人教版高中数学必修三《分层抽样》教案
人教A版高中数学必修三213《分层抽样》教案

人教A版高中数学必修三213《分层抽样》教案教案主题:分层抽样授课对象:人教A版高中数学必修三教案大纲:一、教学目标:1.理解分层抽样的定义和原理;2.掌握分层抽样的步骤和方法;3.能够运用分层抽样解决实际问题;4.培养学生的抽样技能和数据分析能力。
二、教学重点与难点:1.理解和应用分层抽样的原理;2.掌握分层抽样的步骤和方法;3.运用分层抽样解决实际问题。
三、教学过程:1.导入(5分钟)向学生介绍分层抽样的概念和重要性,引发学生的学习兴趣和探究欲望。
2.知识讲解(20分钟)2.1什么是分层抽样:解释分层抽样的定义,并举例说明。
2.2分层抽样的原理:介绍分层抽样的原理,即将总体分成多个层次,然后从每个层次中随机选择一部分样本。
2.3分层抽样的步骤和方法:具体讲解分层抽样的步骤和方法,包括确定总体和层次、确定样本容量和比例等。
3.示例分析(30分钟)以一个实际问题为例,让学生分析问题并设计相应的分层抽样方案,并对样本数据进行分析和总结。
4.练习与拓展(20分钟)4.1练习题:布置一些练习题,让学生进行独立思考和解答。
4.2拓展问题:提出一些拓展问题,让学生运用分层抽样解决实际问题,并进行总结与讨论。
5.归纳总结(10分钟)让学生总结分层抽样的基本原理、步骤和方法,并强调分层抽样在实际应用中的重要性。
四、教学资源:1.PPT课件:准备一份包含分层抽样的相关概念、原理、步骤和方法的PPT课件,便于学生理解和记忆。
2.实例材料:准备一些实例材料,例如人口数据、市场调查数据等,用于示范和练习。
五、教学评价:1.学生的问题解答能力和实际应用能力;2.学生课后练习的完成情况和答题质量;3.学生的课堂表现和参与度。
六、教学反思:通过本节课的教学实践,学生对分层抽样的概念和方法应该有了初步的了解,并且能够初步运用分层抽样解决一些实际问题。
但是,可能部分学生对分层抽样的原理和步骤还不够理解,需要进一步进行巩固和拓展。
说课稿 人教版 高中数学必修三 第二章第一节《分层抽样》

分层抽样一、说教材1.教材分析《分层抽样》是人教版高中数学必修第三册第二章第一节的内容。
本节是在学习了前两节简单随机抽样和系统抽样的基础上,结合此两种随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;而且本节为下节“用样本估计总体”的学习打下了基础。
因此,本节内容在学习统计学知识的过程中起到承上启下的重要过渡作用。
2. 教学目标根据以上对教学内容和结构的分析,又考虑到高二年级学生的知识水平,我制定了以下三维教学目标:首先,知识与技能目标是:理解分层抽样的概念;掌握分层抽样的一般步骤;能区分简单随机抽样、系统抽样和分层抽样,会选择适当的方法进行抽样。
其次,过程与方法目标是:通过对现实生活中实际问题进行分层抽样,感知有具体到一般的数学研究方法,培养概括和归纳的能力。
最后,情感态度和价值观目标是:通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,激发思考、分析、探求的学习激情。
3.教学重点和难点根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的教学重点为:正确理解分层抽样的定义,灵活应用分层抽样抽取样本。
根据本节课的内容,以及学生的心理特点和认知水平,确定本节课的教学难点为:恰当的选择三种抽样方法解决现实生活中的抽样问题。
二、说学情掌握学生的基本情况,对于把握和处理教材具有重要作用,所以接下来我来说一下学生情况。
高二的学生思维活跃,积极性高,已初步形成解决数学问题的合作探究能力。
知识经验较为丰富,具备了较强的抽象逻辑思维能力和演绎推理能力。
根据学生的这一心理发展特点,应在教学过程中注意引导和启发,从而促进学生思维发展水平的提高。
三、说教法教师是学习的组织者,引导者。
我会采取直观演示法、指导发现法、讲练结合法,三法结合并辅以多媒体教学工具,帮助学生理解体会本课的内容,突出本课的重点,突破难点,实现教学目标。
四、说学法科学的学习方法十分重要,它是打开知识宝库的“金钥匙”,是通向成功的“桥梁”。
人教版高中数学必修3《分层抽样》课程设计(全国一等奖)

人教版高中数学必修3《分层抽样》课程设计(全国一等奖)课程概述本课程设计是针对人教版高中数学必修3中的《分层抽样》内容而设计的。
通过该课程的研究,学生将了解到分层抽样在实际生活和应用领域中的重要性和作用,并学会如何进行分层抽样的设计方法和步骤。
课程目标- 理解分层抽样的概念和基本原理- 学会选择适当的分层抽样方法和样本规模- 掌握分层抽样的设计步骤和具体操作- 了解分层抽样在实际调查和研究中的应用课程安排第一课时:引入与概念解析- 介绍分层抽样的定义和基本概念- 解析分层抽样的优点和作用- 分层抽样的实例分析和讨论第二课时:分层抽样方法- 介绍几种常见的分层抽样方法,如整群抽样、相对等额抽样等- 分层抽样方法的适用场景和特点- 分层抽样方法的选择和判断标准第三课时:样本规模的确定- 讲解如何确定分层抽样的样本规模- 分层抽样的误差控制和置信度计算- 样本规模的计算公式和实际应用示例第四课时:分层抽样的设计步骤- 介绍分层抽样的设计步骤和流程- 讲解分层抽样设计中的注意事项和常见问题- 使用实例进行分层抽样设计的演练和实践教学方法本课程设计采用多种教学方法和手段,包括讲解、示范、讨论、实践等。
通过理论和实践相结合的教学方式,提高学生对分层抽样知识的理解和应用能力。
评估方式学生的评估将主要通过以下几个方面进行:- 平时作业完成情况- 课堂讨论和互动参与度- 实际案例综合分析能力- 考试或小测验成绩参考资料1. 人教版高中数学必修3教材2. 相关数学教育研究论文3. 分层抽样实践案例参考书目以上为《人教版高中数学必修3《分层抽样》课程设计(全国一等奖)》的简要内容介绍,希望能对教学工作有所帮助。
如需深入了解详细课程设计,请参考相关教材和参考资料。
人教A版高中数学必修三 2.1.3《分层抽样》教案

人教A版高中数学必修三2.1.3《分层抽样》教案人教a版高中数学必修三2.1.3《分层抽样》教案2.1.3分层抽样教学计划【教学目标】1.通过实例了解分层抽样的概念、意义及适用场景2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.3.知道在分层抽样的过程中,人口中的每个个体都有相同的被选择的机会4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解分层抽样的定义,灵活运用分层抽样进行抽样,正确选择三种抽样方法,解决现实生活中的抽样问题教学难点:应用分层抽样解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.[教学过程]我复习复习系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)人口中的n个个体(2)确定分段间隔k,对编号进行分段,当NN(n是样本量)是一个整数,取K=nn;当NN不是整数时,首先从总体中随机移除几个个体,以便对总体中剩余的个体进行采样容量整除.(3)在第一段中,数字L(LWK)通过简单的随机抽样确定起始个体的数量(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.二.创设情境.假设一个地区有2400名高中生、10900名初中生和11000名小学生。
为了了解该地区中小学近视的情况和原因,教育部门应选择该地区1%的中小学生进行调查。
你认为应该如何取样?答:高中生2400Xl%=24人,初中生10900Xl%=109人,小学生11000Xl%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三、探索新知识(一)分层抽样的定义.一般来说,在抽样过程中,将种群划分为不相交的层,然后根据一定比例从每个层中独立选择一定数量的个体,并将从每个层中提取的个体组合为样本。
必修3《分层抽样》教学设计

高中数学必修3《分层抽样》教学设计一、教材分析(一) 本节的作用和地位本节是高中数学必修3第二章《统计》的第一节。
通过本节学习,学会分层抽样,灵活应用分层抽样抽取样本,感知应用数学知识解决问题的方法。
(二) 本节主要内容分层抽样的定义、灵活应用抽样进行样本抽取二、教学过程(一) 复习提问[教师]问题1:一般在什么条件下用系统抽样?系统抽样有哪些步骤?若分段间隔不足整数的时候如何处理?问题2:尝试设计从804名高一学生中抽取40人进行调查的抽样方案。
[学生]回顾系统抽样的特点,回答问题。
[教师]幻灯片出示探究问题:<探究>某地区准备调查中小学学生的视力状况。
已知高中生2400名,初中生有10900名,小学生有11000人,如果要从本地区的中小学中抽取1%进行调查,该如何抽取样本?问题(1)你认为哪些因素可能影响学生的视力?(2)设计抽样方法要考虑这些因素吗?设计意图:运用具有现实意义的案例,激发学生的学习兴趣。
[学生]讨论用过去所学的两种方法不可取,指出由于不同年级学生的视力状况有一定的差异,用简单随机抽样成系统抽样不能准确反映客观实际。
在抽样时,不仅要使每个个体被抽到的机会均等,还要注意总体中个体的层次性。
(二) 引入定义[教师](如果没有预习,可以让学生阅读教材体会定义)若学生对总体情况了解不够,用系统抽样,样本的代表性可能会很差。
比如抽取的对象可能都是男生或者都是女生,而且有时一些问题,农村和城市、老人和孩子都有很大的差异,不同学生的视力状况有一定的差异。
若总体差异很大,我们该如何处理?今天我们一起学习抽样方法中的分层抽样。
(三) 教学过程1. 给出分层抽样的定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定比例,从各层独立地抽取一定数量的个体,将各层抽取的个体合在一起作为样本,这种抽样方法,叫做分层抽样。
注:分层抽样,又叫类型抽样,尽量利用了调查者对调查对象(总体)实现所掌握的各种信息,并充分考虑了保持样本结构与总体结构的一致性,这堆提高样本的代表性是非常重要的。
高中数学 2.1.3分层抽样教案 新人教a版必修3

2.1.3分层抽样
授课时间
教
学
目
标
知识与技能
A层:(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
B层:灵活应用分层抽样抽取样本。
过程与方法
通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
情感、态度与价值观
通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的的世界观与价值观。
布置作业
学生做练习(分层)
可以互相讨论
反思小结
学生根据自身的能力做A、B组题(A组题是必做,B组题是选做)
通过师生共同探讨对话,深化对分层抽样概念及要遵循的原则的理解,加深对分层抽样过程的理解,利于知识的系统化、条理化。
引导学生运用分层抽样,加深理解分层抽样的步骤及优点,巩固知识的掌握。
小结是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力。
课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,利于拓展学生的自主发展的空间
教学反思
从现实生活中的问题出发,引起学生兴趣。问题设计层层递进,难度呈现梯度,可以满足不同水平学生需要。通过组织讨论,培养学生自主探究,合作交流的能力,培养学生概括归纳能力。同时该过程运用了从具体到抽象的方法,为给出分层抽样的定义做准备。
教学过程
教师活动
学生活动
设计意图
新课概念总结
指导无法独自完成的学生
应用分层抽样抽取样本
教学难点
确定各层的入样个体数目
人教版高中必修3(B版)2.1.3分层抽样课程设计 (2)

人教版高中必修3(B版)2.1.3 分层抽样课程设计一、前言以分层抽样为基础的概率统计方法是应用最广泛的一种方法,思路清晰明确,操作方便。
而人教版高中必修3(B版)2.1.3 分层抽样是本课程的重中之重。
本文档主要介绍了分层抽样的概念、特点、方法及其在社会调查中的应用。
同时,本文档还结合人教版高中必修3(B版)2.1.3 分层抽样的相关内容,以实例的方式进行详细的讲解,旨在帮助学生深入理解课本内容,提高其应用分层抽样的能力。
二、分层抽样的概念、特点及方法2.1 分层抽样的概念分层抽样是指在进行随机抽样时,首先根据需要,将总体划分为若干个层次,然后从每一层中抽取样本,以获得更加精确的统计结果的随机抽样方法。
2.2 分层抽样的特点•可以使总体分层后,各个层次之间有明确的差异,从而更加精确地抽样。
•可以减少样本误差,更加准确地反映样本的特点。
•抽样过程中,可以充分考虑各个层次的特点,避免不必要的随机误差,获得更加精确的结果。
2.3 分层抽样的方法分层抽样主要有以下几种方法:•比例分层抽样•等级分层抽样•分类分层抽样•多阶段分层抽样不同的分层抽样方法适用于不同的情况,应根据具体的调查目的和条件选择合适的抽样方法。
在分层抽样方法的选择时要注意合规合理。
2.4 分层抽样的应用分层抽样广泛应用于社会调查、市场调查等领域中。
在社会调查中,对于人口、地理、经济等差异明显的层次,可以采用分层抽样的方法进行抽样,获得更加可靠的数据。
三、人教版高中必修3(B版)2.1.3 分层抽样课程设计3.1 课程目标通过本课程的学习,使学生:•理解分层抽样的基本概念、特点、方法;•能够应用分层抽样的方法进行调查,并分析数据;•培养学生综合运用数学知识的能力,并逐步培养学生的创新思维和实践能力。
3.2 课程内容3.2.1 分层抽样的基本概念和特点 - 分层抽样的定义和应用场景- 分层抽样的特点及优势3.2.2 分层抽样的方法 - 比例分层抽样 - 等级分层抽样 - 分类分层抽样 - 多阶段分层抽样3.2.3 分层抽样的实例分析 - 分层抽样的实际应用 - 分层抽样在社会调查中的应用 - 分层抽样方法的实际操作技巧3.3 课程设计本课程设计采用“理论结合实际”的方式进行,旨在帮助学生更加深入地理解分层抽样的相关知识,并在实际操作中进行巩固和拓展。
人教B版必修3高中数学2.1.3《分层抽样》word教学案

四川省古蔺县中学高中数学必修三:2.1.3分层抽样
教学目标:1.结合实际问题情景,理解分层抽样的必要性和重要性
2.学会用分层抽样的方法从总体中抽取样本
教学重点:学会用分层抽样的方法从总体中抽取样本
教学过程:
1.分层抽样(类型抽样):
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
人教版高中必修32.1.3分层抽样教学设计

人教版高中必修32.1.3分层抽样教学设计一、教学目标1.了解什么是分层抽样和为什么要采用分层抽样。
2.掌握如何设计合理的分层抽样方案。
3.能够应用所学知识,设计一个符合实际要求的分层抽样调查。
二、教学重点1.分层抽样的定义和原理。
2.分层抽样的种类和优缺点。
3.分层抽样的步骤和设计方法。
三、教学内容1. 分层抽样的定义和原理分层抽样是指将总体按照某种特定的规则,划分成若干个层次,然后在每个层次内进行简单随机抽样。
分层抽样的原理是充分利用不同层次的差异,增加样本的代表性和统计精度。
2. 分层抽样的种类和优缺点按照分层的目的和方式,分层抽样可以分为正比取样、极差取样和等级取样三种。
正比取样是按照总体在各层中所占比例的大小来确定各层的样本量;极差取样是按照每个层次中样本值的异质性程度来确定各层的样本量;等级取样是将各层按照所具有的相同或相近的特征分成若干个等级,然后随机选取一定数量的层进行抽样。
正比取样和极差取样适用于总体结构分布比较均匀的情况,而等级取样适用于总体结构分布较为复杂的情况。
正比取样和等级取样的优点是抽样方便、操作简单、样本具有代表性;极差取样相比之下需要进行数据的计算和分析,操作相对较为复杂。
但极差取样具有抽样误差小、代表性好等优点。
3. 分层抽样的步骤和设计方法分层抽样的步骤和设计方法主要包括以下几个方面:1.制定调查目的和问题:确定调查目的和问卷内容,明确数据的收集方式和用途。
2.制定分层规则:根据调查目的和问题,将总体按照某种特定规则划分成若干个层次。
3.确定合理的样本量:按照统计学原理,确定每个层次的样本量。
4.确定抽样方式:根据分层取样的种类,确定采用正比取样、极差取样还是等级取样。
5.进行实际抽样:按照已经确定的抽样方式,在每个层次中进行随机抽样。
6.数据的处理和分析:对抽样得到的数据进行处理和分析,得出统计结论。
四、教学方法本单元教学采用课堂讲授、案例分析、小组讨论等多种教学方法相结合的方式,旨在使学生全面掌握分层抽样的理论知识和实际应用技能,提高其数据分析和解决问题的能力。
高中数学人教版必修分层抽样教案系列三

通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。
重点
分析
具体细化内容和确定依据
(1)正确理解分层抽样的定义;
(2)灵活应用分层抽样抽取样本。
难点
分析
(1)恰当的选择三种抽样方法解决现实生活中的抽样问题,
(2)学生在运用分层抽样方法时各层抽样比一致的保证;
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
说明分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。
教学
反思
课堂练习P62练习1. 2. 3
(四)课堂总结
1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:
(1)、分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面层之间的样本差异要大,且互不重叠。
(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。
5.能根据随机抽样的特点,选择合适的抽样方法。
发展要求:1.能综合运用多种抽样方法来进行数据的收集。
2.能利用抽样方法解决简单的实际问题。
考试说明:1.了解随机抽样的意义。2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
教材分析
本节内容是随机抽样的最后一节,学生通过前两节课的学习已体会了样本选择的重要性及抽样随机性,对统计思维也有了初步的体会,通过分层抽样的学习,一方面进一步学习多种抽样方法,另一方面也加深学生体会学生对统计思维与确定性思维的差异。
分层抽样教案高中

分层抽样教案高中教案标题:分层抽样教案 - 高中教案目标:1. 了解分层抽样的概念和作用;2. 掌握高中分层抽样方法的实施步骤;3. 能够设计适合高中学生的分层抽样教学活动。
教学内容:1. 什么是分层抽样?- 分层抽样是一种在样本选择过程中将总体分为不同层次,然后从每个层次中随机选择样本的方法。
它可以帮助我们更好地代表总体,提高研究的准确性和可靠性。
2. 高中分层抽样的步骤:a. 确定研究目的和问题:明确你希望通过分层抽样研究的内容和目标。
b. 确定层次变量:根据研究目的,确定适合分层的变量,如年级、性别、学科等。
c. 划分层次:将总体按照确定的层次变量进行划分,确保每个层次内的个体具有相似的特征。
d. 确定每个层次的样本量:根据总体和每个层次的特征,确定每个层次的样本量,使得样本能够代表总体。
e. 随机抽样:在每个层次内进行随机抽样,确保样本的随机性和代表性。
3. 设计高中分层抽样教学活动:a. 引入分层抽样概念:通过实例和讨论,介绍分层抽样的概念和作用。
b. 分析实际问题:选择一个与高中学生相关的实际问题,让学生思考如何利用分层抽样方法进行研究。
c. 划分层次变量:让学生根据实际问题确定适合的层次变量,并解释选择的理由。
d. 计算样本量:引导学生根据总体和每个层次的特征,计算每个层次的样本量。
e. 进行抽样模拟:使用随机数生成器或其他工具,让学生在每个层次内进行随机抽样,并记录样本数据。
f. 分析结果:让学生根据样本数据进行统计分析,并对结果进行解释和推断。
g. 总结和评价:让学生总结分层抽样的优点和限制,并评价该方法在解决实际问题中的适用性。
教学资源:1. PowerPoint演示文稿:包含分层抽样的概念、步骤和实例。
2. 实际问题案例:与高中学生相关的实际问题,供学生进行分层抽样教学活动。
3. 随机数生成器:用于模拟随机抽样过程。
4. 统计软件:用于对样本数据进行统计分析。
评估方法:1. 学生参与度:观察学生在课堂上的积极参与程度。
高中数学必修三《分层抽样》优秀教学设计

2.1.2系统抽样2.1.3分层抽样●三维目标1.知识与技能(1)了解系统抽样和分层抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样和分层抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感、态度与价值观(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,培养学生合作探讨,相互交流的能力,概括归纳的能力,合情推理的意识.●重点难点重点:系统抽样和分层抽样的定义及操作步骤.难点:分层抽样每层应抽取的样本数;系统抽样中的“个别案例”的处理办法.在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力,让学生体会学数学的成就感.通过师生的互动,深化系统抽样和分层抽样概念及遵循原则的理解,用程序框图来表示分层抽样的步骤,加深学生对分层步骤的理解,进而强化了重点.学生对系统抽样和分层抽样刚刚接触,还没有形成理性认识,所以鼓励学生相互交流,让他们先想、先说、先做,再规范学生的解题过程,避免了老师的单独说教,既降低了学习难度,又激发了学习兴趣.在兴趣中化解了难点.1.某中学从5 000名学生中选出50人参加2013年10月1日的庆国庆文娱活动,若用抽签法可行吗?【提示】 可行,但费时费力、操作不变.2.能否设计一个合理的抽样方法完成此样本的抽取? 【提示】 能.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本.1.某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生抽取1%的学生进行调查,你认为应当怎样抽取样本?【提示】 应分高中、初中、小学三个层次进行抽取.2.在高中、初中、小学三部分学生中都按1%的比例抽取,应各抽取多少人? 【提示】 高中生抽取2 400×1%=24(人), 初中生抽取10 900×1%=109(人), 小学生抽取11 000×1%=110(人). 1.分层抽样的定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件当总体是由差异明显的几个部分组成时,往往用分层抽样的方法.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.【思路探究】按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【自主解答】按照1∶5的比例抽取样本,则样本容量为15×295=59.步骤是:(1)编号:按现有的号码;(2)确定分段间隔k=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样的步骤:①将总体中的个体编号;②将整体编号进行分段,确定分段间隔k(k∈N*),在确定分段间隔k时应注意:分段间隔k为整数,当Nn不是整数时,应采用简单随机抽样剔除部分个体,以获得整数间隔k;③在第一段内采用简单随机抽样的方法确定起始个体编号;④按照事先预定的规则抽取样本.从含有100个个体的总体中抽取10个入样,请用系统抽样法给出抽样过程.【解】(1)将100个个体编号,00,01,02,03,04, (99)(2)分段,将总体平均分成10段,每段10人;(3)在第一段即00~09号用简单随机抽样,抽取一个号码如08;(4)以08为起始数,依次抽取18,28,…,98,这样便得到容量为10的一个样本.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【思路探究】【自主解答】(1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.【解】第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每=10个个体;段含k=80080第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及以上的有95人,为了了解与身体状况有关的某项指标,要从所有职工中抽取100名职工作为样本,若职工年龄与这项指标有关,应该怎样抽取?【思路探究】由于职工年龄与该项指标有关,而年龄由差异明显的几部分组成,故采用分层抽样.【自主解答】用分层抽样来抽取样本,步骤是:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽125×15=25(人);在35岁至49岁的职工中抽280×15=56(人);在50岁以上的职工中抽95×15=19(人).(3)在各层分别按抽签法或随机数法抽取样本.(4)综合每层抽样,组成样本.1.分层抽样的前提和遵循的两条原则(1)前提:分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体的个体数中所占比例抽取.(2)遵循的两条原则:①将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.2.分层抽样的操作步骤第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第四步,将各层抽取的个体合成一起,就得到所取样本.某工厂有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级部门为了了解机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.【解】因机构改革关系到每个人的不同利益,故采用分层抽样方法较妥.∵10020=5,∴10 5=2,705=14,205=4.∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01, (69)号,然后用随机数法抽取14人.这样便得到了一个容量为20的样本.对系统抽样操作失误致错中秋节,相关部门对某食品厂生产的303盒中秋月饼进行质量检验,需要从中抽取10盒,请用系统抽样的方法完成对此样本的抽取.【错解】(1)将303盒月饼用随机的方式编号;(2)从总体中剔除3盒月饼,将剩下的分成10段;(3)在第一段中用简单随机抽样抽取起始号码l;(4)将编号为l+30,l+2×30,…,l+9×30的个体取出,组成样本.【错因分析】在第二步剔除3盒月饼后没有对剩下的月饼进行从000,001,…,299重新编号.【防范措施】在系统抽样中,若Nn不是整数,则需剔除几个个体使得总体中剩余的个体数能被样本容量整除,那么,从总体中剔除一些个体后,剩余个体应重新编号.【正解】(1)将303盒月饼用随机的方式编号;(2)从总体中用简单随机抽样的方式剔除3盒月饼,将剩下的月饼重新用000~299编号,并等距分成10段;(3)在第一段000,001,002,…,029这三十个编号中用简单随机抽样确定起始号码l;(4)将编号为l,l+30,l+2×30,l+3×30,…,l+9×30的个体抽出,组成样本.三种抽样方法的比较1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为()A.简单随机抽样B.抽签法C.随机数表法D.系统抽样【解析】符合系统抽样的特征.【答案】 D2.为了解2 400名学生对某项教改的意见,打算从中抽取60名学生调查,采用系统抽样法,则分段间隔k为()A.40B.30 C.20D.60【解析】k=2 40060=40.【答案】 A3.某单位有职工200人,35岁以下有40人,35岁到50岁的有120人,51岁及以上的有40人,用分层抽样的方法从中抽取40人,各年龄段分别抽取人数为()A.8,24,8 B.4,12,20C.24,28,30 D.16,16,32【解析】各年龄段的比为1∶3∶1,∴各段人数分别为40×15=8,40×35=24,40×15=8.【答案】 A4.某运输队有货车1 200辆,客车800辆,从中抽取110调查车辆的使用和保养情况,请给出抽样过程.【解】利用分层抽样.第一步,确定货车和客车各应抽取多少辆.货车:1 200×110=120(辆),客车:800×110=80(辆);第二步,用系统抽样法分别抽取货车120辆,客车80辆;第三步,把抽取的货车和客车组成样本.一、选择题1.现有60件产品,编号从1到60,若用系统抽样方法从中抽取6件检验,则所抽到的个体编号可能是()A.5,10,15,20,25,30B.2,14,26,28,42,56 C.3,13,23,33,43,53 D.1,12,23,34,45,56【解析】抽样间距为k=606=10,故C正确.【答案】 C2.(2014·绵阳高一检测)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行()A.每层等数量抽样B.每层不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽同样多的个体等可能抽样【解析】要保证每个个体等可能入样,需要在所有层都按照同一抽样比等可能抽样.故选C.【答案】 C3.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为() A.30 B.36C.40 D.无法确定【解析】分层抽样中抽样比一定相同,设容量为n,由题意得n120=2790,解得n=36,故选B.【答案】 B4.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24 B.18C.16 D.12【解析】依题意可知三年级学生人数为500,即总体中各年级的人数比例为3∶3∶2,故用分层抽样抽取三年级学生人数为64×28=16,故选C.【答案】 C5.(2012·山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9C.10 D.15【解析】由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.所以做问卷B的有10人.【答案】 C二、填空题6.(2012·江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【解析】设应从高二年级抽取x名学生,则x∶50=3∶10.解得x=15.【答案】157.某单位有27名老年人,54名中年人,81名青年人.为了调查他们的身体情况,用分层抽样的方法从他们中抽取了n个人进行体验,其中有3名老年人,那么n=________.【解析】由题意可知抽样比为327=19,所以中年人应抽取54×19=6(人),青年人应抽取81×19=9(人),所以n=3+6+9=18.【答案】188.某单位200名职工的年龄分布情况如图2-1-1所示,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取__________人.图2-1-2【解析】由于系统抽样的方法在第一段实施简单随机抽样得一个起始编号,其余的编号是在此基础上加上分段间隔的整数倍得到的,第5组为22,分段间隔为5,故第一段为2,第8段为37,由分层抽样40岁以下占50%,故按比例应抽取40×50%=20(人).【答案】3720三、解答题9.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).【解】该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤.可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l,则每个班的l,10+l,20+l,30+l,40+l(如果l=6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.10.某企业共有3 200名职工,其中,中、青、老年职工的比例为5∶3∶2,从所有职工中抽取一个容量为400的样本,采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?【解】由于中、青、老年职工的比例不同,故用分层抽样的方法更合理.=200(人);中年职工抽取人数为400×55+3+2青年职工抽取人数为400×3=120(人);5+3+2=80(人).老年职工抽取人数为400×25+3+211.某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.【解】(1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生;(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生;(5)从第一段即1~5号中随机抽取一个号作为起始号,如l;(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?【思路探究】该题实际上是考查系统抽样的特征——等距离抽取样本.【自主解答】交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.某单位有工人18人,技术人员12人,工程师6人,现需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样的方法抽取,都不用剔除个体;如果样本容量增加1个,则用系统抽样时,需要在总体中剔除1个个体,求样本容量n.【解】总体中个体总数N=18+12+6=36,当抽取n个个体时,不论是系统抽样还是分层抽样,都不需要剔除个体.所以n应为2或3或6(取36,18,12,6的公约数).当n=2或3时,既不符合题意,也不满足n+1时,系统抽样需要剔除.当n=6时,符合题意,也满足n+1时系统抽样需要剔除1个,所以n=6.。
高中数学分层抽样教案

高中数学分层抽样教案
主题:分层抽样
目标:了解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
知识点:
1. 分层抽样的定义和特点
2. 分层抽样的步骤
3. 分层抽样的计算方法
教学步骤:
一、导入:
教师通过引导学生回顾上节课的内容,并提出问题:为什么我们需要进行抽样调查?什么是分层抽样?
二、讲解:
1. 介绍分层抽样的定义和特点,说明其优点和适用范围。
2. 分层抽样的步骤:确定抽样目标、确定抽样框架、确定分层变量、划分层次、计算每层样本量、随机抽样。
三、练习:
1. 根据一组数据,让学生计算每层的样本量。
2. 制定一个抽样计划,包括确定抽样目标、确定抽样框架和分层变量等。
四、讨论:
学生根据实际情况进行讨论,分享自己的抽样经验,讨论分层抽样的优缺点及应用情况。
五、总结:
对分层抽样的重点知识进行总结,巩固学生的理解。
六、作业:
布置作业,让学生自行设计一个分层抽样计划,并写出具体步骤和计算过程。
七、展示:
学生将自己的作业展示给全班同学,进行互评和讨论。
教学反思:
通过本节课的教学,学生应该能够理解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
同时,能够灵活应用分层抽样进行实际调查,并能够理解其在实际应用中的优势和局限性。
分层抽样 人教版高中数学必修3教材教案

2.1.3 分层抽样授课时间:第周年月日(星期)三维目标1.理解分层抽样的概念,掌握其实施步骤,培养学生发现问题和解决问题的能力;2.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高学生的总结和归纳能力,让学生领会到客观世界的普遍联系性.重点难点教学重点:分层抽样的概念及其步骤.教学难点:确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.导入新课思路1中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额,比十六大时都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?教师点出课题:分层抽样.思路2我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.提出问题(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?(2)想一想为什么这样取各个学段的个体数?(3)请归纳分层抽样的定义.(4)请归纳分层抽样的步骤.(5)分层抽样时如何分层?其适用于什么样的总体?讨论结果:(1)分别利用系统抽样在高中生中抽取 2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.(4)分层抽样的步骤:①分层:按某种特征将总体分成若干部分(层);②按抽样比确定每层抽取个体的个数;③各层分别按简单随机抽样的方法抽取样本;④综合每层抽样,组成样本.(5)分层抽样又称类型抽样,应用分层抽样应遵循以下要求:①分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.③当总体个体差异明显时,采用分层抽样.应用示例例1 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本.解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为51500100=,则在不到35岁的职工中抽125×51=25人;在35岁至49岁的职工中抽280×51=56人;在50岁以上的职工中抽95×51=19人. (3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.强调:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.变式训练1.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程. 分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×5322++=40;200×5323++=60;200×5325++=100. 解:用分层抽样来抽取样本,步骤是:(1)分层:按区将20 000名高中生分成三层.(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.(3)在各层分别按随机数表法抽取样本.(4)综合每层抽样,组成样本.2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样分析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.答案:D例2 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.7分析:抽样比为2030104020+++=51,则抽取的植物油类种数是10×51=2,则抽取的果蔬类食品种数是20×51=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6. 答案:C强调:如果A 、B 、C 三层含有的个体数目分别是x 、y 、z,在A 、B 、C 三层应抽取的个体数目分别是m 、n 、p,那么有x ∶y ∶z=m ∶n ∶p ;如果总体有N 个个体,所抽取的样本容量为n,某层所含个体数目为a,在该层抽取的样本数目为b,那么有ab N n =.变式训练1.(2007浙江高考,文13)某校有学生2 000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为______________.分析:抽样比为1012000200=,样本中高三学生的人数为500×101=50. 答案:502.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人分析:抽样比是120118005400360090=++,则应在这三校分别抽取学生:1201×3 600=30人,1201×5 400=45人,1201×1 800=15人. 答案:B知能训练1.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( )①简单随机抽样 ②系统抽样 ③分层抽样A.②③B.①③C.③D.①②③分析:由于各家庭有明显差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.答案:D2.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是______________.答案:53.某校500名学生中,O 型血有200人,A 型血有125人,B 型血有125人,AB 型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本? 分析:由于研究血型与色弱的关系,按血型分层,用分层抽样抽取样本.利用抽样比确定抽取各种血型的人数.解:用分层抽样抽取样本. ∵50250020 ,即抽样比为502. ∴200×502=8,125×502=5,50×502=2. 故O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人.抽样步骤: ①确定抽样比502; ②按比例分配各层所要抽取的个体数,O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人;③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本.拓展提升某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样分析:如果按分层抽样时,在一年级抽取108×27010=4人,在二、三年级各抽取81×27010=3人,则在号码段1,2,…,108抽取4个号码,在号码段109,110,…,189抽取3个号码,在号码段190,191,…,270抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不能为系统抽样.答案:D强调:根据样本的号码判断抽样方法时,要紧扣三类抽样方法的特征.利用简单随机抽样抽取出的样本号码没有规律性;利用分层抽样抽取出的样本号码有规律性,即在每一层抽取的号码个数m 等于该层所含个体数目与抽样比的积,并且应该恰有m 个号码在该层的号码段内;利用系统抽样取出的样本号码也有规律性,其号码按从小到大的顺序排列,则所抽取的号码是:l,l+k,l+2k,…,l+(n -1)k .其中,n 为样本容量,l 是第一组中的号码,k 为分段间隔=总体容量/样本容量.课堂小结本节课学习了分层抽样的定义及其实施步骤.作业习题2.1A组5.。
分层抽样

《分层抽样》教学设计一、教学内容解析“分层抽样”是人教A版普通高中课程标准实验教科书必修三第二章第一节的内容.分层抽样是统计抽样的一种方法.在抽样过程中,为了使样本具有好的代表性,当总体是由差异明显的几部分组成时我们通常采用的抽样方法.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本.分层抽样是收集数据的一种方法.在信息化社会,数据是一种重要的资源.凡有大量数据出现的地方,必会用到统计.统计由收集数据、整理数据、分析数据三部分工作构成.在这三项工作中,收集数据是整理和分析的前提和基础.这一节内容是对前面简单随机抽样和系统抽样方法的一个补充,学完这节课后,学生可以形成较为完整的抽样方法体系,为后面学习用样本估计总体打下坚实的基础.因此,本节课的教学重点是:了解分层抽样的必要性、特点和适用范围,掌握各层样本量比例分配的方法.二、教学目标设置1.通过实例,了解分层抽样的必要性、特点和适用范围;2.掌握各层样本量比例分配的方法;3.在简单的实际情境中,能根据实际问题的特点,设计恰当的抽样方法解决问题;4.培养学生的统计思维,提升数据分析能力.为落实如上教学目标.课前预留调查问题,使学生主动参与搜集数据的过程,充分调动学生的学习积极性;课上通过对各个小组数据分析整理并比较,让学生意识到简单随机抽样和系统抽样的局限性,进而激发学生寻找更合理的抽样方法的兴趣.在此过程中,学生能结合具体的实际问题情境,理解分层抽样的必要性和重要性,并掌握各层样本量比例分配的方法.在这样的的过程中提升学生获取有价值信息的意识和能力,同时提升学生的数据分析素养,三、学生学情分析本课授课班级为山西省大同市同煤一中(省级重点中学)高一年级(11)班的学生,他们具有扎实的数学基础,熟悉对数字的直接运算处理,思维敏锐,具有一定的分析问题、解决问题的能力.但是要达成本课所设教学目标、完成预设的教学内容,学生还存在以下差距:认知方面:对个体间具有明显差异的总体,怎样收集数据才能确保收集的数据具有代表性,没有意识.技能方面:如何确定各层的样本容量和如何在各层抽取样本,没有方法.因此,本节教学的难点是:分层抽样的必要性和各层样本量的确定.四、教学策略分析本节课将采用从特殊到一般的教学思路和突出学生主体活动的教学理念,先引导学生获得数学概念,再用典型案例剖析所学数学概念,帮助学生深化对概念理解.即通过设置不同的具体案例,以问题为主线,学生通过感悟生活、自主学习、合作探究,观察归纳、抽象概括提炼出不同案例的共同特点,提示出事物的共同本质.为达成提升学生“获取有价值信息的意识和能力”,将通过设计简单的实际情境,让学生课外搜集数据,并利用开放式问题引导,让学生设计恰当的抽样方法解决问题,在这样的过程中达成.此外,还需要用多媒体、Excel软件等信息技术支持.五、教学过程设计(一)获取数据,体会过程情境设置:上节课学习了系统抽样和简单随机抽样,当总体数量较少时采用简单随机抽样,当总体数量较多时采用系统抽样。
高中数学教案2.1.3《分层抽样》(新课标人教A版必修三)

课题:用样本的频率分布估计总体分布(一)
第______课时总序第______个教案
课型:新授课编写时间:____年___月___日执行时间:___年___月___日
教学目标:通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布.
指出两种估计手段:一是用样本的频率分布估计总体的分布,二是用样本的数字特征(平均数、标准差等)估计总体的数字特征.
二、讲授新课:
1、教学频率分布直方图的作法:
①引例:确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?为了了较为合理地确定出这个标准,需要做哪些工作?
分析:因为被调查的总体有很明显的差异,所以要使用分层抽样,找到样本容量与总体个数的比例,再和每个层的个体数相乘,得到的样本数量之和就是应抽取的人数.
解:因为要抽取1%,所以样本容量与总体个数的比例为1:100,则高中应抽取人数为2400*1/100=24,初中应抽取人数为10900*1/100=109,小学应抽取人数为11000*1/100=110
一、复习准备:
1、提问:一般在什么条件下使用系统抽样?系统抽样都有那些步骤?当分段间隔不是整数的时候怎么办?
2、试设计从高一学生804人中抽取40人进行调查的抽样方案.
变式:学校高一学生800人,高二640人,高三560人,从全校抽取100人,如何抽样?
3、引入:当对总体情况不是很了解的情况下用系统抽样,样本的代表性可能会很差,比如抽取的可能都是男生,或都是女生.而且有时一些问题农村和城市,老人和孩子等都有很大的差异,当总体存在很大的差异时,我们怎么办呢,今天我们来学习第三种抽样方法分层抽样.
人教版高中必修3(B版)2.1.3分层抽样课程设计

人教版高中必修3(B版)2.1.3分层抽样课程设计课程背景在高中数学的学习中,我们常常面临着很多难题。
而在教学中,教师需要根据学生在数学方面的知识掌握情况,在教学中采取不同的教学方法,来更好地帮助学生,及时解决学生在学习过程中遇到的难题。
而这种针对学生掌握情况的教学方式,就需要用到分层抽样。
分层抽样是在大样本中选取若干小样本,并按照特定的规则来确定小样本所占比例的一种抽样方法。
在教学中,分层抽样可以帮助教师深刻了解学生对数学知识的掌握情况,从而更好地进行针对性的教学。
因此,我们在高中必修3(B版)的数学课程教学中,设计了分层抽样的课程。
课程目标本课程的目标是,通过分层抽样的方式获取学生在数学知识方面的掌握情况,并根据这些情况进行针对性的教学,帮助学生更好地掌握数学知识,提高他们的数学成绩。
课程安排本课程包括以下三个部分:1. 分层抽样在本课程的第一部分,我们将介绍分层抽样的基本概念、原理和方法,并结合高中数学的课程特点,介绍如何进行数学题目的分层抽样。
通过实例演示,让学生深入了解分层抽样的重要性和实用性。
2. 数据分析在本课程的第二部分,我们将根据分层抽样获取的数据,进行数据分析。
我们将通过统计学方法,对学生在不同数学知识领域的表现进行分析,发现学生在哪些知识领域存在薄弱环节,并针对这些薄弱环节,采取相应的针对性教学措施。
3. 针对性教学在本课程的第三部分,我们将根据数据分析的结果,采取针对性的教学措施。
我们将针对学生在不同知识领域的掌握情况,采取不同的教学方式和方法,来帮助学生更好地掌握数学知识,提高他们的数学成绩。
课程实施本课程的实施,需要教师配合教材进行。
教师可以在教学中引导学生进行分层抽样,并根据抽样结果进行数据分析和针对性教学。
同时,在课程中加入一些互动性较强的活动,如小组讨论、小型竞赛等,增强学生的参与性和学习兴趣。
课程总结通过本课程的学习,学生不仅能够深入了解分层抽样的基本概念、原理和方法,还能够掌握数据分析的基本方法,并学会采取针对性的教学措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.3 分层抽样整体设计教学分析教材从“了解某地区中小学生的近视情况及其形成原因”的探究中引入的概念.在探究过程中,应该引导学生体会:调查者是利用事先掌握的各种信息对总体进行分层,这可以保证每一层一定有个体被抽到,从而使得样本具有更好的代表性.为了达到此目的,教材利用右栏问题“你认为哪些因素可能影响到学生的视力?设计抽样方法时,需要考虑这些因素吗?”来引导学生思考,在教学中要充分注意这一点.教材在探究初中和小学的抽样个数时,在右栏提出问题“想一想,为什么要这样取各个学段的个体数?”用意是向学生强调:含有个体多的层,在样本中的代表也应该多,即样本在该层的个体数也应该多.这样的样本才具有更好的代表性.三维目标1.理解分层抽样的概念,掌握其实施步骤,培养学生发现问题和解决问题的能力;2.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高学生的总结和归纳能力,让学生领会到客观世界的普遍联系性.重点难点教学重点:分层抽样的概念及其步骤.教学难点:确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.课时安排1课时教学过程导入新课思路1中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额,比十六大时都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?教师点出课题:分层抽样.思路2我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.推进新课新知探究提出问题(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?(2)想一想为什么这样取各个学段的个体数?(3)请归纳分层抽样的定义.(4)请归纳分层抽样的步骤.(5)分层抽样时如何分层?其适用于什么样的总体?讨论结果:(1)分别利用系统抽样在高中生中抽取 2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.(4)分层抽样的步骤:①分层:按某种特征将总体分成若干部分(层);②按抽样比确定每层抽取个体的个数;③各层分别按简单随机抽样的方法抽取样本;④综合每层抽样,组成样本.(5)分层抽样又称类型抽样,应用分层抽样应遵循以下要求:①分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.③当总体个体差异明显时,采用分层抽样.应用示例例1 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本.解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为51500100=,则在不到35岁的职工中抽125×51=25人;在35岁至49岁的职工中抽280×51=56人;在50岁以上的职工中抽95×51=19人. (3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.点评:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.变式训练1.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程. 分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×5322++=40;200×5323++=60;200×5325++=100. 解:用分层抽样来抽取样本,步骤是:(1)分层:按区将20 000名高中生分成三层.(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.(3)在各层分别按随机数表法抽取样本.(4)综合每层抽样,组成样本.2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样分析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.答案:D例2 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.7分析:抽样比为2030104020+++=51,则抽取的植物油类种数是10×51=2,则抽取的果蔬类食品种数是20×51=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6. 答案:C点评:如果A 、B 、C 三层含有的个体数目分别是x 、y 、z,在A 、B 、C 三层应抽取的个体数目分别是m 、n 、p,那么有x ∶y ∶z=m ∶n ∶p ;如果总体有N 个个体,所抽取的样本容量为n,某层所含个体数目为a,在该层抽取的样本数目为b,那么有ab N n =. 变式训练1.(2007浙江高考,文13)某校有学生2 000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为______________.分析:抽样比为1012000200=,样本中高三学生的人数为500×101=50. 答案:502.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人分析:抽样比是120118005400360090=++,则应在这三校分别抽取学生:1201×3 600=30人,1201×5 400=45人,1201×1 800=15人. 答案:B知能训练1.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( )①简单随机抽样 ②系统抽样 ③分层抽样A.②③B.①③C.③D.①②③分析:由于各家庭有明显差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.答案:D2.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是______________.答案:53.某校500名学生中,O 型血有200人,A 型血有125人,B 型血有125人,AB 型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本? 分析:由于研究血型与色弱的关系,按血型分层,用分层抽样抽取样本.利用抽样比确定抽取各种血型的人数.解:用分层抽样抽取样本. ∵50250020 ,即抽样比为502. ∴200×502=8,125×502=5,50×502=2. 故O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人.抽样步骤: ①确定抽样比502; ②按比例分配各层所要抽取的个体数,O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人;③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本.拓展提升某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样分析:如果按分层抽样时,在一年级抽取108×27010=4人,在二、三年级各抽取81×27010=3人,则在号码段1,2,…,108抽取4个号码,在号码段109,110,…,189抽取3个号码,在号码段190,191,…,270抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不能为系统抽样.答案:D点评:根据样本的号码判断抽样方法时,要紧扣三类抽样方法的特征.利用简单随机抽样抽取出的样本号码没有规律性;利用分层抽样抽取出的样本号码有规律性,即在每一层抽取的号码个数m等于该层所含个体数目与抽样比的积,并且应该恰有m个号码在该层的号码段内;利用系统抽样取出的样本号码也有规律性,其号码按从小到大的顺序排列,则所抽取的号码是:l,l+k,l+2k,…,l+(n-1)k.其中,n为样本容量,l是第一组中的号码,k为分段间隔=总体容量/样本容量.课堂小结本节课学习了分层抽样的定义及其实施步骤.作业习题2.1A组5.设计感想本节课重视从学生的生活经验和已有知识中学习数学和理解数学.首先为教材内容选择生活背景,让学生体验数学问题于生活实际;其次,大胆调用学生熟知的生活经验,使数学学习变得易于理解掌握;第三,善于联系生活实际有机改编教材习题,让学生在实践活动中理解掌握知识,变“学了做”为“做中学”.。