数学建模优秀讲座之聚类分析及其应用
聚类分析法ppt课件

进行了规格化变换后的数据特点是,将每列的最大数
2021/2/22
9
xij
1.1 聚类与聚类分析
1.1.2聚类分析的原理 ▪对数变换
对数变换主要是对原始数据取对数。即
对数变换后的数据特点是,可将具有指数特征的数据结 构化为线性数据结构。
2021/2/22
10
xij
1.1 聚类与聚类分析
1.1.2聚类分析的原理
尺度分析的知识地图,探讨了国内数字图书馆领域的研究现状 与热点。
2021/2/22
36
用共词分析法分析国内数字图书馆领域的研究热点, 需要通过四个步骤完成:第一,确定国内该研究领域主要关 键词;第二,建立关键词共词矩阵;第三,选取多元统计方法( 聚类分析,因子分析,多维尺度分析)对所建矩阵进行统计分 析;第四,对所获得的数据进行分析。
出不同的分类结果。
2021/2/22
15
2.常用系统聚类分析方法
D min d (1)最短距离法pq
xiGp ,x j Gq ij
(2)最长距离法Dpq
max
xiGp ,x j Gq
dij
2021/2/22
16
(3)中间距离法
Dir
(4)重心法
1 2
Di2p
1 2
Di2q
1 4
Dp2q
Di2r
2021/2/22
11
xij
1.1 聚类与聚类分析
1.1.2聚类分析的原理 (3)距离以及相似系数的选择原则
一般说来,同一批数据采用不同的相似性尺度,就 会得到不同的分类结果,这主要是因为不同指标代表了不同 意上的相似性。因此在进行数值分类时,应注意相似性尺度 的选择,选择的基本原则是:
聚类分析定义及其应用

在生物信息学中,聚类分析被广泛用于基因组、蛋白质组和代谢组学的研究。 例如,可以将基因表达数据聚类为不同的模式,以发现潜在的生物过程;或者 将蛋白质相互作用网络中的节点聚类为不同的模块,以发现潜在的功能单元
聚类分析的应用
3. 市场细分
在商业中,聚类分析被用来进行市场细分。通过分析消费者的购买行为、人口 统计信息和其他特征,可以将消费者分为不同的群体,并针对每个群体制定不 同的营销策略
20XX
聚类分析定义及其应用
演讲者:xxx
-
聚类分析的定义
目录
聚类分析的应用
聚类分析定义及其应用
聚类分析是一种无监督学习方法,它在统计学、机器 学习、生物信息学等领域有着广泛的应用。聚类分析 的主要目的是将数据集中的对象分组,使得同一组 (即,一个聚类)内的对象相互之间更相似(根据所选 的相似性度量),而不同组的对象尽可能不同
聚类分析的定义
评估和解释聚类结果
评估聚类结果的常见度量包 括轮廓系数(Silhouette Coefficient)、DaviesBouldin Index、CalinskiHarabasz Index等。此外, 为了解释聚类结果,我们通 常需要使用某种可视化工具 (如散点图、树状图、热力 图等)来展示聚类结果
聚类分析的定义
聚类算法
聚类算法是用于发现聚类的算法。这些算法可以大致分为以下几类 划分方法:这种方法首先将数据集随机划分为K个聚类,然后逐步改进聚类 以更好地匹配数据。代表性的算法有K-Means和K-Medoids
聚类分析的定义
层次方法:这种方法通过反复合 并最相似的聚类来形成一棵聚类 树。用户可以选择合并的次数, 或者通过剪切树来获得不同的聚 类数目。代表性的算法有BIRCH 和Agglomerative Hierarchical
聚类分析及其应用实例ppt课件

Outlines
聚类的思想 常用的聚类方法 实例分析:层次聚类
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
3. 实例分析:层次聚类算法
定义:对给定的数据进行层次的分解
第4 步
➢
凝聚的方法(自底向上)『常用』
思想:一开始将每个对象作为单独的
第3 步
一组,然后根据同类相近,异类相异 第2步 的原则,合并对象,直到所有的组合
并成一个,或达到一个终止条件。 第1步
a, b, c, d, e c, d, e d, e
X3 Human(人) X4 Gorilla(大猩猩) X5 Chimpanzee(黑猩猩) X2 Symphalangus(合趾猿) X1 Gibbon(长臂猿)
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
离差平方和法( ward method ):
各元素到类中心的欧式距离之和。
Gp
Cluster P
Cluster M
Cluster Q
D2 WM Wp Wq
G q
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
凝聚的层次聚类法举例
Gp G q
Dpq max{ dij | i Gp , j Gq}
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
数学建模优秀课件聚类分析与判别分析

备注
在计算时,各种点间距离和类间距离的选 择是通过统计软件的选项实现的。不同的 选择的结果会不同,但一般不会差太多。
另外还有一些和距离相反但起同样作用的 概念,比如相似性等,两点越相似度越大, 就相当于距离越短。
相似性的度量 (样本点间距离的计算方法)
Euclidean距离 Squared Euclidean距离
1、点间距离的计算方法主要有: 欧氏距离(Euclidean distance) 平方欧氏距离(Squared Euclidean distance) Block距离(Block distance) Chebychev距离(Chebychev distance) 马氏距离(Minkovski distance) 最常用的是平方欧氏距离
样品聚类:
对观测量(Case)进行聚类(不同的目的选 用不同的指标作为分类的依据,如选拔运动员 与分课外活动小组)。
变量聚类:
找出彼此独立且有代表性的自变量,而又 不丢失大部分信息。在生产活动中不乏有变量 聚类的实例,如:衣服号码(身长、胸围、裤 长、腰围)、鞋的号码。变量聚类使批量生产 成为可能。
2 G8 1 G6 1.5 G7 3.5 G9
第三部分 聚类分析的SPSS过程
在AnalyzeClassify下:
1、快速聚类(K-Means Cluster): 观测量 快速聚类分析过程。 2、分层聚类(Hierarchical Cluster):分层 聚类(进行观测量聚类和变量聚类的过程。
类和类之间的距离
由一个点组成的类是最基本的类;如 果每一类都由一个点组成,那么点间的距 离就是类间距离。但是如果某一类包含不 止一个点,那么就要确定类间距离。 类间距离是基于点间距离定义的:比如两 类之间最近点之间的距离可以作为这两类 之间的距离,也可以用两类中最远点之间 的距离作为这两类之间的距离;当然也可 以用各类的中心之间的距离来作为类间距 离。
数学建模里的聚类分析

聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。
数学建模优秀讲座之聚类分析及其应用

• 解释性-可用性 用户希望聚类结果是可解释的,可理解的,和可用的。 也就是说,聚类可能需要和特定的语义解释和应用相 联系。应用目标如何影响聚类方法的选择也是一个重 要的研究课题。 记住这些约束,我们对聚类分析的学习将按如下的步 骤进行。首先,学习不同类型的数据,以及它们对聚 类方法的影响。接着,给出了一个聚类方法的一般分 类。然后我们详细地讨论了各种聚类方法,包括划分 方法,层次方法,基于密度的方法,基于网格的方法, 以及基于模型的方法。最后我们探讨在高维空间中的 聚类和孤立点分析(outlier analysis)。
cophenet相关系数。 • cluster 函数 • 调用格式:T=cluster(Z,…) • 说明:根据linkage函数的输出Z 创建分类
利用spass进行聚类分析
两步聚类法
• 基本思想: 一种探索性的聚类方法,是随着人 工智能的发展起来的智能聚类方法中的一种。用 于解决海量数据或具有复杂类别结构的聚类分析 问题。
对象之间的距离 X:一个m×n的矩阵,它是由m个对象组成的数据 集,每个对象的大小为n。 • linkage函数 • 调用格式:Z=linkage(Y,’method’)
• 说 明:用‘method’参数指定的算法计算系统聚类 树。
• Y:pdist函数返回的距离向量
• cophenet函数 • 调用格式:c=cophenetic(Z,Y) • 说明:利用pdist函数生成的Y和linkage函数生成的Z计算
小于允许值,输出聚类结果。
Kmeans函数
• 使用方法:
Idx=Kmeans(X,K) [Idx,C]=Kmeans(X,K) [Idc,C,sumD]=Kmeans( X,K) [Idx,C,sumD,D]=Kmean s(X,K)
数学建模-聚类分析

满足输出;不满足循环;
(7)重复;
初始聚类中心的选择
初始聚类中心的选取决定着计算的迭代 次数,甚至决定着最终的解是否为全局最优, 所以选择一个好的初始聚类中心是很有必要 的。
(1)方法一:选取前k个样品作为初始凝聚点。
(2)方法二: 选择第一个样本点作为第一个聚类 中心。然后选取距离第一个点最远的点作为第二个 聚 类中心。……
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现抽取日 本、巴林和泰国的值作为三个类的种子,即初始化三 个类的中心为 A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰 国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类的 中心点。
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21,
数据变换
(5)极差正规化变换:
x*ij
=
xij
min 1t n
xij
Rj
i 1,,2,...,,n; j 1,..., m
(6)对数变换x*:ij = log xij
i 1,,2,...,,n; j 1,..., m
k
样品间的距离
(1)绝对值距离:
m
dij
xit x jt
t 1
聚类分析及其应用实例.ppt

Gp Gq
D pq ? max{ d ij | i ? G p , j ? G q }
类平均距离( average linkage ):
Gp和Gq中每两两样本间距离的平均值作为两个类之间的距离。
Gp Gq
?? D pq
?
1 t ptq
tp i?1
? 相似系数----常用于对变量的聚类
? Pearson相关系数:两个连续变量间呈线性相关 ? Spearman相关系数:利用两变量的秩次大小作线性相关分析 ? Kendall等级相关系数,。。。
凝聚的层次聚类示意图
C3
X4 X3
C4
X5 X2
X1
X1:Gibbon (长臂猿) X2:Symphalangus (合趾猿) X3:Human (人) X4:Gorilla (大猩猩) X5:Chimpanzee (黑猩猩)
tq
X (q) i i ?1
用Gp和Gq表示两个类,它们所包含的样本数目分别为tp和tq,类Gp和Gq之间
的距离用Dpq表示。
离差平方和法( ward method ):
各元素到类中心的欧式距离之和。
Gp
Cluster P
Cluster M
Cluster Q
Gq
D 2 ? WM ? W p ? Wq
凝聚的层次聚类示意图
Oh?
X4 X3
X5 X2
X1
X1:Gibbon (长臂猿) X2:Symphalangus (合趾猿) X3:Human (人) X4:Gorilla (大猩猩) X5:Chimpanzee (黑猩猩)
常用的聚类统计量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类分析简介
• 聚类分析指将物理或抽象对象的集合分组为由类似 的对象组成的多个类的分析过程。它是一种重要的 人类行为。
• 聚类分析的目标就是在相似的基础上收集数据来分 类。聚类源于很多领域,包括数学,计算机科学, 统计学,生物学和经济学。在不同的应用领域,很 多聚类技术都得到了发展,这些技术方法被用作描 述数据,衡量不同数据源间的相似性,以及把数据 源分类到不同的簇中。
• 聚类分析法是理想的多变量统计技术,主要有分层 聚类法和迭代聚类法。 聚类分析也称群分析、点群 分析,是研究分类的一种多元统计方法
聚类分析算法用途
• 在商业上,聚类可以帮助市场分析人员从消费者 数据库中区分出不同的消费群体来,并且概括出 每一类消费者的消费模式或者说习惯。它作为数 据挖掘中的一个模块,可以作为一个单独的工具 以发现数据库中分布的一些深层的信息,并且概 括出每一类的特点,或者把注意力放在某一个特 定的类上以作进一步的分析;并且,聚类分析也 可以作为数据挖掘算法中其他分析算法的一个预 处理步骤。
聚类分析的常见方法
• 划分法
划分法(partitioning methods),给定一个有N个元组或者纪录的 数据集,分裂法将构造K个分组,每一个分组就代表一个聚类, K<N。而且这K个分组满足下列条件: (1) 每一个分组至少包含一个数据纪录; (在某2)些每模一糊个聚数类据算纪法录中属可于以且放仅宽属)于;一个分组(注意:这个要求 对于给定的K,算法首先给出一个初始的分组方法,以后通过反 复迭代的方法改变分组,使得每一次改进之后的分组方案都较 前一次好,而所谓好的标准就是:同一分组中的记录越近越好, 而不同分组中的纪录越远越好。 使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、 CLARANS算法;
• 任意形状 许多聚类算法基于欧几里得或者曼哈顿距离度量来决 定聚类。基于这样的距离度量的算法趋向于发现具有 相近尺度和密度的球状簇。但是,一个簇可能是任意 形状的。提出能发现任意形状簇的算法是很重要的。 • 领域最小化 许多聚类算法在聚类分析中要求用户输入一定的参数, 例如希望产生的簇的数目。聚类结果对于输入参数十 分敏感。参数通常很难确定,特别是对于包含高维对 象的数据集来说。这样不仅加重了用户的负担,也使 得聚类的质量难以控制。
• 图论聚类法
• 图论聚类方法解决的第一步是建立与问题相适应 的图,图的节点对应于被分析数据的最小单元, 图的边(或弧)对应于最小处理单元数据之间的 相似性度量。因此,每一个最小处理单元数据之 间都会有一个度量表达,这就确保了数据的局部 特性比较易于处理。图论聚类法是以样本数据的 局域连接特征作为聚类的主要信息源,因而其主 要优点是易于处理局部数据的特性。
聚类要求
• 可伸缩性 许多聚类算法在小于 200 个数据对象的小数据集合上 工作得很好;但是,一个大规模数据库可能包含几百 万个对象,在这样的大数据集合样本上进行聚类可能 会导致有偏的结果。我们需要具有高度可伸缩性的聚 类算法。 • 不同属性 许多算法被设计用来聚类数值类型的数据。但是,应 用可能要求聚类其他类型的数据,如二元类型(binary), 分类/标称类型(categorical/nominal),序数型 (ordinal)数据,或者这些数据类型的混合。
• 处理“噪声”
绝大多数现实中的数据库都包含了孤立点,缺失, 或者错误的数据。一些聚类算法对于这样的数据 敏感,可能导致低质量的聚类结果
• 记录顺序
一些聚类算法对于输入数据的顺序是敏感的。例 如,同一个数据集合,当以不同的顺序交给同一 个算法时,可能生成差别很大的聚类结果。开发 对数据输入顺序不敏感的算法具有重要的意义。
• 密度算法 • 基于密度的方法(density-based methods),基于
密度的方法与其它方法的一个根本区别是:它不 是基于各种各样的距离的,而是基于密度的。这 样就能克服基于距离的算法只能发现“类圆形” 的聚类的缺点。 • 这个方法的指导思想就是,只要一个区域中的点 的密度大过某个阈值,就把它加到与之相近的聚 类中去。 • 代表算法有:DBSCAN算法、OPTICS算法、 DENCLUE算法等;
• 层次法 • 层次法(hierarchical methods),这种方法对给定
的数据集进行层次似的分解,直到某种条件满足 为例如,在“自底向上”方案中,初始时每一个数 据纪录都组成一个单独的组,在接下来的迭代中, 它把那些相互邻近的组合并成一个组,直到所有 的记录组成一个分组或者某个条件满足为止。 • 代表算法有:BIRCH算法、CURE算法、 CHAMELEON算法等;
• 高维度 一个数据库或者数据仓库可能包含若干维或者属性。许多 聚类算法擅长处理低维的数据,可能只涉及两到三维。人 类的眼睛在最多三维的情况下能够很好地判断聚类的质量。 在高维空间中聚类数据对象是非常有挑战性的,特别是考 虑到这样的数据可能分布非常稀疏,而且高度偏斜。 • 基于约束 现实世界的应用可能需要在各种约束条件下进行聚类。假 设你的工作是在一个城市中为给定数目的自动提款机选择 安放位置,为了作出决定,你可以对住宅区进行聚类,同 时考虑如城市的河流和公路网,每个地区的客户要求等情 况。要找到既满足特定的约束,又具有良好聚类特性的数 据分组是一项具有挑战性的任务。
• 解释性-可用性 用户希望聚类结果是可解释的,可理解的,和可用的。 也就是说,聚类可能需要和特定的语义解释和应用相 联系。应用目标如何影响聚类方法的选择也是一个重 要的研究课题。 记住这些约束,我们对聚类分析的学习将按如下的步 骤进行。首先,学习不同类型的数据,以及它们对聚 类方法的影响。接着,给出了一个聚类方法的一般分 类。然后我们详细地讨论了各种聚类方法,包括划分 方法,层次方法,基于密度的方法,基于网格的方法, 以及基于模型的方法。最后我们探讨在高维空间中的 聚类和孤立点分析(outlier analysis)。