01五年级奥数倒推法
小学数学奥数方法逆推法
小学数学奥数方法逆推法小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。
有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。
由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了。
这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。
用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。
(一)从结果出发逐步逆推例1一个数除以4,再乘以2,得16,求这个数。
(适于四年级程度)解:由最后再乘以2得16,可看出,在没乘以2之前的数是:16÷2=8在没除以4之前的数是:8×4=32答:这个数是32。
*例2 粮库存有一批大米,第一天运走450千克,第二天运进720千克,第三天又运走610千克,粮库现有大米1500千克。
问粮库原来有大米多少千克?(适于四年级程度)解:由现有大米1500千克,第三天运走610千克,可以看出,在没运走61 0千克之前,粮库中有大米:1500+610=2110(千克)在没运进720千克之前,粮库里有大米:2110-720=1390(千克)在没运走450千克之前,粮库里有大米:1390+450=1840(千克)答:粮库里原来有大米1840千克。
*例3 某数加上9后,再乘以9,然后减去9,最后再除以9,得9。
问这个数原来是多少?(适于四年级程度)解:由最后除以9,得9,看得出在除以9之前的数是:9×9=81在减去9之前的数是:81+9=90在乘以9之前的数是:90÷9=10在加上9之前,原来的数是:10-9=1答:这个数原来是1。
*例4 解放军某部进行军事训练,计划行军498千米,头4天每天行30千米,以后每天多行12千米。
小学奥数 还原问题(一)
6-1-2.还原问题(一)教学目标本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.例题精讲模块一、计算中的还原问题【例 1】一个数的四分之一减去5,结果等于5,则这个数等于_____。
【考点】计算中的还原问题【难度】1星【题型】填空【关键词】希望杯,五年级,二试,第3题【例 2】某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】(2008年“陈省身杯”国际青少年数学邀请赛)有一个数,如果用它加上6,然后乘以6,再减去6,6-1-2.还原问题(一).题库教师版page 1 of最后除以6,所得的商还是6,那么这个数是。
【考点】计算中的还原问题【难度】1星【题型】填空【关键词】可逆思想方法【巩固】一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】少先队员采集树种子,采得的个数是一个有趣的数.把这个数除以5,再减去25,还剩25,你算一算,共采集了多少个树种子?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【例 3】学学做了这样一道题:某数加上10,乘以10,减去10,除以10,其结果等于10,求这个数.小朋友,你知道答案吗?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】学学做了这样一道题:一个数加上3,减去5,乘以4,除以6得16,求这个数.小朋友,你知道答案吗?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】一次数学竞赛颁奖会上,小刚问老师:“我得了多少分?”老师说:“你的得分减去6后,缩小2倍,再加上10后,扩大2倍,恰好是100分”.小刚这次竞赛得了多少分?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【例 4】牛老师带着37名同学到野外春游.休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数.”小朋友们,你知道牛老师今年多少岁吗?【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【巩固】小智问小康:“你今年几岁?”小康回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4. 请你算一算,我今年几岁?”【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【巩固】在小新爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100,问:小新爷爷今年多少岁数?【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【巩固】学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁.”小朋友,你知道这位神仙现在有多少岁吗?【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【例 5】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是.【考点】计算中的还原问题【难度】3星【题型】填空【关键词】可逆思想方法,第七届,小数报【例 6】假设有一种计算器,它由A、B、C、D四种装置组成,将一个数输入一种装置后会自动输出另一个数。
五年级奥数讲义:倒推法解题
五年级奥数讲义:倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反.其实在数学中,也有许多类似的还原问题.解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案. 例题选讲例1:有一群猴子分吃桃子,第一只拿走—半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了.曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:3×2=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)×2=18(个),第三只猴子拿之前应该有桃子:(18—3)×2=30(个),第二只猴子拿之前应该有桃子:(30+3)×2=66(个),第一只猴子拿之前应该有桃子:66×2=132(个),即这堆桃有132个.例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱.问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:48÷2:24(元),乙:48÷2—24(元),丙:48+24+24—96(元);第二次在乙给甲、丙添钱之前:甲:24÷2—12(元),乙:24+12+48===84(元),丙:96÷2=48(元);第一次在甲给乙、丙添钱之前:甲:12+42+24—78(元),乙:84÷2=42(元),丙:48÷2=24(元). 所以开始时甲有78元,乙有42元,丙有24元.例3:甲、乙、丙三人共有48张邮票,第一次甲先拿出与乙的邮票数相等的张数给乙;第三次乙拿出与丙的邮票数相等的张数给丙;第三次丙又拿出与这时的甲的邮票数相等的张数给甲,最后三人的邮票数相等,三人原来各有多少张邮票?【分析与解答】此题条件复杂,因此我们可以用列表的方法,从最后的果一步步按每次的变化倒推,这样就容易看清题中的数量关系了.列表如下:练习与思考1.张强去银行取款,第一次取了存款的一半多100元,第二次取了余下的一半少50元,第三次取了余下的一半多50元,这时他的存折上还剩下575元.问:张强原来有存款多少元?2.书架上有上、中、下三层书,共2400本一先从上层拿出与中层同样多的书放进中层,再从中层拿出与下层同样多的书放进下层,最后从下层拿出与上层现在同样多的书放进上层,这时三层书同样多.问:开始时,上、中、下三层各有多少本书?3.做一道整数加一个学生把个位上的7看作5,把十位上的5看作7,把百位上的9看作6,结果得出和为775.问:正确的答案应该是多少?4.有26块砖,兄弟两人争着去挑,弟弟走在前面,刚摆好砖哥哥赶来了.哥哥见弟弟挑得太多,就拿来一半给自己.弟弟觉得自己能行,又从哥哥那里拿来一半.哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块.问:开始时,弟弟准备挑多少块?5.甲、乙、丙三个瓶子共装了24升水,现在把甲瓶的水分别倒给乙、丙两瓶,使乙、丙两瓶的水比原来增加1倍;之后,又将乙瓶的水按上面的要求倒给甲、丙;最后,再按上面的要求将丙瓶的水倒一部分给甲、乙两瓶,这样倒了三次后,三个瓶中的水一样多.问:开始时甲、乙、丙三瓶各装水多少升?6.世纪商场里有一批儿童玩具,第一天运出总数的一半少4 个,第二天运出剩下的一半多2个,第三天又运进25个,这时库存儿童玩具45个,世纪商场原来有多少个儿童玩具?7.有一堆书,第一次搬一半,第二次般走剩下的一半多3本,第三次搬走剩下的一半少3本,第四次搬走剩下的一半多3本,第五次搬走剩下的一半,最后剩3本.问:原来有多少本书?8.甲、乙、丙各有若干个橘子.第一次甲给乙、丙橘子,各给与他们原有橘子数量相等的个数;同样,第二次乙给甲、丙橘子,各给与他们现有橘子数量相等的个数;第三次丙给甲、乙橘子,同样各给与他们现有数量相等的个数.最后三人都各有48个橘子,那么开始时三人各有多少个橘子?9.一种有益的菌种每小时可增长.l倍,现有一批这样的细菌:10小时后达到100万个,当它们达到25万个时,经历了多少长时间?。
奥数之谜乘法倒推法
奥数之谜乘法倒推法在奥数竞赛中,乘法倒推法是一种非常有效的解题方法。
它通过逆向思维,从问题的答案入手,逐步推导出问题的解决过程,达到解题的目的。
本文将介绍乘法倒推法的基本原理,并通过实例来说明其应用。
乘法倒推法的基本原理是,利用答案推导问题的解法。
一般而言,问题会给出一个乘积和部分已知的因数,要求我们求解缺失的因数。
我们可以从乘积入手,将其不断分解成较小的因数,直到找到所有未知的因数。
这种逆向思维能够帮助我们找到问题的突破口。
为了更好地理解乘法倒推法,我们举一个实际例子。
假设问题描述如下:有一个三位数X乘以一个两位数Y,结果为四位数Z。
已知Z的个位数是6,Y的个位数是4,求X和Y的值。
首先,我们按照题目要求,设Z的个位数为6,根据乘法的计算规则,可以知道一定存在两个整数相乘的结果等于Z。
由于Z是一个四位数,那么它的可能取值范围在1000和9999之间。
接下来,我们观察Y的个位数为4,那么根据乘法的基本原理,可以得出Y的十位数是6。
此时,我们可以组成一个乘法算式:X * 64 = Z。
继续观察Z的个位数是6,我们可以得出X的个位数也是6。
这时,我们可以将X的十位数设为a,百位数设为b,得出新的乘法算式:(10b + a) * 64 = Z。
通过展开计算,我们可以得到以下方程:640b + 64a = Z然后,我们回过头来看题目中的已知条件,Z是一个四位数,且其个位数为6。
那么将Z的个位数6代入方程,可以得出:640b + 64a = 10,000n + 6进一步化简,可以得到:80b + 8a = 1250n + 1在上述方程中,我们可以尝试不同的a和b的取值,逐步推导出符合方程的解。
例如,当a=9,b=2时,方程左边等于649,能够被1250n + 1整除。
因此,我们可以得出一个符合条件的X和Y的解:X= 629,Y = 64。
通过这个例子,我们可以看到乘法倒推法的应用。
通过逆向思维,从问题的答案入手,我们逐步推导出了缺失的因数,解决了问题。
小学五年级数学《解决问题的策略——倒推》教案
小学五年级数学《解决问题的策略——倒推》教案1.猜一猜:老师的年龄加上9的和再除以4,恰巧是10岁。
老师今年是多少岁?2.谈话:这是老师每天上学从家到学校的路线,你能说说老师每天放学从学校回家的路线吗?(多媒体呈现:老师家向东50米到苍梧绿园向北200米到教育局向西150米到学校)3.揭题:刚才,我们算出了刘老师的年龄,研究了刘老师返回的路线。
大家有没有感觉到,解决这两个问题时都分别使用了一些方法,这些方法之间有没有什么相同之处呢?(板书:倒过来推想)这种从结果出发,倒过来推想的策略,在我们的日常生活和数学学习中经常使用,是一种重要的解决问题的策略,不信,咱们继续看设计意图:学生数学知识的形成是以一种积极的心态,调动原有的知识和经验尝试解决新问题的过程。
因此,通过猜年龄和返回路线两个已有经验的唤醒,为倒推策略的探索提供了清晰地新旧知识间的固着点,促进新认知的高效建构。
二、初步体验,建立模型1.出示例l师:这儿有两杯果汁,从图中你可以了解到哪些信息?生:一共有400毫升。
生:甲杯果汁比乙杯的多。
师:假如有两人来喝这两杯果汁,你觉得要怎样做才公平一点呢?生:把两杯倒在一起,然后平均分。
生:甲杯倒给乙杯一点,使两个杯子同样多。
师:现在从甲杯倒人乙杯40毫升,甲乙两杯的果汁数量各发生了怎样的变化?生:甲杯减少了40毫升,乙杯增加了40毫升。
提出问题:要求原来两杯果汁各有多少毫升?2.解决问题填写课本第88页的表格。
填完后说说你是怎么推算的。
甲杯/ml乙杯/ml现在原来结合回答演示:甲杯的果汁数就在现在200毫升的基础上增加多少,乙呢?交流:展示学生的表格,说一说想法?追问:要求原来的情况,我们是从哪儿开始想起呢?原来的变化过程是甲杯倒人乙杯40毫升,倒推时是怎样变化的?(强调:变化过程相反)3.回顾反思师:回想一下,刚才解决问题的过程中运用了什么方法,我们先算的是什么?我们是从哪里开始倒推的呢?小结:看来当我们知道现在的量,要求原来的量时(板书),我们就可以用倒推的方法来解决。
小学奥数思维训练—倒推法
小明兜里有一些糖,第一次吃掉了5个,第二次吃掉 了3个,妈妈又给了他4个,他一看兜里还有6个糖, 请问小明原来有几个糖?
例Hale Waihona Puke 题 展 示6 妈妈给了4个
-4
2 5 1 第二次吃了3个 第一次吃了5个
+3
+5 0
6-4+3+5=10
奥数思想
倒推法是一种非常常见的数学思想。每一个学段 都有涉及。理解掌握倒推法的特点尤为重要。
所谓倒推法就是利用相反的运算方法得到上一步 的答案,直到找到最开始的答案。
训练加油站
威尔做一道加法题时,把一个加数个位上的9看作6 , 十位上的6 看作9 , 结果和是174 , 那么正确的结果 应该是?
关注不迷路, 我们下次见!
数学这样学
小学奥数思维训练
倒推法
主讲人:成成老师
理解概念
小明放学回到家发现,妈妈给他买的电话手表不 见了!
于是,他回想起自己回家的过程中先在公交车站 等车、又在菜市场买了最爱吃的烧麦、最后回到 小区门口帮妈妈拿快递。 他想回到这些地方找一找,他会先找哪个地方呢?
根据答案,倒回去一步一步推理出原因, 这就叫做倒推法!
五年级数学《倒推》教案
五年级数学《倒推》教案五年级数学《倒推》教案1教学内容:教科书第88~89页的例1、例2和“练一练”,练习十六的相关习题教学目标:1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:学会用倒推的解题策略解决实际问题教学难点:根据具体问题确定合理的解题步骤教学准备:多媒体课件,练习纸。
教学过程:一、激趣导入,初步建立倒推法的一般解题流程1、路线倒推师:前不久,学校组织大家去春游,还记得吗?生:记得师:游玩后一位同学写了这样的一篇数学日记。
来,听一听。
(录音:我们8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。
下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)师:谁能回答?生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。
(出示:学校←长江大桥←老山风景区←雏鹰军校)师:原来你是倒过来想的。
2、翻牌倒推师:下面老师玩一个小魔术,想不想看?生:想师:看好了。
(出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)师:要想知道原来这三张牌是怎样摆放的,怎么办?生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。
师:你为什么这样操作?生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。
师:原来你也是倒过来想的。
3、运算倒推师:我们再来玩一个小游戏,比比谁的反应快!(出示:)师:你能立刻报出表示多少吗?生:18师:你是怎么想的?生:6×5=3030-20=1010+8=18师:你也是倒过来想的4、小结师:刚才这3个问题,大家都是怎么想的?生:倒过来想的:师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。
五年级奥数教学课件:倒推法
100
答:这段公路的全长是700米。
练1、元元读一本科幻小说,第一天读了全书的一半多 30页,第二天读了余下的一半多16页,还剩下64页没 有读。求这本科幻小说一共有多少页?
原:
30
(160+30)×2 = 380
16
( 64+16)×2 = 160
64
答:这本科幻小说一共有380页。
练2、有一筐橙子,第一次取出全部的一半还多10个, 第二次取出余下的还多5个,最后还剩下5个,求这筐 橙子一共有多少个?
提示:先用“和差”解法求出弟弟最后挑几块砖: (26-2)÷2=12(块)
再用倒推法求出弟弟最初准备挑几块砖. {26-〔26-(12+5)]×2}×2
=16(块) 答:弟弟最初准备挑砖16块.
2、甲、乙两桶油各有若干千克,如果要从甲桶中倒出和 乙桶同样多的油放入乙桶,再从乙桶中倒和甲桶剩下的 同样多的油放入甲桶。这时两桶油恰好都是36千克。问 两桶油本来各有多少千克?
解:①现在三棵树上各有鸟 多少只?48÷3=16(只)
②第一棵树上原有鸟只数. 16+8=24(只)
③第二棵树上原有鸟只数. 16+6—8=14(只)
④第三棵树上原有鸟只数. 16—6=10(只)
答:第一、二、三棵树上本来各 落鸟24只、14只和10只.
2.有砖26块,兄弟二人争着挑.弟弟抢在前, 刚刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太 多,就抢过一半.弟弟不肯,又从哥哥那儿抢 走一半.哥哥不服,弟弟只好给哥哥5块.这时 哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?
于是,商人将口袋里所有的金币都放进魔术师的盒子里,从一数到十,打开盒子一看, 哇!钱真的翻了一倍,商人十分高兴,取出钱,并付给魔术师80个金币。然后商人又将 其余的金币都放进魔术师的盒子里,商人的钱有翻倍了,魔术师又得到了80个金币,接 着商人又放入第三笔钱,钱又翻倍了。但此时的商人付给魔术师80个金币后,他自己已 是分文不剩了。小朋友请你算一算,这个贪心的商人本来有多少金币呢?
五年级奥数练习倒推法解题
倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐.所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法.二、精讲精练【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。
第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。
即48÷(1-3/5)÷(1-1/3)=180(页)答:这本书共有180页。
练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米.列式为:【500÷(1-2/7)+100】÷(1-1/5)=1000米答:这段公路全长1000米。
练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了1/2多1吨,第二天用去了余下1/3少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。
五年级奥数讲义:倒推法解题
五年级奥数讲义:倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反。
其实在数学中,也有许多类似的还原问题。
解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案。
例题选讲例1:有一群猴子分吃桃子,第一只拿走—半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了。
曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:3×2=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)×2=18(个),第三只猴子拿之前应该有桃子:(18—3)×2=30(个),第二只猴子拿之前应该有桃子:(30+3)×2=66(个),第一只猴子拿之前应该有桃子:66×2=132(个),即这堆桃有132个。
例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱。
问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:48÷2:24(元),乙:48÷2—24(元),丙:48+24+24—96(元);第二次在乙给甲、丙添钱之前:甲:24÷2—12(元),乙:24+12+48===84(元),丙:96÷2=48(元);第一次在甲给乙、丙添钱之前:甲:12+42+24—78(元),乙:84÷2=42(元),丙:48÷2=24(元)。
五年级奥数倒推法资料讲解
五年级奥数倒推法倒推法月日姓名重点:掌握倒推法的基本思路及运算步骤。
难点:涉及两个及三个量的还原倒推。
【知识要点】有些应用题的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着推理,逐步靠拢所求,直到解决问题,这种思考问题的方法,我们通常把它叫做倒推法(还原法)。
【莉莉分析】例1 某数乘以2,再加上8,然后再除以2,再加上7,最后再乘以3得到51。
问:这个数原来为多大?例2 琳琳去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还多10元,还剩125元,你知道琳琳她原来有存款多少元吗?例3 食堂买来一批大米,第一次吃了全部的一半少3千克,第二次吃了余下的一半少8千克,最后剩下22千克。
这批大米共有多少千克?例4 甲、乙、丙、丁四个同学共有彩色玻璃弹子100颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗,这时四人的弹子数相同。
他们原来每人各有弹子多少颗?【附加题】书架上、中、下三层共放着96本书,先从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放书的本数相同。
这个书架的上、中、下三层原来各放书多少本?【随堂练习】1.某数乘以2,加上5,除以5,减去3后结果为0,求这个数?2.克维教育买来一批苹果,第一次吃了全部的一半少5千克,第二次吃了余下的一半还少10千克,还剩22千克,你知道这批苹果共有多少千克吗?3.一根绳子,第一次用去全长的一半多5米,第二次用去余下的一半少10米,第三次用去15米,最后还剩10米,这根绳子原有多少米?4.抽屉里有若干个玻璃球,小军每次拿了其中的一半再放回一个,这样一共拿了三次,抽屉中还有3个玻璃球,问原来抽屉中有多少个玻璃球?5.桌上放着三盘橘子共45只,如果从第一盘拿4只放到第二盘,再从第二盘拿出7只放到第三盘,那么三盘子中的橘子只数就完全相等。
五年级数学倒推
五年级数学倒推
解决问题的策略--倒推
教学内容:
教科书第88~89 页的例1、例2 和”练一练”,练习十六的相关习题
教学目标:
1.使学生学会运用”倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2.使学生在对解决实际问题过程的不断反思中,感受”倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学过程:
一、谈话感知”倒推”策略,揭示课题:
谈话:同学们,前面我们已经见过面了,赵老师来自哪所学校啊?对了,今早7:30 老师就从东坝坐车出发,经过青山、下坝,最后到达我们桠溪,今天活动结束后老师还要原路返回东坝。
你觉得老师回去时会经过哪些地方呢?完整地说说。
你怎幺知道的?你觉得我会先开到青山,再开到下坝,再直接到东坝吗?
揭题:同学们真聪明,其实你们刚才的想法就是我们在解决很多问题时常用的一种策略,叫做”倒推”,今天我们就一起来深入研究这种策略。
二、应用”倒推”,深化理解:
1、教学例1:。
五上3倒推法(1)
姓名:第三讲倒推法(1)知识摘要:有些问题,若按一般的思路——“由前到后”的顺序去分析解答就会带来很大的困难,这时如果转换一下角度,试试“由后向前”的方法,根据题意从后面倒着往前一步一步地推,这样往往会令问题得到简化。
倒推法,就是从后面的已知条件入手,逐步向前一步一步地推算,最后得出所需要的结论。
例1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁?练习一1.一个数加上1,乘以8,减去8,结果还是8,这个数是()。
2.某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。
那么小强这次考试的成绩是()。
3.小强今年10岁,他去问老师的年龄,老师对他说:“如果把我今年的年龄加上5再除以5,然后减去5后再乘以10,就正好是你今年的年龄。
”那么老师今年()岁。
例2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?练习二1.甲、乙、丙三个数,从甲数中取出20加到乙数,然后从乙数中取18加到丙数,最后从丙数中取出25加到甲数,这时三个数都恰好是160。
那么甲数原来是()。
2.有三桶油。
从甲桶中倒20千克到乙桶,然后从乙桶中倒35千克到丙桶,最后从丙桶中倒25千克到甲桶,这时三桶油都正好100千克。
原来三桶中最多的一桶油有()千克。
3.三棵树上有一些小鸟。
首先从第一棵树上飞了10只小鸟到第二棵树,然后从第二棵树上飞了20只小鸟到第三棵树,最后从第三棵树上飞了30只小鸟到第一棵树,最后三棵树上各有50只小鸟。
最初三棵树上的小鸟分别是()只、()只、()只。
例3、有一条铁丝,第一次剪下它的一半又2米;第二次剪下剩下的一半又2米;此时还剩下13米。
这条铁丝原来长()米。
练习三1、有一条铁丝,第一次剪下它的一半又4米;第二次剪下剩下的一半又3米;此时还剩下9米。
苏教版五年级《解决问题的策略--倒推》课件
(
)
+24
(
)
—30
( 52 )
填一填:
+40 ( 10 ) ( 50 )
- 30 ( 20 )
÷ 7
×9
(42 )
( 6 )
( 54
)
玩一玩
练一练:
(1)小军收集了一些画片,他拿出画片的一半 还多一张送给小明,自己还剩25张,小军原来 有多少张画片?
原有?张
送出一半
原来?张 1张
再送出1张
25张
小明原来有一些邮票,今年又收集了 24张.送给小军30张后,还剩52张.小 明原来有多少张邮票?
例2 原来有?张 又收集24张 送给小军30张 还剩52张
小明原来有一些邮票,今年又收集了 24张.送给小军30张后,还剩52张.小 明原来有多少张邮票?
例2 原来有?张 又收集24张 送给小军30张 还剩52张
小明原来有一些邮票,今年又收集了 24张.送给小军30张后,还剩52张.小 明原来有多少张邮票?
例2
小明原来有一些邮票,今年又收集了 24张.送给小军30张后,还剩52张.小 明原来有多少张邮票?
例2
1、用以前学过的方法整理条件! 2、你准备用什么策略解决这个问题? 3、和你的同桌轻声交流你的想法!
小华去参观动物园,先从大门向北走2格到熊猫馆, 再向北走1格到百鸟园,再向东走4格到猴山,最后向南 走2格到蛇馆.
你能在图中标出其他几 个景点和大门的位置吗?
北 4
百鸟园 猴山
3 2
熊猫馆
1
大门
蛇馆
0
1
2
3
4
5
6
7
像这种由现在倒退回去,求原来的问题,这种方法我们称之为倒推法 北 4
五年级奥数-倒推法解题
五年级奥数-倒推法解题
1.一个数加上2,减去3,乘以4,除以5等于12。
这个数是多少?
2.什么数在扩大8倍后除以3的商,减去2与3之和的2倍,所得的差等于6 ?3.有一个两位数,十位上的数是个位上的数的2倍,如果把十位上的数与个位
上的数交换,就得到另外一个两位数,把这个两位数与原来两位数相加,和是132。
原来的两位数是多少?
4.幼儿园分糖,一班分一半又1粒,二班分余下的一半又1粒,三班分再余下的一半又1粒,这时还剩一粒糖。
这些糖共值4.40元。
问每粒糖值多少钱? 5、粮库内有大米若干包,第一次运出库存的一半多20包,第二次运出剩下的
一半多40包,第三次运出140包,粮库里还剩50包。
求粮库里原有大米多少包?
6.李老师的教龄增加4年以后再乘以5,比他教龄的3倍还多92年。
李老师教龄有多少年?
7.修路队修一条公路,第一天修了全长的一半少40米,第二天修了余下的一半多10米,最后还剩60米。
这条公路长多少米?
8.书架分上、中、下三层,一共存放192本书。
现在先从上层取出与中层同样多的书放在中层,又从中层取出与下层同样多的书放到下层,再从下层取出与上层同样多的书放到上层,这时三层所放的书本数同样多。
问这个书架上、中、下三层原来各放多少本书?。
小学五年级数学下册解决问题的策略-倒推优秀教学设计
小学数学解决问题的策略—倒推【教学内容】小学五年级数学下册《解决问题的策略——倒推法》【教学目标】1、通过演示和探索使学生在解决实际问题的过程中学会用“倒过来推想”的策略寻找解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。
2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
3、使学生进一步积累解决问题的经验,培养良好的审题和解题的习惯,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
【教学重难点】1、让学生学会用“倒过来推想”的策略寻求解决问题的思路,能灵活运用不同策略帮助解决实际问题。
2、培养学生良好的审题和解题习惯。
一、,感知策略。
教学例11、出示例1前一个信息和问题:甲乙两杯果汁共400毫升,甲乙两杯各有多少毫升果汁?学生尝试解决发现不好解后交流。
【设计意图:这里设计让学生上当,既可以激发学生的学习兴趣,又可以帮学生巩固解决一个实际问题至少需要两个信息这个常识,同时培养学生学生细心审题的良好学习习惯。
】2、出示完整的例1情境图:甲乙两杯果汁共400毫升,甲到给乙40毫升,两杯果汁一样多,原来甲乙两杯各有多少毫升果汁?生独立审题后独立填表。
交流时要求学生按思考的顺序说想法。
3、电脑演示果汁倒回的过程。
4、引导回顾:刚才解决问题时从什么想起?怎么想?根据学生回答教师板书:说明:根据现在的量,倒过去想出原来,在数学上也是一种解决问题的策略,叫倒推法。
揭示课题。
【设计意图:例1的教学是为了让学生形象的感知“倒推”的策略,在多媒体辅助教学的情况下,学生理解“倒推”应该没有困难,所以例1的教学教师充分放手让学生自主探究,充分发挥了学生的主体作用,并培养了学生的自主探究能力。
】5、生独立完成练习十六第1题。
交流思考过程。
【设计意图:练习十六的第1题的形式与例1一样,只是由图变成了全文字,从思维梯度上看,思维难度提高,所以把它放在例1后面练习,一方面是及时巩固,学以致用;另一方面也为学生建立“倒推”的数学模式提供时间,使“倒推”的策略内化,符合学生的思维特点。
五年级数学上册 解决问题的策略——倒推教案 苏教版
(苏教版)五年级数学教案解决问题的策略——倒推教学内容:教科书第88~89页的例1、例2和“练一练”,练习十六的相关习题教学目标:1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:学会用倒推的解题策略解决实际问题教学难点:根据具体问题确定合理的解题步骤教学准备:多媒体课件,练习纸。
教学过程:一、激趣导入,初步建立倒推法的一般解题流程1、路线倒推师:前不久,学校组织大家去春游,还记得吗?生:记得师:游玩后一位同学写了这样的一篇数学日记。
来,听一听。
(录音:我们 8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。
下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)师:谁能回答?生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。
(出示:学校←长江大桥←老山风景区←雏鹰军校)师:原来你是倒过来想的。
2、翻牌倒推师:下面老师玩一个小魔术,想不想看?生:想师:看好了。
(出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)师:要想知道原来这三张牌是怎样摆放的,怎么办?生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。
师:你为什么这样操作?生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。
师:原来你也是倒过来想的。
3、运算倒推师:我们再来玩一个小游戏,比比谁的反应快!(出示:)师:你能立刻报出生:18师:你是怎么想的?生:6×5=30 30-20=10 10+8=18师:你也是倒过来想的4、 小结师:刚才这3个问题,大家都是怎么想的?生:倒过来想的:师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。
五年级奥数讲义第1讲,逆推法解题
专题一: 逆推法 逆推法是一种很常用的数学方法,它是根据变化后的结果,一步一步进行逆向推理,逐步推出原来的已知条件,从而使问题得到解决。
例1. 某数加上8,减去4,乘以2,除以6,等于10,这个数是多少?x +-⨯÷−→−−→−−→−−→−842610○○○ 综合列式:例2. 一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,最后还剩22米,这捆电线原来有多少米? 思路分析:分析数量关系,画线段图: 全长的一半多3米 余下的一半第一次用去的 第二次用去的22米少10米例3:一种有益的细菌每小时可增长一倍,现在有一批这样的细菌,5小时后可达到100万个,当他们达到25万个是,经过了多长时间? 例4. 四个小朋友共有课外读物120本,甲给乙3本,乙给丙4本,丙给丁5本,丁给甲6本,这时这四个小朋友的课外读物的本数相等,他们原来各有几本课外读物? 根据题意:120430÷=(本) 应用逆推法得:甲乙丙丁-+=-+=-+=-+=3630433054306530甲:(本)乙:(本)丙:(本)丁:(本)306327303431304531305631-+=-+=-+=-+=一、灵活运用,创造发展:1. 有一种昆虫,由幼虫长到成虫,体长每天增长1倍,20天后正好长到20厘米,请问长到5厘米时用了几天?2. 瓶内装有油,倒进500克油以后又倒出31后,又倒进600克,这时瓶内有油1300克,求瓶内原装有多少克油?3、有一筐苹果,第一次取出全部的一半多4个,第二次取出余下的一半多1个,筐中还剩20个,筐中原来有多少个苹果?4、有一筐苹果,第一次取出全部的一半多4个,第二次取出余下的一半少2个,筐中还剩20个,筐中原来有多少个苹果?5、某服装店有一套时尚女装,因销售困难,就按原定售价打对折(原售价的一半)销售,生意顿时红火起来,过来几天,这套女装又加价100元出售,当顾客渐渐少了,有降价50元 ,按现价200元出售,问这套女装原来售价多少?6、小雨、大宝、思思、浩浩四人共有课外书200本,为了广泛阅读,小雨给大宝13本,大宝给思思18本,思思给浩浩16本,浩浩给小雨2本,这时4人的本数一样多,他们原来各有多少本书? 二、简便计算: 7.74×(2.8-1.3)+1.5×2.26 101×0.87-0.91×87 16.15÷1.7+0.85÷1.7 3.65×2.3 +3.65×1.4+3.7×6.3517.8÷1.25÷2÷0.4 4800÷12.5÷2.5÷3.20.9999×0.7+0.1111×2.7 1.98×5.1 20082008×2007-20072007×2008例1:将一个数扩大7 倍后,减去5,再除以5,最后加上最大的一位数,得22。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲乙丙各有棋子若干个.甲先给乙、丙一些棋子,使乙、 丙每人的棋子数各增加一倍.然后乙也把自己的一些 棋子给甲、丙使每人的棋子数各增加一倍;最后丙也 按甲和乙的棋子数分别给甲、乙一些棋子,此时三人 都各有16个棋子.开始时三人各有多少个棋子?
里还剩下30吨粮食没有运原:
18 (50+18) ×2=136
5 (30-5) ×2=50
30
练4、桃园里堆着若干吨桃子,第一次搬走原有桃 子的一半,第二次又搬进450吨,第三次又搬走现 有桃子的一半又50吨,结果剩余桃子的2倍是1200 吨。桃园原来堆有桃子多少吨?
原:
原:
10
(20+10 )×2 = 60
5
( 5+5 )×2 = 20
5
答:这筐橙子一共有60个。
例4、婆婆在早市卖一筐鸡蛋,第一次卖出全部的一半 少2个,第二次卖出余下的一半少2个,此时还剩下28 个,求婆婆早晨带了多少个鸡蛋去早市?
原:
2 2
( 52-2 )×2 = 100 ( 28- 2 )×2 = 52
100
答:这段公路的全长是700米。
练1、元元读一本科幻小说,第一天读了全书的一半多 30页,第二天读了余下的一半多16页,还剩下64页没 有读。求这本科幻小说一共有多少页?
原:
30
(160+30)×2 = 380
16
( 64+16)×2 = 160
64
答:这本科幻小说一共有380页。
练2、有一筐橙子,第一次取出全部的一半还多10个, 第二次取出余下的还多5个,最后还剩下5个,求这筐 橙子一共有多少个?
8
(16 ) (22 ) (10 )
6
(16 ) (16 ) (16 )
48÷3=16(个)
练1、甲、乙、丙三个组共有图书90本,如果乙组 向甲组借3本后,又送给丙组5本,结果三个组的 图书刚好相等,问甲、乙、丙三个小组原来各有图 书多少本?
90
甲
乙
丙
(33 ) (32 ) (25 )
90÷3=30(本)
原:
248×2=496
124×2=248 62×2=124
62
答:这条公路全长496米。
例3、修路队修一条路,第一天修了全长的一半多50米, 第二天修了剩下的一半多50米,第三天将剩下的100 米 全部修完,求这段公路的全长?
原:
50
(300+50)×2 = 700
50
(100+50)×2 = 300
4
10+4=14
10
练3、一个数加上4,乘以3,减去6,再除以2最后 得12,求这个数是多少?
数:
+4 ×3
-6 ÷2
10-4=6
4
30÷3=10 12
6
24+6=30 12×2=24
例2、有一桶油,第一次用去全部的一半,第二次 用去余下的一半,还剩下12千克,求这桶油原来 重多少千克?
原:
24×2=48 12×2=24
12
答:这桶油原来重48千克。
练1、一根电线,电工第一次用去了全长的一半, 第二次用去了剩下的一半,还剩16米,求这根电 线原来长多少米?
原:
32×2=64 16×2=32
16
答:这根电线原来长64米。
练2、修路队计划4天修完一段公路,第一天修了 全长的一半,第二天修了余下的一半,第三天修了 余下的一半,第四天修了62米,正好完成任务。 求这条公路全长多少米?
分析:此题可以从最后的两桶油都是36千克往前推:第二次倒入: 乙桶倒出和甲桶同样多的油放入甲桶得到甲桶是36千克,则36千克 是甲桶原有油的2倍;所以没倒入之前甲桶有油36÷2=18千克,则 乙桶此时是36+18=54千克,即第一次倒入之后甲桶是18千克,乙桶 是54千克;而乙桶的54千克,是第一次倒入时,从甲桶倒入了和它 原来同样多的油得到的,所以乙桶原来有油:54÷2=27千克,则甲 原来有油18+27=45千克.
例1、一个数加上3,然后乘以2,得16,求这个数 是多少?
16÷2=8 8-3=5
练1、一个数减去10,然后除以2,最后得10,求 这个数是多少?
10×2=20 20+10=30
练2、一个数加上3,然后乘以2,再减去4,最后 得10,求这个数是多少?
数: +3 ×2 -4
7-3=4 3 14÷2=7
28
答:婆婆早晨带了100个鸡蛋去早市。
练1、仓库里有一批粮食,第一天运出全部粮食的一半 还少10吨,第二天运出余下粮食的一半还少30吨,这 时仓库里还剩下120吨粮食没有运。求仓库里原来有粮 食多少吨?
原:
10 30
(180-10)×2 = 340 (120- 30)×2 = 180
120
答:仓库里原来有粮食340吨。
3
(30 ) (35 ) (25 )
5
(30 ) (30 ) (30 )
练2、三只金鱼缸里共有15条金鱼,如果从第一缸 里取出2条金鱼放入第二缸,再从第二缸取出3条 金鱼放入第三缸,那么三只金鱼缸里的金鱼就一样 多,求原来每只金鱼缸里各有多少条金鱼?
15
一
二
三
(7 ) (6 ) ( 2 )
2
(5 ) (8 ) (2 )
甲
乙
丙
4
8+16+8=32 16
8
8
16+8+8=32
16
16
16
• 后一次是丙给甲乙棋子,所以甲乙的棋子都增加一倍,而此时三人的棋 子都是16个
• 所以可以倒推出第二次分完后甲乙的棋子数是16÷2=8个 • 那么丙第二次就有16+8+8=32个棋子(加上给甲乙的) • 因为乙给甲丙一些棋子 • 所以可以倒推出第一次分完后,甲丙的棋子数 • 甲是8÷2=4个,丙是32÷2=16个 • 那么乙的棋子数是8+4+16=28个(加上给甲丙的) • 再倒推一次 • 因为甲给乙丙棋子 • 所以没分之前,乙有28÷2=14个,丙有16÷2=8个,甲则有4+14+8=26个
提示:先用“和差”解法求出弟弟最后挑几块砖: (26-2)÷2=12(块)
再用倒推法求出弟弟最初准备挑几块砖. {26-〔26-(12+5)]×2}×2
=16(块) 答:弟弟最初准备挑砖16块.
2、甲、乙两桶油各有若干千克,如果要从甲桶中倒出和 乙桶同样多的油放入乙桶,再从乙桶中倒和甲桶剩下的 同样多的油放入甲桶。这时两桶油恰好都是36千克。问 两桶油原来各有多少千克?
①买菜的钱:
1+2+3+3+2+1+1+2+3+4+5+6+7+ 7+8+8+7+9+10+11=100(元)
②总钱数:100×2×2=400(元) ③买鱼的钱:400÷2÷2=100(元) 答:阿凡提一共带了400元钱,买鱼用去 100元钱.
数学建模:一个贪心的商人,整天都想发财。一天他在路上遇到了一个魔术师。魔术师 说:“这里有一个神奇的盒子,只要把金币放到这个盒子里从一数到十,金币就会翻倍。 但每次你要付给我80个金币作为盒子的使用费。”商人听后,心想发财的机会来了。他 与魔术师约定:每变一次,商人都付给魔术师80个金币作为盒子的使用费。
(53 ) ( 80) 18(107)
27
(80 ) (80 ) (80 )
8 + 5 = 13 8 + 7 = 15
不 加加 变2 2
6 + 5 = 11 6+2= 8
120÷2=60
80
40+80=120
80÷2=40
80
答:贪心的商人原来有70个金币。
例4、桃园里有三个箩筐,共装着48个桃子。欧欧 先从第一筐拿出8个桃子放入第二筐;又从第二筐 拿出6个桃子放入第三筐,这时三个箩筐的桃子数 相等。原来每个箩筐放了多少个桃子?
48
一
二
三
(24 ) (14 ) (10 )
例5 甲乙两个油桶各装了15千克油. 售货员卖了14千克.后来,售货员从 剩下较多油的甲桶倒一部分给乙桶 使乙桶油增加一倍;然后从乙桶倒 一部分给甲桶,使甲桶油也增加一 倍,这时甲桶油恰好是乙桶油的3倍. 问:售货员从两个桶里各卖了多少 千克油?
分析 解题关键是求出甲、乙两个油桶最后 各有油多少千克.已知“甲、乙两个油桶各 装油15千克.售货员卖了14千克”.可以求 出甲、乙两个油桶共剩油15×2-14=16 (千克).又已知“甲、乙两个油桶所剩油” 及“这时甲桶油恰是乙桶油的3倍”.就可 以求出甲、乙两个油桶最后有油多少千克.
于是,商人将口袋里所有的金币都放进魔术师的盒子里,从一数到十,打开盒子一看, 哇!钱真的翻了一倍,商人十分高兴,取出钱,并付给魔术师80个金币。然后商人又将 其余的金币都放进魔术师的盒子里,商人的钱有翻倍了,魔术师又得到了80个金币,接 着商人又放入第三笔钱,钱又翻倍了。但此时的商人付给魔术师80个金币后,他自己已 是分文不剩了。小朋友请你算一算,这个贪心的商人原来有多少金币呢?
分析实际问题,抽出数学问题
魔术师有一个神奇盒子可以使金币翻倍,贪心的商人想把金币放入盒子里,但 每次要付给魔术师80个金币作为盒子的使用费。他连着三次放入金币,第三次 将80个金币给完魔术师后,他自己已是分文不剩了。求贪心的商人原来有多少 金币?
建立数学模型,解决实际问题
原:
140÷2=70
80
60+80=140