也相等;8、一对外啮合的标准直齿圆柱齿轮,中心距a =160mm,齿轮的齿距p=12.56mm,传动比I=3,则两齿轮的齿数和为:……………………………………………………………【】。
高变位齿轮 角变位齿轮

高变位齿轮角变位齿轮
一、高变位齿轮
高变位齿轮是一种齿轮,因其具有高度变形的特征而得名。
它的齿形变化规律是分段
分层的,通过齿廓的形状、齿顶高度和齿根高度的变化来实现齿轮的高度变形。
高变位齿
轮的美特斯位移是通过在轮齿间引入特殊形状的变位齿边、齿根和齿顶来实现的。
这种齿
轮可以与标准直齿轮互换,但性能更好,效率更高。
它通常用于高功率且复杂的传动系统中,例如工程机械、航空发动机、汽车制造和机器人等领域。
高变位齿轮的主要优点是具有更大的扭转刚度,更高的传动效率,比其他齿轮更少地
产生摩擦和磨损。
它还具有更低的振动和噪音水平,更长的寿命,更高的使用温度和更高
的功率密度。
因此,它在高负荷和高性能传动系统中表现得更出色。
角变位齿轮是一种非常特殊的齿轮,它的齿形较为复杂,可以有效地减小齿轮和齿轮
之间的转矩波动,减少齿轮的振动和噪音。
角变位齿轮主要用于高速和高精度传动系统中,例如印刷机、数控机床、精密仪器及轴承、摆线减速器等。
它由于具有很高的传动性能,
所以在机械制造业中得到广泛使用。
大高变位齿轮传动的动力学分析

变位系数大于 1时, 动载系数全面减小。 关键词 : 变位齿轮 ; 动力学 ; 数值解 ; 重合度
中图分类号 :H1322 T 3 .1 T 1.+ ;H124 文献标志码 : A 文章编号 :0 14 5 (0 1 1 — 4 5 0 10 — 5 1 2 1 )2 16 — 4
D a is a a 3 i n t a s iso fm a。r p o l it d g a s y m 。 n l ss o r n m s i n o 1 r r l h fe e r n c y"0 | 0 r f es I e 0 o oi e S t e r a s
第2 8卷 第 l 2期 21 0 1年 1 2月
机
电
工
程
Vo _2 o 1 l 8 N .2
De .2 1 e 0 1
J un lo c a ia & E etia n ie r g o r a f Me h nc l lcr lE gn ei c n
大高变位齿轮传动的动力学分析
oel n u co oio w sa o cvrd a e . h eu sidct t tted nmi la at vrl dcessw e h vr p ad jnt n p si a i t n a l oe sw l T ersh n i e h h ya c od fc roea erae hn te s e 1 a a o l
s l t n o h o l e re u t n wa o n y a q a i l e r i r t e meh d h hf d c e ee t n u n e o y a c l a , o u i f t e n n— i a q a i s f u d b u s - i a t a i t o .T e s i e o f in ' if e c n d n mi o d o n o n e v t i s l
机械原理高级篇4章_变位齿轮传动

r2'
o2
'
2.中心距
•一对齿轮啮合传动时, 中心距等于两节圆半径 之和。 •一对无侧隙标准齿轮传 动,其分度圆与节圆重 合,啮合角等于分度圆 压力角 •标准中心距(标准齿轮 无侧隙传动中心距)
' 1 ' 2
o1
' r1
c
r2'
' 1
s e s e
' 2
o2
m 2 r ar ( z1 z2 ) 1 r 1 r 2 2
上的齿距为pi,则 该比值称为模数
di
mi
• 模数—— 人为地把 pi / 规定为一些简单的有理数,
pi
z
一个齿轮在不同直径的圆周上,其模数的大小是不同的。
p i 。
• 分度圆——— 是齿轮上一个人为地约定的轮齿计 算的基准圆,规定分度圆上的模数和压力角为标准值。
国标压力角的标准值为=20° 模数的标准系列见GB1357-87,参见表4-2。 分度圆上的参数分别用d、r、m、p、e及表示。 m越大,P愈大,轮齿愈大,抗弯强度也愈高。
• 齿轮插刀
切削运动
进给运动
范成运动 范成运动
用齿条刀具加工齿轮
用标准齿条刀具加工标准齿轮必须使刀具 的分度线与被加工齿轮的分度圆相切并作纯滚 动。
标准齿条刀的齿廓,它与齿条的齿廓基本 相同,只是齿顶增加了c*m的高度。在齿条刀 中线上的齿厚与齿距之比等于0.5(即齿厚等于 齿槽宽)。与以半径为ρ的圆弧相切并平行于齿 条刀中线的直线刀刃称为刀顶线,它是用于切 制被切齿轮齿根圆的。半径为ρ的圆角刀刃,是 切出齿根部分非渐开线的过渡曲线。
切制圆柱外齿轮轮齿时,齿条刀是逐渐切 入齿轮坯的,切入的终点位置不同,切出 的齿轮轮齿尺寸就不同。
超大模数变位齿轮-齿条传动瞬态热弹流润滑

超大模数变位齿轮-齿条传动瞬态热弹流润滑作者:郑明周长江刘忠明来源:《湖南大学学报·自然科学版》2021年第10期摘要:针对三峡升船机超大模数变位齿轮-齿条传动润滑设计缺失与过早磨损,开展低速重载使役状态下传动系统的润滑特性研究. 构建变位齿轮-齿条传动系统瞬态热弹流润滑计算模型,利用多重网格法与FFT方法求解各啮合点处的润滑特性参数. 分析启动至正常运行阶段的转速和载荷、变位系数、模数、压力角、材料配副和油膜黏度,对油膜压力、膜厚、齿面摩擦力与摩擦系数的影响. 研究结果发现,齿条啮入瞬间的成膜条件差,滑移速度与摩擦力较大,易使齿条顶部发生磨损;齿轮副硬材料表面的润滑性能较差;适当增大变位系数、模数、压力角和黏度可改善润滑性能.关键词:三峡升船机;变位齿轮-齿条;超大模数;热弹流润滑;润滑特性参数中图分类号:TQ174 文献标志码:ATransient Thermal Elastohydrodynamic Lubrication forSuper-modulus Modified Gear-rack DriveZHENG Ming ZHOU Changjiang LIU Zhongming(1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha 410082,China;2. Zhengzhou Machinery Research Institute Co LTD,Zhengzhou 450008,China)Abstract:Aiming at design loss and premature tooth wear on lubrication of the modified super-large modulus gear-rack in Three Gorges ship lift,the lubrication characteristics of the drive system was investigated under low-speed and overload. A transient thermal-elastohydrodynamic lubrication (TEHL) model was developed for the gear-rack drive system. The transient TEHL model under variable velocity among the line of action is solved by multi-grid method and FFT method. Then,the influence of speed and load, modification coefficient,modulus and pressure angle on the contact pressure,film thickness and tooth surface friction, modification coefficient,modulus and pressure angle during the process from start to normal operation is investigated. The results show that the film thickness becomes thinner and the friction force is larger during the gear engagement stage,which causes the rack top easy to wear. It is found that the harder the surface material,the worse the lubrication performance. When the modification coefficient,modulus,pressure angle and viscosity are increased,the lubricating property can be improved.Key words:Three Gorges ship lift;modified gear-rack;super-large modulus;thermal-elastohydrodynamic lubrication;lubricating property parameters三峽升船机作为规模最大和技术难度最高的升船机[1],由4组超大模数的开式齿轮-齿条机构驱动. 齿条设计寿命为35年,总载荷循环周次可达4.22 × 105次,抬升重量达3000 t级,加工精度高,更换困难,是升船机的关键部件. 升船机机组低速重载传动易引起齿轮-齿条啮合润滑不良,致使齿面出现磨损与胶合. 德国Wollhofen调研报告显示,开式齿轮传动损坏18.2%因润滑不良发生严重磨损或胶合而失效[2]. 因此,有必要对升船机齿轮-齿条传动的润滑状态进行研究,并通过参数分析优化润滑性能.根据Stribeck曲线齿轮润滑状态可分为全膜润滑、混合润滑、边界润滑三种[3]. 基于Reynolds方程和线接触动压润滑理论,Martin[4]对直齿轮齿面的润滑状态进行研究,引入刚体与等黏度假设得出重载下的膜厚过薄. Grubin[5]引入表面弹性变形与变黏度流体,结合Hertz接触模型提出弹流润滑理论(EHL),得到较为准确的线接触平均膜厚经验公式. 润滑方程的复杂性与非线性使得求解难度极大,Dowson等[6]基于逆解法求出线接触润滑模型的完全数值解. 随着摩擦学理论与试验方法的快速发展,数值求解的效率与稳定性已不能满足应用,直接迭代法将表面弹性变形方程、膜厚方程、黏度与密度方程和Reynolds方程联立求解,进行循环迭代,最终收敛到数值解. 对于高速重载等严苛工况,其求解稳定性与效率不佳,Lubrecht[7]将多重网格法引入润滑方程的求解,极大地提高了求解效率与收敛稳定性.上述求解基于等温与牛顿流体假设,与润滑油的实际承载情况差别较大. 杨沛然等[8]导出润滑力学中关于非牛顿流体介质的普遍Reynolds方程,通过定义广义牛顿黏度,适用于多种流变模型. 现代弹流润滑模型求解中,考虑非牛顿、热效应与时变性的影响,对于求解真实表面下混合润滑参数的难度愈来愈大. Hu等[9]提出统一Reynolds方程求解混合润滑模型,Liu等[10]和王文中等[11]分别采用DC-FFT方法求解润滑表面的弹性变形,极大地提高了膜厚方程求解效率. 王优强等[12]考虑瞬态效应与热效应,分析直齿轮线接触下的瞬态热弹流润滑性能,讨论轮齿间油膜的厚度、压力与温度场的变化规律. 王文中等[13]对渐开线斜齿轮非稳态弹流润滑进行分析,发现等主动轮齿根附近和节点位置润滑状态较差. 徐彩红[14]采用等温下的时变弹流润滑模型研究载荷突变对齿轮-齿条传动中的润滑性能影响,发现啮入点为危险点;袁玉鹏等[15]利用油膜厚度准则研究低速重载、频繁换向下的开式齿轮-齿条润滑状态.综上所述,弹流润滑机理的研究日益成熟,但超大模数变位齿轮-齿条啮合传动中的润滑状态及其失效预测仍有待完善. 作为超大模数齿轮-齿条传动机构,其模数62.667 mm,齿宽810 mm,单节长4705 mm,采用分节式設计安装,材料为18CrNiMo7-6,齿面加工处理为5级精度,齿轮-齿条采用正变位传动(x = 0.5). 针对三峡升船机齿条性能评定试验装置启动至正常运行阶段的转速和载荷等10种工况参数,分别讨论变位系数、模数与压力角等几何参数,材料配副、油膜黏度等材料参数对油膜厚度、接触圧力及摩擦系数的影响,基于膜厚比与Stribeck曲线判定油膜润滑状态.1 变位齿轮-齿条润滑模型正变位齿轮可提高齿根抗弯强度,增大齿面接触强度和提高齿面耐磨损能力. 研究变位齿轮的润滑性能,以便合理设计润滑方式及优选润滑参数及性能评估. 对于变位齿轮,正变位时,齿廓变厚,齿顶圆、分度圆与齿根圆直径变大;负变位时,齿廓变薄,齿顶圆、分度圆与齿根圆直径变小,如图1(a)所示. 齿条齿形保持不变,对应于不同变位齿轮相啮合的齿条,其齿廓的厚薄不同. 升船机齿轮-齿条传动机构相比齿轮传动,其变位工况下的啮合角大小恒为压力角α,其啮合原理见图1(b). 实际啮合线长B1B2位于理论啮合线上,且啮合点沿oz轴方向移动;由齿轮的齿根与齿条的齿顶先啮入(B1点),直至齿轮的齿顶与齿条齿根处啮出(B2点).2 热弹流润滑控制方程2.1 通用Reynolds方程2.2 油膜厚度方程2.3 润滑油黏度方程2.4 润滑油密度方程2.5 载荷平衡方程2.6 温度场方程3 计算流程与参数3.1 润滑参数计算流程3.2 材料与工况参数4 结果分析与讨论4.1 载荷与转速影响当第10时刻转速达到额定转速时,即工况为表1中的组11,其油膜压力沿啮合线的变化和各特征点中心膜厚的分布见图7. 其中A为啮入点,B为节点,C为HPSTC点,D为LPSTC 点,E为啮出点. 油膜压力变化趋势可由齿面载荷谱和Hertz接触半宽b简单分析. 由于齿条的曲率半径恒定,齿轮-齿条啮合过程中综合曲率半径R较齿轮-齿条啮合时增加更快,使得相同载荷谱下的接触半宽b较大,进而影响油膜承载区域内润滑参数的变化,b和R的变化趋势见图8. 由此可见,啮合过程中膜厚分布均出现颈缩现象,且膜厚由啮入至啮出逐渐增加,与直齿轮瞬态热弹流润滑[12]不同点是A到B过程中油膜压力逐渐降低,且C到D至E的过程中油膜压力降低的趋势更明显,这与接触半宽b的变化相一致.4.2 几何参数影响变位系数会改变齿轮-齿条传动中重合度大小,轮齿正变位会缩短啮合线长度,进而改变载荷沿啮合线的分布,对啮合传动的润滑性能产生影响. 图9(a)和(b)所示,随着变位系数增加,齿条顶部会较晚进入啮合,各特征点的油膜压力均有所降低,对应的中心膜厚逐渐增大,进而提高轮齿承载能力. 随着变位系数增加,齿面摩擦力的变化趋于缓和,啮入阶段摩擦力显著降低,这将有效减弱切向啮入冲击,节点至变位后的单齿啮合区摩擦力反向增大,啮出阶段的摩擦力则变化不大. 从图9(c)和(d)发现,增大变位系数可相对降低啮入时刻和单双齿交替啮合时刻的切向冲击.降低,且单双齿交替啮合处的压力突变减小,中心膜厚显著增加,齿面摩擦力与摩擦系数变化趋于缓和,可有效减弱轮齿啮合过程中的法向与切向冲击. 故增大模数可有效提高轮齿的承载能力,并改善润滑相关参数的分布.对于部分重载齿轮传动,标准压力角20°的轮齿已经满足不了行业需求,而压力角变化会对齿轮润滑性能与承载能力产生影响. 压力角增大会减小轮齿啮合过程的重合度,但增大压力角会同时增大等效曲率半径R与卷吸速度,这有利于油膜压力的降低与膜厚的增加,与图11(a)中心膜厚变化趋势一致. 轮齿压力角增大,使得半径R增加,进而增大接触半宽,这使得在单齿与双齿啮合区域的油膜压力显著降低(见图11). 同时因膜厚增加使得剪应变率相应减小,从而降低摩擦力,有效改善齿轮-齿条啮合冲击.上述求解基于等温与牛顿流体假设,与润滑油的实际承载情况差别较大. 杨沛然等[8]导出润滑力学中关于非牛顿流体介质的普遍Reynolds方程,通过定义广义牛顿黏度,适用于多种流变模型. 现代弹流润滑模型求解中,考虑非牛顿、热效应与时变性的影响,对于求解真实表面下混合润滑参数的难度愈来愈大. Hu等[9]提出统一Reynolds方程求解混合润滑模型,Liu等[10]和王文中等[11]分别采用DC-FFT方法求解润滑表面的弹性变形,极大地提高了膜厚方程求解效率. 王优强等[12]考虑瞬态效应与热效应,分析直齿轮线接触下的瞬态热弹流润滑性能,讨论轮齿间油膜的厚度、压力与温度场的变化规律. 王文中等[13]对渐开线斜齿轮非稳态弹流润滑进行分析,发现等主动轮齿根附近和节点位置润滑状态较差. 徐彩红[14]采用等温下的时变弹流润滑模型研究载荷突变对齿轮-齿条传动中的润滑性能影响,发现啮入点为危险点;袁玉鹏等[15]利用油膜厚度准则研究低速重载、频繁换向下的开式齿轮-齿条润滑状态.综上所述,弹流润滑机理的研究日益成熟,但超大模数变位齿轮-齿条啮合传动中的润滑状态及其失效预测仍有待完善. 作为超大模数齿轮-齿条传动机构,其模数62.667 mm,齿宽810 mm,单节长4705 mm,采用分节式设计安装,材料为18CrNiMo7-6,齿面加工处理为5级精度,齿轮-齿条采用正变位传动(x = 0.5). 针对三峡升船机齿条性能评定试验装置启动至正常运行阶段的转速和载荷等10种工况参数,分别讨论变位系数、模数与压力角等几何参数,材料配副、油膜黏度等材料参数对油膜厚度、接触圧力及摩擦系数的影响,基于膜厚比与Stribeck曲线判定油膜润滑状态.1 变位齿轮-齿条润滑模型正变位齿轮可提高齿根抗弯强度,增大齿面接触强度和提高齿面耐磨损能力. 研究变位齿轮的润滑性能,以便合理设计润滑方式及优选润滑参数及性能评估. 对于变位齿轮,正变位时,齿廓变厚,齿顶圆、分度圆与齿根圆直径变大;负变位时,齿廓变薄,齿顶圆、分度圆与齿根圆直径变小,如圖1(a)所示. 齿条齿形保持不变,对应于不同变位齿轮相啮合的齿条,其齿廓的厚薄不同. 升船机齿轮-齿条传动机构相比齿轮传动,其变位工况下的啮合角大小恒为压力角α,其啮合原理见图1(b). 实际啮合线长B1B2位于理论啮合线上,且啮合点沿oz轴方向移动;由齿轮的齿根与齿条的齿顶先啮入(B1点),直至齿轮的齿顶与齿条齿根处啮出(B2点).2 热弹流润滑控制方程2.1 通用Reynolds方程2.2 油膜厚度方程2.3 润滑油黏度方程2.4 润滑油密度方程2.5 载荷平衡方程2.6 温度场方程3 计算流程与参数3.1 润滑参数计算流程3.2 材料与工况参数4 结果分析与讨论4.1 载荷与转速影响当第10时刻转速达到额定转速时,即工况为表1中的组11,其油膜压力沿啮合线的变化和各特征点中心膜厚的分布见图7. 其中A为啮入点,B为节点,C为HPSTC点,D为LPSTC 点,E为啮出点. 油膜压力变化趋势可由齿面载荷谱和Hertz接触半宽b简单分析. 由于齿条的曲率半径恒定,齿轮-齿条啮合过程中综合曲率半径R较齿轮-齿条啮合时增加更快,使得相同载荷谱下的接触半宽b较大,进而影响油膜承载区域内润滑参数的变化,b和R的变化趋势见图8. 由此可见,啮合过程中膜厚分布均出现颈缩现象,且膜厚由啮入至啮出逐渐增加,与直齿轮瞬态热弹流润滑[12]不同点是A到B过程中油膜压力逐渐降低,且C到D至E的过程中油膜压力降低的趋势更明显,这与接触半宽b的变化相一致.4.2 几何参数影响变位系数会改变齿轮-齿条传动中重合度大小,轮齿正变位会缩短啮合线长度,进而改变载荷沿啮合线的分布,对啮合传动的润滑性能产生影响. 图9(a)和(b)所示,随着变位系数增加,齿条顶部会较晚进入啮合,各特征点的油膜压力均有所降低,对应的中心膜厚逐渐增大,进而提高轮齿承载能力. 随着变位系数增加,齿面摩擦力的变化趋于缓和,啮入阶段摩擦力显著降低,这将有效减弱切向啮入冲击,节点至变位后的单齿啮合区摩擦力反向增大,啮出阶段的摩擦力则变化不大. 从图9(c)和(d)发现,增大变位系数可相对降低啮入时刻和单双齿交替啮合时刻的切向冲击.降低,且单双齿交替啮合处的压力突变减小,中心膜厚显著增加,齿面摩擦力与摩擦系数变化趋于缓和,可有效减弱轮齿啮合过程中的法向与切向冲击. 故增大模数可有效提高轮齿的承载能力,并改善润滑相关参数的分布.对于部分重载齿轮传动,标准压力角20°的轮齿已经满足不了行业需求,而压力角变化会对齿轮润滑性能与承载能力产生影响. 压力角增大会减小轮齿啮合过程的重合度,但增大压力角会同时增大等效曲率半径R与卷吸速度,这有利于油膜压力的降低与膜厚的增加,与图11(a)中心膜厚变化趋势一致. 轮齿压力角增大,使得半径R增加,进而增大接触半宽,这使得在单齿与双齿啮合区域的油膜压力显著降低(见图11). 同时因膜厚增加使得剪应变率相应减小,从而降低摩擦力,有效改善齿轮-齿条啮合冲击.上述求解基于等温与牛顿流体假设,与润滑油的实际承载情况差别较大. 杨沛然等[8]导出润滑力学中关于非牛顿流体介质的普遍Reynolds方程,通过定义广义牛顿黏度,适用于多种流变模型. 现代弹流润滑模型求解中,考虑非牛顿、热效应与时变性的影响,对于求解真实表面下混合润滑参数的难度愈来愈大. Hu等[9]提出统一Reynolds方程求解混合润滑模型,Liu等[10]和王文中等[11]分别采用DC-FFT方法求解润滑表面的弹性变形,极大地提高了膜厚方程求解效率. 王优强等[12]考虑瞬态效应与热效应,分析直齿轮线接触下的瞬态热弹流润滑性能,讨论轮齿间油膜的厚度、压力与温度场的变化规律. 王文中等[13]对渐开线斜齿轮非稳态弹流润滑进行分析,发现等主动轮齿根附近和节点位置润滑状态较差. 徐彩红[14]采用等温下的时变弹流润滑模型研究载荷突变对齿轮-齿条传动中的润滑性能影响,发现啮入点为危险点;袁玉鹏等[15]利用油膜厚度准则研究低速重载、频繁换向下的开式齿轮-齿条润滑状态.综上所述,弹流润滑机理的研究日益成熟,但超大模数变位齿轮-齿条啮合传动中的润滑状态及其失效预测仍有待完善. 作为超大模数齿轮-齿条传动机构,其模数62.667 mm,齿宽810 mm,单节长4705 mm,采用分节式设计安装,材料为18CrNiMo7-6,齿面加工处理为5级精度,齿轮-齿条采用正变位传动(x = 0.5). 针对三峡升船机齿条性能评定试验装置启动至正常运行阶段的转速和载荷等10种工况参数,分别讨论变位系数、模数与压力角等几何参数,材料配副、油膜黏度等材料参数对油膜厚度、接触圧力及摩擦系数的影响,基于膜厚比与Stribeck曲线判定油膜润滑状态.1 变位齿轮-齿条润滑模型正变位齿轮可提高齿根抗弯强度,增大齿面接触强度和提高齿面耐磨损能力. 研究变位齿轮的润滑性能,以便合理设计润滑方式及优选润滑参数及性能评估. 对于变位齿轮,正变位时,齿廓变厚,齿顶圆、分度圆与齿根圆直径变大;负变位时,齿廓变薄,齿顶圆、分度圆与齿根圆直径变小,如图1(a)所示. 齿条齿形保持不变,对应于不同变位齿轮相啮合的齿条,其齿廓的厚薄不同. 升船机齿轮-齿条传动机构相比齿轮传动,其变位工况下的啮合角大小恒为压力角α,其啮合原理见图1(b). 实际啮合线长B1B2位于理论啮合线上,且啮合点沿oz轴方向移动;由齿轮的齿根与齿条的齿顶先啮入(B1点),直至齿轮的齿顶与齿条齿根处啮出(B2点).2 热弹流润滑控制方程2.1 通用Reynolds方程2.2 油膜厚度方程2.3 润滑油黏度方程2.4 润滑油密度方程2.5 载荷平衡方程2.6 温度场方程3 计算流程与参数3.1 润滑参数计算流程3.2 材料与工况参数4 结果分析与讨论4.1 载荷与转速影响当第10时刻转速达到额定转速时,即工况为表1中的組11,其油膜压力沿啮合线的变化和各特征点中心膜厚的分布见图7. 其中A为啮入点,B为节点,C为HPSTC点,D为LPSTC 点,E为啮出点. 油膜压力变化趋势可由齿面载荷谱和Hertz接触半宽b简单分析. 由于齿条的曲率半径恒定,齿轮-齿条啮合过程中综合曲率半径R较齿轮-齿条啮合时增加更快,使得相同载荷谱下的接触半宽b较大,进而影响油膜承载区域内润滑参数的变化,b和R的变化趋势见图8. 由此可见,啮合过程中膜厚分布均出现颈缩现象,且膜厚由啮入至啮出逐渐增加,与直齿轮瞬态热弹流润滑[12]不同点是A到B过程中油膜压力逐渐降低,且C到D至E的过程中油膜压力降低的趋势更明显,这与接触半宽b的变化相一致.4.2 几何参数影响变位系数会改变齿轮-齿条传动中重合度大小,轮齿正变位会缩短啮合线长度,进而改变载荷沿啮合线的分布,对啮合传动的润滑性能产生影响. 图9(a)和(b)所示,随着变位系数增加,齿条顶部会较晚进入啮合,各特征点的油膜压力均有所降低,对应的中心膜厚逐渐增大,进而提高轮齿承载能力. 随着变位系数增加,齿面摩擦力的变化趋于缓和,啮入阶段摩擦力显著降低,这将有效减弱切向啮入冲击,节点至变位后的单齿啮合区摩擦力反向增大,啮出阶段的摩擦力则变化不大. 从图9(c)和(d)发现,增大变位系数可相对降低啮入时刻和单双齿交替啮合时刻的切向冲击.降低,且单双齿交替啮合处的压力突变减小,中心膜厚显著增加,齿面摩擦力与摩擦系数变化趋于缓和,可有效减弱轮齿啮合过程中的法向与切向冲击. 故增大模数可有效提高轮齿的承载能力,并改善润滑相关参数的分布.对于部分重载齿轮传动,标准压力角20°的轮齿已经满足不了行业需求,而压力角变化会对齿轮润滑性能与承载能力产生影响. 压力角增大会减小轮齿啮合过程的重合度,但增大压力角会同时增大等效曲率半径R与卷吸速度,这有利于油膜压力的降低与膜厚的增加,与图11(a)中心膜厚变化趋势一致. 轮齿压力角增大,使得半径R增加,进而增大接触半宽,这使得在单齿与双齿啮合区域的油膜压力显著降低(见图11). 同时因膜厚增加使得剪应变率相应减小,从而降低摩擦力,有效改善齿轮-齿条啮合冲击.。
变位齿轮详解(精品)

a a ym
a″
ym (x1 x2 )m ym
(X1+ X2)m a′ ym
y x1 x2 y
O2
O2
△y为齿顶降低系数 ,
其值恒大于零。
h (2ha* c* y)m
ha (ha* X y)m
hf (ha* c* x)m 变位齿轮齿高比标准齿轮少 ym
2 无侧隙啮合方程
O1
xmtgα
a
b
rb
xm
s’ 分度圆 基圆
刀具节线 刀具分度线
ab c
P 设计:潘存云
S=πm/2
N1 α B2
xm
α
c
h* a
m
xm xm
xmtg
xm
h* a
m
xm
N
p
xm
正变位齿轮 x>0
标准齿轮 x=0
负变位齿轮 x<0
ha hf
z 17 正变位提高强度
凑中心距
• 变位后
s m 2xmtg
2
e m 2xmtg
2
1。变位齿轮的加工方法,模 数,压力角,分度圆,基圆都 与标准齿轮一样。
2。几何尺寸有所变化。
3。中心距一般不是两分度圆 半径之和,除非它们分别等值 正,负变化。
a=m(z1+z2)/2
a, a=m(z1+z2)/2
齿条与齿的切点变化, 齿间出现侧隙
x1 m
c* m c* m
好的传动形式
4)两轮齿数不受 Z1 Z2 2Zmin 的限制。
5)正传动的重叠系数有所下降。
O
r1 r1
O
1rb1
B2 N1
r1
变位齿轮知识点总结

变位齿轮知识点总结一、变位齿轮的定义变位齿轮是一种适用于传动小功率,传递大扭矩,高速或低速的齿轮传动,由于它在传动方向上有无级变速的优点,被广泛应用在机床、纺织、工程机械及农业机械等领域。
二、变位齿轮的种类1、锥齿轮: 锥齿轮是一种圆柱齿轮的修改形式,以斜齿轮和圆锥齿轮的方式相互咬合。
2、直齿轮: 直齿轮是圆柱形齿轮的两种平行轴相互咬合,实现传动作用。
3、蜗杆齿轮: 蜗杆齿轮是由蜗杆与齿轮配对构成的一种高效率和大传动比的齿轮传动。
三、变位齿轮的优点1、传动平稳: 由于使用了多齿齿轮及齿形更弧齿形式,可以有效降低啮合冲击,使传动更平稳。
2、传动效率高: 由于采用了多齿齿轮和齿形改进设计,使其传动效率大幅提高。
3、传动扭矩大: 由于变位齿轮采用了多齿齿轮,使其传动扭矩更大,能够满足更大功率的传动需求。
四、变位齿轮的结构变位齿轮由齿轮、齿轮轴、齿轮壳体及其相关传动零件组成。
其中齿轮包括主动齿轮和从动齿轮,齿轮轴为承载齿轮的传动轴,并通过轴承支撑使齿轮能够旋转不变。
齿轮壳体为包围齿轮及其传动零件的外壳。
五、变位齿轮的应用领域1、机床: 变位齿轮广泛应用于机床的主轴驱动系统,以满足高速、大扭矩、低噪音等要求。
2、纺织: 变位齿轮在纺织机械上的应用,可以有效提高传动效率,延长设备使用寿命。
3、工程机械: 工程机械的传动系统中常常采用变位齿轮传动,以满足其高扭矩、高速、平稳等要求。
4、农业机械: 在农业机械的传动系统中,变位齿轮也被广泛应用,以适应各种不同的工作环境和工作条件。
六、变位齿轮的制造工艺1、铣削: 变位齿轮的制造过程中,铣削是其中一项重要的工艺,通过数控铣床进行齿轮齿面的精密加工,以保证齿轮的质量。
2、热处理: 在变位齿轮制造工艺中,热处理是不可或缺的一道工序,通过热处理可以有效提高齿轮的硬度、耐磨性,增强其使用寿命。
3、组装: 在变位齿轮制造的最后一个环节是齿轮的组装,通过精密的组装工艺,使得齿轮能够实现顺畅的传动。
机械基础1-4章试题及答案

一. 填空1.平面连杆机构由一些刚性构件用____副和____副相互联接而组成。
2. 在铰链四杆机构中,能作整周连续旋转的构件称为_______,只能来回摇摆某一角度的构件称为_______,直接与连架杆相联接,借以传动和动力的构件称为_______。
3. 图1-1为铰链四杆机构,设杆a最短,杆b最长。
试用符号和式子表明它构成曲柄摇杆机构的条件:(1)____________________________。
(2)以_______为机架,则_______为曲柄。
4. 设图1-1已构成曲柄摇杆机构。
当摇杆CD为主动件,机构处于BC与从动曲柄AB共线的两个极限位置,称为机构的两个_______位置。
5. 铰链四杆机构的三种基本形式是_______机构,_______机构,_______机构。
6. 平面连杆机急回运动特性可用以缩短_______。
从而提高工作效率。
7. 平面连杆机构的急回特性系数K______________。
8. 四杆机构中若对杆两两平行且相等,则构成_______机构。
二、选择代号填空9. 平面四杆机构中各构件以_______相联接。
(a 转动副 b 移动副 c 螺旋副)10. 平面连杆机构当急回特性系数K_______时,机构就具有急回特性。
(a >1 b =1 c <1)11. 铰链四杆机构中,若最长杆与最短杆之和大雨其他两杆之和,则机构有_______。
(a 一个曲柄 b 两个曲柄 c两个摇杆)12. 家用缝纫机踏板机构属于_______。
(a 曲柄摇杆机构 b 双曲柄机构 c 双摇杆机构)13. 机械工程中常利用_______的惯性储能来越过平面连杆机构的“死点”位置。
(a主动构件 b 从动构件 c 联接构件)14. 对心曲柄滑块机构曲柄r与滑块行程H的关系是_______。
(a .H=r b. H=2r c. H=3r)15. 内燃机中的曲柄滑块机构工作时是以_______为主动件。
齿轮系统动力学

齿轮系统动力学齿轮系统是机械传动系统的重要构成部分,其动力学行为的研究对于机械传动与控制的优化设计具有重要意义。
齿轮系统的动力学分析包括齿轮传动的运动学分析和动力学分析两个方面,其中动力学分析是重点和难点。
齿轮传动的运动学分析是齿轮系统动力学分析的基础,其主要研究齿轮的運動機制,包括齿轮轴的旋转速度、角加速度、轴向位移、轴向转移等运动参数,以便进一步对系统进行动力学分析。
齿轮轴的旋转速度可以通过齿轮的外径和齿数计算得出,角加速度可以通过齿轮的转矩和惯量计算得出,轴向位移和转移则需要结合装配误差和齿轮的高度、基础直径等几何参数进行计算。
齿轮系统的动力学分析则是研究齿轮传动过程中的机械运动和动力特性,其中包括弹性变形、齿隙、啮合刚度、滑动摩擦等因素对系统的影响。
齿轮之间的啮合接触产生了接触应力和接触变形,为了考虑啮合接触的影响,通常需要引入扭转刚度、弯曲刚度和惯性力等因素,对系统进行动力学建模。
齿轮传动的弹性变形是影响系统动力学特性的主要因素之一,弹性变形通常表现为齿轮歪曲和齿面变形。
当发生啮合时,齿轮的弯曲和扭转将导致轴向力,产生一定程度的轴向位移。
齿隙则是齿轮体积或轴向变形所产生的加入啮合区的额外齿数,齿隙对于齿轮的传递特性具有重要影响,其调节和控制也是齿轮传动优化设计所必需的。
齿轮啮合刚度是指齿轮在不同接触点处由于弹性变形所产生的啮合剛性,其值通常由啮合点坐标和齿形参数确定,啮合刚度的变化会导致转矩的质量变化,进而导致齿轮振动和噪声。
滑动摩擦力是指齿轮啮合时由于表面分子间的作用力而产生的摩擦力,滑动摩擦力的大小受到润滑状态和表面质量等因素的影响。
为了进行齿轮系统动力学分析,需要将齿轮系统抽象成动态模型。
常用的模型包括单自由度模型和双自由度模型等,单自由度模型将齿轮系统看作一个单自由度振子,其振动分为轴向振动和转子转动振动两部分,转矩影响的是转子转动振动的幅值,而轴向力影响的是齿轮的轴向振动;双自由度模型则将齿轮系统看作两个相互悬挂的单自由度振子,其振动包括两个振型:轴向振动和转矩振动,其中转矩振动只与第一级减速器密切相关。
高度变位齿轮

高度变位齿轮高度变位齿轮是一种用于传递旋转动力的机械装置,具有非常特殊的工作原理。
本文将详细介绍高度变位齿轮的概念、结构、工作原理以及应用场景。
一、概念高度变位齿轮是一种通过齿轮机构实现高度变位的机械部件,主要用于传递旋转动力,常用于机床、自动化生产线和工业机械等领域。
二、结构高度变位齿轮主要由齿轮轴、齿轮环、弹簧、齿轮盖板、调整螺杆等组成。
其中齿轮环为核心组件,其上划分有多个凸出的齿槽,并且属于斜面齿轮的一种,斜面倾角可根据需要进行调整。
齿轮环的内部装有弹簧,通过调整螺杆可以改变齿轮环的位置,使得齿轮环内的弹簧可以向内或向外挤压,从而改变齿槽的距离,并且改变齿轮垂直中心轴的高度差。
三、工作原理高度变位齿轮的工作原理就是通过齿轮的啮合实现旋转传动。
在传动系中,高度变位齿轮常用于传递转速不同的机件,因为齿轮环可以根据需要进行斜面倾角的调节。
具体的工作过程如下:当高度变位齿轮的主动齿轮与被动齿轮相啮合时,高度变位齿轮的齿轮环会跟随着主动齿轮的旋转而旋转。
这时,如果调整螺杆向内旋转,弹簧就会向内挤压,从而使得齿轮环内的齿槽距离减小,鄞轮的中心高度上升;反之,如果调整螺杆向外旋转,齿轮环内的齿槽距离增大,齿轮的中心高度下降。
四、应用场景高度变位齿轮广泛应用在诸多行业和领域,包括机床、汽车、船舶、航空航天、石油钻采、食品、纺织等。
在机床领域,高度变位齿轮在各种数控机床、金属切削机、铣床、钻床和磨床上都得到了广泛应用。
在自动生产线上,高度变位齿轮可以实现旋转动力的传递和调节,以使生产过程自动化,提高生产效率。
在工业机械领域,高度变位齿轮也用于传递旋转动力,从而保证机械设备的正常运转。
除了上文中提到的应用场景,高度变位齿轮还可以应用于一些特殊的工程中,如:1. 变速箱:高度变位齿轮在汽车和船舶的变速箱中得到广泛的应用。
汽车变速箱中,高度变位齿轮作为重要的传动部件,可实现行车过程中的平稳转速调节。
船舶变速箱中,高度变位齿轮能够有效降低发动机输出功率对推进螺旋桨的影响。
齿轮啮合刚度及齿轮动力学研究

齿轮啮合刚度及齿轮动力学研究齿轮是一种传动元件,常用于将一个轴的旋转运动传递到另一个轴上。
在传动过程中,齿轮的啮合是非常关键的一环,因为它决定了传动的效率、精度和可靠性。
齿轮啮合的刚度和动力学性能是齿轮设计和制造的重要指标之一,本文将就这两个方面进行探讨。
一、齿轮啮合刚度齿轮啮合刚度是指当两个齿轮啮合时,齿位变化所需要的外力大小与齿位变化量之比。
刚度越大,就说明齿轮对外界干扰的敏感度越小,从而提高了传动的精度和可靠性。
齿轮啮合刚度的大小与齿轮的强度、刚度、形状和精度等有关。
在齿轮设计中,需要考虑啮合刚度对传动系统的影响。
一方面,对于高精度要求的应用场合,需要提高齿轮啮合刚度,以减小齿轮传动误差和振动,从而使传动精度更高;另一方面,过大的啮合刚度会增加传动系统的强度和刚度要求,同时对齿轮和轴承等组件造成更大的载荷和磨损,可能导致传动系统损坏。
因此,需要在设计中进行合理的权衡和选择。
为了提高齿轮啮合刚度,有多种方法可采用。
其中一种方法是增加齿数,增加啮合面积和接点数,从而提高传递扭矩的能力和刚度。
但是过多的齿数会增加制造难度和成本。
另一种方法是采用特殊的齿形设计,如渐开线、修形渐开线、顶隙小的波形齿等,从而提高啮合刚度和改善传动性能。
此外,也可以通过优化材料和热处理等工艺措施来提高齿轮的强度和刚度,从而增加传动系统的稳定性和可靠性。
二、齿轮动力学研究齿轮在传动过程中会产生振动和噪声,这对传动系统的工作性能、噪声水平和寿命等均有重要影响。
因此,对齿轮的动力学性能进行研究和优化非常重要。
齿轮动力学研究通常包括以下几个方面。
首先是齿轮的强度和刚度计算,在设计中确定齿轮和轴承等部件的尺寸和性能参数,以满足传动的要求。
其次是齿轮系统的振动分析和控制,对齿轮系统进行振动模态分析、自然频率计算和模态实验等,以确定振动的产生原因和控制措施。
还需要考虑齿轮啮合和齿面损伤的研究,了解齿轮在运行过程中的啮合位置、接触应力、齿面疲劳和龟裂等破坏形式,以制定必要的维护和保养措施。
齿轮传动运动简图

齿数是齿轮轮齿的数量,通常用 “z”表示。
齿轮的转速和转向
转速
齿轮的转速是指齿轮每分钟旋转的圈 数,通常用“n”表示。
转向
齿轮的转向是指齿轮旋转的方向,可 以是顺时针或逆时针。
齿轮传动的动力学
03
分析
齿轮的扭矩和功率
扭矩
齿轮在转动过程中需要克服的阻力,通常用牛顿米(N·m)来衡量。
功率
齿轮传递的有效功率,通常用瓦特(W)来衡量。
齿轮传动的智能控制和自动化技术
智能控制
采用传感器、控制器和执行器等 设备,实现对齿轮传动的实时监 测和控制,提高传动的稳定性和
Байду номын сангаас效率。
自动化技术
应用工业机器人、自动化生产线 等设备,实现齿轮传动的自动化 装配、调试和维修,提高生产效
率和质量。
数字化孪生
通过建立齿轮传动的数字模型, 实现对传动性能的预测和优化,
齿轮的传动效率和磨损
传动效率
衡量齿轮传递能量的效率,通常用百分比表示。
磨损
齿轮在长时间使用后,齿面会逐渐磨损,导致传动精度下降。
齿轮的润滑和维护
润滑
通过润滑剂来降低齿面之间的摩擦系数,提高传动效率,延 长齿轮的使用寿命。
维护
定期检查和维护齿轮,包括清洗、润滑、调整等,以确保其 正常运转。
齿轮传动的设计与
齿轮传动的基本原
02
理
齿轮的几何参数
齿顶圆直径
齿顶圆直径是齿轮最顶部的直 径,通常用“d”表示。
齿根圆直径
齿根圆直径是齿轮最底部的直 径,通常用“df”表示。
齿高
齿高是从齿顶到齿根的距离, 通常用“h”表示。
齿宽
齿宽是齿轮的横向尺寸,通常 用“b”表示。
什么是变位齿轮,变位齿轮的特点以及为什么要对齿轮进行变位处理

什么是变位齿轮,变位齿轮的特点以及为什么要对齿轮进⾏变位处理什么是变位齿轮⽤齿条型⼑具加⼯齿轮时,若不采⽤标准安装,⽽是将⼑具远离或靠近轮坯回转中⼼,则⼑具的分度线不再与被加⼯齿轮的分度圆相切。
这种变位修正法。
采⽤这种⽅法加⼯的齿轮称为变位齿轮变位齿轮。
采⽤改变⼑具与被加⼯齿轮相对位置来加⼯齿轮的⽅法称为变位修正法⾮标准渐开线齿形的齿轮。
切制轮齿时,改变标准⼑具对齿通过改变标准⼑具对齿轮⽑坯的径向位置或改变标准⼑具的齿槽宽切制出的齿形为⾮标准渐开线齿形切向变位。
最常⽤的是径向变位,切向变位⼀般⽤于圆锥齿轮的变位。
轮⽑坯的径向位置称为径向变位径向变位。
改变标准⼑具的齿槽宽称为切向变位变位齿轮的特点变位齿轮与标准齿轮相⽐,其模数、齿数、压⼒⾓均⽆变化;但是正变位时,齿廓曲线段离基圆较远,齿顶圆和齿根圆也相应增⼤,齿根⾼减⼩,齿顶⾼增⼤,分度圆齿厚与齿根圆齿厚都增⼤,但齿顶容易变尖;负变位时,齿廓曲线段离基圆较近,齿顶圆和齿根圆也相应减⼩,齿根⾼增⼤,齿顶⾼减⼩,分度圆齿厚和齿根圆齿厚都减⼩。
,为什么要对标准齿轮进⾏变位变位齿轮的主要功能与作⽤,为什么要对标准齿轮进⾏变位变位齿轮的主要功能与作⽤1、减⼩齿轮传动的结构尺⼨,减轻重量在传动⽐⼀定的条件下,可使⼩齿轮齿数zl<zmin,从⽽使传动的结构尺⼨减⼩,减轻机构重量。
2、避免根切,提⾼齿根的弯曲强度当⼩齿轮齿数z1<zmin时,可以利⽤正变位避免根切,提⾼齿根的弯曲强度。
x≥xmin=(Z-Zmin)/Zmin,对α=20°时,Zmin=17。
3、提⾼齿⾯的接触强度3、提⾼齿⾯的接触强度采⽤啮合⾓α’>α的正传动时,由于齿廓曲率半径增⼤,故可以提⾼齿⾯的接触强度。
4、提⾼齿⾯的抗胶合耐磨损能⼒采⽤啮合⾓α’>α的正传动,并适当分配变位系数xl、x2,使两齿轮的最⼤滑动率相等时,既可降低齿⾯接触应⼒,⼜可降低齿⾯间的滑动率以提⾼齿轮的抗胶合和耐磨损能⼒。
机械设计基础_第4章_变位齿轮

(1)、分度圆齿厚s与齿间e
r
O
ab
xm
sm2xmtg
2
rb
c
em2xmtg
xm
B
xm
N
ab
Pc
ham
2
(2)、齿根高
h
与
f
齿顶高h a
hf (hac*)mxm
在 保 证 齿 全 高 不 变 时 : h a h a m x m
x1x20,且 x1x20
aa(rr),
齿数xx21条xx件12m m:iinnhhaa((Z ZZ Zm mm m iinniinnZ Z12))两 则 式 Z 相 1 加Z , 2设 h2 aZ m 1in
优点:减小机构的尺寸,改善磨损情况; 提高小齿轮强度,提高承载能力。
解: ∵ s'
m 2xmtg
2
s'
19.52162 2x216tg20
x20.482
x 1 x 20 .4 8 2
计算尺寸,校核 sa1 ?
解:1)确定传动类型
m
4 .2 5
a 2 (Z 1 Z 2 )2(1 3 4 4 ) 1 2 1 .1 2 5
∵ a a , 可 采 用 等 移 距 变 位 齿 轮 传 动 。
2)选择变位系数,计算参数
1713
小齿轮正变位: x1x1m in 17 0.235 大齿轮负变位: x 2 x 1 0 .2 3 5
k in(vk)
θ
二、变位齿轮传动
1、正确啮合条件与连续传动条件同 标准齿轮传动。
即 : m 1m 2m ,12; [].
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0引 言
大变位齿轮在实际生产中已有应用,水泥工业最 多,其他工业部门也在逐渐扩大和增多,而且它的优 越性在应用中得到了肯定。如:湖南省武冈市水泥厂 Φ2.2/2.0×40 m 的小型回转窑上使用的大变位齿轮,运 转了 14 年,使用条件比较恶劣,但从未产生过任何问 题。 在水泥工业中,当前有许多水泥厂应用大变位齿 轮来改造旧有磨机上的大小齿轮。如宝庆水泥厂将 Φ1.83×6.1 m 管磨机的旧有大小齿轮改换成大变位齿 轮后,运转比以前明显平稳,噪音显著减小,使用寿命 大为提高。采用大变位齿轮修复废旧的磨机大齿圈具 有显著的经济效益。
本研究针对大变位齿轮真实工况下的动态问题, 通过建立齿轮副扭转振动模型,研究大高变位条件下 单对齿轮的动力学性能。
收稿日期:2011- 04- 14 作者简介:陈一萍(1966-),女,江西宜春人,主要从事设备强度及机械设计方面的研究. E- mail:lxm4321397@
·1466·
一种准线性的迭代解法求得此非线性方程的数值解,并讨论了变位系数对动载荷、重合度及节点所处位置等的影响。研究结果表明,
变位系数大于 1 时,动载系数全面减小。
关键词:变位齿轮;动力学;数值解;重合度
中图分类号:TH113.2+2;TH132.41
文献标志码:A
文章编号:1001- 4551(2011)12- 1465- 04
[1] SEIREG A,HOUSER D R. Evaluation of dynamic factors for spur and helical gears [J]. Journal of Engineering for Industry,1970,92(5):504- 515.
3 变位对齿轮动态性能的影响
3.1 对动载荷的影响 虽然目前对变位齿轮的应用已经很广泛了,但是
变位系数对齿轮系统动力学性能的影响讨论得很少, 尤其是对大变位的齿轮,即能使节点位于双齿啮合 区,甚至产生节点后啮合的齿轮的动力学性能讨论得 很少。因为大变位齿轮适用于三大一多 (即大模数、 大 速 比 、大 直 径 和 多 齿 数 的 齿 轮)的 齿 轮 传 动 ,本 研 究取 Z1=37,Z2=180,m=36,齿宽为 B=650 mm 的齿轮
函数。
齿轮的转动惯量的计算公式为:
4
Ji
=(
πZi 32
+C0X)i m4Bρ
(6)
式中:m、Zi、Xi、B 和 ρ—模数、齿数、变位系数、齿宽和
δr(0)= δr0 ; r(0)= r0 。 然后,每次迭代,均以上次计算得到的 δr 和 r 作 为初始状态。重复这个过程,直到一个周期的最后,得 到 δr(T)和 (r T)。如果 δr(T)、(r T)与最初假定的初始 值 δr(0)、r(0)不等的话,则将 δr(T)、(r T)作为新的 初始值再重新进行同样的迭代过程。这样的迭代过程重 复进行,直到得到一个收敛的结果。很明显,这种解法成 立的前提是每对齿的误差相同,且系统达到稳定状态。
变位后将引起多种因素的变化,从而使导致齿轮 动载荷变化的因素很复杂。变位后主要影响的是啮合 刚度、重合度、节点所处的位置等因素。这些因素的变 化将综合影响齿轮的动载荷。
图 3 子程序流程图
在本研究的仿真计算中,不仅仅仿真一个啮合周 期 T,而是仿真一个齿从啮入到啮出的全过程,以得到 一个齿从啮入到啮出全过程的信息。这个准线性的迭 代过程的程序流程框图如图 2、图 3 所示[8]。
图 2 主程序流程图
第 12 期
陈一萍:大高变位齿轮传动的动力学分析
·1467·
在 T1=5 000 N·m 载荷下研究等移距变位对齿轮动载 荷的影响[9],如图 4 所示。
图 4 变位系数的影响
由图 4 可知:变位系数对齿轮动载荷的影响在不 同的转速下是不同的。随着变位系数的增加,动载系 数却是增大的;当变位系数大于 1 的时候,动载系数 会全面减小,这跟文献[10]的论述是吻合的。 3.2 对刚度、重合度、节点所处的位置的影响
机电工程
第 28 卷
1 动力学模型和方程的建立
2
3
密度;C0 = -2 818.2+267.74Zi - 8.373 8Zi + 0.844 3Zi 。
本研究主要探讨大变位条件下单对齿轮的动力 学性能,故选用齿轮副扭转振动模型作为研究对象, 如图 1 所示,该模型相对比较简单,考虑了摩擦、阻 尼、时变刚度等因素。许多研究者在与变位齿轮有关 的诸多研究文献中都采用了这种模型 。 [3-4]
采用变位的方法能够调整啮入点的位置,从而减 小啮入冲击、降低噪声,同时,大于 1 的变位还能避免
节圆冲击。所以,变位齿轮在实际应用中用得越来越 广泛了。从文献可知,对变位齿轮的研究,主要是考虑 各种静态因素,如根切、干涉、齿顶厚度、重合度等,很 少看到在选择变位系数时考虑其对齿轮动力学性能 的影响。 对于直齿轮变位,G.Niemannhe 和 M.Uter- berger 得出这样的结论[1]:变位后使得节点位于双齿 啮合区内,可以降低噪声。这是因为此时节圆冲击比 节点位于单齿啮合区内时要小的缘故。库德略采夫也 得到同样的结论。舒列依科则研究发现变位系数为 ±0.8,分度圆压力角为 28°,节点位于双齿啮合区内 的直齿轮,与标准齿轮相比,噪声显著减小,接近于斜 齿轮的噪声[2]。
(7)
其中,ωd = 姨1-ξ2 ωn
积分常数 C1 和 C2 是从迭代过程中得到的。本研
究先假设一个初始值:
PA = K(A δr - eA) PB = K(B δr - eB)
(3)
由式(1)、式(2)得:
r
+
2
ωn
δr=
ψr
(4)
2
A
A
B
B
式中: ωn =[KA(G1 M2+G2 M1)+K(B G1 M2+G2 M1)]/
Dynamics analysis on transmission of major profile shifted gears
CHEN Yi-ping
(A Skilled Workers' School of Guangzhou Huadu,Guangzhou 510800,China)
Abstract:Aiming at the difference between dynamic conditions and static condition for large profile shifted gears,single pair gear's dynamic properties were studied under the condition of large profile shifted gears with the model of gear pairs vibration. The numerical solution of the non -linear equation was found by a quasi -linear iterative method. The shifted coefficient's influence on dynamic load, overlap and junction position was also covered as well. The results indicate that the dynamic load factor overall decreases when the modification coefficient is greater than 1. Key words:profile shifted gears;dynamics;numerical solution;overlap
当节点位于双齿啮合区内时,比节点位于单齿啮 合区内时噪声要小,甚至为了完全避免节圆冲击,而 采用节点后啮合齿轮[11-16]。节点所处位置如图 6 所示, 采用等移距变位后,节点多数情况下处于双齿啮合 区,这对减小齿轮动载荷是有利的 (图中 HPST 和 LPST 曲线之间的部分为单齿啮合区)。
由以上分析可知,等移距变位后对各种因素的影 响既有有利的一面,也有不利的一面,其对动载荷的 影响是各因素综合影响的结果。
上述分析还说明:单纯说“增加重合度可减小齿 轮动载荷,或减小重合度会增加齿轮动载荷”是不科 学的。因为上述等移距变位齿轮的重合度略有减小, 但其动载荷在大多数情况下却比没有变位时有所减 小。这是因为重合度的变化会引起诸多因素的变化, 如变位系数、压力角、啮合刚度等等。而这些参数的变 化会影响齿轮的啮合状态,如啮合段位置、节点所处
A
A
B
M1M2,ψr =[(M1+M2)Ps+KAe(A G1 M2+G2 M1)+KB e(B G1 M2+
B
A
G2 M1)]/ M1M2,G1 =1 ρA1 μA/Rb(1 节点之前取‘-’;节点
B
之后取‘+’),G1 =1± ρB1 μB/Rb(1 节点之前取‘+’;节点之
A
后取‘-’),G2 =1 ρA2 μA/Rb2(节点之前取‘-’;节点之后
2 动力学方程的数值解
因为啮合刚度和摩擦系数是随啮合位置的变化 而变化的,方程的系数不是常量。这样的非线性方程 的解法通常有有限元法、摄动法、差分法、幂级数法以 及较常用的 Runge-Kutta 法。这里采用一种准线性的 迭代解法来求得此方程的数值解。
一个轮齿的啮合周期 T 是 从啮合的起 始点 IP (initial point) 算 起 , 到 单 齿 啮 合 的 最 高 点 HPSTC (highest point of single tooth contact)结束。在输入力矩 为常量的假设下,每一个轮齿都重复同样的啮合过