envi遥感图像监督分类与非监督分类
实验四遥感图像的监督分类和非监督分类
实验四遥感图像的监督分类和⾮监督分类实验四遥感图像的⾮监督分类与监督分类⼀、实验⽬的1.⾮监督分类是对数据集中的像元依据统计数字,光谱类似度和光谱距离进⾏分类,在没有⽤户定义的条件下练习使⽤,在ENVI环境下的⾮监督分类技术有两种:迭代⾃组织数据分析技术(ISodata)和K均值算法(K-Means);2.分类过程中应注意:1)怎样确定⼀个最优的波段组合,从⽽达到最佳的分类精度,基于OIF和相关系数,协⽅差矩阵以及经验的使⽤来完成对最适合的组合的选取,分类效果的关键即在于此;2)K-Means的基本原理;3)Isodata的基本原理;4)分类结束后,被分类后的图像是⼀个新的图像,被分类类码秘填充,从⽽可以获得数据提取信息,统计不同类码数量,转化为实际⾯积,在得到后的图像上,可对不同⽬标的形态指标进⾏分析。
3.对训练区中的像元进⾏分类;4.⽤训练数据集估计查看监督分类后的统计参数;5.⽤不同⽅法进⾏监督分类,如最⼩距离法、马⽒距离法和最⼤似然法。
⼆、实验设备与材料1、软件ENVI 4.7软件2、所需材料TM数据三、实验步骤1.选择最优的波段组合ENVI主⼯具栏中File →Open image file →选择hbtmref.img打开→在Basic Tools中选择Statistics →Compute statistics选定原图,在Spectral subset中可选项全部选定→OK →OK →全选→保存→OK,则各类统计数字均可查;OIF计算,选择分类波段:1,2;2,3;1,3波段标准差分别为2.665727;3.473308;4.574609,和为10.713644。
Correlation Matrix 中1和2波段的相关系数0.964308,加上2和3波段的相关系数0.980166,再加上1和3波段的相关系数0.945880,最终等于2.890354。
⽤标准差相加的结果10.713644⽐上相关系数之和2.890354等于3.70668922。
envi7-监督与非监督分类
第二步: 第二步:样本选择
打开分类图像, Display->Overlay打开分类图像,在Display->Overlay->Region of Interest,默认ROIs为多边形, ROIs为多边形 Interest,默认ROIs为多边形,按照默认设置在影像上 定义训练样本。如下图所示, 定义训练样本。如下图所示,设置好颜色和类别名称 支持中文名称)。 (支持中文名称)。
3.2 监督分类——练习
3.2 监督分类——练习
ROIs面板中 选择Option 面板中, Option1. 在ROIs面板中,选择Option->Compute ROI Separability,计算样本的可分离性 计算样本的可分离性。 Separability,计算样本的可分离性。如下 图所示,表示各个样本类型之间的可分离性, 图所示,表示各个样本类型之间的可分离性, Jeffries用Jeffries-Matusita, Transformed Divergence参数表示 参数表示, Divergence参数表示,这两个参数的值在 0~2.0之间 大于1.9 之间, 1.9说明样本之间可分离性 0~2.0之间,大于1.9说明样本之间可分离性 属于合格样本;小于1.8 1.8, 好,属于合格样本;小于1.8,需要重新选 择样本;小于1 择样本;小于1,考虑将两类样本合成一类 样本。 样本。
遥感图像处理遥感图像处理-11
北京大学深圳研究生院
3.影像信息基本提取方法 3.影像信息基本提取方法
•3.1 3.1 •3.2 3.2 •3.3 3.3 •3.4 3.4 影像信息提取技术概述 影像增强处理 监督分类 非监督分类
3.1 影像信息提取技术概述
遥感影像通过亮度值或像元值的高低差异 反映地物的光谱信息)及空间变化( (反映地物的光谱信息)及空间变化(反映 地物的空间信息)来表示不同地物的差异, 地物的空间信息)来表示不同地物的差异, 这是区分不同影像地物的物理基础。 这是区分不同影像地物的物理基础。 遥感影像分类就是利用计算机通过对遥感影 像中各类地物的光谱信息和空间信息进行分 选择特征, 析,选择特征,将图像中每个像元按照某种 规则或算法划分为不同的类别, 规则或算法划分为不同的类别,然后获得遥 感影像中与实际地物的对应信息, 感影像中与实际地物的对应信息,从而实现 遥感影像的分类。 遥感影像的分类。
(完整word版)ENVI监督分类与非监督分类
对照原影像将30种类型进行编号并改名字,改变颜色;进行相同类别的合并:选择Classification中的分类后处理post classification,选择合并同类别Combine Classes,选择之前的非监督分类影像,在输入的文件中依次选择要合并的类,在输出的文件中选择相同的类别,点击Add Combination,所有的类别合并完后点击确定即可。
结果与分析1、各个样本之间的可分离性.说明哪些地物类型之间较易区分,哪些类型之间难以区分。
Jeffries-Matusita(J—M距离):水稻田水浇地河流居民地草地林地工业区裸地水稻田1。
99982。
00002.00002。
00001.95252.00002。
0000水浇1。
99982.00002。
00001.94941。
98902。
00002.0000Band0。
85 0。
90 0。
88 0.93 1.00 0.97 5Band0.90 0.93 0。
92 0。
92 0。
97 1。
00 63、最大似然法进行监督分类结果:原影像最大似然法进行监督分类结果监督分类的最大似然法分类结果中,主要的地物都可以被区分出来,地物分工业区94.7494.7418/1918/19裸地100.00100。
0042/4242/425、Clump Classes和Sieve classes结果:Clump Classes3*3处理结果:Clump Classes5*5处理结果:在聚类统计的结果上很容易看出原本监督分类的生成结果中严重的椒盐现象消失了,地物类型都相对完整,但有些细节已经被消除看不清楚,3*3窗口与5*5窗口生成的结果区别就在于3*3窗口的细节较5*5窗口的更加清楚具体, 5*5窗口将周边的面积较小的地物完全合并在一起.Sieve classes结果(Number of Neighbors设为8):Sieve classes结果(Number of Neighbors设为4):对影像的过滤分析生成的结果显得椒盐现象更加严重,结果影像上出现了很多小黑点,Number of Neighbors的值设置的越小,小黑点越密集,但是经过过滤分析的影像”孤岛”现象都已经消失。
监督分类和非监督分类
影像的分类可分为监督与非监督分类。
监督分类器根据其原理有基于传统统计分析的、基于神经网络的、基于模式识别的等。
本专题以ENVI的监督与非监督分类的实际操作为例,介绍这两种分类方法。
有以下内容组成:∙ ∙ ●非监督分类∙ ∙ ●监督分类∙ ∙ ●分类后处理非监督分类非监督分类:也称为聚类分析或点群分类。
在多光谱图像中搜寻、定义其自然相似光谱集群的过程。
它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱(或纹理) 信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。
目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等。
遥感影像的非监督分类一般包括以下6个步骤:图1 非监督分类操作流程1、影像分析大体上判断主要地物的类别数量。
一般监督分类设置分类数目比最终分类数量要多2-3倍为宜,这样有助于提高分类精度。
本案例的数据源为ENVI自带的Landsat tm5数据Can_tmr.img,类别分为:林地、草地/灌木、耕地、裸地、沙地、其他六类。
确定在非监督分类中的类别数为15。
2、分类器选择目前非监督分类器比较常用的是ISODATA、K-Mean和链状方法。
ENVI包括了ISODATA和K-Mean方法。
ISODATA(Iterative Self-Orgnizing Data Analysize Technique)重复自组织数据分析技术,计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元进行迭代聚合,每次迭代都重新计算均值,且根据所得的新均值,对像元进行再分类。
K-Means使用了聚类分析方法,随机地查找聚类簇的聚类相似度相近,即中心位置,是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的,然后迭代地重新配置他们,完成分类过程。
3、影像分类打开ENVI,选择主菜单->Classification->Unsupervised->IsoData或者K-Means。
遥感影像监督分类与非监督分类的比较
第34 卷第3 期2004 年9 月河南大学学报(自然科学版)Journal of Henan U n iversity ( N at u ral Science)Vol . 34 No . 3Sep . 2004 遥感影像监督分类与非监督分类的比较赵春霞,钱乐祥3(河南大学环境与规划学院,河南开封475001)摘要: 遥感影像的分类方法按照是否有先验类别可以分为监督分类和非监督分类,这两种分类法有着本质的区别但也存在一定的联系. 从分类原理、分类过程、分类方法等不同角度分析了这两种方法的区别与联系,并展望了遥感影像分类的发展趋势与发展前景.关键词: 影像分类;监督分类;非监督分类中图分类号: P237 文献标识码: A 文章编号: 1003 - 4978 (2004) 03 - 0090 - 04Comparative Study of Supervised and U nsupervised C la s sif icationin R emote Sensing Im ageZHAO Chun2xia , Q IAN L e2xiang( Col l ege of En v i ron ment an d Pl a n n i ng , Hen a n U ni v ersi t y , Hen a n Kai f eng 475001 , Chi n a) Abstract : The classificatio n of Remote Sensing image can be divided into t he su pervised classificatio n and t he unsu pervisedto whet her t here is t he extant category. The t wo met hods have difference in essence , but t he y are co nnected wit h each ot her . The article has analyzed t he difference and relatio n of t he t wo met hods f ro m different as pect s such as t he p rinciple , t he course and ways of classificatio n , and forecasted t he tendency and p rospect of t he image classificatio n.K ey w ords : image classificatio n ; supervised classificatio n ; unsu pervised classificatio n遥感影像分类是影像分析的一个重要内容,它是利用计算机通过对影像中不同地物的空间信息和光信息进行分析,选择特征,并将特征空间划分为互不重叠的子空间,然后将影像中各个像元划归到子空间去目前国内国际上对影像分类的研究主要集中在应用具体的物理的、数学的方法等对影像进行的分类研究面1 - 8,对于影像分类方法的研究,从不同的方面可以划分为不同的类型. 按照利用图像要素的不同,影分类大体可以分为三种:一是基于图像灰度值的分类,二是基于图像纹理的分类,三是基于多源信息融合分类9 . 用计算机对影像进行分类应用的主要是模式识别技术,根据具体应用的数学方法不同又可分为:计法(决策分类法) 、语言结构法(句法方法) 、模糊法以及神经网络法. 在影像分类过程中,根据是否已知训样本的分类数据,影像分类方法又可以分为监督分类和非监督分类. 本文主要从分类原理、分类过程、分类法等方面来探讨这两种分类方法的区别与联系.1 监督分类的主要方法最大似然判别法. 也称为贝叶斯(Bayes) 分类,是基于图像统计的监督分类法,也是典型的和应用最广监督分类方法.它建立在Bayes 准则的基础上,偏重于集群分布的统计特性,分类原理是假定训练样本数在光谱空间的分布是服从高斯正态分布规律的,做出样本的概率密度等值线,确定分类,然后通过计算标收稿日期: 2004202209基金项目: 河南省高等学校创新人才培养对象基金项目;河南省杰出青年科学基金项目( 99200003) ; 河南省自然科学基项目(004070700)作者简介: 赵春霞(1980 - ) ,女,河南大学硕士研究生13 通信联系人1(像元) 属于各组(类) 的概率,将标本归属于概率最大的一组. 用最大似然法分类,具体分为三步:首先确定各类的训练样本,再根据训练样本计算各类的统计特征值,建立分类判别函数,最后逐点扫描影像各像元,将像元特征向量代入判别函数,求出其属于各类的概率,将待判断像元归属于最大判别函数值的一组. Bayes 判别分类是建立在Bayes 决策规则基础上的模式识别,它的分类错误最小精度最高,是一种最好的分类方法. 但是传统的人工采样方法由于工作量大,效率低,加上人为误差的干扰,使得分类结果的精度较差. 利用GIS 数据来辅助Bayes 分类,可以提高分类精度,再通过建立知识库,以知识来指导分类的进行,可以减少分类错误的发生1 ,这正是Bayes 分类的发展趋势和提高其分类精度的有效途径.神经元网络分类法. 是最近发展起来的一种具有人工智能的分类方法,包括B P 神经网络、K o ho nen 神经网络、径向基神经网络、模糊神经网络、小波神经网络等各种神经网络分类法. B P神经网络模型(前馈网络模型) 是神经网络的重要模型之一,也是目前应用最广的神经网络模型,它由输入层、隐含层、输出层三部分组成,所采取的学习过程由正向传播过程和反向传播过程组成. 传统的B P网络模型把一组样本的输入/ 输出问题作为一个非线性优化问题,它虽然比一般统计方法要好,但是却存在学习速度慢,不易收敛,效率不高等缺点. 采用动量法和学习率自适应调整的策略,可以提高学习效率并增加算法的可靠性3 .模糊分类法. 由于现实世界中众多的自然或半自然现象很难明确划分种类,反映在遥感影像上,也存在一些混合像素问题,并有大量的同谱异物或者同物异谱现象发生,使得像元的类别难以明确确定. 模糊分类方法忽略了监督分类的训练过程所存在的模糊性,沿用传统的方法,假定训练样本由一组可明确定义、归类, 并且具有代表性的目标(像素) 构成. 监督分类中的模糊分类可以利用神经元网络所具有的良好学习归纳机制、抗差能力和易于扩展成为动态系统等特点,设计一个基于神经元网络技术的模糊分类法来实现. 模糊神经网络模型由A R T 发展到A R TMA P 再到FasA R T 、简化的FasA R T 模型4 ,使得模糊神经网络的监督分类功能不断完善、分类精确度不断增加.最小距离分类法和Fisher 判别分类法. 它们都是基于图像统计的常用的监督分类法,偏重于几何位置.最小距离分类法的原则是各像元点划归到距离它最近距离的类别中心所在的类, Fisher 判别分类采用Fisher 准则即“组间最大距离”的原则,要求组间距离最大而组内的离散性最小,也就是组间均值差异最大而组内离差平方和最小. 用这两种分类法进行分类,其分类精度取决于对已知地物类别的了解和训练统计的精度,也与训练样本数量有关. 针对最小距离分类法受模式散布影响、分类精度不高的缺点,人们提出了一种自适应的最小距离分类法,在训练过程中,将各类样本集合自适应地分解为子集树,定义待分类点到子集树的距离作为分类依据2 ,这种方法有效地提高了最小距离法的分类正确率和分类速度,效率较高. Fisher 判别分类也可以通过增加样本数量进行严密的统计分类来增加分类精度.2 非监督分类的主要方法动态聚类. 它是按某些原则选择一些代表点作为聚类的核心,然后将其余待分点按某种方法(判据准则)分到各类中去,完成初始分类,之后再重新计算各聚类中心,把各点按初始分类判据重新分到各类,完成第一次迭代. 然后修改聚类中心进行下一次迭代,对上次分类结果进行修改,如此反复直到满意为止. 动态聚类的方法是目前非监督分类中比较先进、也较为常用的方法.典型的聚类过程包括以下几步:选定初始集群中心; 用一判据准则进行分类;循环式的检查和修改;输出分类结果.聚类的方法主要有基于最邻近规则的试探法、K - means 均值算法、迭代自组织的数据分析法( ISODA TA) 等.其中比较成熟的是K - means 和ISODA TA 算法,它们较之其他分类方法的优点是把分析判别的统计聚类算法和简单多光谱分类融合在一起,使聚类更准确、客观. 但这些传统的建立在统计方法之上的分类法存在着一定的缺点:很难确定初始化条件;很难确定全局最优分类中心和类别个数;很难融合地学专家知识. 基于尺度空间的分层聚类方法( SSHC) 是一种以热力学非线性动力机制为理论基础的新型聚类算法10 ,它与传统聚类算法相比最大的优点是其样本空间可服从自由分布,可获取最优聚类中心点及类别,可在聚类过程中融合后验知识,有更多的灵活性和实用性.模糊聚类法. 模糊分类根据是否需要先验知识也可以分为监督分类和非监督分类. 事实上,由于遥感影92 河南大学学报(自然科学版) ,2004 年,第34 卷第3 期关系的模糊聚类分析法、基于最大模糊支撑树的模糊聚类分析法等11 ,最典型的模糊聚类法是模糊迭代组织的数据分析法———Fussy - ISODA TA . 但纯粹的非监督分类对影像一无所知的情况下进行所得到的果往往与实际特征存在一定的差异,因此聚类结果的精度并不一定能够满足实际应用的要求,还需要地学识的辅助,也就是部分监督的Fussy - ISODA TA 聚类.系统聚类. 这种方法是将影像中每个像元各自看作一类,计算各类间均值的相关系数矩阵,从中选择相关的两类进行合并形成新类,并重新计算各新类间的相关系数矩阵,再将最相关的两类合并,这样继续去,按照逐步结合的方法进行类与类之间的合并. 直到各个新类间的相关系数小于某个给定的阈值为止.分裂法. 又称等混合距离分类法,它与系统聚类的方法相反,在开始时将所有像元看成一类,求出各变的均值和均方差,按照一定公式计算分裂后两类的中心,再算出各像元到这两类中心的聚类,将像元归并距离最近的那一类去,形成两个新类. 然后再对各个新类进行分类,只要有一个波段的均方差大于规定的值,新类就要分裂.两种分类方法原理及过程的比较遥感影像的监督分类是在已知类别的训练场地上提取各类别训练样本,通过选择特征变量、确定判别数或判别式把影像中的各个像元点划归到各个给定类的分类. 它的基本思想是:首先根据类别的先验知识定判别函数和相应的判别准则,利用一定数量的已知类别样本的观测值确定判别函数中的待定参数,然后未知类别的样本的观测值代入判别函数,再根据判别准则对该样本的所属类别做出判定. 遥感影像的非监分类也称为聚类,它是事先无法知道类别的先验知识,在没有类别先验知识的情况下将所有样本划分为若类别的方法. 它的基本思想是事先不知道类别的先验知识,仅根据地物的光谱特征的相关性或相似性来进分类,再根据实地调查数据比较后确定其类别属性. 二者分类流程如图1 所示.3图1 影像监督分类与非监督分类流程图影像监督分类法与非监督分类法是针对影像具体分类时是否有先验知识而产生的两种方法,二者的用范围、使用条件不同,因而在具体分类时各有一定的优缺点,监督分类与非监督分类的比较如表1 所示.表1 影像不同分类方法的适用范围及优缺点优点缺点适用范围精确度高,准确性好,与实际类别吻合较好监督分类工作量大有先验知识时使用该方法分类结果与实际类别相差较大,准确性差在没有类别先验知识时使用该方法非监督分类工作量小,易于实现影像分类方法的发展前景遥感影像的监督分类和非监督分类方法,是影像分类的最基本、最概括的两种方法. 传统的监督分类非监督分类方法虽然各有优势,但是也都存在一定的不足. 新方法、新理论、新技术的引入,为遥感影像分提供了广阔的前景,监督分类与非监督分类的混合使用更是大大的提高了分类的精度.计算机技术对影像分类的促进与发展. 计算机技术的引进,解决了影像分类中海量数据的计算与管理题;计算机技术支持下的GIS 用来辅助影像分类,主要通过四种模式进行12 : GIS 数据作为影像分析的训样本和先验信息;利用GIS 技术对研究区域场景和影像分层分析; GIS 建立面向对象的影像分类; 提取和掘GIS 中的知识进行专家分析. 这些模式促进了GIS 与遥感的结合,提高了影像分类精确性和准确性,使影像分类迈入了新的天地.数学方法的引入和模型研究的进展为影像分类注入了新的活力. 不同的数学方法被引用到模型研究来,为模型研究的发展提供了广阔的天地,相应地,在遥感影像分类中也产生了大量不同形式的分类模型. 径向基函数( RB F) 与粗糙理论结合的基于粗糙理论的RB F网络模型应用于遥感分类5 ,对于提供分类4度 、增加收敛性都有很好的作用 ;而基于 RB F 映射理论的神经网络模型更是融合了参数化统计分布模型和 非参数化线性感知器映射模型的优点 ,不仅学习速度快 ,而且有高度复杂的映射能力6 . 又如模糊数学理论 应用于影像分类产生模糊聚类 ,对影像中混合像元的分类有很好的效果 ;模糊理论与各种模型结合 ,更使得 影像分类方法的不断完善 ,分类精度不断提高. 人工智能技术对影像分类的促进. 专家分类系统被用于影像分类中 ,利用地学知识和专家系统来辅助遥 感影像分类12 ,大大提高了影像分类和信息提取的精度. 人工神经网络由大量神经元相互连接构成网络结 构 ,通过模拟人脑神经系统的结构和功能应用于影像分类 ,具有一定的智能推理能力 . 同时 ,它还引入了动量 法和学习自适率调整的策略 ,并与地学知识集成 ,很好的解决了专一的 B P 神经网络法分类的缺点和不足 , 提高了分类效率和分类精度.监督分类与非监督分类的结合. 由于遥感数据的数据量大 、类别多以及同物异谱和同谱异物现象的存 在 ,用单一的分类方法对影像进行分类其精确度往往不能满足应用目的要求 . 用监督分类与非监督分类相结 合的方法来对影像进行分类 ,却常常可以到达需要的目的. 利用这种方法分类时首先用监督分类法如多层神 经网络的 B P 算法将遥感图像概略地划分为几个大类 ,再用非监督分类法如 K - Means 聚类和 ISODA TA 聚 类对第一步已分出的各个大类进行细分 ,直到满足要求为止13 . 监督分类与非监督分类的结合的复合分类 方法 ,改变了传统的单一的分类方法对影像进行分类的弊端 ,弥补了其不足 ,为影像分类开辟了广阔的前景. 结论遥感影像的监督分类与非监督分类从内涵 、过程以及具体的分类方法上都不相同 ,它们在分类思路上有 着本质的差别 . 但是 ,作为影像分类的方法 ,它们都有着相同的目的和功效. 因此 ,在影像分类中 ,这两种方法 并不能够完全割裂开来 ,而应该根据实际分类的需要 ,合理科学灵活的运用这两种方法 ,甚至混合使用监督 5 分类与非监督分类 ,以使影像分类达到预期的目的要求. 监督分类与非监督分类方法灵活的使用 ,新的理论 、新的模型 、新技术的运用 ,使得遥感影像分类技术得到长足发展 ,影像分类结果的准确度 、精确度都不断提 高 ,从而更好的为应用服务.参考文献 :游代安 ,蒋定华 ,余旭初 . GIS 辅助下的 Bayes 法遥感影像分类 J . 测绘学院学报 ,2001 ,18 (2) :113 - 117 . 朱建华 ,刘政凯 ,俞能海 . 一种多光谱遥感图象的自适应最小距离分类方法 J . 中国图象图形学报 ,2000 ,5 (1) :22 - 24 . 贾永红 ,张春森 ,王爱平 . 基于 B P 神经网络的多源遥感影像分类 J . 西安科技学院学报 ,2001 ,21 (1) :58 - 60 . 林剑 ,鲍光淑 ,敬荣中 ,等 . FasAR T 模糊神经网络用于遥感图象监督分类的研究 J . 中国图象图形学报 , 2002 , 7 ( 12) : 1263 - 1268 . 巫兆聪 . 基于粗糙理论的 RB F 网络及其遥感影像分类应用 J . 测绘学报 ,2003 ,32 (1) :53 - 57 . 骆剑承 ,周成虎 ,杨艳. 基于径向基函 ( RB F ) 映射理论的遥感影像分类模型研究 J . 中国图象图形学报 ,2000 ,5 ( 2) : 94 - 99 .123456 7 Olivier Debeir , Pat r ice L a tinne , Isabelle Vanden Steen. Remote Sensin g Classificatio n Of S pect r al , spatial And Co n text u al DataU s ing Multiple Classifier System J . Ima ge Anal Stereol , 2001 ,20 ( S uppl 1) : 584 - 589 .8 L a kshmanan V , DeBrunner V , Rabin R. An U n su pervised , Agglo m erative , S patially Aware Text u re Segmentatio n TechniqueE . ht t p :/ / www . cimms. ou. edu/ ~lakshman/ Papers/ diss - t r ansip . p d f曾生根 ,王小敏 ,范瑞彬 ,等 . 基于独立量分析的遥感图像分类技术 J . 遥感学报 ,2004 ,8 (2) :150 - 157 .骆剑承 ,梁怡 ,周成虎. 基于尺度空间的分层聚类方法及其在遥感影像分类中的应用 J . 测绘学报 , 1999 , 28 ( 4) : 319 - 324 .徐建华 . 现代地理学中的数学方法 M . 北京 :高等教育出版社 ,2002 . 王莹 ,刘敏莺 ,黄文骞 . GIS 对遥感影像分类判读的辅助作用 J . 海洋测绘 ,2002 ,22 (3) :12 - 15 . 杨存建 ,周成虎 . 基于知识的遥感图像分类方法的探讨 J . 地理学与国土研究 ,2001 ,17 (1) :72 - 77 . 靳文戟 ,刘政凯 . 多类别遥感图像的复合分类方法 J . 环境遥感 ,1995 ,10 (4) :298 - 302 . 9 10 11121213。
实习三 遥感图像的监督分类与非监督分类
实验三遥感图像的监督分类与非监督分类[实验目的]1.理解遥感图像的监督分的含义;2.会使用ENVI软件对遥感图像进行监督分类。
[实验原理]在遥感图像分类中,按照是否有已知训练样本的分类依据,分类方法又分为两大类:监督分类与非监督分类。
遥感图像的监督分类是在已知类别的训练场地上提取各类别训练样本,通过选择特征变量、确定判别函数或判别式(判别规则),进而把图像中的各个像元点划归到各个给定类的分类。
遥感图像的非监督分类是在没有先验知识(训练场地)的情况下,根据图像本身的统计特征及自然点群的分布情况来划分地物类别的分类处理,事后再对已分出的各类的地物属性进行确认,也称作“边学习边分类法”。
两者的最大区别在于,监督分类首先给定类别,而非监督分类则由图像数据本身的统计特征来决定。
[实验步骤]一监督分类(数据采用njtmcorrected)监督分类技术需要在执行以前事先定义训练分类器(training classes), 训练分类器也可以用ENVI 感兴趣区(ROI)函数限定。
ENVI的监督分类技术包括平行六面体(平行管道)、最小距离、马氏距离、最大似然、波谱角度制图仪以及二进制编码方法1. “开始”->“程序”->RSI ENVI4.0->ENVI,打开ENVI4.0界面;2. 选择File > Open Image File.3. 当出现Enter Data Filename 对话框,选择要打开的文件名,再点击“OK”,在Available Bands List框里点击Load Band ,图像显示在图像显示窗口。
4. 选择“基本工具”->感兴趣区->ROI工具,弹出ROI Tool对话框。
5. 在ROI_Type菜单里选择建立感兴趣区的类型,可以选择Polygon、Polyline、point、Rectangle、Ellipse等类型。
6. 在Window栏里选择要建立感兴趣区的窗口,可以选择Image、Scroll、Zoom窗口。
ENVI图像分类实验
3、分类精度评价
实验数据:
融合后的SPOT5影像(SPOT5_FusionImage)及其对应的DEM数据,影像和DEM经过了精确配准。其中,融合后的SPOT5影像有3个波段,R、G、B分别对应NIR(近红外)、R(红波段)、G(绿波段)。
实验方法与步骤:
一、
监督分类:又称训练分类法,用样本像元去识别其他未知类别像元的过程。
在图像窗口上画出感兴趣区,单击鼠标右键确定选择形状(此时可以拖动感兴趣区域,用Ctrl+鼠标左键可以删除。单击滑轮键是取消操作。),再次单击右键确定此训练区(此时若要删除训练区,需要点击ROI Tool窗口中的Delete控键,此操作将删除所有该类型的感兴趣区域)。
ROI Tool窗口中将会显示选择区域的颜色和相关信息,其中,感兴趣区域名称(ROI Name)和色彩可以修改。可就某一类训练区选择多个感兴趣区域。
(2).选择要进行分类的影像(SPOT5_FusionImage)。
(3).设置分类参数,选择训练样本(Select All Items):
图12
Data scale factor:数据比例系数。这个比例系数是一个比值系数,用于将整型反射率或辐射率数据转化为浮点型数据。例如:如果反射率数据在范围0-10000之间缩放,则设定的比例系数就为10000。对于没有定标的整型数据,将比例系数设为该仪器所能测量的最大值2n-1,n为仪器的bit容量,例如:对于8-bit仪器,设定的比例系数为255,对于10-bit仪器(如NOAA 12 AVHRR),设定的比例系数为1023,对于11-bit仪器(如IKONOS),设定的比例系数为2047。
实验三
实验目的:
通过上机操作,了解遥感图像分类的几种常用的分类方法与过程,熟悉ENVI软件中图像分类的方法与分类后处理的过程。
遥感实习遥感图像监督分类
实验五:监督分类与非监督分类一、实验目的采用监督分类对多光谱遥感图像进行分类,并对分类后的数据进行处理,处理方法包括:聚合(clump)处理、筛选(sieve)处理、并类(combine)处理,以及精度评估。
监督法分类需要用户选择作为分类基础的训练样区。
分析下面处理的分类结果,或者采用每个分类法默认的分类参数,生成自己的类,然后对分类结果进行比较。
我们将使用各种监督分类法,并对它们进行比较,确定单个具体像素是否有资格作为某类的一部分。
二、实验数据与原理美国科罗拉多州(Colorado)Canon市的Landsat TM 影像数据,其中包括can_tmr.img、can_tmr.hdr、can_km.img、can_km.hdr、can_iso.img、can_iso.hdr、classes.roi、can_pcls.img、can_pcls.hdr 、can_bin.img、can_bin.hdr 、can_sam.img、can_sam.hdr 、can_rul.img 、can_rul.hdr、can_sv.img、can_sv.hdr、can_clmp.img、can_clmp.hdr。
ENVI 提供了多种不同的监督分类法,其中包括了平行六面体(Parallelepiped)、最小距离法(Minimum Distance)、马氏距离法(Mahalanobis Distance)、最大似然法(Maximum Likelihood)、波谱角法(Spectral Angle Mapper)、二值编码法(Binary Encoding)以及神经网络法(Neural Net)。
三、实验过程:1、打开TM图像,File →Open Image File,选择ljs-can_tmr.img文件,在可用波段列表中,选择RGB Color 单选按钮,然后使用鼠标左键,顺次点击波段4、波段3 和波段2。
点击Load RGB 按钮,把该影像加载到一个新的显示窗口中。
ENVI中几种监督分类方法精度比较
ENVI中几种监督分类方法精度比较遥感图像的监督分类常用方法目前可以分为:平行六面体法,马氏距离法,最大似然法,神经网络法以及支持向量机法等。
文章将就以上所述的五种常用的监督分类方法在ENVI中分别对汶川县威州镇同一Landsat8 OLI数据进行土地覆盖与利用状况分类.比较各种方法的分类精度,并对之所产生的差异的原因进行浅析,进而对实际的生产以及应用做出借鉴。
标签:监督分类;平行六面体;神经网络;支持向量机;分类精度Abstract:The common methods of supervised classification of remote sensing images can be divided into:parallelepiped classifier method,Mahalanobis distance method,maximum likelihood method,neural network method and support vector machine method. In this paper,the land cover and utilization of the same Landsat8 OLI data in Weizhou Town,Wenchuan County are classified by the five common supervised classification methods mentioned above in ENVI. Comparing the classification accuracy of various methods,we made an analysis of the causes of the differences,and then identify their actual production and application.Keywords:supervised classification;parallelepiped;neural network;support vector machine;classification accuracy1 概述遥感图像的分类主要是利用计算机将遥感图像中的光谱和空间信息进行分析,提出不同地物之间的特征及边界,并利用一定的算法的各个像元划归到互不重叠的各个子空间之中。
基于监督分类的ENVI遥感技术
基于监督分类的ENVI遥感技术概述1、监督分类1.1对监督分类的理解监督分类与非监督分类最本质的区别是在于是否有训练样区,训练区是通过人为的目视判读,光谱分析等方法提供给计算机,而计算机以训练区为基础,通过预先设定好的规则对图像进行分类。
所以影响监督分类的质量的因素有训练区的选取(人为因素)与分类方法的优劣(算法因素)。
判断分类质量的方法一般是混淆矩阵法,即通过比较分类结果与通过实地调查或者用地类型图得出的检验用的ROI,建立混淆矩阵,分析两者之间的差异,评价分类错分与漏分的几率而间接评价分类精度。
1.2训练样区的选择训练样区应选择在地物类型分布典型的地区,这样才不会导致错分的像元太多出现。
(例如最小距离法,如果将不典型的地物也选择进去,就会导致同种地物内部差异过大,也就是方差或者标准差偏大,就会使两种原本谱线就相近的地物产生交叉的地方,而在交叉的地方的地物就很有可能被错分)但是同时也不宜试图将差别过小的地物分开。
例如我的CIR图中植被也有分几个层次,有的颜色比较浅,有的颜色比较深,(如光谱收集图中红色和蓝色为较深色植被)但是由于图是位于城市内部,而不是天然的植被或者拥有连片的单一植被,就算能够将其分离也有可能是混合像元造成的,而且另一方面也会导致图像过于破碎,分布不集中等问题。
在训练样区的选择中,一般可以将地物分为水体、岩石(城市)、植被三大类,因为这三类的光谱差异最大,较容易且准确地分出来。
而结合实际图讨论的话。
我将水体继续分为纯净的海水、含沙的海水、河水、湖水及盐池(只有一片),其中为了效果不太混杂,除了盐池之外的其他水体都用blue显示,而颜色深度由水体含沙量决定。
(含沙量:含沙海水=河水>湖水>清洁海水),植被就分为普通植被和水体植被(水体富营养化),由于水体植被混杂了水体和植被两种光谱信息,所以差别也比较明显,而且只有在图幅左下角一部分鱼塘才有出现,也不会分出来过于破碎。
ENVI中监督分类方法及参数说明
ENVI中监督分类方法及参数说明ENVI是一种远程感知图像处理软件,可以用来进行各种监督分类方法。
监督分类是一种机器学习方法,通过对已知类别的数据进行训练,然后对未知数据进行分类。
在ENVI中,有几种常用的监督分类方法,包括最大似然分类、支持向量机分类、随机森林分类和神经网络分类。
以下是每种方法的详细说明和参数设置。
1.最大似然分类:最大似然分类是一种常用的统计方法,通过假设每个类别的像素值服从特定的概率分布来进行分类。
在ENVI中,最大似然分类可以使用Maximum Likelihood Classification工具实现。
其参数包括:-样本数量:每个类别中用于训练的样本数量。
-逻辑属性:用于定义样本的逻辑属性,例如颜色、纹理、形状等。
-分辨率:输入数据的分辨率。
-类别数量:需要进行分类的类别数量。
2.支持向量机分类:支持向量机分类是一种基于统计学习理论的分类方法,通过寻找数据间的最优超平面来进行分类。
在ENVI中,支持向量机分类可以使用Support Vector Machine Classification工具实现。
其参数包括:-输入数据:需要进行分类的输入数据。
-内核类型:支持线性、多项式和径向基函数等不同类型的内核。
-内核参数:内核函数的参数,例如多项式内核的次数和径向基函数的宽度。
-惩罚参数:控制分类器的容错率和超平面的形状。
3.随机森林分类:随机森林分类是一种基于决策树的分类方法,通过组合多个决策树的预测结果来进行分类。
在ENVI中,随机森林分类可以使用Random Trees Classification工具实现。
其参数包括:-输入数据:需要进行分类的输入数据。
-决策树数量:用于构建随机森林的决策树数量。
-内部节点最小样本数:决定决策树停止生长的最小样本数。
-最大特征数:每个决策树使用的最大特征数量。
-类别权重:用于调整样本不平衡问题的类别权重。
4.神经网络分类:神经网络分类是一种基于神经网络模型的分类方法,通过多个层节点的激活来进行分类。
遥感图像分类方法与分类精度评估技巧
遥感图像分类方法与分类精度评估技巧遥感图像分类是遥感技术的重要应用之一,通过对遥感图像中不同地物进行分类,可以有效提取地物信息,为各类地理研究和应用提供了重要数据支持。
而遥感图像分类方法和分类精度评估技巧则是遥感图像分类工作中的关键环节。
一、遥感图像分类方法遥感图像分类方法主要分为监督分类和非监督分类两种。
监督分类是根据人工定义的训练样本来进行分类,通过计算遥感图像像元的特征值与训练样本的特征值之间的距离或相似度来确定像元的地物类别。
监督分类方法具有分类精度高的优势,但需要大量准确的训练样本,并且需要人工干预进行样本分类。
非监督分类是根据图像像元自身的特征值进行分类,算法会自动对图像中的像元进行聚类,根据像元的特征相似性来确定地物类别。
非监督分类方法可以大幅降低人工干预量,但分类精度相对较低,对遥感图像的解译要求较高。
同时,还有基于物理模型的分类方法,该方法通过对地物的物理性质进行建模,从而实现对遥感图像地物的分类。
基于物理模型的分类方法可以较好地解决遥感图像的反射率与地物属性之间的关系,但对数据质量和物理模型的准确性要求较高。
二、分类精度评估技巧对于遥感图像分类的结果,需要进行分类精度评估来判断分类结果的准确性。
常用的分类精度评估技巧主要包括混淆矩阵、Kappa系数和面积误差指标等。
混淆矩阵是一种常用的分类精度评估方法,通过对分类结果与实际样本之间的差异进行矩阵统计,来获得分类的准确性。
混淆矩阵包括真阳性(TP)、假阴性(FN)、假阳性(FP)和真阴性(TN)四个参数,通过计算这些参数的比例可以得到分类的准确性。
Kappa系数是一种综合评估分类精度的方法,根据分类结果与实际样本的一致性程度来判断分类的准确性。
Kappa系数的取值范围为[-1,1],取值越接近1表示分类结果越准确。
面积误差指标是一种用来评估分类结果准确性的指标,通过计算分类结果与实际样本之间的面积差异来评估分类的准确性。
面积误差指标越小表示分类结果越准确。
4.监督分类
遥感实验课第五课 遥感图像的监督分类遥感图像的分类处理,是信息提取的一种方式,通过人工目视解译、计算机自动分类、人机交互的方式来识别地物。
遥感图像的分类处理方法有两种:监督分类与非监督分类。
非监督分类,是从纯统计学的角度对图像数据进行类别划分,不需要事先给定类别。
监督分类,必须事先根据已知训练场地提供的样本(感兴趣区的定义),通过选择特征参数、建立判别函数(分类方法、参数的选择),最后把图像中各个像元点归化到给定类中。
一、教学目的与要求本次实习要求利用Envi软件掌握遥感图像的监督分类方法。
二、重点难点⒈本次实习课的重点掌握感兴趣区的定义及监督分类的实现。
⒉难点是监督分类的参数理解。
三、教学内容⒈定义图像的感兴趣。
⒉利用感兴趣区,选择分类方法及参数对图像进行分类。
⒊分类后的图像分析(图像DN值分析、密度分割、统计分析)。
⒋矢量化分类结果图,并生成分类数据表。
四、教学步骤文件:TL、TL.hdr感兴趣区定义的原则㈠定义感兴趣区感兴趣区,又称训练场、训练区。
定义感兴趣区在监督分类中是很重要的一步,感兴趣区选择得准确与否,样本数是否足够,关系到分类精度的高低。
原则:①典型类别、均匀区域;②地物齐全;③像元数不少于100;④样本分布呈单峰。
根据均一的色度估计是否只有一类地物。
⒈打开遥感图像T L.i m g,彩色合成,并加载文件。
⒉打开定义感兴趣区窗口。
B a s i c T o o l s→R e g i o n o f I n t e r e s t→D e f i n e R e g i o n o f I n t e r e s t或I m a g e窗口 →O v e r l a y→R e g i o n o f I n t e r e s t感兴趣区窗口说明:Window:Image Scroll Zoom Off命令按钮:New Region Edit Erase DeleteGoto Stats Mean Grow文件保存、定义类型㈡监督分类Parallelepiped (平行六面体)Minimum Distance (最小距离) Mahalanobis Distance (马氏距离)Maximum Likelihood (最大似然分类)Spectral Angle Mapper (波谱角度映射表)Binary Encoding (二进制编码)Parallelepiped (平行六面体)、Spectral Angle Mapper (波谱角度映射表)⑴Parallelepiped (平行六面体)平行六面体用一条简单的判定规则对多波谱数据进行分类。
遥感图像非监督分类
遥感图像非监督分类1.概述非监督分类仅仅用统计方法对数据集中的像元进行分类,它不需要用户定义任何训练分类器。
ENVI提供了两种非监督分类方法:(1)IsoData(迭代自组织数据分析技术)(2)K-Means(K-MEANS算法)两种非监督分类技术。
Isodata 非监督分类计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元迭代聚集。
每次迭代重新计算了均值,且用这一新的均值对像元进行再分类。
K-Means使用了聚类分析方法,随机地查找聚类簇的聚类相似度相近,即中心位置,是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的,然后迭代地重新配置他们,完成分类过程。
2 具体操作步骤2.1 执行Isodata非监督分类打开影像数据(参考上节内容),读取波段值(R:5,G:4,B:3),选择Toolbox>Classification > Unsupervised >Isodata Classification.选择分类TM图像文件,点击“OK”,显示ISODA TA Parameters 对话框。
图1 ISODA TA Parameters 对话框在ISODATA Parameters 对话框中可以利用的选项包括:即将被限定的分类数的范围输入,像元变化阈值(0~100%),被用来对数据进行分类的最多迭代次数,分割、合并和删除分类阈值以及可选的距离阈值。
(1)输入被限定的类数范围(最小值和最大值)。
(2)最大迭代次数和一个变化阈值(0~100%)。
当每一类的像元数变化小于阈值时,用变化阈值来结束迭代过程。
当达到阈值或迭代达到了最多次数时,分类结束。
(3)键入形成一类需要的最少像元数。
如果一类中的像元数小于构成一类的最少像元数,则这一类就要被删除,其中的像元被归到距离最近的类里。
(4)在“Maximum Class Stdv”文本框里,键入最大分类标准差(用十进制)。
遥感实习遥感图像非监督分类
实验四非监督分类一、实验目的采用非监督分类对多光谱遥感图像进行分类,并对分类后的数据进行处理,处理方法包括:聚合(clump)处理、筛选(sieve)处理、并类(combine)处理,以及精度评估。
二、实验数据与原理美国科罗拉多州(Colorado)Canon市的Landsat TM 影像数据,其中包括can_tmr.img、can_tmr.hdr、can_km.img、can_km.hdr、can_iso.img、can_iso.hdr、classes.roi、can_pcls.img、can_pcls.hdr 、can_bin.img、can_bin.hdr 、can_sam.img、can_sam.hdr 、can_rul.img 、can_rul.hdr、can_sv.img、can_sv.hdr、can_clmp.img、can_clmp.hdr。
三、实验过程:1、打开TM图像,File →Open Image File,选择ljs-can_tmr.img文件,在可用波段列表中,选择RGB Color 单选按钮,然后使用鼠标左键,顺次点击波段4、波段3 和波段2。
点击Load RGB 按钮,把该影像加载到一个新的显示窗口中。
2、查看光标值:从主影像窗口菜单中,选择Tools →Cursor Location/Value。
3、查看波谱曲线图从主影像窗口菜单栏中,选择Tools →Profiles →Z Profile (Spectrum),开始提取波谱的剖面曲线。
非监督法分类:K-均值(K-Means)分类法从ENVI 主菜单中,选择Classification →Unsupervised →K-Means 或者IsoData,生成ENVI 非监督法分类后的影像。
使用默认参数,并选择路径,命名为ljs-can_tm_unsupervised.img生成后将之作为#2,在新窗口中打开,并建立与原can_tm图像的动态链接,在一个窗口中查看二者的关系。
遥感图像处理实例分析03(监督分类、非监督分类)
遥感图像处理实例分析监督分类(supervised classification )一、方法原理监督分类方法是多光谱图像专题信息分类的两种方法之一(另一种方法是非监督分类).该方法是假设已经收集到多区域的地理图像,如Landsat TM 或 SPOT XS 卫星多谱图像(分类对其它类型的图像也有效),具有实地野外属性分类或覆盖类型(如城区、水域、沼泽地等)的位置和特性数据(也可以通过航片分析得到),对该已知分类区域的光谱特性,通过分类程序,进行训练,将图像中每类区域的像素进行已知类的分配,对每一类计算多变量统计参数,如均值、标准差、相关距阵等,根据分类方法,最后将图像中每一个像素以最大然似性分配到某一类中。
即通过自定义的已知分类区域的训练,对多波段图像进行专题信息分类.方法流程如下:二、实例演示及分析以1985年美国加利福利亚州圣地亚哥地区的TM —MSS(0.55,0。
65,0。
75,0.95um4波段)图像为例,进行土地覆盖类型分类,分为海洋、城区、居民区、草坪和秃地等类型。
监督分类主要步骤如下:1.由原始遥感图像文件Landsat_Mass_Notwarped 。
ers 复制出用于分类的图像数据文件Landsat_practice.ers.① 通过主菜单算法图标或主菜单View 中Algorithm 项,打开算法窗口,装载数据集,文件名为:\examples\shared_data\Landsat_Mass_Notwarped.ers 。
选择训练区计算训练区统计量 评价训练区统计量 进行图像分类 显示分类图像和精度计②复制3个假彩色层(现共有4个假彩色层),分别命名为B1、B2、B3、B4,并与装载数据集文件的4个波段相对应。
③选择主菜单File中的Save As项,以Er Mapper Raster Dataset格式保存文件,文件名为:\examples\miscellaneous\tutorial\Landsatt_practice.ers。
遥感图像分类
遥感图像分类遥感图像的分类就是通过对遥感图像中地物的光谱信息和空间信息进行分析,选择特征,将图像中每个象元按照某种规则或算法划分为不同的类别,然后获得遥感图像与实际地物的对应信息,从而实现遥感图像的分类。
一般的分类方法可分为两类:监督分类和非监督分类。
将多源数据应用于图像分类中,发展成基于专家知识的决策树分类。
一、监督分类监督分类(supervised),又称训练分类法,即用被确认的样本象元去识别其他未知象元的过程。
已经被确认类别的样本象元是指那些位于训练区的象元。
在这种分类中,分析者在图像上对每一种类别选取一定数量的训练区,计算机计算每种训练样区的统计或其他信息,每个象元和训练样本作比较,按照不同规则将其划分到其最相似的样本类。
监督分类的算法主要有:平行算法、最小距离法、最大似然法等。
这里采用最大似然法作为监督分类的算法。
原理:最大似然法假设遥感图像的每个波段数据都是正态分布。
其基本思想是:地物类数据在空间中构成特定的点群;每一类的每一维数据都在自己的数轴上成正态分布,该类的多维数据就构成了一个多维正态分布;各类多维正态分布模型各有其分布特征。
根据各类已有的数据,可以构造出各类的多维正态分布模型,在此基础上,对于任何一个像素,可反过来求出它属于各类的概率,取最大概率对应的类为分类结果。
步奏:第一步:分析图像①打开图像,将图像以5、4、3波段合成RGB显示在#1中。
②通过目视分析,可以定义6类样本:水体、建筑、耕地、草地、荒地、其他。
第二步:选择训练样本①在主图像窗口选择Overlay-----Region of Interest,打开ROI Tool对话框。
②在ROI Tool对话框中设置相关样本的名称、颜色等。
③选择ROI_Type—Polygon,在window中选择image,在图像上绘制训练区。
④重复②、③步奏,最终完成以下结果:第三步:评价训练样本①在ROI Tool对话框中,选择Options——Compute ROI Separability,打开目标图像。
遥感图像的分类实验报告
一、实验名称遥感图像的监督分类与非监督分类二、实验目的理解遥感图像监督分类及非监督分类的原理;掌握用ENVI对影像进行监督分类和非监督分类的方法,初步掌握图像分类后的相关操作;了解整个实验的过程以及实验过程中要注意的事项。
三、实验原理监督分类:又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。
它是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。
非监督分类:也称为聚类分析或点群分类。
在多光谱图像中搜寻、定义其自然相似光谱集群的过程。
它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱(或纹理) 信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。
目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等。
四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM 第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。
鉴于实验内容及图像大小等问题,故从一景TM影像中裁取一个含有较丰富地物信息区域作为待分类影像。
五、实验过程1.监督分类1.1打开并显示影像文件,选择合适的波段组合加载影像打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,为了更好地区分不同地物以及方便训练样本的选取,选择5、4、3波段进行相关操作,点击Load Band 在主窗口加载影像。
1.2使用感兴趣区(ROI)工具来选择训练样区1)主影像窗口菜单栏中,选择 Overlay >Region of Interest。
envi遥感图像监督分类与非监督分类
envi遥感图像监督分类监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程.它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。
使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。
遥感影像的监督分类一般包括以下6个步骤,如下图所示:详细操作步骤第一步:类别定义/特征判别根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理.这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。
启动ENVI5。
1,打开待分类数据:can_tmr。
img。
以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。
通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。
第二步:样本选择(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。
1)在Region of Interest (ROI) Tool面板上,设置以下参数:ROI Name:林地ROI Color:2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;4)这样就为林地选好了训练样本.注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
envi遥感图像监督分类监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。
它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。
使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。
遥感影像的监督分类一般包括以下6个步骤,如下图所示:详细操作步骤第一步:类别定义/特征判别根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。
这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。
启动ENVI5.1,打开待分类数据:can_tmr.img。
以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。
通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。
第二步:样本选择(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。
1)在Region of Interest (ROI) Tool面板上,设置以下参数:ROI Name:林地ROI Color:2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;4)这样就为林地选好了训练样本。
注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。
2、一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。
3、如果不小心关闭了Region of Interest (ROI) Tool面板,可在图层管理器Layer Manager上的某一类样本(感兴趣区)双击鼠标。
(2)在图像上右键选择New ROI,或者在Region of Interest (ROI) Tool 面板上,选择工具。
重复"林地"样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本;(3)如下图为选好好的样本。
(4)计算样本的可分离性。
在Region of Interest (ROI) Tool面板上,选择Option>Compute ROI Separability,在Choose ROIs面板,将几类样本都打勾,点击OK;(5)表示各个样本类型之间的可分离性,用Jeffries-Matusita, Transformed Divergence参数表示,这两个参数的值在0~2.0之间,大于1.9说明样本之间可分离性好,属于合格样本;小于1.8,需要编辑样本或者重新选择样本;小于1,考虑将两类样本合成一类样本。
注:1、在图层管理器Layer Manager中,可以选择需要修改的训练样本。
2、在Region of Interest (ROI) Tool面板上,选择Options > Merge(Union/Intersection) ROIs,在Merge ROIs面板中,选择需要合并的类别,勾选Delete Input ROIs。
图2.4 Merge ROIs面板(6)在图层管理器中,选择Region of interest ,点击右键,save as,保存为.xml格式的样本文件。
注:1、早期版本的感兴趣文件格式为.roi,新版本的为.xml,新版本完全兼容.roi文件,在Region of Interest (ROI) Tool面板上,选择File>Open打开.xml 或.roi文件。
2、新版本的.xml样本文件(感兴趣区文件)可以通过,File>Export>Export to Classic菜单保存为.roi文件。
第三步:分类器选择根据分类的复杂度、精度需求等确定哪一种分类器。
目前ENVI的监督分类可分为基于传统统计分析学的,包括平行六面体、最小距离、马氏距离、最大似然,基于神经网络的,基于模式识别,包括支持向量机、模糊分类等,针对高光谱有波谱角(SAM),光谱信息散度,二进制编码。
下面是几种分类器的简单描述。
•平行六面体(Parallelepiped)根据训练样本的亮度值形成一个n维的平行六面体数据空间,其他像元的光谱值如果落在平行六面体任何一个训练样本所对应的区域,就被划分其对应的类别中。
•最小距离(Minimum Distance)利用训练样本数据计算出每一类的均值向量和标准差向量,然后以均值向量作为该类在特征空间中的中心位置,计算输入图像中每个像元到各类中心的距离,到哪一类中心的距离最小,该像元就归入到哪一类。
•马氏距离(Mahalanobis Distance)计算输入图像到各训练样本的协方差距离(一种有效的计算两个未知样本集的相似度的方法),最终技术协方差距离最小的,即为此类别。
•最大似然(Maximum Likelihood)假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然度最大的一类当中。
•神经网络(Neural Net)指用计算机模拟人脑的结构,用许多小的处理单元模拟生物的神经元,用算法实现人脑的识别、记忆、思考过程。
•支持向量机(Support Vector Machine)支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。
SVM 可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。
•波谱角(Spectral Angle Mapper)它是在N维空间将像元与参照波谱进行匹配,通过计算波谱间的相似度,之后对波谱之间相似度进行角度的对比,较小的角度表示更大的相似度。
影像分类基于传统统计分析的分类方法参数设置比较简单,在Toolbox/Classification/Supervised Classification能找到相应的分类方法。
这里选择支持向量机分类方法。
在toolbox中选择/Classification/Supervised Classification/Support Vector Machine Classification,选择待分类影像,点击OK,按照默认设置参数输出分类结果。
图2.5 支持向量机分类器参数设置图2.6 支持向量机分类结果第五步:分类后处理包括更改类别颜色、分类后统计、小斑块处理、栅矢转换等,这部分专门有一节课讲解。
在此不做叙述。
第六步:精度验证对分类结果进行评价,确定分类的精度和可靠性。
有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较抽象。
真实参考源可以使用两种方式:一是标准的分类图,二是选择的感兴趣区(验证样本区)。
两种方式的选择都可以通过主菜单->Classification->Post Classification->Confusion Matrix或者ROC Curves来选择。
真实的感兴趣区验证样本的选择可以是在高分辨率影像上选择,也可以是野外实地调查获取,原则是获取的类别参考源的真实性。
由于没有更高分辨率的数据源,本例中就把原分类的TM影像当作是高分辨率影像,在上面进行目视解译得到真实参考源。
(1)在Data Manager中,分类样本上右键选择Close,将分类样本从软件中移除(2)直接利用ROI工具,跟分类样本选择的方法一样,即重复第二步,在TM图上选择6类验证样本。
注:可直接File>open,打开can_tm-验证样本.roi。
图2.7选择验证样本(3)在Toolbox中,选择/Classification/Post Classification/Confusion Matrix Using Ground Truth ROIs,选择分类结果,软件会根据分类代码自动匹配,如不正确可以手动更改。
点击OK 后选择报表的表示方法(像素和百分比),点击OK,就可以得到精度报表。
图2.8 验证操作面板图2.9分类精度评价混淆矩阵下面对混淆矩阵中的几项评价指标进行说明:•总体分类精度等于被正确分类的像元总和除以总像元数。
被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所有真实参考源的像元总数,如本次精度分类精度表中的Overall Accuracy = (1849/2346) 78.8150%。
•Kappa系数它是通过把所有真实参考的像元总数(N)乘以混淆矩阵对角线(XKK)的和,再减去某一类中真实参考像元数与该类中被分类像元总数之积之后,再除以像元总数的平方减去某一类中真实参考像元总数与该类中被分类像元总数之积对所有类别求和的结果。
Kappa计算公式•错分误差指被分为用户感兴趣的类,而实际属于另一类的像元,它显示在混淆矩阵里面。
本例中,林地有419个真实参考像元,其中正确分类265,12个是其他类别错分为林地(混淆矩阵中林地一行其他类的总和),那么其错分误差为12/419=2.9%。
•漏分误差指本身属于地表真实分类,当没有被分类器分到相应类别中的像元数。
如在本例中的耕地类,有真实参考像元465个,其中462个正确分类,其余3个被错分为其余类(混淆矩阵中耕地类中一列里其他类的总和),漏分误差为3/465=0.6%•制图精度是指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。
如本例中林地有419个真实参考像元,其中265个正确分类,因此林地的制图精度是265/419=63.25%。
•用户精度是指正确分到A类的像元总数(对角线值)与分类器将整个影像的像元分为A类的像元总数(混淆矩阵中A类行的总和)比率。
如本例中林地有265个正确分类,总共划分为林地的有277,所以林地的用户精度是265/277=95.67%。