地铁车站深基坑大学毕业设计(含外文翻译)
深基坑开挖支护设计毕业论文

毕业设计(论文)题目西安地铁枣园站基坑开挖支护设计专业城市地下空间工程班级城地 081学生张鹏飞指导教师范留明教授2012 年摘要基坑工程是指在地表以下开挖的一个地下空间及其配套的支护体系。
而基坑支护就是为保证基坑开挖,基础施工的顺利进行及基坑周边环境的安全,对基坑侧壁以及周边环境采用的支挡,加固与保护措施。
基坑支护体系是临时结构,安全储备较小,具有较大风险,基坑工程具有很强的区域性。
不同水文,工程地质环境条件下基坑工程的差异很大。
基坑工程环境效应复杂,基坑开挖不仅要保证基坑本身的安全稳定,而且要有效的控制基坑周边地层移动以及保护周围环境。
本文先介绍了枣园站的工程概况,包括水文地质和周围环境,然后通过结合对现有基坑开挖支护工法和车站实际情况的比较选择出了适合本站的开挖支护方案。
下来通过土压力的计算、结构内力的计算,配筋、验算、支撑设计、变形估算等对基坑的开挖支护作了理论上的数据分析,最后通过施工组织说明了各个工序施工的工法和应注意的问题。
关键词:支护方案,地下连续墙,支撑,施工组织设计AbstractFoundation Pit is the excavation of an underground space below the surface and a coordinated support system. Bracing of foundation pit is to ensure that excavation and foundation construction for the smooth and safe environment Foundation Pit and used the pit retaining wall reinforcement and protection.Bracing of Foundation Pit structure is the structural safety of temporary reserves are smaller, more risk. Foundation pit structure has a strong regional. Excavation works under different hydrological environmental and geological conditions are vastly. Effects complex excavation, excavation pit is not only necessary to ensure their own safety,but also to effectively control the pit surrounding strata.First,the paper introduces the general engineering situation of Zaoyuan Station,Including hydrological geology and the environment,Then,based on the existing foundation pit excavation method and station actual situation select the suitable for the station of the excavation and support scheme。
毕业设计任务书(基坑)【范本模板】

毕业设计任务书深基坑支护设计适用专业:土木工程(专升本)武汉大学土木建筑工程学院岩土与道桥系二零一一年九月一、题目:深基坑支护设计某建筑物主楼为26层,裙楼为2~5层的商业办公楼。
设2层地下室,地下室开挖深度约8m(以标高23m为起算高程)。
要求进行基坑支护设计。
二、基本资料(1)土层组成为:错误!杂填土Q m l;错误!-1粉质粘土Q4a l+p l;错误!—2粉质粘土Q4a l+p l;错误!粘土Q3a l+p l;错误!红粘土Q3e l;错误!石灰岩P。
土层分布见附件.不考虑地下水.(2)各土层物理力学参数为土层物理力学参数2三、设计内容与要求基坑设计要求基坑拟采用支护桩、锚杆结合结合的支护体系,支护桩径可选用Φ800或Φ1000 Φ⎜Φ150 Φ>®⎪(15°或20°,要求设计出桩径(选用)、桩距、桩的配筋,锚杆布置与长度。
画出桩的配筋图.四、现场工作(1)收集工程地质、水文地质资料参加岩土工程勘察工作,到岩土工程设计与施工单位调研,了解勘探、取样、现场测试的过程,取得第一手工程地质资料。
参加全过程土工常规试验,取得准确的岩、土体物理、力学、变形性质指标。
(2)现场工作到工程现场进行调查,参与工程实践,了解基坑开挖过程,为稳定性分析与支护设计准备第一手材料。
五、计算过程①按选定位置计算土压力分布(朗肯土压力理论)②根据选定锚杆排数、间距,计算锚杆支护力③计算支护桩上弯矩分布,根据最大弯矩确定锚杆配筋(钢筋混凝土规范)④根据各层锚杆支护力,计算各层锚杆抗拔力,进而计算锚杆抗拔长度(各土层摩擦强度根据岩土工程手册定),加上前部主动区长度,为锚杆总长度⑤根据锚杆抗拔力确定锚杆抗拉钢筋或钢绞线⑥绘制支护桩配筋图、锚杆大样图⑦将计算过程整理,成毕业设计报告(附图件)六、设计计算书与图纸要求1.计算要符合有关规范、规程执行,计算单位统一采用国际制.2.设计计算书严格按照学校《毕业设计(论文)规范化要求》,做到数据合理准确,计算步骤清楚,层次分明,成果正确,配有各种相应的插图与表格,图文紧密结合,书写工整,叙述简明扼要(最好打印成文)。
地铁车站基坑毕设设计

论文题目: 大屯路公交与地铁换乘车站深基坑维护设计专业:土木工程(岩土工程)学生: (签名)指导老师: (签名)摘要根据《北京地铁奥运支线大屯路公交与地铁换乘站岩土工程勘查报告》,大屯路公交与地铁换乘车站长101.1m ,基坑宽约26m,深约17m,同时参考当地的建筑经验和施工现场的具体情况,完成了大屯路公交与地铁换乘车站深基坑维护的方案论证和设计。
降水方案为深井降水,支护方案采用土钉墙、排桩、内支撑联合支护。
基坑开挖方式为分步、分段、分层开挖。
在开挖的同时对基坑进行监测,监测的内容包括桩体变形、桩身内力、支撑轴力。
得出结论:桩顶水平位移反映支护结构的顶部变形情况,是支护结构安全状况的重要指标,且在有支撑作用的情况下支护变形最大。
最后,根据施工方案对工程进行了施工组织设计。
关键词: 深基坑,支护方案,土钉墙,排桩,钢支撑,开挖方式,变形监测,施工组织类型: 研究型Subject : Deep foundation pit retaining Design of Beijing subway stations and bus transfer stationSpecialty : Civil Engineering (Geotechnical Engineering)Name : (Signature)Instructor : (Signature)ABSTRACTIn the thesis, based on 《The Geotecnical Engineering Investigation Report Of Beijing subway stations and bus transfer station》, the length of station of Beijing subway stations and bus transfer station is 101.1m, the width of foundation pit is about 26m and the depth of foundation pit is approxomately 17m. Simultaneously, refer to the local construction experience and special details of constraction site, that plan testify and design of deep foundation pit retaining of Beijing subway stations and bus transfer station has completed. The plan of retaining adopts soil-nail wall,line-pile,steel props to retain together. The type of excavation adopts a way for the minute step,the partition,the lamination excavates. While excavating foundation pit, foundation pit monitoring is carrying on, including pile deformation, pile interal force, inner axial force. The study shows the deformation characteristics of supporting structure is related to the horizontal displacement of the retaining pile top, which is the important criterion of the safety of condition of supporting structure. With the effect of supporting structure, the deformation is the largest . Finally, according to construction scheme, the construction organization design has been finished.Key Words: deep foundation pit; retaining plan; soil-nail; line-pile; steel props;excavation type; deformation; monitoring; construction organization Type : Research详细摘要本拟建工程设计说明书共分5章,包括:岩土工程勘察,基坑维护设计,基坑变形监测方案设计、施工组织设计等主要依据(1)《大屯路公交与地铁换乘车站岩土工程勘察报告》(2)《混凝土结构设计规范》(GBJ146-90)(3)《钢结构设计规范》(GB50012-2003)(4)《建筑桩基技术规范》(JGJ 94-94)(5)《建筑基坑支护技术规程》(JGJ120-1999)(6)《挤扩支盘灌注桩技术规程》(CECS192:2005)工程概况拟建大屯路公交与地铁换乘车站位于规划的奥林匹克公园中心区域,在地铁奥林匹克公园站北侧并紧邻此站,呈南北走向,是北京地铁奥运支线与大屯路隧道地下公交车站相交的节点工程,大屯路公交与地铁换乘车站共为地下两层,总长101.1m(K2+222.041~K3+323.141),南北两端断面宽24.7m、中间断面宽26.7m,均为两层三跨框架结构,本工程预期160天完成.基坑维护设计这一部分主要包括五部分。
北京交通大学地铁车站毕业设计

北京交通大学地铁车站毕业设计中文题目:北京地铁6号线东大桥站结构设计英文题目:Beijing Subway Line No. 6 East Bridgestation structural design一.毕业设计(论文)基本内容和要求:基本内容:1、车站站位选择;2、车站总平面布置(包括站位选择、出入口布置、通风亭布置等);3、车站结构形式选择;4、车站纵断面设计;5、主体结构各工况内力组合计算;6、截面检算与结构配筋设计;7、施工方案设计。
基本要求:1、设计内容要有依据;2、独立完成上述各项内容;3、论文写作规范化;4、引用规范应注明;5、每项计算应附正规的计算简图和内力图。
二.毕业设计(论文)重点研究的问题:1、车站总平面布置;2、车站主体结构横断面设计;3、车站主体结构纵断面设计;4、结构各工况内力组合计算及配筋设计;3、施工方案设计。
三.毕业设计(论文)应完成的工作:1、中英文摘要;2、开题报告;3、设计正文,包括计算说明书;4、计算分析采用专用软件进行;5、提交图纸:车站总平面布置图、车站主体结构横断面图、、车站主体结构纵剖面图、车站主体结构配筋图、施工方案设计图;6、外文翻译一篇,不少于50000英文字符;7、毕业设计实习报告;8、查阅相关文献不少于20篇。
四.设计详细资料1.站位概况及站位地区总平面图东大桥站位于东大桥路口东侧,朝外大街、工体东路、东大桥路、朝阳北路及朝阳路五条道路交汇与此形成五叉路口,路口西北象限为临街商用建筑群及东草园等居住小区;路口西南象限为蓝岛大厦和昆泰大厦等高层商业建筑;路口东南象限为市政绿化用地和CBD住宅、商业用地;路口东北象限为佰富国际商用高层写字楼;朝阳北路和工人体育场东路之间为公交站场(共5路公交车在此始发)。
该区域是朝阳地区重要的客流集散点,地面交通十分繁忙。
地铁车站设置在公交站场及以东的朝阳北路下,东西走向。
东大桥站为三层岛式车站,有效站台宽13m,长158m,地下一层为地铁站厅层,地下二层为地铁设备层、地下三层为地铁站台层。
深基坑毕业设计

深基坑毕业设计【篇一:毕业设计深基坑支护设计】目录中文摘要.......................................................... 1 英文摘要......................................... 错误!未定义书签。
第一章前言 (3)第二章岩土工程勘察 (4)2.1工程概况 (4)2.2勘察等级 (4)2.3场地工程地质条件综述 (4)2.3.1地形地貌 (4)2.3.2 地基(岩)土构成与岩性特征 (4)2.4场地及地基条件综合评价 (5)2.4.1场地的稳定性 (5)2.4.2场地及地基的抗震性 (5)2.4.3地基土的膨胀性能 (5)2.4.4天然地基设计参数 (5)2.4.5桩基设计参数 (6)2.5结论和建议 (6)第三章深基坑支护简介 (8)3.1深基坑支护概况 (8)3.1.1深基坑支护概念、发展 (8)3.1.2深基坑支护技术及类型 (8)3.2土钉墙支护介绍 (9)3.2.1概念、发展、特点 (9)3.2.2土钉墙作用基本原理、设计步骤、参考原则 (10)3.2.3土钉墙设计计算方法 (13)3.3排桩支护介绍 (19)3.3.1排桩适用范围 (19)3.3.2排桩支护设计步聚 (19)第四章 a-a′剖面和e-e′剖面设计计算书 (27)4.1 a-a′剖面的土钉支护设计计算书 (27)4.1.1 a-a′剖面的土钉墙设计计算步骤 (27)4.1.2 工程概况 (27)4.1.3地质条件 (28)4.1.4 土钉内力计算 (28)4.1.5土钉抗拔力计算 (29)4.1.6 土钉墙支护内部稳定分析 (30)4.1.7土钉墙外部稳定分析 (31)4.2 a-a′剖面排桩支护设计计算书 (32)4.2.1工程概况 (32)4.2.2地质条件 (33)4.2.3 土压力的确定 (33)4.2.4 嵌固深度计算 (35)4.2.5稳定性验算 (37)4.2.6 桩截面设计 (39)4.3 e-e′剖面的土钉支护设计计算书 (41)4.3.1工程概况 (41)4.3.2地质条件 (41)4.3.3土钉内力计算 (42)4.3.4土钉抗拔力计算 (43)4.3.5 土钉墙支护内部稳定分析 (43)4.3.6土钉墙外部稳定分析 (44)4.4 e-e′剖面的排桩支护设计计算书 (45)4.4.1 工程概况 (45)4.4.2 地质条件 (46)4.4.3 土压力的确定 (46)4.4.4 嵌固深度计算 (47)4.4.5稳定性验算 (49)4.4.6 桩截面设计 (51)4.5计算结果比较与总结 (52)结论 (55)致谢 (56)参考文献 (57)合肥叉车集团生活区深基坑支护设计摘要:基坑工程是一个古老而具有时代特点的岩土工程课题,放坡开挖和简易木桩围护可以追溯到远古时代。
深基坑开挖支护设计毕业论文设计

毕业设计〔论文〕题目某某地铁枣园站基坑开挖支护设计专业城市地下空间工程班级城地081学生X鹏飞指导教师X留明教授2012 年摘要基坑工程是指在地表以下开挖的一个地下空间与其配套的支护体系。
而基坑支护就是为保证基坑开挖,根底施工的顺利进展与基坑周边环境的安全,对基坑侧壁以与周边环境采用的支挡,加固与保护措施。
基坑支护体系是临时结构,安全储藏较小,具有较大风险,基坑工程具有很强的区域性。
不同水文,工程地质环境条件下基坑工程的差异很大。
基坑工程环境效应复杂,基坑开挖不仅要保证基坑本身的安全稳定,而且要有效的控制基坑周边地层移动以与保护周围环境。
本文先介绍了枣园站的工程概况,包括水文地质和周围环境,然后通过结合对现有基坑开挖支护工法和车站实际情况的比拟选择出了适合本站的开挖支护方案。
下来通过土压力的计算、结构内力的计算,配筋、验算、支撑设计、变形估算等对基坑的开挖支护作了理论上的数据分析,最后通过施工组织说明了各个工序施工的工法和应注意的问题。
关键词:支护方案,地下连续墙,支撑,施工组织设计AbstractFoundation Pit is the excavation of an underground space below the surface and a coordinated support system. Bracing of foundation pit is to ensure that excavation and foundation construction for the smooth and safe environment Foundation Pit and used the pit retaining wall reinforcement and protection.Bracing of Foundation Pit structure is the structural safety of temporary reserves are smaller, more risk. Foundation pit structure has a strong regional. Excavation works under different hydrological environmental and geological conditions are vastly. Effects plex excavation, excavation pit is not only necessary to ensure their own safety,but also to effectively control the pit surrounding strata.First,the paper introduces the general engineering situation of Zaoyuan Station,Including hydrological geology and the environment,Then,based on the existing foundation pit excavation method and station actual situation select the suitable for the station of the excavation and support scheme。
深基坑工程外文资料翻译

深基坑工程外文资料翻译译文1基坑工程发展概况基坑工程是一个古老而又有时代特点的岩土工程课题。
放坡开挖和简易木桩围护可以追溯到远古时代。
人类土木工程活动促进了基坑工程的发展。
特别是到了本世纪,随着大量高层、超高层建筑以及地下工程的不断涌现,对基坑工程的要求越来越高,出现的问题也越来越多,促使工程技术人员以新的眼光去审视基坑工程这一古老课题,使许多新的经验和理论的研究方法得以出现与成熟。
在本世纪30年代,Terzaghi等人已开始研究基坑工程中的岩土工程问题。
在以后的时间里,世界各国的许多学者都投入研究,并不断地在这一领域取得丰硕的成果。
基坑工程在我国进行广泛的研究是始于80年代初,那时我国的改革开放方兴未艾,基本建设如火如荼,高层建筑不断涌现,相应地基础埋深不断增加,开挖深度也就不断发展,特别是到了90年代,大多数城市都进入了大规模的旧城改造阶段,在繁华的市区内进行深基坑开挖给这一古老课题提出了的新的内容,那就是如何控制深基坑开挖的环境效应问题,从而进一步促进了深基坑开挖技术的研究与发展,产生了许多先进的设计计算方法,众多新的施工工艺也不断付诸实施,出现了许多技术先进的成功的工程实例。
但由于基坑工程的复杂件以及设计、施工的不当,工程事故发生的概率仍然很高。
任何一个工程方面的课题的发展都是理论与实践密切结合并不断相互促进的成果。
基坑工程的发展往往是一种新的围护型式的出现带动新的分析方法的产生,并遵循实践、认识、再实践、再认识的规律,而走向成熟。
早期的开挖常采用放坡的形式,后来随着开挖深度的增加,放坡面空间受到限制,产生了围护开挖。
迄今为止,围护型式已经发展至数十种。
从基坑围护机理来讲,基坑围护方法的发展最早有放坡开挖,然后有悬臂围护、内撑(或拉锚)围护、组合型围护等。
放坡开挖需要有较大的工作面,且开挖土方量较大。
在条件允许的情况下,至今仍然不失是基坑围护的好方法。
悬臂围护是指不带内撑和拉锚的围护结构,可以通过设置钢板桩或钢筋混凝土桩形成围护结构。
南昌轨道交通1号线秋水广场站深基坑支护设计

南昌轨道交通1号线秋水广场站深基坑支护设计摘要本毕业设计题目是南昌轨道交通1号线秋水广场站深基坑支护设计,主要参考秋水广场站的水文地质勘察报告,按照地方相关规范和《建筑基坑支护设计规范》等,进行该工程的深基坑支护设计。
根据现场地质条件,完成以下设计工作:(1)土压力计算;(2)支护方式选择;(3)结构设计计算;(4)完成设计说明及相关设计图。
基坑设计主要内容包括确定基坑设计等级,进行基坑支护结构体系方案设计,围护墙结构选型与布置,支撑系统选型与布置,拟定设计工况,计算围护结构荷载;验算围护墙结构单元的稳定性,计算其内力、效应组合及截面配筋,基坑井点降水设计,施工监测等。
结构内力计算部分,借助已有的初步基坑围护设计成果进行设计,围护结构选用地下连续墙,支护结构第一道选用混凝土内支撑,其余选用钢支撑。
根据相关规范完成稳定性验算与内力计算,其中结构内力采用弹性法计算,结构配筋根据混凝土与钢结构相关规范计算。
根据南昌地区有关规范拟定基坑监测。
关键词:深基坑支护;弹性法;地下连续墙;混凝土支撑;钢支撑Design of Deep Foundation Pit Support in Qiushui SquareStation of Nanchang Metro LineAbstractThe design of the graduation project is Nanchang Rail Transit Line 1 Qiushui Square Station deep foundation pit support design, the main reference Qiushui Square station hydrogeological survey report, in accordance with local norms and "building pit support design specifications", the Design of Deep Foundation Pit Support for Engineering. According to the site geological conditions, complete the following design work: (1) earth pressure calculation; (2) support mode selection; (3) structural design calculation; (4) complete design description and related design drawings. The main contents of the foundation pit design include the design of the foundation pit design level, the foundation pit support system design, the selection and arrangement of the retaining wall structure, the selection and arrangement of the supporting system, the design of the design conditions, the calculation of the envelope load; The stability of the structural elements of the retaining wall, the calculation of its internal force, the effect combination and the section reinforcement, the pit design and the construction monitoring.The internal force calculation part of the structure, with the help of the existing preliminary design of the foundation pit design results, the use of underground retaining wall structure, supporting the first choice of concrete within the support, the rest of the steel support. According to the relevant norms to complete the stability check and internal force calculation, which the structure of the internal force calculated by the elastic method, structural reinforcement according to the concrete and steel structure-related norms. According to the relevant norms of Nanchang to develop pit monitoring.Keywords: deep foundation pit support; elastic method; underground continuous wall; concrete support; steel support目录摘要 (I)Abstract (II)目录 (III)第1章绪论...................................................................................................... - 1 -1.1 地铁车站深基坑支护设计现状简介......................................................................... - 1 -1.2 车站深基坑支护设计的目的及意义......................................................................... - 1 -1.3 毕业设计的主要任务及内容..................................................................................... - 2 -1.3.1 毕业设计的任务书.......................................................................................... - 2 -1.3.2 此次毕业设计的重点难点.............................................................................. - 2 -1.4 此次毕业设计的实现途径......................................................................................... - 2 -第2章工程概况.............................................................................................. - 3 -2.1 工程概况..................................................................................................................... - 3 -2.2 工程地质及水文环境................................................................................................. - 4 -第3章设计依据及标准.................................................................................. - 6 -3.1 设计的依据和设计的范围......................................................................................... - 6 -3.2 设计的原则及设计的标准......................................................................................... - 7 -第4章基坑围护方案设计.............................................................................. - 8 -4.1 围护体系的组成......................................................................................................... - 8 -4.2 基坑围护方案设计的原则....................................................................................... - 8 -4.3 几种常用的围护方案的特点和使用范围................................................................. - 8 -4.3.1 车站基坑围护方案.......................................................................................... - 9 -4.3.2 车站基坑支撑方案.......................................................................................... - 9 -4.3 基坑围护方案的确定............................................................................................... - 10 -第5章设计计算书........................................................................................... - 11 -5.1 基坑中使用的主要材料和保护层厚度................................................................... - 11 -5.2 计算书的计算原理................................................................................................... - 11 -5.3 车站基坑标准段设计计算....................................................................................... - 12 -5.3.1 计算的基本参数............................................................................................ - 13 -5.3.2 超载计算信息................................................................................................ - 13 -5.3.3 土层计算信息................................................................................................ - 13 -5.3.4 土层物理参数................................................................................................ - 14 -5.3.5 支撑设置........................................................................................................ - 14 -5.3.6 两种土压力计算模型及其系数调整............................................................ - 15 -5.3.7 工况基本信息................................................................................................ - 15 -5.3.8 标准段的设计结果........................................................................................ - 15 -5.2.9 基坑的稳定性验算........................................................................................ - 27 -5.4 车站基坑端头井设计计算....................................................................................... - 35 -5.4.1 计算的基本参数............................................................................................ - 36 -5.4.2 超载计算信息................................................................................................ - 36 -5.4.3 土层计算信息................................................................................................ - 36 -5.4.4 土层物理参数................................................................................................ - 37 -5.4.5 支撑设置........................................................................................................ - 37 -5.4.6 两种土压力模型及其系数调整.................................................................... - 38 -5.4.7 工况基本信息................................................................................................ - 39 -5.4.8 端头井的设计结果........................................................................................ - 39 -5.4.9 基坑的稳定性验算........................................................................................ - 51 -第6章深基坑的降水设计.............................................................................. - 60 -致谢 ................................................................................................................ - 61 -参考文献............................................................................................................ - 62 -第1章绪论1.1 地铁车站深基坑支护设计现状简介随着当前中国建筑行业的快速发展,深基坑支护在工程中广泛使用,深基坑的支护技术也得到了快速的发展,计算理论也逐步走向成熟。
毕业设计(论文)-深基坑支护结构设计

毕业设计(论文)-深基坑支护结构设计深基坑支护结构设计是在城市建设中常见的工程项目之一。
深基坑是为了进行地下工程而开挖的大型坑穴,例如地铁站、地下商场和地下停车场等。
由于地下土壤的压力和周围环境的限制,深基坑需要进行支护结构设计来确保施工的安全性和稳定性。
本论文的目标是设计一个有效的深基坑支护结构,以应对地下土壤的压力和变形,并确保施工期间及以后的稳定性。
主要研究内容包括以下几个方面:1. 地下土壤力学特性研究:分析地下土壤的物理性质和力学特性,包括土壤的分层结构、抗剪强度、压缩性和弹性模量等。
通过土壤试验和现场勘测,获取土壤参数,并进行合理的土体模型建立。
2. 基坑支护结构类型选择:在分析和比较不同的支护结构类型后,选择最适合的支护结构类型,例如钢支撑结构、混凝土护壁结构、地下连续墙或土钉支护等。
3. 支护结构设计:根据土壤力学参数以及基坑的深度和周围环境的要求,进行支护结构的设计。
包括支撑结构的定位、类型和尺寸的确定,以及支撑结构的布置和施工方法的规划。
4. 数值模拟和分析:利用计算机软件(如PLAXIS)进行支护结构的数值模拟和分析,评估结构的稳定性和变形情况。
通过不同设计方案的比较和优化,确定最佳的支护结构设计。
5. 施工监测与控制:在施工期间,进行支护结构施工的监测和控制,确保施工过程的安全性和质量。
包括对支撑结构的变形和应力的监测,以及必要时的调整和加固。
通过以上的研究内容,可以得出一个完整的深基坑支护结构设计方案,并通过数值模拟和实际施工监测验证设计的可行性和有效性。
最终的目标是为城市建设提供一个可靠和经济的深基坑支护结构设计方案,确保施工的安全性和顺利进行。
地下室设计深基坑中英文对照外文翻译文献

地下室设计深基坑中英文对照外文翻译文献中英文对照外文翻译(文档含英文原文和中文翻译) Deep E x ca v a t ion s ABSTR ACT :All major topics in the design of in-situ retaining systems for deep excavations in urban areas are outlined. Type of wall, water related problems and water pressures, lateral earth pressures, type of support, solution to earth retaining walls, types of failure, internal and external stability problems. KEYW OR DS: deep excavation; retaining wall; earth pressure; INTR ODUCTION Numbers of deep excavation pits in city centers are increasing every year. Buildings, streets surrounding excavation locations and design of very deepbasements make excavations formidable projects. This chapter has been organized in such a way that subjects related to deep excavation projects are summarized in several sections in the order of design routine. These are types of in-situ walls, water pressures and water related problems. Earth pressures in cohesionless and cohesive soils are presented in two different categories. Ground anchors, struts and nails as supporting elements are explained. Anchors are given more emphasis compared to others due to widespread use observed in the recent years. Stability of retaining systems are discussed as internal and external stability. Solution of walls for shears, moments, displacements and support reactions under earth and water pressures are obtained making use of different methods of analysis. A pile wall supported by anchors is solved by threemethods and the results are compared. Type of wall failures, observed wall movements and instrumentation of deep excavation projects are summarized.1. TYPES OF EARTH R ETAINING WAL L S Introduction More than several types of in-situ walls are used to support excavations. The criteria for the selection of type of wall are size of excavation, ground conditions, groundwater level, vertical and horizontal displacements of adjacent ground and limitations of various structures, availability of construction, cost, speed of work and others. One of the main decisions is the water-tightness of wall. The following types of in-situ walls will be summarized below; 1. Braced walls, soldier pile and lagging walls2. Sheet-piling or sheet pile walls3. Pile walls (contiguous, secant)4. Diaphragm walls or slurry trench walls5. Reinforced concrete (cast-in-situ or prefabricated) retaining walls6. Soil nail walls7. Cofferdams8. Jet-grout and deep mixed walls9. Top-down construction 10. Partial excavation or island method Br aced Walls Excavation proceeds step by step after placement of soldier piles or so called king posts around the excavation at about 2 to 3 m intervals. These may be steel H, I or WF sections. Rail sections and timber are also used. At each level horizontal waling beams and supporting elements (struts, anchors, nails) are constructed. Soldier piles are driven or commonly placed in bored holes in urban areas, and timber lagging is placed between soldier piles during the excavation. Various details of placement of lagging are available, however, precast units, in-situ concrete or shotcrete may also be used as alternative to timber.Depending on ground conditions no lagging may be provided in relatively shallow pits. Historically braced walls are strut supported. They had been used extensively before the ground anchor technology was developed in 1970 s. Soils with some cohesion and without water table are usually suitable for this type of construction or dewatering is accompanied if required and allowed. Strut support is commonly preferred in narrow excavations for pipe laying or similar works but also used in deep and large excavations (See Fig ). Ground anchor support is increasingly used and preferred due to access for construction works and machinery. Waling beams may be used or anchors may be placed directly on soldier piles without any beams. Sheet-piling or Sheet Pile Walls Sheet pile is a thin steel section (7-30 mm thick) 400-500 mm wide. It ismanufactured in different lengths and shapes like U, Z and straight line sections (Fig. ). There are interlocking watertight grooves at the sides, and they are driven into soil by hammering or vibrating. Their use is often restricted in urbanized areas due to environmental problems like noise and vibrations. New generation hammers generate minimum vibration and disturbance, and static pushing of sections have been recently possible. In soft ground several sections may be driven using a template. The end product is a watertight steel wall in soil. One side (inner) of wall is excavated step by step and support is given by struts or anchor. Waling beams (walers) are frequently used. They are usually constructed in water bearing soils. Steel sheet piles are the most common but sometimes reinforced concrete precast sheet pile sections are preferred in softsoils if driving difficulties are not expected. Steel piles may also encounter driving difficulties in very dense, stiff soils or in soils with boulders. Jetting may be accompanied during the process to ease penetration. Steel sheet pile sections used in such difficult driving conditions are selected according to the driving resistance rather than the design moments in the project. Another frequently faced problem is the flaws in interlocking during driving which result in leakages under water table. Sheet pile walls are commonly used for temporary purposes but permanent cases are also abundant. In temporary works sections are extracted after their service is over, and they are reused after maintenance. This process may not be suitable in dense urban environment. Pile Walls In-situ pile retaining walls are very popular due to their availabilityand practicability. There are different types of pile walls (Fig. ). In contiguous (intermittent) bored pile construction, spacing between the piles is greaterthan the diameter of piles. Spacing is decided based on type of soil and level of design moments but it should not be too large, otherwise pieces of lumps etc. drop and extra precautions are needed. Cohesive soils or soils having some cohesion are suitable. No water table should be present. Acceptable amount of water is collected at the base and pumped out. Common diameters are , , m. Waling beams (usually called ?breasting beams ) are Tangent piles with grouting in between are used when secant piling or diaphragm walling equipment is not available ( in cases where ground water exists). Poor workmanship creates significant problems. Secant bored pile walls are formed bykeeping spacing of piles less than diameter (S There is also need for place for the plant. It may be constructed “hard-hard”as well as “soft-hard”. “S oft”concrete pile contains low cement content and some bentonite. Primary unreinforced piles are constructed first and then reinforced secondary piles are formed by cutting the primary piles. Pile construction methods may vary in different countries for all type of pile walls like full casing support, bentonite support, continuous flight auger (CFA) etc. mostly reinforced concrete but sheet pile sections or steel beams are also used. Diaphr agm Walls Diaphragm wall provides structural support and water tightness. It is a classical technique for many deep excavation projects, large civil engineering works, underground car parks, metro pits etc. especially under water table. Thesereinforced concrete diaphragm (continuous) walls are also called slurry trench walls due to the reference given to the construction technique where excavation of wall is made possible by filling and keeping the wall cavity full with bentonite-water mixture during excavation to prevent collapse of the excavated vertical surfaces. Wall thickness varies between m and m. The wall is constructed panel by panel in full lengths are 2 m to 10 m. Short lengths ( m) are selected in unstable soils or under very high surcharges. Nowadays depth of panels water stops exceeded 100 m, excavation depths exceeded 50 m. Different panel shapes other than the conventional straight section like T, L, H, Y, + are possible to form and used for special purposes. Panel excavation is made by cable or kelly supported buckets and by a recent designcalled ?cutter or ?hydrofraise which is a pair of hydraulically operated rotating disks provided with hard cutting tools. Excavation in rock is possible. Slurry wall technique is a specialized technique and apart from the bucket or the frame carrying the cutter equipment like crawler crane, pumps, tanks, desanding equipment, air lifts, screens, cyclones, silos, mixers, extractor are needed. Tremie concrete is placed in the slurry starting from the bottom after lowering reinforcement cages. Joint between the panels is a significant detail in water bearing soils and steel pipe, H-beam or water stops are used. R einforced C oncrete R eta ining Walls Excavation in Stages It is a common type of staged excavation wall usually supported by ground anchors. Soils with some cohesion are suitable because eachstage is first excavated before formwork and concrete placement. No water table or appreciable amount of water should be present. Sometimes micropile support is given if required due to expected cave-ins. Soil Nail Walls Similar to the method above excavation is made step by step ( to 2 m high). Shotcrete is common for facing and wiremesh is used. Soft facing is also possible making use of geotextiles. Hole is drilled, ordinary steel bars are lowered, and grout is placed without any pressure. Soil should be somewhat cohesive and no water table or significant water flow should be present. Coffer dams Cofferdam is a temporary earth retaining structure to be able to make excavation for construction activities. It is usually preferred in the coastal and sea environment like bridge piers and abutments in rivers, lakes etc., wharves, quay walls, docks, break waters andother structures for shore protection, large waterfront structures such as pump houses, subjected to heavy vertical and horizontal loads. Sheet piling is commonly used in various forms other than conventional walls like circular cellular bodies or double walls connected inside and filled with sand. Stability is maintained by sheeting driven deeper than base, sand body between sheeting and inside tie rods. Earth embankments and concrete bodies are also used. Contiguous, tangent, secant piles or diaphragm walls are constructed in circular shapes, and no internal bracing or anchoring is used to form a cofferdam. Reinforced concrete waling beams support by arching. Shafts are also made with this method. Large excavations or project details may require additional lateral support. J et Grout and Deep M ixed Walls Retainingwalls are made by single to triple row of jet grout columns or deep mixed columns. There is a soil mixed wall(SMW) technique specially developed for wall construction where H sections are used for reinforcement. Single reinforcing bar is placed in the central hole opened for jet grout columns. Anchors, nails or struts may be used for support. Top Down Constr uction Retaining structure (generally diaphragm wall) is designed and constructed as permanent load bearing walls of basement. Piles or barettes are similarly placed to complete the structural frame. Top slab is cast at the ground surface level, and excavation is made under the slab by smaller sized excavators and continued down forming basement slabs at each level. There are special connection details. Top down method is preferred in highly populated city centerswhere horizontal and vertical displacements are very critical, and anchors and struts are very difficult to use due to complex underground facilities and lifeline structures and site operations are difficult to perform. Pa r tia l Excavation or Island M ethod It is possible to give strut support to retaining walls at a later stage after constructing central sections of a building in large size excavations. Core of the structure is built at the central part making sloped excavations at peripheral areas and then the core frame is used to give support to walls (Figure ). It may be more practical and construction time may be less compared to conventional braced system. This method may not be suitable in soft and weak soils due to stability and deformation problems during sloped excavations. 2. EARTH PR ESSUR ES ON IN-SITU R ETAININGWAL L S Introduction Earth pressures on in-situ retaining walls are rather different than those on ordinary retaining walls due to the supporting elements. Free displacement of walls are not allowed. Type of support affects the distribution of earth pressure. Strut loads were measured in strutted excavations in many countries in the past, and recommendations were given. Ground anchor technology is relatively new, and data on instrumented anchored walls for total lateral。
地铁车站深基坑英文缩写

地铁车站深基坑英文缩写Deep Excavation for Subway Station: An Overview.Deep excavations for subway stations are a crucial aspect of urban infrastructure development. These excavations involve the removal of soil and rock to create the necessary space for the construction of subway stations and associated tunnels. The term "deep excavation" refers to excavations that are deeper than the width of the excavation, necessitating the use of specialized techniques and equipment to ensure the stability and safety of the excavation.The process of deep excavation for subway stations typically begins with site surveys and geotechnical investigations. These studies help engineers understand the soil and rock conditions at the site, allowing them to design appropriate excavation methods and support systems. Excavation methods can vary depending on the soil conditions, with some common techniques including open cutexcavation, shoring, and bracing.Open cut excavation is the most straightforward method, involving the removal of soil and rock using excavators or other heavy equipment. This method is typically used in areas with stable soil conditions where the risk of collapse is low. However, in areas with poor soil conditions or high groundwater levels, shoring and bracing may be necessary to support the excavation walls and prevent collapse.Shoring involves the installation of steel beams or other support structures along the excavation walls. These beams transfer the lateral pressure exerted by the soil or rock to a more stable part of the excavation, preventing collapse. Bracing, on the other hand, involves the use of steel frames or braces to provide additional support to the excavation walls. Bracing is often used in conjunction with shoring to further enhance the stability of the excavation.During the excavation process, it is crucial to monitor and control the displacement and deformation of theexcavation walls. This is achieved through the use of various monitoring instruments such as inclinometers, extensometers, and settlement gauges. By closely monitoring these parameters, engineers can detect any potential instability issues and take corrective measures promptly.In addition to ensuring the stability of the excavation, it is also important to consider the impact of excavationon the surrounding environment. Excavation activities can cause ground settlements and displacements that can affect nearby buildings, roads, and utilities. To mitigate these effects, engineers often use soil nailing, pile foundations, or other foundation enhancement techniques to improve the bearing capacity of the soil and reduce the risk of settlement.Once the excavation is complete, construction of the subway station can begin. This typically involves the installation of station walls, roofing, and otherstructural elements. The construction process must adhereto strict safety standards to ensure the safety of workers and the public.In conclusion, deep excavations for subway stations are a complex and challenging aspect of urban infrastructure development. They require careful planning, advanced engineering techniques, and strict safety measures to ensure the stability and safety of the excavation as well as the surrounding environment. With the increasing demand for subway systems in cities worldwide, the importance of deep excavations in subway station construction cannot be overstated.。
地下室设计深基坑中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Deep E x ca v a t i on sABSTR ACT :All major topics in the design of in-situ retaining systems for deep excavations in urban areas are outlined. Type of wall, water related problems and water pressures, lateral earth pressures, type of support, solution to earth retaining walls, types of failure, internal and external stability problems.KEYW OR DS: deep excavation; retaining wall; earth p ressure;INTR O DUCTIONN umbe rs of deep e x cavat i on pits i n c ity cent e r s a re incre a sing eve r y year. Buildings, streets surrounding excavation locations and design of very deep basements make excavations formidable projects. This chapter has been or ga n iz ed in suc h a w ay t hat s ubj e cts rel a ted t o deep excava t i o n project s a r e summarized in several sections in the order of design routine. These are types of in-situ walls, water pressures and water related problems. Earth pressures i n c ohesionless and coh e sive soil s are pr e s e nted in two differe nt categories. Ground anchors, struts and nails as supporting elements are explained. Anchors are given more emphasis compared to others due to widespread use obs erve d in the r e cent years. Stability of reta i ning s ystems a re discus s e d a s internal and external stability. Solution of walls for shears, moments, displacements and support reactions under earth and water pressures are obt ained m aking use o f different m e thods of a nalysis. A pile wal l supported by anchors is solved by three methods and the results are compared. Type of wall failures, observed wall movements and instrumentation of deep e xcav a tio n p roj e ct s ar e sum m arized.1. TYPES OF EARTH R ETAINING WAL L S1.1 IntroductionMore than several types of in-situ walls are used to support excavations. The criteria for the selection of type of wall are size of excavation, ground conditions, g roundwate r level, ve rtic a l a nd horizonta l displa c em e nts of adjacent ground and limitations of various structures, availability of construction, cost, speed of work and others. One of the main decisions is the wa t er-t ightness o f wal l. T he foll ow i n g types of in-sit u wa l ls will be summarized below;1.Braced walls, soldier pile and lagging walls2.Sh ee t-piling or s he et pile w a ll s3.Pile walls (contiguous, secant)4.Diaphragm walls or slurry trench walls5.Reinforced concre t e (c as t-i n-s i t u o r pr e f abricate d) r e t ai ni n g walls6.Soil nail walls7.Cofferdams8.J et-gr out and deep mixed w a ll s9.Top-down construction10.Partial excavation or island method1.1.1Br aced Wall sExcavation proceeds step by step after placement of soldier piles or so called king posts around the excavation at about 2 to 3 m intervals. These may be steel H, I or WF sections. Rail sections and timber are also used. At each level horizontal waling beams and supporting elements (struts, anchors,nails) are constructed. Soldier piles are driven or commonly placed in bored holes in urban areas, and timber lagging is placed between soldier piles dur ing the e xc a vatio n. Various det a il s o f pl a c e ment of l a gg ing are a v ailable, however, precast units, in-situ concrete or shotcrete may also be used as alternative to timber. Depending on ground conditions no lagging may be provi ded in relatively shallow pi t s.Historically braced walls are strut supported. They had been used extensively before the ground anchor technology was developed in 1970 s. S oi l s w i t h s om e c ohe s i on and w i thout wat e r table a re us u al l y suitable for t hi s type of construction or dewatering is accompanied if required and allowed. Strut support is commonly preferred in narrow excavations for pipe laying or s i m il a r works but also used i n de ep an d l ar g e ex c avat i on s (See Fig 1.1). Ground anchor support is increasingly used and preferred due to access for construction works and machinery. Waling beams may be used or anchors m a y b e place d di rec t ly on soldier pi l es w i thout a ny beam s.1.1.2Sheet-piling or Sheet Pile WallsSheet pile is a thin steel section (7-30 mm thick) 400-500 mm wide. It is m anufacture d i n different lengt hs a n d sh a pes like U, Z and stra i ght li ne sections (Fig. 1.2). There are interlocking watertight grooves at the sides, and they are driven into soil by hammering or vibrating. Their use is often restricted in urbanized areas due to environmental problems like noise and vibrations. New generation hammers generate minimum vibration anddisturbance, and static pushing of sections have been recently possible. In soft ground several sections may be driven using a template. The end product i s a w aterti g ht s t eel wall i n s oi l. O ne s i de (inner) of wal l is ex ca vate d s t ep b y step and support is given by struts or anchor. Waling beams (walers) are frequently used. They are usually constructed in water bearing soils.S teel s he et pi le s are the mo s t common but som e ti m es rein f orc ed concrete precast sheet pile sections are preferred in soft soils if driving difficulties are not expected. Steel piles may also encounter driving di ff i culties in ve ry de ns e, s t i ff soil s or in soils with boulde rs. Je t ting m ay be accompanied during the process to ease penetration. Steel sheet pile sections used in such difficult driving conditions are selected according to the driving r e s is t ance rather tha n the desi g n mo m e nt s i n the proj e ct. Ano t her fre q uent ly faced problem is the flaws in interlocking during driving which result in leakages under water table. Sheet pile walls are commonly used for t empora r y purposes but pe rm anent cas es are also a bund an t. In tem por ary works sections are extracted after their service is over, and they are reused after maintenance. This process may not be suitable in dense urban e nvironment.1.1.3Pile WallsIn-situ pile retaining walls are very popular due to their availability and practicability. There are different types of pile walls (Fig. 1.3). In contiguous (intermittent) bored pile construction, spacing between the piles is greaterthan the diameter of piles. Spacing is decided based on type of soil and level of design moments but it should not be too large, otherwise pieces of lumps e tc. d rop a n d extra preca u tions are nee de d. Coh es i ve soils or soils ha ving some cohesion are suitable. No water table should be present. Acceptable amount of water is collected at the base and pumped out. Common diameters a re 0.60, 0.80, 1.00 m. W a l ing be am s (us ually call e d …bre a s t in g be a ms ) a r e Tangent piles with grouting in between are used when secant piling or diaphragm walling equipment is not available (i.e. in cases where ground w ater exis t s). P oor w ork ma ns hi p create s significa nt proble m s.Secant bored pile walls are formed by keeping spacing of piles less than diameter (S<D). It is a watertight wall and may be more economical c ompared to di a phragm w all in small to me di um scale ex cava t ion s due t o cost of site operations and bentonite plant.There is also need for place for the plant. It may be constructed“hard-h ard”a s well as “soft-hard”.“S oft”concrete pile cont a ins low c ement content and some bentonite. Primary unreinforced piles are constructed first and then reinforced secondary piles are formed by cutting the primary piles. P i l e c ons t ruc ti on m et hods m a y var y in di f fere nt count ri es for a ll type of p ile walls like full casing support, bentonite support, continuous flight auger(CFA) etc. mostly reinforced concrete but sheet pile sections or steel beams are also used.1.1.4Diaphr agm WallsDiaphragm wall provides structural support and water tightness. It is a classical technique for many deep excavation projects, large civil engineering works, unde r ground car parks, m et ro pits et c. e s pec i ally unde r water table. These reinforced concrete diaphragm (continuous) walls are also called slurry trench walls due to the reference given to the construction technique where exc av a t ion of wal l i s m ad e possible by fi l ling and keeping the wall ca vi ty full with bentonite-water mixture during excavation to prevent collapse of the excavated vertical surfaces. Wall thickness varies between 0.50 m and 1.50 m. The w a ll is c o nstruc t ed pa nel b y p an el i n ful l dept h.Pa ne l le ng t hs are 2 m to 10 m. Short lengths (2-2.5 m) are selected in unstable soils or under very high surcharges. Nowadays depth of panels water stops exceeded 100 m, ex c avati on d ep t hs e xc e ede d 50 m. D i f fere nt pa ne l shapes o t he r t han the conventional straight section like T, L, H, Y, + are possible to form and used for special purposes. Panel excavation is made by cable or kelly supported bu c kets and by a r e cent design c alled …c u t t er o r …hydrof r a i se w hi ch is a pair of hydraulically operated rotating disks provided with hard cutting tools. Excavation in rock is possible. Slurry wall technique is a specialized tec hn i que a nd apart fro m the bucket or t he f rame carrying t h e cutter equipment like crawler crane, pumps, tanks, desanding equipment, air lifts, screens, cyclones, silos, mixers, extractor are needed. Tremie concrete is placed in the slurry starting from the bottom after lowering reinforcementcages. Joint between the panels is a significant detail in water bearing soils and steel pipe, H-beam or water stops are used.1.1.5R einforc e d C onc r ete R eta ining Walls Ex cava ti on i n StagesIt is a common type of staged excavation wall usually supported by ground anchors. Soils with some cohesion are suitable because each stage is f irst excavated be fo re fo r mwork a nd concrete p la cem e nt. No wa t e r table or appreciable amount of water should be present. Sometimes micropile support is given if required due to expected cave-ins.1.1.6S oi l Nai l Wal l sSimilar to the method above excavation is made step by step (1.5 to 2 m high). Shotcrete is common for facing and wiremesh is used. Soft facing is a lso poss i ble making us e of geo t ex t il e s. Ho l e i s dri ll e d, ordina r y steel bars are lowered, and grout is placed without any pressure. Soil should be somewhat cohesive and no water table or significant water flow should be pr e s ent.1.1.7Coffer damsCofferdam is a temporary earth retaining structure to be able to make e xcava t ion for const r uc t ion a c ti vi ties. It is usually preferr ed i n t he coast a l a nd sea environment like bridge piers and abutments in rivers, lakes etc., wharves, quay walls, docks, break waters and other structures for shore protection, large waterfront structures such as pump houses, subjected to heavy vertical and horizontal loads. Sheet piling is commonly used in various forms otherthan conventional walls like circular cellular bodies or double walls connected inside and filled with sand. Stability is maintained by sheeting dr iven de eper than ba s e, sand body between s heet i ng and inside t i e r o ds. Earth embankments and concrete bodies are also used. Contiguous, tangent, secant piles or diaphragm walls are constructed in circular shapes, and no i nte r na l brac i ng or an c horing i s us e d t o form a c o ff e rdam. R einforced concrete waling beams support by arching. Shafts are also made with this method. Large excavations or project details may require additional lateral s upport.1.1.8J et Grout and Deep M ixed WallsRetaining walls are made by single to triple row of jet grout columns or de ep mi x ed col um ns. There is a soil mi x ed wall(S M W) technique s p ecially developed for wall construction where H sections are used for reinforcement. Single reinforcing bar is placed in the central hole opened for jet groutc olum ns. Anchors, nails or struts ma y b e used fo r support.1.1.9Top Down Constr uctionRetaining structure (generally diaphragm wall) is designed and c onstr uc te d a s permane n t l o ad beari n g walls of ba s ement. Piles or barette s are similarly placed to complete the structural frame. Top slab is cast at the ground surface level, and excavation is made under the slab by smaller sized excavators and continued down forming basement slabs at each level. There are special connection details. Top down method is preferred in highlypopulated city centers where horizontal and vertical displacements are very critical, and anchors and struts are very difficult to use due to complex und erg round fa c ilitie s a nd l ifeline str uc ture s and s i t e ope ra tions are di fficult to perform.1.1.10Pa r tia l Excavation or Island M ethodI t i s poss i ble t o give s t ru t support to re tain i ng wa ll s a t a later sta ge aft e r constructing central sections of a building in large size excavations. Core of the structure is built at the central part making sloped excavations at pe ripher a l areas a nd then the c ore f rame is used t o g i ve support t o w alls (Figure 1.9). It may be more practical and construction time may be less compared to conventional braced system. This method may not be suitable in s oft and weak s oi ls du e t o stabi l ity and deformation probl e ms duri n g s l op ed excavations.2.EA R TH P R ESSU R ES ON IN-SIT U R ETAI N ING W A L L S2.1.IntroductionEarth pressures on in-situ retaining walls are rather different than those on ord inary re ta ining wall s due t o the s upporting ele m ents. Fr e e di splace m ent of walls are not allowed. Type of support affects the distribution of earth pressure. Strut loads were measured in strutted excavations in many countries in the past, and recommendations were given. Ground anchor technology is relatively new, and data on instrumented anchored walls for total lateralpressure and for water pressure are being accumulated. Earth pressure diagrams on strutted and anchored walls are expected to be somewhat di ff e re nt due t o s t i ffer s upport condi t ions in t he forme r. T heore t ical approaches will also be discussed.2.2.Ea r th Pressure Distr ibutions on WallsTerz aghi and Peck (1967) and Peck (1969) based on lo a d measurements on struts recommend the pressure distribution shown in Figure 2.1 for cohesionless soils. It is a uniform pressure and given by Eq. 2.1;p = 0.65 K A γt H 2.1where K A is the active earth pressure coefficient, H is the height of wall.Unit weight (γt) is described as the bulk unit weight in the original references.S i nce br a c ed e xcava t ions we r e gene r ally d ewate r e d in the past p r ojec t s the unit weight in the expression was described as wet or bulk. If wall is watertight and water table is present, buoyant unit weight should be usedun de r wa t er table a nd wate r pressure should be a d ded.The rectangular diagram proposed in the figure is not an actual pressure distri b uti on but an e nvel op e obt ai ned by pl ot t i ng t h e me a sured strut l oa ds converted to pressure distribution at each stage of excavation including the final depth covering all distributions. It is also called apparent pressure distribution. It is regarded as a conservative approach because strut loads calculated by such an envelope are generally greater than the measured loads.Rectangular envelope with p = 0.2 γt H is also recommended by Twine and Roscoe (1996) based on more recent field measurements. Similarly use of s ubm er g ed uni t w e i ght below wat e r t abl e a nd add i ti on of wat e r press ure i s recommended. Data on cohesive soils are classified for soft to medium stiff clays and stiff clay.A nc hor or na il supported walls may s how hig h e r l a te r al di s pl a cements, and stress increases at the upper levels of walls may be somewhat less compared to the distributions on strutted walls. However, there are no doc umented c om parisons. In t he soluti o n of a nchored wa l ls b y f init e element, boundary element, finite difference softwares or simpler spring models the analyses may be repeated without assigning pre-tensions initially like in case of nai l s upported walls a nd then a s si g n t he ca l culat e d r e actions a s pre-tensions.There are also recommendations on selection of the type of distribution i n re lation t o h e ight o f br aced walls. Dis t ributions ba s ed on pre s sure cell records are recommended for all heights but distributions by strut load measurements are not found suitable for walls higher than 15 m, they may be us e d for w a ll s of 10 –15 m he i g ht dependin g on c ondi t ions of the g r ound and construction and recommended for heights less than 10 m.Another common case is an alluvial profile where clay, silt, sand layers mixed in different proportions lie in different thicknesses. If a dominant layer is present one of the above distributions may be selected, otherwise atheoretical approach like Coulomb’s earth pressure expression may be followed making use of effective parameters, submerged unit weights and a dd e d wat e r pr essure.Effect of different surcharge loads on walls may be calculated by stress distributions in elastic medium (e.g. NAVFAC 1982). For the upper limit of ve r y rig i d wal l s the distributions are doub l ed. W ide s ur charge loa ds m ay a lso be converted to equivalent heights of soil layer.3.SUPPORTING EL EM ENTS3.1Ground A n chor s3.1.1IntroductionGround anchor is a common type of supporting element used in the de sign and const r uction of in-situ r e t ain i ng w al ls. It i s an inst al la t ion that i s capable of transmitting an applied tensile load to a load bearing stratum which may be a soil or rock. A summary about ground anchors will be given i n this s e ct i on. Typ e s, ca pa city, de s ig n, construction a nd qual it y c ontrol w ill be reviewed.3.1.2Types and C apa city of Anchor sTem porary anc h or a nd perma ne n t a nc ho r are the main types and as the names imply the former is used in temporary works and usually a period of maximum two years are assigned as the design life. Design life of a permanent anchor is the same as the life of structure. Corrosion protection details and factors of safety are the main differences between the two types.Free length is a function of height of the wall. Fixed length is selected according to type of soil and it varies between 3 m and 10 m. Fixed length is t he t ensile load bea r ing part of a n anc hor in s oi l. The r e a r e diff e rent mechanisms of stress transfer from the fixed anchor zone to surrounding ground. It is usually referenced as …bond stress and depends on soil type a nd gr out in g pro c edure. Except i ng sp e cia l c on struct i ons i n f i xe d pa rt of anchors like under reams in stiff clays, jet grouted bodies or inflated aluminum bags, most common type of construction is cement (and water) g rout wi t h som e ad dit i ves. V ery stiff, hard so i ls and ro m an c hettecks m ay be grouted without pressure. Many soils may be grouted but grouting pressure,water cement ratio (w /c) and additives play major role depending on the permea bi lity and s tif f nes s of the soil. Fi x ed le n gt h of ancho r enlarges i n diameter with increasing grout pressure. Grout permeates or fractures or pushes the soil around depending on type of soil, grout and pressure level. Coars e and fine g r a ined gra nul a r s oi ls, alluvi a l soil s a nd we a k r oc ks are generally grouted with several bars of pressure through casing or using packer. Stiff cohesive soils and fine cohesionless soils may be grouted at hig he r press ur es (greater t han 15-20 b ars) to for m hi ghl y f r actur e d larger fixed end bodies to obtain higher capacities. Post-grouting techniques through tube and manchette (sleeve tubing) or double/triple tubing are used. Main possibilities in failure of a single anchor are failure of ground/grout interface, tendon itself or grout/tendon interface.Capacity of anchors in cohesionless soils depends on average grain size (D50), uniformity coefficient (CU), relative density (RD), diameter of drill hole, method of grout injectio n (pr i m ary/sec on dary) and g rout pre s sure.Higher D50, CU, RD and grout pressure result in higher capacities. Fixed lengths of 4 to 8 m are in use and 6 m seems to be a lower limit of r e comme nda ti on for fine to m e dium sands, and the lower limit may be l e s s for gravelly soils. Permeability and grout characteristics (i.e. water-cement ratio, pressure) are key factors for capacities. At lower pressure levels (less than 1 M P a) a nd higher p ress u re s (more t h an 2 MPa) capacit i es fr om 400/500to 1400/1700 kN are observed in fine to medium sands and dense coarser sands and gravels respectively. This wide range is due to enlargement of the dr i ll hole an d m o re grout i n trusion in coarser soil s. Cal cu lat i ons by s oi l mechanics principles cannot explain these capacities. Best way is to perform tests on design anchors.L oa d c a pac i ty of anc ho rs in cl a ys is low c om pared to sandy a nd grave l ly soils. Fixed anchor lengths in design are usually 7-8 m. Application of low grouting pressure (less than 1 MPa) and use of casing tubes may be beneficial to t he capacity. Casin g tube s a lso prevent f ormation of r e mol de d soft cohesive film on borehole surface in layered soils which reduces capacity significantly. Capacity of anchors can be increased in stiff fissured clays using high pressure grouting and post-grouting. High pressure causes hydrofracturing and/or penetration of grout into existing fissures. Using bellsor under-reams in the fixed anchor zone in stiffer clays (cU>90 kPa) also increases capacity. Tremie grouted straight shafts in very stiff or hard soils yiel d suffic i ent c ap acities s i milar to anch or s in rock. Skin fric t ion (m) increases with decreasing plasticity and increasing consistency ((w L- w)/IP). m range is from 50 to more than 400 kPa in stiff clays. Pressure grouting is a lso used in rock. Skin fric t ion or bond v al ues f or va riety of r ocks c an be found in BS(8081) and other references.Grout is in tension like the tendon, and it is assumed that ultimate bond s t re ss bet w een g r out and te ndon is uni f orm. For c lea n stra n ds and defor m ed bars a limit of 2 MPa is recommended. Bond strength can be significantly affected by the surface condition of the tendon, particularly when loose and l ubric ant ma t eri a ls or loose rus t, soil, p ai nt ar e pr es e n t a t t he i nt e rfac e. Minimum grout compressive strength of 30 MPa is recommended prior to stressing. At grout/encapsulation interface maximum ultimate bond is taken 3 M Pa. Enc a psulations are usua l ly used i n permanent an c hor appl i cations against corrosion, and single or double (concentric) corrugated plastic or metal ducts cover single or multi-unit tendons and grouted. Details at head, fr ee l e ngth, seal b et w een fre e and fi x ed len g ths and fixed le ng th vary in m a ny different patented designs (See for example FIP,1986).3.1.3Planning of Anchor sFree length at each excavation stage and fixed length are selected. Fixed length in cohesionless and cohesive soils has been discussed in the previoussection. It is usually kept constant in a project. Fixed length has to be placed outside the active wedge behind wall. It is customary to add an extra to free l ength. Thi s is e s pe c i al l y useful i n projec t s i n stiff cl a ys where deformations at the back of wall extend to distances three times the depth of excavation. Minimum spacing of anchors should be 1.5-2 m and minimum distance of 2-3 m should b e provided between the fixed l e ng ths. A n an c hor d ensity of3-8 m2/anchor generally observed in projects depends on factors such as water pressure, type of soil, depth of excavation etc. If closely spaced a nchor s a re use d ei t her a dj a cent anchor s are de s igned a t di fferent angles w i t h the horizontal like 10°and 15°or identical rows are not used. Angles between 5°and25°w ith the horizontal are normally selected unless fixed l eng t hs ar e locat e d in deeper c o m petent laye r s. Two anchors may be pla c ed at the same anchor head at different angles if required. It is considered a good practice to design positions of fixed lengths in a disorderly manner. Another r e com me nd ati o n i s to k ee p the whole f i x ed length i n a s ingle la ye r i n layered soils if possible. Distance of fixed length to any adjacent foundation/underground service is recommended 3 m minimum. Spacing of a nchors is c ont rolle d by type of wall, and vert i c a l dista nc e betwee n rows is determined by a trial and error process (i.e. anchor capacity vs. spacing, reaction forces etc.).深基坑工程摘要本文概述了城市中保留原址的深基础连续墙系统。
毕业设计开题报告深圳地铁5号线民治车站偏压深基坑主体围护结构设计[管理资料]
![毕业设计开题报告深圳地铁5号线民治车站偏压深基坑主体围护结构设计[管理资料]](https://img.taocdn.com/s3/m/d9fda21b172ded630a1cb62f.png)
题目:深圳地铁5号线民治车站偏压深基坑主体围护结构设计(水泥土墙施工图)(挡墙施工大样图)嵌固深度按计算确定,。
相互搭接不宜小于150mm;若不虑挡水作用,搭接不宜小于100mm。
水泥掺入比约为13%。
(2)排桩排桩中应用最广泛的是钻孔灌注桩。
一、二、三级基坑皆可应用。
一般当基坑深h=8-14m、周围环境要求不十分严格时,多考虑采用。
在地下水位较高的地区,为挡水需要若采用的施工机械无法使桩相互咬合,则多采用钻孔灌注桩排桩和水泥土墙的复合结构,排桩承受侧向力,水泥土墙起挡水作用,计算中不考虑其参与受力。
钻孔灌注桩的嵌固深度,桩径和配筋,根据坑深,支撑布置和周围环境要求等计算确定。
排桩不相互咬合时,桩间有100-150mm的间隙,为挡水起见,多在其后隔开100-150mm施工1200mm厚的水泥土墙。
(排桩作围护结构图)在砂土或含砂多的粘性土中,为确保围护墙不漏水,有时在灌注桩与水泥土墙的间隙中进行注浆。
若采用全套管施工法(贝诺特灌注桩施工法)可使排桩相互咬合。
中铁二局工程有限公司等单位已成功应用,该技术咬合质量较好,能满足挡水要求。
青岛深基加固工程有限公司采用长螺旋钻孔压灌超流态混凝土成桩技术,亦可使钢筋混凝土灌注桩与素混凝土桩咬合50mm,形成防水帷幕。
当周围环境保护要求严格时,为减少排桩的变形,在软土地区有时于基坑底沿灌注桩周边或部分区域用水泥土桩或注浆进行被动区加固,以提高被动区的抗力,减少围护墙的变形。
当基坑边至红线间的尺寸不足以施工灌注桩和水泥土桩墙防水帷幕时,亦可在水泥土桩墙中套打灌注桩。
(3)地下连续墙地下连续墙刚度大,止水效果好,在基坑深(一般h>10m)、周围环境保护要求高的工程中,经技术经济比较后多采用该技术。
以上海为例,、88层的金茂大厦,、66层的恒隆大厦,、面积达15294平米、44层的上海外滩金融中心等超高层建筑以及沿淮海路走向的地铁1号线、沿南京路走向的地铁2号线的一些地铁车站,施工期间均采用地下连续墙作为支护结构。
地铁深基坑支护设计毕业设计

地铁深基坑支护设计毕业设计摘要:地铁深基坑支护设计是地铁工程中非常重要的一环,它的设计直接关系到地铁工程的安全和稳定。
本文通过对地铁深基坑支护设计的研究,以及对实际工程项目的分析,总结出了一套适用于地铁深基坑支护设计的综合设计方案。
本设计方案能够全面考虑到地铁深基坑的各种特点,并结合现代工程技术,提出了一系列支护结构及施工方法,从而确保地铁深基坑的稳定性和安全性。
1.引言地铁作为城市交通工程的重要组成部分,其建设不仅能够提高城市的交通效益,还能够缓解城市的交通压力。
然而,地铁建设过程中,会遇到许多地质问题,其中之一就是深基坑的开挖和支护。
深基坑的开挖和支护是地铁工程中一项非常复杂和困难的任务,因为地铁深基坑通常位于复杂的地质环境中,同时还受到地下水位和地表建筑物的影响。
2.地铁深基坑支护设计的重要性1)保证施工安全。
地铁深基坑支护设计能够保证施工过程中不发生坍塌和返工等事故,从而保障人员的生命安全。
2)提高地铁工程的稳定性。
地铁深基坑支护设计能够提高地铁工程的整体稳定性,降低地铁施工过程中地面沉降和地面陷陷的风险。
3)降低工程成本。
地铁深基坑支护设计能够有效地控制工程成本,节省资金和时间。
3.地铁深基坑支护设计的综合设计方案1)地质勘察和地下水分析。
通过对地下土质和地下水位的详细调查和分析,确定地铁深基坑的稳定性和安全性。
2)支护结构设计。
根据地质勘察和地下水分析结果,结合现代支护结构的设计理论和施工经验,设计出适应于地铁深基坑的支护结构,能够承受地铁施工过程中的压力和力量。
3)施工方法设计。
根据支护结构设计的要求,确定地铁深基坑的施工方法,包括挖土、护土、浇筑混凝土等,同时还需要考虑到施工过程中的安全和环境保护。
4.地铁深基坑支护设计的案例分析以城市地铁施工过程中遇到的一个深基坑为例,对地铁深基坑支护设计进行了详细的案例分析。
通过对该深基坑的地质特点、地下水位、地表建筑物等的调查和分析,结合现代支护结构的设计理论和施工经验,提出了一个适用于该深基坑的支护设计方案。
地铁一号线A标段基坑支护设计

XX 地铁一号线A 标段基坑支护设计摘要:该毕业设计以XX 地铁一号线工程为背景,自主设计了XX 地铁一号线标段1380.000K +~14200.000K +的支护结构,并对该段基坑支护工程进行了支护方案比选。
对支护结构进行内力计算和强度验算。
此外,还做了有关降水设计、基坑底稳定性分析和地下连续墙的施工工艺和质量控制。
并绘制了支护结构平面布置图、剖面图、有关详图及支撑结构的配筋图。
关键词:XX 地铁; 支护结构; 地下连续墙; 内支撑;基坑底稳定性Abstract:The graduation design to the subway line project that a backgr o u n d.In d e p e n d e n t d e s i gn s s u z h o u a n m u b e r o f t h e s u b w a y K+design optimization and construction technolo K+~14200.0001380.000gy for bracing structure of extra large reservoir. And foundation pit cutti ng of the city construction of the city better than the scheme. the city on the structure and proofing internal force. In addition, for the precipita tion design, and the foundation pit cutting of the stability analysis for t he construction process and quality control, and draws out the city flat structure, sections, the detailed map and support structure with the band s.Key words: Suzhou Subway; Underground continuous;Route alternative; The underground concatenation wall;Supporting structure in support;Foundation pit cutting of the stability;Precipitation design; the construction technology and quality controlof drilling driven cast-in-place pile绪论XX城市轨道交通规划将按照“统一规划、分步实施”的原则,以满足2015年XX市机械出行人数总量600万人次的需求。
地铁车站深基坑大学毕业设计(含外文翻译)

地铁车站深基坑大学毕业设计(含外文翻译)地铁车站深基坑大学毕业设计(含外文翻译) 摘要毕业设计主要包括三个部分,第一部分是上海地铁场中路站基坑围护结构设计;第二部分是上海地铁场中路站基坑施工组织设计;第三部分是专题部分,盾构施工预加固技术研究。
在第一部分基坑围护结构设计中,根据场中路站基坑所处的工程地质、水文地质条件和周边环境情况,通过施工方案的比选,确定采用地下连续墙作为基坑的围护方案,支撑方案选为对撑,从地面至坑底依次设四道钢管支撑,并进行围护结构及支撑的内力计算、相应的强度和地连墙的配筋验算以及基坑的抗渗、抗隆起和抗倾覆等验算。
第二部分的施工组织设计,根据基坑围护方案、施工方法和隧道周边的环境情况,对施工前准备工作,施工场地布置,围护结构施工、基坑开挖与支撑安装等进行设计,并编制了工程进度计划,编写了相应的质量、安全、环境保护等措施。
第三部分专题内容是盾构施工中的预加固技术研究。
针对工程施工中的地质条件和施工工况,总结了盾构施工中的土体预加固的技术措施和相关的参考资料,提出在盾构施工中土体预加固的技术措施。
关键词:基坑;地下连续墙;施工组织;支撑体系;盾构预加固技术目录第一部分上海地铁场中路站基坑围护结构设计1 工程概况1 1.1工程地质及水文地质资料1 1.2工程周围环境2 2 设计依据和设计标准4 2.1 工程设计依据4 2.2 基坑工程等级及设计控制标准4 3 基坑围护方案设计5 3.1基坑围护方案5 3.2基坑围护结构方案比选6 4 基坑支撑方案设计8 4.1支撑结构类型8 4.2支撑体系的布置形式8 4.3支撑体系的方案比较和合理选定10 4.4基坑施工应变措施10 5 计算书12 5.1 荷载计算12 5.2 围护结构地基承载力验算14 5.3 基坑底部土体的抗隆起稳定性验算14 5.4抗渗验算15 5.5抗倾覆验算16 5.6整体圆弧滑动稳定性验算17 5.7围护结构及支撑内力计算17 5.8 支撑强度验算21 5.9 地下连续墙配筋验算23 6 基坑主要技术经济指标25 6.1 开挖土方量25 6.2 混凝土浇筑量25 6.3 钢筋用量25 6.4 人工费用25 第二部分上海地铁场中路站基坑施工组织设计 1 基坑施工准备25 1.1 基坑施工的技术准备25 1.2 基坑施工的现场准备25 1.3 基坑施工的其他准备27 2 施工方案29 2.1 概况29 2.2 施工方法的确定29 2.3 施工流程32 2.4 质量控制35 2.5 施工主要技术措施37 2.6关键部位技术措施39 3施工总平面布置40 3.1 施工现场广场临时建筑物的布置原则及位置40 3.2 施工用的临时运输线路的布置40 3.4 建筑材料的堆放位置40 4施工进度计划及管理措施41 4.1 工程安排原则41 4.2施工进度计划41 4.3 施工质量过程控制42 5质量、安全、文明管理措施43 5.1 质量管理措施43 5.2 土方运输环境管理规定44 5.3 安全生产管理措施44 5.4 文明施工措施44 第三部分盾构施工中的预加固技术研究1概述47 1.1盾构法概述47 1.2盾构法的施工条件47 1.3 盾构施工工艺47 1.4盾构法施工的优缺点49 1.5盾构法施工预加固的必要性49 2 盾构施工预加固技术50 2.1概述50 2.2冻结法50 2.3 注浆法51 2.4高压旋喷桩52 3 水平冻结法在盾构进洞中的应用54 3.1 工程概况54 3.2周边环境状况54 3. 3地基加固方式的选择54 3. 4水平冻结法地基加固施工54 3.5冻结加固的效果56 3.6盾构进洞存在的风险57 3.7盾构进洞的保证措施57 4.小结59 参考文献60 第四部分外文翻译翻译原文62 中文译文66 致谢88 第一部分上海地铁场中路站基坑围护结构设计XX大学20XX届本科生毕业设计第26页1 工程概况上海地铁七号线一期工程二标段场中路站位于沪太公路南侧和大场税务所东侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要毕业设计主要包括三个部分,第一部分是上海地铁场中路站基坑围护结构设计;第二部分是上海地铁场中路站基坑施工组织设计;第三部分是专题部分,盾构施工预加固技术研究。
在第一部分基坑围护结构设计中,根据场中路站基坑所处的工程地质、水文地质条件和周边环境情况,通过施工方案的比选,确定采用地下连续墙作为基坑的围护方案,支撑方案选为对撑,从地面至坑底依次设四道钢管支撑,并进行围护结构及支撑的内力计算、相应的强度和地连墙的配筋验算以及基坑的抗渗、抗隆起和抗倾覆等验算。
第二部分的施工组织设计,根据基坑围护方案、施工方法和隧道周边的环境情况,对施工前准备工作,施工场地布置,围护结构施工、基坑开挖与支撑安装等进行设计,并编制了工程进度计划,编写了相应的质量、安全、环境保护等措施。
第三部分专题内容是盾构施工中的预加固技术研究。
针对工程施工中的地质条件和施工工况,总结了盾构施工中的土体预加固的技术措施和相关的参考资料,提出在盾构施工中土体预加固的技术措施。
关键词:基坑;地下连续墙;施工组织;支撑体系;盾构预加固技术目录第一部分上海地铁场中路站基坑围护结构设计1 工程概况 (1)1.1工程地质及水文地质资料 (1)1.2工程周围环境 (2)2 设计依据和设计标准 (4)2.1 工程设计依据 (4)2.2 基坑工程等级及设计控制标准 (4)3 基坑围护方案设计 (5)3.1基坑围护方案 (5)3.2基坑围护结构方案比选 (6)4 基坑支撑方案设计 (8)4.1支撑结构类型 (8)4.2支撑体系的布置形式 (8)4.3支撑体系的方案比较和合理选定 (10)4.4基坑施工应变措施 (10)5 计算书 (12)5.1 荷载计算 (12)5.2 围护结构地基承载力验算 (14)5.3 基坑底部土体的抗隆起稳定性验算 (14)5.4抗渗验算 (15)5.5抗倾覆验算 (16)5.6整体圆弧滑动稳定性验算 (17)5.7围护结构及支撑内力计算 (17)5.8 支撑强度验算 (21)5.9 地下连续墙配筋验算 (23)6 基坑主要技术经济指标 (25)6.1 开挖土方量 (25)6.2 混凝土浇筑量 (25)6.3 钢筋用量 (25)6.4 人工费用 (25)第二部分上海地铁场中路站基坑施工组织设计1 基坑施工准备 (25)1.1 基坑施工的技术准备 (25)1.2 基坑施工的现场准备 (25)1.3 基坑施工的其他准备 (27)2 施工方案 (29)2.1 概况 (29)2.2 施工方法的确定 (29)2.3 施工流程 (32)2.4 质量控制 (35)2.5 施工主要技术措施 (36)2.6关键部位技术措施 (38)3施工总平面布置 (40)3.1 施工现场广场临时建筑物的布置原则及位置 (40)3.2 施工用的临时运输线路的布置 (40)3.4 建筑材料的堆放位置 (40)4施工进度计划及管理措施 (41)4.1 工程安排原则 (41)4.2 施工进度计划 (41)4.3 施工质量过程控制 (42)5质量、安全、文明管理措施 (43)5.1 质量管理措施 (43)5.2 土方运输环境管理规定 (44)5.3 安全生产管理措施 (44)5.4 文明施工措施 (44)第三部分盾构施工中的预加固技术研究1概述 (47)1.1盾构法概述 (47)1.2盾构法的施工条件 (47)1.3 盾构施工工艺 (47)1.4盾构法施工的优缺点 (49)1.5盾构法施工预加固的必要性 (49)2 盾构施工预加固技术 (50)2.1概述 (50)2.2冻结法 (50)2.3 注浆法 (51)2.4高压旋喷桩 (52)3 水平冻结法在盾构进洞中的应用 (54)3.1 工程概况 (54)3.2周边环境状况 (54)3. 3地基加固方式的选择 (54)3. 4水平冻结法地基加固施工 (54)3.5冻结加固的效果 (56)3.6盾构进洞存在的风险 (57)3.7盾构进洞的保证措施 (57)4.小结 (59)参考文献 (60)第四部分外文翻译翻译原文 (62)中文译文 (66)致谢 (88)第一部分上海地铁场中路站基坑围护结构设计1 工程概况上海地铁七号线一期工程二标段场中路站位于沪太公路南侧和大场税务所东侧。
拟建之场中路站建(构)筑物主要由地铁行车道及人行通道组成,车站段地铁行车道主体长约220m,宽约20m,人行通道长约70~80m,宽约10m。
车站结构型式为地下二层岛式,底板埋深为15.00m。
1 .1工程地质及水文地质资料1.1.1工程地质条件场中路站场地地形较平坦,地面标高在4.16m~4.65m之间。
标准段位置,土层由上至下分别为:①1填土,①2滨土,②1粉质粘土,③淤泥质粉质粘土,④淤泥质粘土,⑥粉质粘土,⑦1-1粉砂,⑧1粘土,⑧2-2粉砂夹粉质粘土,勘察成果表明,地基土分布有以下特点:1)浅部无粉性土(②3层)分布,第②1层褐黄色~灰黄色粉质粘土下为第③层淤泥质粉质粘土和第④层淤泥质粘土,其中第③层夹较多薄层粉性土。
2)场地北侧受古河道切割影响,第⑥层、第⑦1-1层缺失,分布有第⑤1层粘性土。
场地南侧为正常分布区,第④层直接与第⑥层暗绿色粉质粘土相连,第⑥层硬土层层顶埋深一般在17.4~18.4m,厚度约1.4~4.0m;第⑦1-1层层顶埋深一般在20~21m左右。
3)第⑧1、⑧2-2层顶面埋深分别为31m、45m左右。
车站所在场地范围内自上向下土层分布情况见表1.1。
表1.1 土层分布情况土层编号土层名称土层描述土层厚度(m)层底标高①1填土杂~黄褐色,很湿,松散,上部主要为混凝土地坪、碎石、煤渣等,下部由粘性土等组成。
1.52.8②1粉质粘土褐黄~灰黄色,湿~很湿,可塑~软塑,中等~高等压缩性,含氧化铁斑点及铁锰质结核,随深度增加土性渐变软。
无摇震反应,土面较光滑,韧性中等~高2.2 0.6③淤泥质粉质粘土灰色,饱和,流塑,高等压缩性,含云母、有机质,在4.0~6.0m夹较多量薄层粉性土,土质不均匀。
摇震反应很慢,土面较粗糙,3.7 -3.1韧性中等,干强度中等。
④淤泥质粘土灰色,饱和,流塑,高等压缩性,含云母、有机质及少量贝壳碎屑,夹少量薄层粉砂,土质均匀。
摇震反应无,土面光滑有油脂光泽,韧性高等,干强度高10.8 -13.9⑥粉质粘土暗绿~草黄色,湿~很湿,可塑~硬塑,中等压缩性,含氧化铁斑点及铁锰质结核,夹少量灰白色高岭土,下部夹粘质粉土。
无摇震反应,土面较光滑,韧性中等~高等,干强度中等~高等。
2.7 -16.6⑦1-1粉砂草黄色,饱和,中密度~密实,中等压缩性,含云母、少量氧化铁条纹,夹砂质粉土,上部夹薄层粘性土。
6.1 -22.71.1.2水文条件拟建场地地下水主要有浅部土层中的潜水和深部粉性土层中的(微)承压水。
据区域资料,承压水位,一般低于潜水位,浅部土层中的潜水位埋深,一般离地表面0.3~1.5m,年平均地下水位离地表面0.5~0.7m,低水位埋深为1.50m;第⑦1-1层承压水位埋深为3~11m。
潜水位和承压水位随季节、气候等因素而有所变化。
江河边一定距离范围内,特别是有浅层粉性土或砂土分布区,其潜水位受潮汐影响较明显。
据有关资料,地下水的温度,埋深在4m范围内受气温变化影响,4m以下水温较稳定,一般为16~18°。
根据地质资料,潜水水位埋深为1.23~2.80m,第⑦1-1层承压水水位埋深为4.08m。
水质分析表明,地下水对混凝土无腐蚀性。
由于拟建场地地下水水位较高,根据上海地区经验,当地下水(潜水)对混凝土无腐蚀性性时,其土对混凝土亦无腐蚀性,故判定拟建场地地下水和土对混凝土无腐蚀性。
另据水质分析报告和类同工程经验判定,场地地下水对钢结构有弱腐蚀性。
1.2工程周围环境1.2.1邻近建筑场地西侧为居民住宅,住宅离基坑较远,在基坑开挖影响范围以外。
基坑东侧为沪太路,南侧为洛场路,路面下有较多的市政管线,需在施工中加强对基坑变形的控制。
1.2.2 地下管线根据现有的管线资料显示,场中路站端头井围护结构范围内无地下管线,但在工地围场边上有一排架空电线,施工中,应避免大型机械设备接触或碰撞管线。
在基坑东侧的沪太路上,分布有上水Ø200、电话36孔、上水Ø500、上水Ø1800、雨水Ø400;在洛场路口上分布有上水Ø300、上话12孔、雨水Ø400、上话(2根光缆)、煤气Ø200。
洛场路上的管线分布较远,基坑开挖影响较小,但沪太路下的管线需加强监测和保护。
具体管线分布情况参见表1.2。
表1.2场中路管线分布详细列表道路管线种类埋深(m)至端头井基坑距离(m)沪太路电话36孔 1.0 7 上水Ø200 0.7 9 上水Ø500 1.0 10 上水Ø1800 1.7 15.2 雨水Ø400 1.2 18.2洛场路上水Ø300 1.2 超过基坑影响范围上话Ø12孔 1.0 超过基坑影响范围雨水Ø400 0.6 超过基坑影响范围上水Ø300 0.7 超过基坑影响范围上话(2根光缆) 1.0 超过基坑影响范围煤气Ø200 0.7 超过基坑影响范围备注:在至基坑外侧边缘1.5H(H为基坑开挖深度)距离内为基坑影响范围1.2.2 周围道路在场中路站南端头井位置,是沪太路、场中路及洛场路的交汇处,工程位于交汇处的西北侧,场区施工对社会的交通影响较小。
1.2.3 施工条件土的类型为中软或软弱土,建议按软弱土考虑。
建筑的场地类别为Ⅲ类,相应特征周期值为0.45S。
本场地属对建筑抗震不利地段。
周围环境开阔,交通便利,有足够的空间堆放土方、材料和混凝土等。
1.2.4 邻近地区对地面沉降很敏感的建筑资料和要求临近建筑主要为商业用房,且楼层高度都不高。
对地面沉降不是很敏感,故该条不考虑。