微积分第五章练习参考答案

合集下载

微积分李建平第五章+不定积分

微积分李建平第五章+不定积分

第五章不定积分第一节不定积分的概念与性质一、原函数在微分学中,导数是作为函数的变化率引进的,例如,已知变速直线运动物体的路程函数s=s(t),则物体在时刻t的瞬时速度v(t)=s′(t),它的反问题是:已知物体在时刻t的瞬时速度v=v(t),求路程函数s(t),也就是说,已知一个函数的导数,要求原来的函数.这就引出了原函数的概念.定义1 设f(x)是定义在区间I上的已知函数,如果存在函数F(x),使对任意x∈I都有F′(x)=f(x),或d F(x)=f(x)d x,(5-1-1)则称F(x)为f(x)在区间I上的一个原函数.例如在(1,+∞)内,[ln(x)]′(1,+∞)内的一个原函数.显然,ln(x)+2,故ln(xln(x)的原函数.一般地,对任意常数C,ln(x)+C由此可知,当一个函数具有原函数时,它的原函数不止一个.关于原函数,我们首先要问:一个函数具备什么条件,能保证它的原函数一定存在?这个问题将在下一章中讨论,这里先介绍一个结论.定理1(原函数存在性定理) 如果函数f(x)在区间I上连续,则在区间I上存在可导函数F(x),使对任意x∈I,都有F′(x)=f(x).这个结论告诉我们连续函数一定有原函数.我们已经知道:一个函数如果存在原函数,那么原函数不止一个,这些原函数之间的关系有如下定理:定理2 如果F(x)是f(x)在区间I上的一个原函数,则在区间I上f(x)的所有原函数都可以表示成形如F(x)+C(C为任意常数)的形式.定理需要证明两个结论:(1) F(x)+C是f(x)的原函数;(2) f(x)的任一原函数都可以表示成F(x)+C的形式.证 (1) 已知F (x )是f (x )的一个原函数,故F ′(x )=f (x ). 又[F (x )+C ]′=F ′(x )=f (x ),所以F (x )+C 是f (x )的一个原函数.(2) 设G (x )是f (x )的任意一个原函数,即G ′(x )=f (x ),则有[G (x )-F (x )]′=G ′(x )-F ′(x )=f (x )-f (x )=0.由拉格朗日中值定理的推论1知,导数恒等于零的函数是常数,故G (x )-F (x )=C ,即 G (x )=F (x )+C .由定理2知,只要找到f (x )的一个原函数F (x ),就能写出f (x )的原函数的一般表达形式F (x )+C (C 为任意常数),即f (x )的全体原函数.二、 不定积分定义2 设F (x )是f (x )的一个原函数,则f (x )的全体原函数F (x )+C (C 为任意常数)称为f (x )的不定积分,记作()f x ⎰d x ,即()f x ⎰d x =F (x )+C , (5-1-2)其中,∫称为积分号,f (x )称为被积函数,f (x )d x 称为被积表达式,x 称为积分变量,C 称为积分常数.例1 求x ⎰d x .解 由于(212x )′=x ,故212x 是x 在(-∞,+∞)内的一个原函数, 因此 x ⎰d x =212x +C .例2 求1x⎰d x .解 由于(ln x )′=1x ,故ln x 是1x在(-∞,0)∪(0,+∞)内的一个原函数,因此1x ⎰d x =ln x +C .例3 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.解 设所求的曲线方程为y =f (x ),按题设,曲线上任一点(x ,y )处的切线斜率为d d yx=2x , 即f (x )是2x 的一个原函数.因为2x ⎰d x =2x +C , 从而y =2x +C .因所求曲线通过点(1,2),故 2=1+C , C =1. 于是所求曲线方程为 y =2x +1.函数f (x )的原函数的图形称为f (x )的积分曲线.本例即是求函数2x 的通过点(1,2)的那条积分曲线.显然,这条积分曲线可以由另一条积分曲线(例如y =2x )经y 轴方向平移而得(见图5-1).图5-1三、 不定积分的性质从不定积分的定义,即可知其下述性质: 由于()f x ⎰d x 是f (x )的原函数,所以有(1)dd x[()f x ⎰d x ]=f (x ), 或 d [()f x ⎰d x ]=f (x )d x ; 又由于F (x )是F ′(x )的原函数,所以有 (2) '()F x ⎰d x =F (x )+C ,或记作 d ⎰F (x )=F (x )+C .由此可见,微分运算(以记号d 表示)与求不定积分的运算(简称积分运算,以记号⎰表 示)是互逆的.当记号∫与d 连在一起时,或者抵消,或者抵消后差一个常数. (3)[]()()f x g x αβ+⎰d x =α()f x ⎰d x +β()g x ⎰d x ,其中α,β为任意常数.此性质可以简单地说成:和的积分等于积分的和;常数因子可以从积分符号中提出来,这是一个积分常用的性质。

(完整word版)《微积分》各章习题及详细答案

(完整word版)《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→x x k x 成立的k 为 。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

刘迎东微积分第五章习题5.6答案

刘迎东微积分第五章习题5.6答案

5.6高阶线性微分方程 习题5.61. 下列函数组在其定义区间内哪些是线性无关的? (1)2,x x 解:2xx ≠常数,所以线性无关。

(2),2x x 解:122x x =为常数,所以线性相关。

(3)22,3xxe e 解:22133x x e e =为常数,所以线性相关。

(4),xxe e −解:xx e e−≠常数,所以线性无关。

(5)cos 2,sin 2x x 解:cos 2sin 2xx≠常数,所以线性无关。

(6)22,x x e xe 解:22x x e xe≠常数,所以线性无关。

(7)sin 2,cos sin x x x 解:sin 22cos sin xx x=为常数,所以线性相关。

(8)cos 2,sin 2xxe x e x 解:cos 2sin 2x x e x e x≠常数,所以线性无关。

(9)ln ,ln x x x 解:ln ln xx x≠常数,所以线性无关。

(10)(),axbxe ea b ≠解:axbx e e≠常数,所以线性无关。

(11),xxe xe 解:xx e xe≠常数,所以线性无关。

2. 验证函数与在(上都是二阶线性齐次微分方程xy e =xy e −=)x −,−∞+∞"0y y −=的解。

求它的通解,并求方程"1y y −=−的通解。

解:(),所以函数()"",x x x ee e e −==x y e =与x y e −=在(),−∞+∞上都是二阶线性齐次微分方程的解。

它的通解为"0y y −=12.x y C e C e x −=+可观察出1y =为方程 "1y y −=−的特解,所以它的通解为121.x x y C e C e −=++3. 验证函数在1,sin ,cos y y x y ===x (),−∞+∞上都是三阶线性齐次微分方程"''0y y +=的解。

微积分(经管类)第五章答案

微积分(经管类)第五章答案

微积分(经管类)第五章答案 5.1 定积分的概念与性质一、1、∑=→∆ni iixf 1)(limξλ;2、被积函数,积分区间,积分变量;3、介于曲线)(x f y =,x 轴,直线b x a x ==,之间各部分面积的代数和;4、⎰ba dx ;5、⎰⎰+bc cadx x f dx x f )()(;6、b a a b M dx x f a b m ba<-≤≤-⎰,)()()(;7、⎰badx x f )( ⎰-=a bdx x f )(;8、)(ξf 与a b -为邻边的矩形面积;二、略. 三、⎰-231cos xdx .四、略。

五、(1)+; (2)-; (3)+. 六、(1)<; (2)<. 七、略。

5.2. 微积分基本定理一、1、0;2、)()(a f x f -;3、)1ln(23+x x ;4、65; 5、(1)ππ,;(2)0,0;6、(1)0; (2)0。

7、;6145 8、6π; 9、1. 二、1、1sin cos -x x ;2、)sin cos()cos (sin 2x x x π⋅-; 3、2-.三、 1、852; 2、3π; 3、14+π; 4、4.四、1、0; 2、101.五、略。

六、335π, 0. 七、⎪⎪⎩⎪⎪⎨⎧>≤≤-<=ππφx x x x x ,10,)cos 1(210,0)(.5.3. 定积分的换元积分法与分部积分法一、1、0; 2、34-π; 3、2π; 4、323π; 5、0.6、e 21-; 7、)1(412+e ; 8、23ln 21)9341(+-π. 二、1、41; 2、3322-; 3、1-2ln 2; 4、34;5、22;6、8π;7、417;8、2ln 21; 9、1-e .10、211cos 1sin +-e e ; 11、)11(2e-; 12、212ln -;13、2ln 33-π; 14、22+π;15、3ln 24-;16、2+)2ln 3(ln 21-。

微积分答案

微积分答案

第一章 函数与极限1.2-1.3 数列和函数的极限一、 根据数列或函数极限的定义证明下列极限:1. 0)1(lim 2=-∞→n n n ; 2.521532lim =+-∞→n n n ; 3. 224lim 42x x x →--=-+; 4. 0cos lim =+∞→x x x ;5. 证明11lim=-+∞→x x x ,并求正数X ,使得当x X >时,就有01.0|11|<--x x.(X 2=101)二、设}{n x 为一数列.1. 证明:若ax n n =∞→lim ,则||||lim a x n n =∞→;2. 问:(1)的逆命题“若||||lim a x n n =∞→,则ax n n =∞→lim ”是否成立?若成立,证明之;若不成立,举出反例. (逆命题不成立。

反例:(1)nn x =-。

)三、判断下列命题的正误:1. 若数列}{n x 和}{n y 都收敛,则数列}{n n y x +必收敛; (正确)2. 若数列}{n x 和}{n y 都发散,则数列}{n n y x +必发散; (错误)3. 若数列}{n x 收敛,而数列}{n y 发散,则数列}{n n y x +必发散。

(正确) 四、证明:对任一数列}{n x ,若ax k k =-∞→12lim 且ax k k =∞→2lim ,则ax n n =∞→lim . 五、证明:A x f x =∞→)(lim 的充分必要条件是Ax f x =-∞→)(lim 且Ax f x =+∞→)(lim .六、根据函数的图形写出下列极限(如果极限存在):1. lim arctan x x π→-∞=-2,lim arctan x x π→+∞=2和lim arctan x x→∞不存在2. lim sgn 1x x →-∞=-,1lim sgn x x →+∞=和lim sgn x x→∞不存在3.lim x x e →-∞=,lim x x e →+∞=+∞和lim xx e →∞不存在七、证明:若)(lim 0x f x x →存在,则函数)(x f 在0x 的某个去心邻域内有界.八、证明:函数)(x f 当0x x →时的极限存在的充分必要条件是左极限,右极限均存在并且相等,即)(lim )(lim )(lim 0x f A x f A x f x x x x x x +-→→→==⇔=.九、设||)(x x f =,求0lim ()0x f x -→=,0lim ()0x f x +→=和0im ()0l x f x →=.十、设x x f sgn )(=,求0lim (1)x f x -→=-,0lim ()1x f x +→=和0lim ()x f x →不存在1.4 无穷小与无穷大一、填空题1. 当x →∞时,11-x 是无穷小;当1x →时,11-x 是无穷大.2. 当0x -→时,x e 1是无穷小;当0x +→时,xe 1是无穷大.3. 当1x →时,x ln 是无穷小;当0x +→时,x ln 是负无穷大;当x →+∞时,x ln 是正无穷大. 二、选择题当0→x 时,函数x x1cos1是(D ) (A )无穷小; (B )无穷大;(C )有界的,但不是无穷小; (D )无界的,但不是无穷大.三、证明函数x x x f sin )(=在)0(∞+,内无界,但当+∞→x 时,)(x f 不是无穷大. 四、判断下列命题的正确性:1. 两个无穷小的和也是无穷小. (正确)2. 两个无穷大的和也是无穷大. (错误)3. 无穷小与无穷大的和一定是无穷大. (正确)4. 无穷小与无穷大的积一定是无穷大. (错误)5. 无穷小与无穷大的积一定是无穷大. (错误)6. 无穷大与无穷大的积也是无穷大. (正确) 五、举例说明:1. 两个无穷小的商不一定是无穷小;2. 无限个无穷小的和不一定是无穷小. 六、根据定义证明:1. 当0→x 时,x x x f 1sin)(=为无穷小;2. 当+→0x 时,xe xf 1)(=为无穷大;3. 当-∞→x 时,xe xf =)(为无穷小.1.5 极限运算法则一、计算下列极限:1.22lim(31224)x x x →-+=2. 22131im 21l x x x x →-+=-3. 224im 4l 2x x x →-=-4. 11lim 1n x x n x →-=-(n 是正整数)5. 3131lim()111x x x →-=--6. 0233()lim 3h x h x x h →+-=二、计算下列极限:1. 211lim(3)6)(2x x x →∞-+=2. 2231lim 4134x x x x →∞+=+- 3. 2321lim 510x x x x x →∞++=-+4. 235lim 101x x x x →∞+-=+∞5.2221211lim 2(...)n n n n n →∞-+++=6. 221...lim (||1||1)1.1..1n nn a a a a b b b b b a →∞++++-<<=++++-, 7. 1123lim 2313n n n n n ++→∞+=+ 三、若0)1(lim 2=--+∞→b ax x x x ,求b a ,的值. (1,1a b ==-)四、若23)11(lim 21=---→x x x a x ,求a 的值. (2a =)五、计算下列极限:1. 2211lim 2x x x x x →++=+-∞2.2lim(543)x x x →∞--=∞3. 32251lim 465x x x x x →∞-+=++∞.六、计算下列极限: 1.211lim(1)cos10x x x →-=-2.301lim s ni x x x →=3. 2(1)arcta 0n lim x x x x →∞+=. 七、设2,1()5,1x x f x x x ⎧≤⎪=⎨->⎪⎩,分别求函数)(x f 在1-=x 与1=x 的左极限、右极限和极限.(4,1--,不存在)八、设11lim )(22+-=∞→nn n x x x f ,试求)(x f 的表达式. (1,1()0,11,1x f x x x ⎧-<⎪==⎨⎪>⎩)1.6 极限存在的两个准则两个重要极限一、利用夹逼定理求下列极限: 1. 222111lim(...)120n n n n n →∞+++=+++2.222111lim(...)120n n n n n n n n →∞+++=++++++3. 21lim (arctan )0x x x →∞=二、证明:332lim =+∞→n n n n .三、设12max{...}m a a a a =,,,(01,2,...,)k a k m >=,,证明:n a=.四、设1>a ,证明0lim=∞→nn a n五、利用数列的单调有界准则证明下列数列收敛,并求出极限:1. 12,n x x x ===...;(l i m 2n n x →∞=)2. 11121111111n n n x x x x x x x --==+=+++,,...,,....(lim n n x →∞=) 六、设11x a y b ==,(0)a b <<,n n n y x x =+1,21nn n y x y +=+. 1. 证明数列}{n x 单调增加,数列}{n y 单调减少且满足(1,2,...)n n x y n <=; 2. 证明数列}{n x 和}{n y 都收敛,并且有相同的极限.七、计算下列极限:1.0sin 33lim44x x x →=2. 0sin lim (,0)sin x x x ααββαβ→≠=3.lim sinx x xππ→∞=4. sin m1li x xx ππ→=-5.01cos lim arctan 12x x x x →-=6. 0lim x +→=7. 1lim 2s n 30i n n n →∞=.八、计算下列极限:1. 1lim(1)1nn n e→∞+=+2. 522lim(1)x x x e +→∞+=3.1x e →=4. 21lim()211x x x e x →∞-=+5. 2cot 2lim(1tan )x x x e →+=6.21lim(11)nn n →∞-=.九、已知2)1(lim 1=+→xx ax ,求a 的值. (ln 2a =)十、设⎪⎪⎩⎪⎪⎨⎧>-<=0cos 102sin )(2x x x x xxx f ,,,求(0)(0)f f -+,和)(lim 0x f x →. (2,2,2)十一、设⎪⎩⎪⎨⎧≥+<=00tan )(2x x x x xaxx f ,,,已知)(lim 0x f x →存在,求a 的值. (0a =)1.7 无穷小的比较一、比较下列各对无穷小:1. 221,(1)(1)x x x --→ (后者高阶) 2. 321,1(1)x x x --→ (同阶)3.21cos ,(0)x x x -→ (同阶) 4. 2tan sin ,(0)x x x x -→ (前者高阶) 二、证明:当0→x 时,有以下等价无穷小成立:1. arcsin x x ;2.3tan sin 2x x x -. 三、利用等价无穷小代换计算下列极限:1. 20arctan lim sin 1x x x x →=2. 21lim s n 0i x x x →∞=3.lim 12x +→=四、当0x →时,下列四个无穷小中,哪一个是比其他三个更高阶的无穷小?A.2x B.1cos x -1 D.tan x x - (D )五、证明:若α是β的高阶无穷小,则αββ+ 。

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。

常微分课后答案第五章

常微分课后答案第五章

常微分课后答案第五章第五章 线性微分方程组§5.1 存在唯一性定理习题5.11.给定方程组x x ⎥⎦⎤⎢⎣⎡-='0110,⎪⎪⎭⎫ ⎝⎛=21x x x . (*))a 试验证⎪⎪⎭⎫ ⎝⎛-=t t t u sin cos )(,⎪⎪⎭⎫ ⎝⎛=t t t v cos sin )(分别是方程组(*)的满足初始条件⎪⎪⎭⎫ ⎝⎛=01)0(u ,⎪⎪⎭⎫⎝⎛=10)0(v 的解;)b 试验证)()()(21t v c t u c t w +=是方程组(*)的满足初始条件⎪⎪⎭⎫⎝⎛=21)(c c t w 的解,其中21,c c 是任意常数.证明)a ⎪⎪⎭⎫ ⎝⎛=01)0(u ,⎪⎪⎭⎫ ⎝⎛=10)0(v 显然.)(0110sin cos 0110cos sin )(t u t t t t t u ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=',)(0110cos sin 0110sin cos )(t v t t t t t v ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=',所以⎪⎪⎭⎫ ⎝⎛-=t t t u sin cos )(,⎪⎪⎭⎫⎝⎛=t t t v cos sin )(分别是方程组(*)的满足初始条件⎪⎪⎭⎫ ⎝⎛=01)0(u ,⎪⎪⎭⎫ ⎝⎛=10)0(v 的解.)b ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=2121211001)0()0()0(c c c c v c u c w ,又)(0110)(0110)()()(2121t v c t u c t v c t u c t w ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-='+'=')(0110))()((011021t w t v c t u c ⎪⎪⎭⎫⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-=,所以)()()(21t v c t u c t w +=是方程组(*)的满足初始条件⎪⎪⎭⎫⎝⎛=21)(c c t w 的解,其中21,c c 是任意常数.2.将下面的初值问题化为与之等价的一阶方程组的初值问题:)a t e tx x x -=+'+''72,7)1(=x ,2)1(-='x ;)b tte x x =+)4(,1)0(=x ,1)0(-='x ,2)0(=''x ,0)0(='''x ;)c ⎩⎨⎧=-'+-''=+-'+''tx y y y e y x y x t cos 15132,675,1)0(=x ,0)0(='x ,0)0(=y ,1)0(='y .(提示:令y w y w x w x w '=='==4321,,,)解 )a 设x x x x '==21,,则21x x x ='=',te tx xx x -+--=''='12272,即与该初值问题等价的一阶方程组的初值问题为⎪⎩⎪⎨⎧-==+--='='-.2)1(,7)1(,27,2121221x x e x tx x x x t)b 设x x x x x x x x'''=''='==4321,,,,则21x x x ='=',32x x x =''=',43x x x ='''=',tte xx +-='14,则得等价的一阶方程组的初值问题为⎪⎪⎩⎪⎪⎨⎧+-='='='='tte x x x x x x x x 14433221,,,,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0211)0()0()0()0()0(4321x x x x x .)c 令y w y w x w x w'=='==4321,,,,有⎪⎪⎩⎪⎪⎨⎧+-+='='+--='='tw w w w w w e w w w w w w t cos 13215,,567,431443431221 ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1001)0()0()0()0()0(4321w w w w w ,为与原初值问题等价的一阶方程组的初值问题. 3.试用逐步逼近法求方程组xx ⎪⎪⎭⎫⎝⎛-='0110,⎪⎪⎭⎫⎝⎛=21x x x满足初始条件⎪⎪⎭⎫ ⎝⎛=10)0(x 的第三次近似解.解 ⎪⎪⎭⎫⎝⎛=10)(0t ϕ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎰110011010)(01t ds t tϕ, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛=⎰2210211011010)(t t ds s t tϕ,第三次近似解为 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎰2213610221*********)(t t t ds s s t t ϕ.§5.2 线性微分方程组的一般理论习题5.21.试验证⎥⎦⎤⎢⎣⎡=Φ12)(2t t t t是方程组x t tx ⎥⎥⎦⎤⎢⎢⎣⎡-='22102,⎥⎦⎤⎢⎣⎡=21x x x在任何不包含原点的区间b t a ≤≤上的基解矩阵. 证明 设⎪⎪⎭⎫⎝⎛=t t t 2)(21ϕ,⎪⎪⎭⎫ ⎝⎛=1)(2t t ϕ,则由于)(22102221022)(12221t t t t t t t t t ϕϕ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=',)(22101221001)(2222t t t t t t t ϕϕ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=',所以)(,)(21t t ϕϕ都是方程组的解,因而[])()()(21t t t ϕϕ=Φ是所给方程组的解矩阵.又由于在任何不包含原点的区间],[b a 上,0)(det 2≠-=Φt t (],[b a t ∈),故)(t Φ是所给方程组的基解矩阵. 2.考虑方程组xt A x )(=', (5.15)其中)(t A 是区间b t a ≤≤上的连续n n ⨯矩阵,它的元素为)(t a ij,n j i ,,2,1, =.)a 如果)(,,)(,)(21t x t x t x n是(5.15)的任意n 个解,那么它们的Wronsky 行列式)](,,)(,)([21t x t x t x W n满足下面的一阶线性微分方程Wt a t a t a W nn )]()()([2211+++=' .(提示:利用行列式的微分公式,求出W '的表达式);)b 解上面的一阶线性微分方程,证明下面的公式:⎰=+++tt nn dss a s a s a e t W t W 02211)]()()([0)()( ,],[,0b a t t∈.证明 )a)()()()()()()()()()()()()()()()()()()(212222111211212222111211t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t x t W nn n nn n nn n n n n '''++'''='+=∑∑∑===)()()()()()()()()()()()(212222111121111t x t x t x t x t x t x t x t at x t at x t ann n n n nk kn knk k knk k k∑∑∑===+nk kn nknk k nknk k nkn n t x t at x t at x t at x t x t x t x t x t x 112112222111211)()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()(21222211121121222211121111t x t x t x t x t x t x t x t x t x t a t x t x t x t x t x t x t x t x t x t a nn n n n n nn nn n n n n++=)()]()([11t W t a t a nn ++= ,所以)(t W 是一阶线性微分方程Wt a t a t a W nn )]()()([2211+++=' 的解.)b 由)a 知,Wt a t a t aW nn )]()()([2211+++=' ,分离变量后两边积分求解得⎰=+++tt nn dss a s a s a cet W 02211)]()()([)( ,t t =时就得到)(0t W c =,所以⎰=+++tt nn dss a s a s a et W t W 02211)]()()([0)()( ,],[,0b a t t ∈.3.设)(t A 为区间],[b a 上的连续n n ⨯实矩阵,)(t Φ为方程x t A x )(='的基解矩阵,而)(t x ϕ=为其一解.试证:)a 对于方程yt Ay T)(-='的任一解)(t ψ必有=)()(t t Tϕψ常数;)b )(t ψ为方程yt Ay T)(-='的基解矩阵的充要条件是存在非奇异的常数矩阵C ,使Ct t T=Φψ)()(.证明)a 由于)(t ϕ是方程x t A x )(='的解,故有)()()(t t A t ϕϕ=',)(t ψ为方程yt A y T )(-='的解,故)()()(t t A t T ψψ-='.所以[][])()()()]([)()()()()()(t t t t t t t t t t TTTTTϕψϕψϕψϕψϕψ'+'='+'=')()()()()]()([t t A t t t t A TT T ϕψϕψ+-=)()()()()()(=+-=t t A t t t A t T T ϕψϕψ,所以=)()(t t Tϕψ常数.)b “⇒” )(t Φ是方程x t A x )(='的基解矩阵,因此)()()(t t A t Φ=Φ',)(t ψ是方程yt Ay T)(-='的基解矩阵,故)()()(t t A t T ψ-=ψ',且0)(det ≠Φt 和0)(det ≠t ψ.所以[][])()()()]([)()()()()()(t t t t t t t t t t TTTTTΦ'ψ+Φψ'=Φ'ψ+Φ'ψ='Φψ)()()()()]()([t t A t t t t A TTTΦψ+Φψ-=)()()()()()(=Φψ+Φψ-=t t A t t t A t T T , 故)()(t t TΦψ是常数矩阵,设Ct t T=Φψ)()(,则)(det )(det )(det )(det )]()(det[det ≠Φ⋅ψ=Φ⋅ψ=Φψ=t t t t t t C T T ,因此存在非奇异常数矩阵C ,使Ct t T=Φψ)()(.“⇐”若存在非奇异常数矩阵C ,使Ct t T=Φψ)()(,则有)(det )(det )(det )(det )]()(det[det 0t t t t t t C T T Φ⋅ψ=Φ⋅ψ=Φψ=≠,所以0)(det ≠ψt ,即)(t ψ是非奇异矩阵或说)(t ψ的各列是线性无关的.又[])()()()()]([)()()(])([)()(0t t A t t t t t t t t t T T T t T Φψ+Φψ'=Φ'ψ+Φ'ψ='Φψ=,并注意到)(det ≠Φt ,有)()()]([t A t t T T ψ-=ψ',即)()()(t t A t T ψ-=ψ'.从而)(t ψ是方程yt Ay T)(-='的基解矩阵.4.设)(t Φ为方程Ax x ='(A 为n n ⨯常数矩阵)的标准基解矩阵(即E =Φ)0(),证明)()()(001t t t t -Φ=ΦΦ-,其中0t 为某一值.证明 由于A 为n n ⨯常数矩阵,故A 在),(∞+-∞有定义、连续,从而它的解也在),(∞+-∞连续可导.由)(t Φ为方程Ax x ='的基解矩阵,故),(∞+-∞∈∀t ,有0)(det ≠Φt ,并且有)()(t A t Φ=Φ',从而对某个0t ,有)(det 0≠-Φt t ,且)()()()(])([00000t t A t t t t t t t t -Φ=-Φ'='-⋅-Φ'='-Φ,即)(0t t -Φ亦为方程Ax x ='的基解矩阵.由推论2*,存在一个非奇异常数矩阵G ,使得在区间),(∞+-∞上,G t t t )()(0Φ=-Φ.又因为Gt t tE )()()0(000Φ=-Φ=Φ=,所以)(01t G -Φ=.因此)()()(001t t t t -Φ=ΦΦ-,其中0t 为某一值.5.设)(,)(t f t A 分别为在区间],[b a 上连续的n n ⨯矩阵和n 维列向量.证明方程组)()(t f x t A x +='存在且最多存在1+n 个线性无关解. 证明 设方程组xt A x )(='的基解矩阵为)](,,)(,)([)(21t t t t n ϕϕϕ =Φ,而)(~t ϕ是方程组)()(t f x t A x +='的一个特解,则其通解为)(~)(t c t x ϕ+Φ=,其中c 是任意的常数列向量.若)(t f 不恒为0,则)(~t ϕ必与)(,,)(,)(21t t t n ϕϕϕ 线性无关,从而)(~t ϕ,)(~)(1t t ϕϕ+,)(~)(2t t ϕϕ+,)(~)(,2t t ϕϕ+ 线性无关,即方程组)()(t f x t A x +='存在1+n 个线性无关解.又假若)(t x 是方程组)()(t f x t A x +='的任意一个解,则一定有确定的常数列向量c ,使得)(~)()(t c t t x ϕ+Φ=,将其加入)(~t ϕ,)(~)(1t t ϕϕ+,)(~)(2t t ϕϕ+,)(~)(,2t t ϕϕ+ 这一组向量就线性相关,故方程组)()(t f x t A x +='的任何2+n 个解必线性相关.从而方程组)()(t f x t A x +='存在且最多存在1+n 个线性无关解.6.试证非齐线性微分方程组的叠加原理:设)(,)(21t x t x 分别是方程组)()(1t f x t A x +=',)()(2t fx t A x +='的解,则)()(21t x t x +是方程组)()()(21t f t f x t A x ++='的解. 证明 因为)(,)(21t x t x 分别是方程组)()(1t f x t A x +=',)()(2t fx t A x +='的解,故)()()()(111t f t x t A t x +=',)()()()(222t f t x t A t x +=',所以有)]()()([)]()()([)()(])()([22112121t f t x t A t f t x t A t x t x t x t x +++='+'='+)()()]()()[(2121t f t f t x t x t A +++=,所以)()(21t x t x +是方程组)()()(21t f t f x t A x ++='的解. 7.考虑方程组)(t f Ax x +=',其中⎪⎪⎭⎫⎝⎛=2012A ,⎪⎪⎭⎫ ⎝⎛=21x x x ,⎪⎪⎭⎫⎝⎛=t t t f cos sin )(. )a 试验证⎪⎪⎭⎫ ⎝⎛=Φt t te te e t 2220)(是Ax x ='的基解矩阵;)b 试求)(t f Ax x +='的满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解)(t ϕ.证明)a 00)(det 4222≠==Φtt t te ete e t ,),(∞+-∞∈∀t 成立.而)(0201220)12(2)(222222t A e te e e e t e t t t tt t tΦ=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+=Φ',所以)(t Φ是Ax x ='的基解矩阵.)b ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Φ--10101)(222241s e e se e es s s s s s,这样,由定理8,方程组满足初始条件⎪⎪⎭⎫ ⎝⎛=00)0(ψ的解就是⎰⎰⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=ΦΦ=--t s t t ttds s s s e e te e ds s f s t t 0222201cos sin 1010)()()()(ψ⎰⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=-t s t t tds s s s s e e te e 02222cos cos sin 0⎪⎪⎪⎪⎭⎫ ⎝⎛+-++++--⎪⎪⎭⎫ ⎝⎛=--52)cos 2(sin 51252)cos 2sin 14sin 5cos 10(251022222t t e t t t t t t e e te e t tt tt⎪⎪⎪⎪⎭⎫ ⎝⎛-+--+=)cos 2sin 2(51)cos sin 75(252222t t e t t e te t tt ,对应的齐线性方程组满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(h ϕ的解就是⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=ΦΦ=--t t t t th h e t e E e te e t t 2212221)1(110)0()0()()(ϕϕ,所以,所求方程组)(t f Ax x +='的满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解为⎪⎪⎪⎪⎭⎫⎝⎛-+-+--=+=)cos 2(sin 5153)cos sin 7(252)1527(251)()()(22t t e t t t e t t t t t h ψϕϕ.8.试求)(t f Ax x +=',其中⎪⎪⎭⎫ ⎝⎛=2012A ,⎪⎪⎭⎫ ⎝⎛=21x x x ,⎪⎪⎭⎫⎝⎛=t t t f cos sin )( 满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解)(t ϕ.解 由上题知⎪⎪⎭⎫⎝⎛--=t t h e t e t 22)1()(ϕ,且这里⎰⎰⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=ΦΦ=--t s s t t ttds e s e e te e ds s f s t t 0222220101010)()()()(ψ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎰t t t t t t t t tte e t t t e te e ds s e te e 222222202222121010,所以,所求方程组)(t f Ax x +='的满足初始条件⎪⎪⎭⎫⎝⎛-=11)0(ϕ的解为⎪⎪⎪⎭⎫ ⎝⎛-+-=+=t t h e t e t t t t t 222)1()211()()()(ψϕϕ.9.试求下列方程的通解:)a t x x sec =+'',22ππ<<-t ; )b te x x 28=-'''; )c te x x x =+'-''96.解 )a 易知对应的齐线性方程0=+''x x 的基本解组为t t x cos )(1=,t t x sin )(2=,用公式(5.31)来求方程的一个解.这时1cos sin sin cos )](,)([21=-=tt t t t x t x W ,取0=t,有 ⎰⎰-=-=t t t sdss t s t ds s f s x s x W s x t x s x t x t 0212112sec )sin cos cos (sin )()](,)([)()()()()(0ϕtt t t sds t ds t tt cos ln cos sin tan cos sin 0+=-=⎰⎰所以方程的通解为tt t t t c t c x cos ln cos sin sin cos 21+++=. )b 由于特征方程083=-λ的根是21=λ,i313,2±-=λ,故对应的齐线性方程的基本解组为te t x 21)(=,te t x t 3cos )(2-=,tet x t3sin )(3-=.原方程的一个特解由公式(5.29)有(取0=t),∑⎰==313213210)()](,)(,)([)](,)(,)([)()(k tt k k dss f s x s x s x W s x s x s x W t x t ϕ,其中)](,)(,)([)(321t x t x t x W t W =)3sin 3cos 3(2)3sin 33(cos 24)3sin 3cos 3()3sin 33(cos 23sin 3cos 222t t e t t e e t t e t t e e te te e t t tt t tt t t +----+-=------312=,)](,)(,)([)(3211t x t x t x W t W =)3sin 3cos 3(2)3sin 33(cos 21)3sin 3cos 3()3sin 33(cos 03sin 3cos 0t t e t t e t t e t t e te te t t t t t t +----+-=------te 23-=,)](,)(,)([)(3212t x t x t x W t W =)3cos 33sin 3()3sin 3cos 3(214)3sin 3cos 3(023sin 0222t t e t t e e t t e e te e t t tt tt t -=+--=---,)](,)(,)([)(3213t x t x t x W t W =)3sin 33cos 3(1)3sin 33(cos 240)3sin 33(cos 203cos 222t t e t t e e t t e e te e t t tt tt t +-=--+-=---.所以⎰⎰-+⋅=--ts s tts stdse s s e t e ds e eet 020222312)3cos 33sin 3(3cos 3123)(ϕ⎰+-+-ts s tdse s s e t e 02312)3sin 33cos 3(3sin)3cos 33(sin 324124112122t t e e te t t t ++-=-,故通解tt tte t c t c e ec t x 23221121)3sin 3cos ()(+++=-.)c 特征方程0962=+-λλ,得到特征根32,1=λ,故对应的齐线性方程的基本解组为te t x 31)(=,tte t x 32)(=,tttt tee t ete e t W 63333)31(3)(=+=.取0=t,由(5.31),得特解⎰⎰⋅-=-=t sss t st tt dse e se e e te ds sf s W s x t x s x t x t 06333321120)()()()()()()(ϕtt t ts t e te e ds e s t e 33023412141)(++=-=⎰-,所以得到通解tt e et c ct x 41)()(321++=.10.给定方程)(78t f x x x =+'+'',其中)(t f 在+∞<≤t 0上连续,试利用常数变易公式,证明:)a 若)(t f 在+∞<≤t 0上有界,则上面方程的每一个解在+∞<≤t 0上有界;)b 若当∞→t 时,0)(→t f ,则上面方程的每一个解)(t ϕ,满足0)(→t ϕ(当∞→t 时). 证明 对应的特征方程0782=++λλ有特征根7,1--,故对应的齐线性方程的基本解组te t x -=)(1,tet x 72)(-=,ttt t tee e e e t W 87767)(------=--=.由公式(5.31)得原方程的一个特解(0=t)为⎰⎰-------=-=t s st st tt dss f e e e e e ds s f s W s x t x s x t x t 08772112)(6)()()()()()()(~0ϕ⎰⎰---=t s t t s t dss f e e ds s f e e 0770)(61)(61,所以方程的任一解可写为⎰⎰-----++=t st t s t ttdss f e e ds s f e e ec e c t 0770721)(61)(61)(ϕ.)a 由于)(t f 在+∞<≤t 0上有界,故0>∃M ,),0[∞+∈∀t ,有M t f ≤)(.又由于10≤<-te ,107≤<-te,从而当),0[∞+∈t 时,⎰⎰⋅+⋅++≤--ts t ts t ds e M e ds e M e c c t 0770216161)(ϕ=)1(42)1(67721-+-++--tt t t e e M e e M c c)1(42)1(6721t t e M e M c c ---+-++=M c c 21421++<,即方程的每一个解在+∞<≤t 0上有界.)b 当∞→t 时,0)(→t f ,故由⎰⎰-----++=ts t ts t t t ds s f e e ds s f e e e c e c t 0770721)(61)(61)(ϕ知,若⎰t sdss f e)(有界,则)(0)(610∞→→⎰-t ds s f e e t st ,若⎰t sdss f e)(无界,由于)(s f 在),0[∞+连续,故⎰t s dss f e 0)(为无穷大量,因此0)(lim 616)(lim 6)(lim )(61lim 00====∞→∞→∞→-∞→⎰⎰t f et f e e ds s f e ds s f e e t t t t t tst t s t t ,即总有)(0)(610∞→→⎰-t ds s f e e t st .同理)(0)(61077∞→→⎰-t ds s f e e t st .从而对方程的每一个解)(t ϕ,有)(0)(∞→→t t ϕ.11.给定方程组x t A x )(=',这里)(t A 是区间],[b a 上的连续n n ⨯矩阵.设)(t Φ是它的一个基解矩阵,n 维向量函数),(x t F 在∞<≤≤x b t a ,上连续,],[0b a t∈.试证明初值问题:⎩⎨⎧=+='ηϕ)(,),()(0t x t F x t A x(*)的唯一解)(t ϕ是积分方程组⎰--ΦΦ+ΦΦ=tt dss x s F s t t t t x 0))(,()()()()()(101η (**)的连续解.反之,(**)的连续解也是初值问题(*)的解. 证明)(t ϕ是初值问题(*)的解,故))(,()()()(t t F t t A t ϕϕϕ+=',这说明),(x t F 是t 的向量函数,于是由公式(5.27)得⎰--ΦΦ+ΦΦ=t t ds s s F s t t t t 0))(,()()()()()(101ϕηϕ,即)(t ϕ是积分方程组(**)的连续解.反之,设)(t ϕ是积分方程组(**)的连续解,则有⎰--ΦΦ+ΦΦ=t t ds s s F s t t t t 0))(,()()()()()(101ϕηϕ,两端对t 求导,就有))(,()()())(,()()()()()(11010t t F t t ds s s F s t t t t t t ϕϕηϕ---ΦΦ+ΦΦ'+ΦΦ'='⎰))(,(]))(,()()()[(0101t t F ds s s F s t t tt ϕϕη+Φ+ΦΦ'=⎰-- ))(,(]))(,()()()[()(0101t t F ds s s F s t t t A t t ϕϕη+Φ+ΦΦ=⎰-- ))(,(]))(,()()()()()[(0101t t F ds s s F s t t t t A t t ϕϕη+ΦΦ+ΦΦ=⎰--))(,()()(t t F t t A ϕϕ+=,即)(t ϕ也是初值问题(*)的解.§5.3 常系数线性微分方程组习题5.31.假设A 是n n ⨯矩阵,试证:)a 对任意的常数21,c c 都有A c A c A c A c 2121exp exp )exp(⋅=+;)b 对任意整数k ,都有kAA kexp )(exp =.(当k是负整数时,规定kk A A --=])[(exp )(exp 1.证明 )a 因为))(())((1222121A c A c A c c A c A c ==,所以矩阵Ac 1与A c 2可交换,故Ac A c A c A c 2121exp exp )exp(⋅=+.)b ①先证明N k ∈∀,有kAA kexp )(exp =,这只须对k 施以数学归纳法. 当1=k 时,)1exp(exp )(exp 1A A A ⋅==成立,设当k 时,kAA k exp )(exp =,则当1+k 时,有Ak A kA A A A k k )1exp(exp exp exp )(exp )(exp 1+===+,故对一切自然数k ,kAA kexp )(exp =.②)0exp(0exp )(exp 0A E A ===.③若k 是负整数,则N k ∈-,注意到)exp()(exp 1A A -=-,并由以上证明应用于矩阵A -,就有kAA k A A A k k k exp )](exp[)][exp(])[(exp )(exp 1=--=-==---,由①②③,对一切整数k ,均有kAA kexp )(exp =.2.试证:如果)(t ϕ是Ax x ='满足初始条件ηϕ=)(0t 的解,那么ηϕ)]([exp )(0t t A t -=.证明 由于 ηηϕ⋅⋅-='-='A t t A t t A t )]([exp ])([exp )(0,)(})]({[exp 0t A t t A A ϕη=-=,又ηηηϕ==⋅=E A t )]0[exp()(0,故ηϕ)]([exp )(0t t A t -=是方程组Axx ='满足初始条件ηϕ=)(0t 的解.由解的唯一性,命题得证.3.试计算下列矩阵的特征值及对应的特征向量.)a ⎪⎪⎭⎫ ⎝⎛3421; )b ⎪⎪⎪⎭⎫⎝⎛---244354332;)c ⎪⎪⎪⎭⎫⎝⎛-102111121;)d ⎪⎪⎪⎭⎫ ⎝⎛---6116100010.解 )a 特征方程0543421)det(2=--=----=-λλλλλA E ,特征值11-=λ,52=λ,对应于特征值11-=λ的特征向量⎪⎪⎭⎫ ⎝⎛=21u u u 必须满足方程组0)(1=+-u E A λ,得到0≠∀α,⎪⎪⎭⎫ ⎝⎛-=11αu 是对应于特征值11-=λ的特征向量.类似地可求得对应于特征值52=λ的特征向量为⎪⎪⎭⎫ ⎝⎛=21βv ,其中0≠β的任意常数.)b 特征方程0)2)(1)(2(244354332)det(=++-=---+---=-λλλλλλλA E ,特征值21-=λ,12-=λ,23=λ.对应于特征值21-=λ的特征向量u 必须满足方程组0)(1=+-u E A λ,得到≠∀α,⎪⎪⎪⎭⎫ ⎝⎛=110αu 是对应于特征值21-=λ的特征向量.类似地,可以求出对应于特征值12-=λ以及23=λ的特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛=011βv (0≠β的任意常数)和⎪⎪⎪⎭⎫ ⎝⎛=111γw (0≠γ的任意常数).)c 特征方程0)1)(3(12111121)det(2=+-=---+----=-λλλλλλA E ,特征值12,1-=λ,33=λ.对应于特征值12,1-=λ的特征向量⎪⎪⎪⎭⎫ ⎝⎛=321u u u u 必须满足方程组0)(1=+-u E A λ,得0≠∀α,⎪⎪⎪⎭⎫ ⎝⎛--=212αu 是对应于特征值12,1-=λ的特征向量.类似地,可以求出对应于特征值33=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=212βv (0≠β的任意常数).)d 特征方程0)3)(2)(1(61161001)det(=+++=+--=-λλλλλλλA E ,特征值11-=λ,22-=λ,33-=λ.由0)(1=+-u E A λ,推出0≠∀α,⎪⎪⎪⎭⎫ ⎝⎛-=111αu 是对应于特征值11-=λ的特征向量.同样可求得对应于特征值22-=λ和33-=λ的特征向量分别为⎪⎪⎪⎭⎫⎝⎛-=421βv (0≠β的任意常数)和⎪⎪⎪⎭⎫ ⎝⎛-=931γw (0≠γ的任意常数).4.试求方程组Ax x ='的一个基解矩阵,并计算Atexp ,其中A 为:)a ⎪⎪⎭⎫⎝⎛--2112;)b ⎪⎪⎭⎫⎝⎛3421;)c ⎪⎪⎪⎭⎫⎝⎛---244354332;)d ⎪⎪⎪⎭⎫⎝⎛--115118301.解)a 特征方程032112)det(2=-=--+=-λλλλA E ,得32,1±=λ是特征值.对应的特征向量分别为⎪⎪⎭⎫⎝⎛-=3211αu ,⎪⎪⎭⎫ ⎝⎛+=3212βu ,0,0≠≠βα为任意常数.所以方程组Axx ='的一个基解矩阵为⎪⎪⎭⎫ ⎝⎛+-=Φ--t ttt e e ee t 3333)32()32()(.133331323211)32()32()0()(exp ----⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-=ΦΦ=t ttt e e ee t At⎪⎪⎭⎫⎝⎛--+----+=----t ttttt tt e eee e ee e 33333333)32()32()32()32(63.)b 由第3题)a 立即得到方程组Ax x ='的一个基解矩阵为⎪⎪⎭⎫⎝⎛-=Φ--t tt te e e e t 552)(. 155121112)0()(exp ----⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=ΦΦ=t tt t e e e e t At⎪⎪⎭⎫ ⎝⎛+--+=----t t t t t t tt e e e e e e e e 55552)(2231.)c 由第3题)b 立即得到方程组Ax x ='的一个基解矩阵为⎪⎪⎪⎭⎫ ⎝⎛=Φ----t t t t tt t e e e e ee e t 222220)(.12222211011111100)0()(exp ------⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ΦΦ=t t tt tt t e e e e ee e t At⎪⎪⎪⎭⎫⎝⎛----+---=--------t tt t t tt tt t t tt t t t te e e e e e e e e e e e e e e e e 2222222222222. )d 特征方程)34)(3(11511831)det(2=--+=+------=-λλλλλλλA E ,特征值为31-=λ,723,2±=λ.对应的特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛-=4731αu ,⎪⎪⎪⎭⎫ ⎝⎛++-=7174532βu ,⎪⎪⎪⎭⎫⎝⎛+-+-=7174533γu ,γβα,,均为不等于零的任意常数.故方程组Ax x ='的一个基解矩阵为⎪⎪⎪⎪⎭⎫⎝⎛-++---=Φ-+--+--+-t tt tt tttt e e e ee e e e e t )72()72(3)72()72(3)72()72(3)17()17(4)574()574(7333)(.由)0()(exp 1-ΦΦ=t At 立即可得[])()()(exp 321t t t At ψψψ=,其中列向量函数⎪⎪⎪⎪⎭⎫⎝⎛-+++--+++--+++=-+--+--+-t t t t t t t t t e e e ee e e e e t )72()72(3)72()72(3)72()72(31)7514(2)7514(256)71349()49713(98)737(3)737(342841)(ψ, ⎪⎪⎪⎪⎭⎫⎝⎛++-+-++-+-+-+-+=-+--+--+-t t t tt t t t t e e e e e e e e e t )72()72(3)72()72(3)72()72(31)714(2)714(256)753175()753175(98)757(3)757(3422521)(ψ,⎪⎪⎪⎪⎭⎫⎝⎛-++++--+++-+-=-+--+--+-t t t tt t t t t e e e e e e e e e t )72()72(3)72()72(3)72()72(31)7137()7137(112)98761()98761(196)714(3)714(3841261)(ψ.(该题计算量太大,作为该法的习题不是太好!)5.试求方程组Ax x ='的一个基解矩阵,并求满足初始条件ηϕ=)0(的解)(t ϕ:)a ⎪⎪⎭⎫⎝⎛=3421A ,⎪⎪⎭⎫⎝⎛=33η;)b ⎪⎪⎪⎭⎫⎝⎛--=115118301A ,⎪⎪⎪⎭⎫⎝⎛--=720η;)c ⎪⎪⎪⎭⎫ ⎝⎛-=102111121A ,⎪⎪⎪⎭⎫ ⎝⎛=001η.解 )a 由上题)b 知⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--1112231exp 55t tt te e e e At ,所以所求解为⎪⎪⎭⎫⎝⎛+-+==--t t t t e e e e At t 5542)(exp )(ηϕ.)b 由上题)d 知)0()(exp 1-ΦΦ=t At ,其中⎪⎪⎪⎪⎭⎫⎝⎛-++---=Φ-+--+--+-t tt tt tttte e e ee e e e e t )72()72(3)72()72(3)72()72(3)17()17(4)574()574(7333)(.所以所求解为⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛++---+--⋅Φ==720)714(2775)773(3)714(2775)773(33214422521)()(exp )(t At t ηϕ ⎪⎪⎪⎪⎭⎫⎝⎛-++--+--+-++-+=-+--+--+-t t t tt t t t t e e e e e e ee e )72()72(3)72()72(3)72()72(3)7317(3)78977(728)7160289(3)7374511(1274)7435(9)9172(35461261.)c 由第3题)c 知,矩阵A 的特征值为12,1-=λ,33=λ.对应于特征值33=λ的特征向量⎪⎪⎪⎭⎫ ⎝⎛=212αv (0≠α的任意常数).又由648324648)(32121=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=-u u u u A E λ,得到⎪⎪⎪⎭⎫⎝⎛+-=)24(3331γβγβu (γβ,是任意常数),由⎪⎪⎪⎭⎫⎝⎛+-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=)24(3331212001γβγβαη解出41,21,41-===γβα.依公式(5.52),得满足初始条件ηϕ=)0(的解为⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛+++⎪⎪⎪⎭⎫ ⎝⎛=+++=--212120212124121241)]([)(33t tt t tt t e e u E A t E e Ev e t t t t t ϕ⎪⎪⎪⎭⎫⎝⎛--+=---)(2)(241333t t tt t t e e e e e e6.试求方程组)(t f Ax x +='的解)(t ϕ:)a ⎪⎪⎭⎫⎝⎛-=11)0(ϕ,⎪⎪⎭⎫ ⎝⎛=3421A ,⎪⎪⎭⎫⎝⎛=1)(t e t f ;)b ⎪⎪⎪⎭⎫ ⎝⎛=000)0(ϕ,⎪⎪⎪⎭⎫ ⎝⎛---=6116100010A ,⎪⎪⎪⎭⎫⎝⎛=-t e t f 00)(;)c ⎪⎪⎭⎫⎝⎛=21)0(ηηϕ,⎪⎪⎭⎫⎝⎛--=1234A ,⎪⎪⎭⎫⎝⎛-=t t t f cos 2sin )(.解 )a 由第4题)b 知,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--1112231exp 55t tt te e e e At ,由公式(5.61)得⎰-+=t ds s f A s t At t 0)(])exp[()(exp )(ηϕ⎰⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--------t s s t s t s t s t t t t tds e e e e e e e e e 0)(5)()(5)(5511112231111112231⎪⎪⎪⎪⎭⎫ ⎝⎛+++-++-=--53109235420934355t t t t tt e e e e e e .)b 由第3题)d 知A 的特征值11-=λ,22-=λ,33-=λ,对应的特征向量分别为⎪⎪⎪⎭⎫⎝⎛-=111αu ,⎪⎪⎪⎭⎫ ⎝⎛-=421βv ,⎪⎪⎪⎭⎫ ⎝⎛-=931γw ,其中γβα,,均是不为零的任意常数.Ax x ='的一个基解矩阵为⎪⎪⎪⎭⎫⎝⎛---==Φ---------t tt tt tt t ttt te e e e e ee e e w e v e u et 3232329432][)(321λλλ.⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛---=Φ--13228615621941321111)0(11,而)0()(exp 1-ΦΦ=t At .由公式(5.61)得⎰-+=t ds s f A s t At t 0)(])exp[()(exp )(ηϕ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---=---------000132286156943221323232t tt tt t t t te e ee e e e e e⎰⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---+-------------------t s s t s t s t s t s t s t s t s t s t dse e e e e e e e e e 0)(3)(2)()(3)(2)()(3)(2)(00132286156943221⎪⎪⎪⎭⎫⎝⎛-+-+---+-=⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=------------------⎰t t t tt t t t t t t s t s t t s t s t t s t s t e e e t e e e t e e e t ds e e e e e e e e e 3232320322322322916)72(38)25(4)32(419834221.)c A的特征方程0)2)(1(1234)det(=--=+--=-λλλλλA E ,求解得特征值11=λ,22=λ,对应的特征向量分别是⎪⎪⎭⎫ ⎝⎛=11αu ,⎪⎪⎭⎫ ⎝⎛=23βv ,其中βα,是不为零的任意常数.所以方程组Axx ='的一个基解矩阵为⎪⎪⎭⎫⎝⎛==Φt tt t tte e e e v eu e t 2223][)(21λλ,从而,⎪⎪⎭⎫⎝⎛--Φ=ΦΦ=-1132)()0()(exp 1t t At .由公式(5.61)得⎰-+=t ds s f A s t At t 0)(])exp[()(exp )(ηϕ⎰⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-----t s t s t s t s t t t t tds s s e ee e e e e e 0)(2)()(2)(2122cos 2sin 113223113223ηη⎪⎪⎭⎫⎝⎛+-+-+-+-+⎪⎪⎭⎫ ⎝⎛-+--+-=t t e e t t e e e e e e t t t t t t t t cos 2sin 224cos sin 234)(2)23()(3)23(222211222112ηηηηηηηη⎪⎪⎭⎫⎝⎛+--+--+--+--=t t e e t t e e t t t t cos 2sin 2)(2)423(cos sin 2)(3)423(2211222112ηηηηηηηη.7.假设m 不是矩阵A 的特征值,试证非齐线性方程组mtce Ax x +='有一解形如mte t ρϕ=)(,其中ρ,c 是常数向量.证明 设方程组有形如mte t ρϕ=)(的解,代入方程得m tm t m t ce e A e m +=ρρ,由此得cA m +=ρρ,即cA mE =-ρ)(.因为m 不是矩阵A 的特征值,故0)det(≠-A mE ,即矩阵A mE -可逆,得到c A mE 1)(--=ρ唯一确定.所以方程组有一解m tm t e ce A mE t ρϕ=-=-1)()(8.给定方程组⎩⎨⎧=+'+-'=-'++'-''.02,023221122111x x x x x x x x x)a 试证上面方程组等价于方程组Au u =',其中⎪⎪⎪⎭⎫⎝⎛'=⎪⎪⎪⎭⎫ ⎝⎛=211321x x x u u u u ,⎪⎪⎪⎭⎫ ⎝⎛---=112244010A ;)b 试求)a 中的方程组的基解矩阵;)c 试求原方程组满足初始条件0)0(1=x ,1)0(1='x ,)0(2=x 的解.解 )a 设11x u=,12x u'=,23x u=,则原方程组化为⎪⎩⎪⎨⎧--='=''-+-=''='='=',2,23,32123331212211u u u x u u u u u x u u x u或⎪⎩⎪⎨⎧--='++-='='32133212212,244,uu u u u u u u u u ,即u u ⎪⎪⎪⎭⎫ ⎝⎛---='112244010或Au u ='.反之,设11u x =,21u x =',32u x=,则方程组Au u ='化为⎩⎨⎧-'-='+'+-=''.211221112,244x x x x x x x x即⎩⎨⎧=+'+-'=-'++'-''.02,023221122111x x x x x x x x x)b 由0)2)(1(11224401)det(=--=+----=-λλλλλλλA E ,得矩阵A的特征值01=λ,12=λ,23=λ.对应的特征向量分别为⎪⎪⎪⎭⎫⎝⎛=201αu ,⎪⎪⎪⎭⎫ ⎝⎛=122βv ,⎪⎪⎪⎭⎫ ⎝⎛=021γw ,其中γβα,,均为不等于零的任意常数.由此得Au u ='的一个基解矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==Φ0222021][)(22321t t tt t t t t e e e e e w e v e u e t λλλ.)c 求与之等价的方程组Au u =',满足初始条件η=⎪⎪⎪⎭⎫⎝⎛=010)0(u 的解ηη)0()()(exp )(1-ΦΦ==t At t u⎪⎪⎪⎭⎫ ⎝⎛-+-+-=⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-t tt t t t t t t t e e e e e e e e e e 226434121010012220121022202122122,所以,原方程组满足初始条件0)0(1=x ,1)0(1='x ,0)0(2=x 的解为⎪⎪⎭⎫⎝⎛-+-=t t t e e e t 2234121)(2ϕ.9.试用Laplace 变换法解第5题和第6题. 解 5.)a 方程组两边取Laplace 变换,有)()(s AX s sX =-η,即η=-)()(s X A sE ,由具体数值代入得方程组⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----33)()(342121s X s X s s ,根据Gramer 法则得 5211)(1-++=s s s X ,5411)(2-++-=s s s X,所以tte et -+=512)(ϕ,tte et --=524)(ϕ,故初值问题5.)a 的解为⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛=--t t t t e e e e t t t 552142)()()(ϕϕϕ.5.)b 对方程组两边施行Laplace 变换,并化简有η=-)()(s X A sE ,用具体数值代入得方程组⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+------720)()()(115118301321s X s X s X s s s ,根据Gramer 法则得)72(427291)72(4272913313)34)(3(1521)(21--+-+---+=--++-=s s s s s s s s X ,)72(1267376511)72(12673765113991)34)(3(14372)(222--+++--++-=--+-+-=s s s s s s s s s X ,)72(12678977)72(126789773952)34)(3(5127)(223----+-+-+-=--+-+-=s s s s s s s s s X ,所以ttt e e e t )72()72(31427291427291313)(-+-+---=ϕ,ttt ee e t )72()72(3212673765111267376511991)(-+-++-+-=ϕ,ttt ee e t )72()72(331267897712678977952)(-+---+--=ϕ,故初值问题5.)b 的解为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+--++-+-+---=⎪⎪⎪⎭⎫ ⎝⎛=-+--+--+-t t t t t t t t t e e e e e e ee e t t t t )72()72(3)72()72(3)72()72(3321126789771267897795212673765111267376511991427291427291313)()()()(ϕϕϕϕ.5.)c 对方程组两边施行Laplace 变换,并化简有η=-)()(s X A sE ,用具体数值代入得方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---+----001)()()(102111121321s X s X s X s s s ,根据Gramer 法则得31211121)(1-++=s s s X ,31411141)(2--+=s s s X,31211121)(1-++-=s s s X , 所以)(21)(31t te e t -+=ϕ,)(41)(32t te e t ---=ϕ,)(21)(33t te e t --=ϕ,故初值问题5.)a 的解为。

微积分上学期答案

微积分上学期答案

1微积分答案 第一章 函数一、1.B; 2.D; 3.A; 4.C; 5.D二、1.1cos -x 或22sin2x ;2.100010-<⎧⎪=⎨⎪>⎩x x x 或()f x ; 3.4,-1;4.y =[0,1];5.1(1)2y x =-. 三、1. (1)[1,2)(2,4)D =⋃; (2)[3,2][3,4]D =--⋃. 2.(1)102,1y u u x ==+ ;(2)1,sin ,u y e u v v x===;(3) 2arctan ,ln ,1y u u v v x===+.3. 211,12,()12400,44ab C C x x x ====++ ()1400124c x C x x x==++.4. (1)90010090(100)0.011001600751600x P x x x <≤⎧⎪=--⋅<<⎨⎪≥⎩;(3)L=21000(元). (2)2300100(60)310.011001600151600x x L P x x xx x x ≤≤⎧⎪=-=-<<⎨⎪≥⎩;四、略.第二章 极限与连续(一)一、1.C ; 2. D ; 3.C ; 4.B ; 5.C 二、1. -2; 2. 不存在; 3. 14; 4. 1; 5.ab e .三、 1、(1)4; (2)25; (3)1; (4)5; (5)2.2、(1)3; (2)0; (3)2; (4)5e -; (5)2e-.3、11,2=-=-αβ 4、利用夹逼定理:11←<<→四、略。

第二章 极限与连续(二)一、1. D ; 2. C ; 3. B ; 4. C ; 5. B 二、1、0; 2、-2; 3、0; 4、2; 5、0,1x x ==-.2三、1、(1)1=x 是可去间断点;2=x 是连续点.(2)=xk π是第二类间断点(无穷间断点); 2=+x k ππ是可去间断点.(3)0=x 是可去间断点. (4)1x =是跳跃间断点.2、1()011⎧<⎪==⎨⎪->⎩x x f x x x x ,1=±x是跳跃间断点.3、(1)0;(2)cos α;(3)1; (4)0;(5)12.四、略。

《微积分》各章习题及详细答案之欧阳术创编

《微积分》各章习题及详细答案之欧阳术创编

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin)(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→x x ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xx x +-=11)(α,31)(x x -=β,则当1→x 时有。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小;(C )α与β是同阶无穷小; (D )βα~。

微积分第五章第六章习题答案

微积分第五章第六章习题答案

习题5.11.(1)(书本题目有问题。

考察内容为求导与积分互逆的知识点) ;sin xx3sin x (2)无穷多 ;常数(3)所有原函数(4)平行2. ;23x 6x3.(1)(2)(3)3223x C --+323sin 3xx e x C +-+3132221(1565(2))15xx x x C-++-+(4 (5)(6)2103)x x C -++4cos 3ln x x C -++323x x x eC+-+(7)(8)sin 22x xC -+5cos x x C --+4. 3113y x =+5. ;32()0.0000020.0034100C x x x x =-++(500)1600;(400)(200)552C C C =-=习题5.21.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)1a1711012-112122-15-12-2. (1) (2)(3)(4)515t e C +41(32)8x C --+1ln 122x C --+231(23)2x C--+(5)(6)(7)(8)C -+ln ln ln x C +111tan 11x C +212x e C --+(9)(10)(11)ln cos ln sin x x C -++ln cos-3sec sec 3xx C-++(12)(13)(14)C+43ln 14x C --+2sec 2x C +(15 (16)12arcsin 23x C +229ln(9)22x xC-++(17 (18)C ln 2ln 133x x C -+-+(19) (20)2()sin(2())4t t C ϕωϕωω++++3cos ()3t C ϕωω+-+(21)(22)(23)cos 1cos5210x x C -+13sinsin 232x xC ++11sin 2sin12424x x C -+习题5.31.(1) (2)arcsin ,,u x dv dx v x ===,sin ,cos u x dv xdx v x===-(3)(4)231ln ,,3u x dv x dx v x ===,cos ,sin x u e dv xdx v x -===(5)231arctan ,,3u x dv x dx v x===2. (1)(2)(3)cos sin x x x C ++(1)xe x C ---+11cos 2sin 224x x x C-++(4)(5)(6)21((1)arctan )2x x x C -+++ln(1)ln(1)x x x x C -+++++(7(8)41(4ln 1)16x x C -+arcsin x x C +21((2)2(1)ln(1))2x x x x C --+-++习题5.41.(1) (2)arctan x C +232ln 18ln 4ln 123x x x x x x C+++-+--+(3)(4)2sin2cos sin 22xx C x x -++1(ln cos ln sin tan 2222x x xC-+-+(5)(6)(7)211(arctan )21x x C x -+++6ln 11x C x+-+-略(8)11ln 2cossin ln cos 2sin 522522x x x x C --+++(9)(10)2111ln cos ln sin sec tan 2222422x x x xC -++++ln 1sin x C ++复习题五1.(1)(2)(3)(4)2x2cos 2x ln 1x +2x e dx -(5)(6)(7)sin x C +1(23)2F x C -+21(1)2F x C--+(8)(9)(10)2sin 23-+0122. 1.(1)A (2)A (3)A (4)A (5)C (6)D3. (1) (2)(3)322cos 3ln 3x x x C --++111(12)22x C --+1cos Cx+习题6.11.5032. (1) (2)1214a π3. (1) (2)4.略5.220(2)(1)02,12(2)(1)0x x x x x x x x x --≥-+≥→--+≥ 证明:须证根据积分区间,知故成立。

《微积分(二)》同步练习册(最终使用版)解析

《微积分(二)》同步练习册(最终使用版)解析

《微积分(⼆)》同步练习册(最终使⽤版)解析第五章不定积分 §5.3 凑微分法和分部积分法(第5.1~5.2节的内容,请参见本练习册末尾、第五章“⾃测题”前的附加材料)1. 求下列不定积分:(1) ?-dx e x2; (2)dx x x ln 1;(3)?+xx dx 2; (4) ?-dx x x 21; (5) dx x x x ?-+-2211; (6)()?-dx x 21sin 2;(7)?xdx x 32cos sin ; (8)dx x 4sin 1;(9) ?+dx xx 231;(10);(11)?dx xx x cos sin 1; (12*)?+dx ex11;ln 1; (14*)()+2cos 2sin x x dx.3. 求下列不定积分: (1)[]?++dx x x )1ln(arcsin ; (2)?-dx e x x 22;(3)?xdx e x2sin ; (4)()dx e x x x221?+;(5) ?xdx ln sin ; (6)?+dx x 21.4. 求下列有理函数的不定积分:(1)+dx x x )1(17; (2)?++dx x x x 21.5. 求下列不定积分: (1) 已知)(x f 是2x e -的⼀个原函数,求?'dx x f x )(;(2) 已知2x e -是)(x f 的⼀个原函数,求?'dx x f x )(.§5.4 换元积分法1. 求下列不定积分: (1)?+dx x 1; (2)?+-dx x 3211;dx x x cos ;(6)?-dx e x; (7)()-dx x x 21012981(7) ?++dx xx)11ln(.2*. 求不定积分?-+dx x x xx cos sin cos sin 2.3*. 试求不定积分2ln 1(ln )x dx x -?.4*. 已知ln(1)(ln )x f x x+=,求()f x dx ?.第六章定积分 §6.1 定积分的概念与性质1. 利⽤定积分的⼏何意义,计算下列定积分: (1)?-201dx x ; (2)?-11sin xdx ;(3)--22121dx x .2. 不计算积分,⽐较下列各积分值的⼤⼩(指出明确的“=<>,,”关系,并给出必要的理由). (1)?10xdx ; (2)?212dx x 与21xdx ;(3)?20sin πxdx 与20πxdx ; (4)?40tan πxdx 与40πxdx .3. 利⽤定积分的性质,估计?-=20dx xe I x 的⼤⼩.4. 设()x f 在区间[]1,0上连续,在()1,0内可导,且满⾜()()?=31031dx x f f ,试证:在()1,0内⾄少存在⼀点ξ,使得()0='ξf .5. 试判断下列定积分是否有意义(即,被积函数在相应的积分区间上是否“可积”),并说明理由. (1)?-111dx x ; (2)()?20dx x f ,其中()?=≠=1,21,2x x x x f .6*.根据定积分的定义,试将极限+++∞→n n n n n n πππsin 2sin sin 1lim表§6.2 微积分基本定理1.求下列函数关于x 的导数: (1)()1/1 2sin3x tt dt -?; (2)?12xt dt te ;(3)22x xt dt e ; (4*)()?-xtdt t x 0sin .2.求下列极限: (1)?→x x du x u 02tan lim; (2)()?+→xu x du u x 010211lim ;(3)?-→2040)cos 1(1lim x x du u x.3.求函数()()()?---=xudu e u u x f 0221的极值点.4.计算下列定积分: (1)?3231dx x x x ; (2)?ππ2121sin 1dx x x;(3)?-20cos 21πdx x ; (4){}-322,1min dx x ;(5)()?-21dx x f ,其中()≥<=1,1,2x xe x xe x f x x ;(6)?-b dx x 1,其中b 为常数.5.设()x f 在[]1,0上连续,且满⾜()()?+-=132dx x f x x f ,试求()x f .6*.试利⽤定积分的定义及计算原理求解数列极限n n S ∞→lim ,其中nn n n S n ++++++=21221121 .§6.3 定积分的换元积分法与分部积分法1. 试利⽤定积分的换元法计算下列积分: (1)?-2ln 01dx e x; (2)()?+-212(3)?-122221dx xx ; (4)?++202422dx x x x ;(5)-π3sin sin dx x x .2. 利⽤函数的奇偶性计算下列定积分:(1)()-++22221ln sin ππdx x x x ; (2)()-+-+1122513dx x x x x.3. 设()x f 是R 上的连续函数,试证:对于任意常数0>a ,均有()()??=2002321a a dx x xf dx x f x .4*. 设()x f 是R 上的连续函数,并满⾜()20x dt e t x f x t =-?5. 利⽤定积分的分部积分法计算下列积分:(1)?40sin πxdx x ; (2)()+121ln dx x ;(3)?21ln cos πe xdx .6*. 试计算()?20πdx x f ,其中()?=2sin πxdt ttx f .7*. 已知()x f 是R 上的连续函数,试证:()()()?=-x t x dt du u f dt t x t f 000.§6.4 定积分的应⽤1. 计算下列曲线围成的平⾯封闭图形的⾯积: (1)0,43=-=y x x y ; (2)x y x y x y 2,,===.2. 假设曲线()1012≤≤-=x x y 、x 轴和y 轴所围成的区域被曲线()02>=a ax y 分为⾯积相等的两部分,试确定常数a 的值.3. 求由下列曲线围成的平⾯图形绕指定轴旋转⼀周⽽成的⽴体体积: (1)1,41,0,14====x x y xy ;绕x 轴,(ii )绕y 轴4. 已知某产品的固定成本为50,边际成本和边际收益函数分别为()642+-=q q q MC ,()q q MR 2105-=,其中q 为产品的销售量(产量),试求最⼤利润.5. 已知某产品在定价1=p 时的市场需求量a Q =,在任意价格p 处的需求价格弹性为Qb E p =,其中0,0<>b a 均为常数,Q 为产品在价格p 处的市场需求量。

实用文档之《微积分》各章习题及详细答案

实用文档之《微积分》各章习题及详细答案

实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

大学数学2015-2016_2_ 微积分_B_ 第五章练习题参考答案

大学数学2015-2016_2_ 微积分_B_ 第五章练习题参考答案


5

0
2 cos
0
4

14.V

(a
x
y)dxdy

2 0
d
R
(a
0
r cos
r sin )rdr
D

2
(
1aR
2
1 R3 cos
1 R3 sin )d

aR 2

2 R3.
02
3
3
4
3
3

y
y u ueu (sin v cos v)
6.
f x
2x
y 3,
f y

x

2y
6,
解方程组
2x x 2
y y

3 6

0 0
得驻点
0,3
又 f xx 2 , f yy 2 , f xy 1,则 B 2 AC 12 2 2 3 0 ,
2015-2016(2) 大学数学(B) 练习题
一、选择题 1. D; 2. C ;
3. B;
第五章参考答案
4. D; 5. D; 6. A.
二、填空题
1. 0; 2. 3 ; 5
3. esin t2t2 (cos t 4t) ; 4. dz z dx z dy e x dx cos ydy ; x y
z z u z v eu sin v x eu cos v 1 e xy [x sin(x y) cos(x y)] . y u y v y
4. r
2x
x,
x 2 x 2 y 2 z 2 r

《微积分》各章习题及详细答案之欧阳治创编

《微积分》各章习题及详细答案之欧阳治创编

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin)(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xx x +-=11)(α,31)(x x -=β,则当1→x 时有。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小;(C )α与β是同阶无穷小; (D )βα~。

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第五章均方微积分作业

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第五章均方微积分作业
−a t − s
由于 R (s , t )在 ( t , t ) 连续 ⇒ X ( t ) 均方连续 ⇒ X ( t ) 均方可积 R (t + h , t + k ) − R (t , t + h ) − R (t , t + k ) + R (t , t ) lim h → 0 ,k → 0 hk 1 1 1 1 − 2 − 2 + 2 2 2 2 2 + + a h a k a a + (h − k ) 令h = k = hk 1 1 2 2 − 2 2 2 h2 a + h a lim = lim = h → 0 ,k → 0 h→ 0 h 2 a 2 a 2 + h 2 h2 2 = 4 < ∞ ⇒ X(t) 均方可导 a
E [Y 2 ] = = 1 4T 2
s
3
σ
s
2
(3 t
6
2
C
2
s
2
3 (3 t − s 6 f
)
σ
1
t
3
3 2 π tσ e
− s ) , s ≤ t时
2
∫ ∫
−t
t
t
−t
e
−2λ t − s
dsdt
一维分布
(t , s ) =
ϕ
exp
σ
2
x − 2σ
2
2 2
t
σ
ts
2

0
dv
∫ ∫
v 0 t
udu
σ
ts
2

t 0
dv
vdu
2
m X (t )m X (s ) =

微积分课后习题答案 第五章

微积分课后习题答案 第五章

第五章习题5-11.求下列不定积分:(1)25)x -d x ;(2) 2⎰x ; (3)3e x x⎰d x ; (4) 2cos 2x⎰d x ; (5) 23523x xx⋅-⋅⎰d x ; (6) 22cos 2d cos sin xx x x ⎰.解5151732222222210(1)5)(5)573d d d d x x x x x x x x x x C -=-=-=-+⎰⎰⎰113222221132223522(2)(2)24235d d d d x x x x x xx x x x x x x x C--==-+=-+=++⎰⎰⎰⎰213(3)3(3)(3)ln(3)1ln 31cos 1111(4)cos cos sin 222222235222(5)[25()]25()333125225()223(ln 2ln 3)3ln()3e e d e d e e d d d d d d d d x x xxxxx x x xx xx xx x C Cx x x x x x x x x Cx x x x x C x C ==+=+++==+=++⋅-⋅=-⋅=-⋅=-⋅+=-+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222222cos 2cos sin (6)(csc sec )cos sin cos sin csc sec cot tan d d d d d x x x x x x x x x x x xx x x x x x C-==-=-=--+⎰⎰⎰⎰⎰2. 解答下列各题:(1) 一平面曲线经过点(1,0),且曲线上任一点(x ,y )处的切线斜率为2x -2,求该曲线方程; (2) 设sin x 为f (x )的一个原函数,求()f x '⎰d x ;(3) 已知f (x )的导数是sin x ,求f (x )的一个原函数;(4) 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即P=0时,Q =1000),已知需求量的变化率(边际需求)为Q ′(P )=-10001()3Pln3,求需求量与价格的函数关系. 解 (1)设所求曲线方程为y =f (x ),由题设有f′(x )=2x -2,2()(22)2d f x x x x x C ∴=-=-+⎰又曲线过点(1,0),故f (1)=0代入上式有1-2+C =0得C =1,所以,所求曲线方程为2()21f x x x =-+.(2)由题意有(sin )()x f x '=,即()cos f x x =, 故 ()sin f x x '=-, 所以()sin sin cos d d d f x x x x x x x C '=-=-=+⎰⎰⎰.(3)由题意有()sin f x x '=,则1()sin cos d f x x x x C ==-+⎰于是12()(cos )sin d d f x x x C x x C x C=-+=-++⎰⎰.其中12,C C 为任意常数,取120C C ==,得()f x 的一个原函数为sin x -.注意 此题答案不唯一.如若取121,0C C ==得()f x 的一个原函数为sin x x --. (4)由1()1000()ln 33PQ P '=-得111()[1000()ln 3]1000ln 3()1000().333d d P P P Q P x x C =-=-⋅=⋅+⎰⎰将P =0时,Q =1000代入上式得C =0所以需求量与价格的函数关系是1()1000()3PQ P =.习题5-21.在下列各式等号右端的空白处填入适当的系数,使等式成立: (1) d x = d(ax +b )(a ≠0); (2) d x = d(7x -3); (3) x d x = d(52x ); (4) x d x = d(1-2x ); (5) 3x d x = d(3x 4-2); (6) 2e xd x = d(2e x); (7) 2ex -d x = d(1+2ex -); (8)d xx= d(5ln |x |);(9)= d(1-arcsin x ); (10)= d(11)2d 19x x += d(arctan3x ); (12) 2d 12xx +=d(arctan );(13) (32x -2)d x = d(2x -3x ); (14) cos(23x -1)d x = dsin(23x -1).解 1(1)()(0)()d d d d ax b a x a x ax b a +=≠∴=+22224334222221(2)(73)7(73)71(3)(5)10(5)101(4)(1)2(1)21(5)(32)12(32)121(6)()2()2(7)(1)d dd d d dd d d d d d d d d d de e d e d d e d e e x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ---=∴=-=∴=-=-∴=---=∴=-=⋅∴=+=222221()2(1)251(8)(5ln )(5ln )5(9)(1arcsin )(1arcsin )(10)1(2)3(11)(arctan 3)19d e d d e d d d d d d d d d d d x x x x x x x x x x x x x x x x x x x x x --⋅-∴=-+=∴=-==---=-==-=+222322231(arctan 3)193(12)))1212(13)(2)(23)(32)(32)(2)222232(14)sin(1)cos(1)cos(1)sin(1)333323d d d d d d d d d d d dd x x x x x x x x x x x x x x x xx x x x x x ∴=+=∴=++-=-=--∴-=---=-∴-=- 2.求下列不定积分: (1)5e d t t ⎰; (2) 3(32)x -⎰d x ; (3)d 12xx -⎰; (4)(5)t ; (6)d ln ln ln xx x x ⎰;(7)102tan sec d x x x ⎰; (8) 2e d x x x -⎰;(9)dsin cos x x x ⎰; (10) ⎰; (11)de e x x x-+⎰; (12)x ;(13) 343d 1x x x-⎰; (14) 3sin d cos xx x ⎰;(15)x ; (16) 32d 9x x x +⎰; (17)2d 21xx -⎰; (18) d (1)(2)xx x +-⎰;(19 2cos ()d t t ωϕ+⎰); (20) 2cos ()sin()d t t t ωϕωϕ++⎰; (21) sin2cos3d x x x ⎰; (22) cos cos d 2x x x ⎰; (23)sin5sin 7d x x x ⎰; (24) 3tansec d x x x ⎰;(25)x ; (26);(27)ln tan d cos sin xx x x ⎰; (28)21ln d (ln )xx x x +⎰;(29)2,0x a >; (30)(31)d xx⎰; (32)(33); (34),0x a >;(35)x ; (36) x ; (37)2sec ()d 1tan x x x +⎰; (38) (1)d (1e )x x x x x ++⎰(提示:令xt e =). 解 5555111(1)5(5)555e d e d e d e tt t tt t t C =⋅==+⎰⎰⎰33411(2)(32)(32)(32)(32)28d d x x x x x -=---=--⎰⎰122333111(3)(12)ln 121221221131(4)(23)(23)()(23)(23)3322(5)22sin 111(6)(ln ln )ln ln l ln ln ln ln ln ln ln ln d d d d d d d d x x C x x x x x x C x Ct t C x x x x x x x x x x-=--=-+---=---=--+=--+===-=⋅==⎰⎰⎰⎰⎰⎰⎰222210210112n 1(7)tan sec tan (tan )tan 11111(8)(2))222(9)22csc 22sin cos 2sin cos sin 2ln ln csc 2cot 2tan sin c d d e d e d e d(-e d d d d d 或x x x x Cx x x x x x x Cx x x x x Cx x xx xx x x x x C C x x x x x ----+⋅==+=-⋅-=-=-+===⋅⋅=+=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2cos 1tan ln tan os sin cos tan d d x x x Cx x x x x=⋅==+⎰⎰⎰22234(10)ln 1(11)()arctan 11()11(12)631333(13)14d d e d d e e e e e e d x x xx xx x Cx x C x x xCx x x -==-+===++++'=-=-=-==--⎰⎰⎰⎰⎰⎰⎰3444432334313(1)ln 11414sin sin 1(14)cos cos cos cos cos 2(15)1218)23812d d d d d d d x x x C x x x x x x x x x x C x x x x xx x x---=--=-+----=-=-=+=-=+-=⎰⎰⎰⎰⎰122221(94)(94)38)d x x x -+--⎰12arcsin 23x C =3322222222999(16)()9999119(9)ln(9)2922111(17)212221)1)x x x x xx x x x x x xx x x x x C x x x x xx +-==-+++=-+=-+++==--=-+⎰⎰⎰⎰⎰⎰⎰d d d d d d d2111111111(18)()(2)(1)(1)(2)32132311112ln ln ln 2133311cos(22)11(19)cos ()cos(22224C Cx x x x x x x x x x x C Cx x x t t t t t t ωϕωϕωω=-+=+++=-=--++--+-+-=-+=+-+++++==++⎰⎰⎰⎰⎰⎰ d d d d d d d 223)(2)11cos(22)(22)2411sin(22)241(20)cos ()sin()cos ()cos()1cos ()3(21)sin 2cos3t t t t t t Ct t t t t t C x x ϕωωϕωϕωωϕωωϕωϕωϕωϕωωϕω⋅=+++=+++++=-++=-++⎰⎰⎰⎰⎰d d d d 111(sin 5sin )sin 55sin 210211cos5cos 10213133(22)cos cos (cos cos )cos ()cos ()22223222213sin sin 3221(23)sin 5sin 7(cos12x x x x x x x xx x Cx x x x x x xx x x x xCx x x =-=-=-++=+=+=++=-⎰⎰⎰⎰⎰⎰⎰⎰d d d d d d d d d 2cos 2)11cos12(12)cos 2(2)24411sin12sin 2244x x xx x x x x x C-=-+=-++⎰⎰⎰⎰d d d322322(24)tan sec tan(sec)(sec1)sec1sec sec3(25)2arctan2(arctan1(26)(arcsin)d d ddddx x x x x x xx x Cx x xCx==-=-+===+=⎰⎰⎰⎰⎰1(arcsin)arcsinx Cx=-+⎰2222222ln tan1(27)ln tan seccos sin tan1ln tan(ln tan)(ln tan)21ln111(28)(1ln)(ln)(ln)ln(ln)ln(29)d ddd d ddxx x x xx x xx x x Cxx x x x x C x x x x x x x xx a=⋅⋅==++=+==-+==-⎰⎰⎰⎰⎰⎰⎰x⎰利用教材§5.2例16及公式(20)可得:原式=22211arcsin arcsin arcsin2222x a x a xa C Ca a a--=-.(30)令tan,(,)22ππx t t=∈-,则2secd dx t t=.所以2sec cos sinsecd dd dtt t t t t Ct====+⎰⎰tan,sin原式x t t C=∴=∴=+.(31)令3sec,(0,)2πx t t=∈,可求得被积函数在x>3上的不定积分,此时3sec tan3tand dx t t t t=⋅=故223tan3sec tan3tan3(sec1)3secd d dtx t t t t t t tt=⋅⋅==-⎰⎰⎰3tan3t t C=-+.由3sec,(0,)2πx t t=∈得tan3t=,又由3secx t=得33sec,cos,arccos3xt t tx x===,333arccos 3arccos )x C C x x∴=+=+ 又令x =3sec t ,类似地可得被积函数在x <-3上的不定积分.11333arccos 3(arccos )33arccos d π x C C x x x Cx=+=-+=+⎰综上所述有33arccos x C x=+. (32)令sin ,(,)22ππx t t =∈-,则cos d d x t t =. 11cos sin cos sin cos sin cos 2sin cos 11111(sin cos )ln sin cos 22sin cos 2211arcsin ln .22d d d d d t t t tt t tt t t tt t t t C t t t t x C x ++-=⋅=++=++=++++=++⎰⎰⎰⎰ (33)令sin ,(,)22ππx t t =∈-,则cos ,d d x t t =2cos 1(1)sec ()1cos 1cos 22tan arcsin .2d d d d t t tt t t t t t t C x C ∴==-=-++=-+=-⎰⎰⎰(34)21(2d d x a x x a =+=+⎰arcsinxa C a=⋅. (35)令2sin ,(,),2cos 22ππd d x t t x t t =∈-=,所以2222cos 2cos cot csc 4sin d d d d tx t t t t t t t t=⋅==-⎰⎰⎰⎰cot arcsin 2x t t C C x =--+=--+.(36)2d x x x ==12(1)ln12d xx Cxx=+=+++⎰由被积函数知x≤-2或x>0,令1xt=,当x>0时,(此时t>0)221222211222(12)(12)2.d dddx t tt ttt t CC C Cxx--==-=-=-++=-=-=-+=-+⎰当x≤-2时,此时12t-≤<221233311222(12)(12).d ddx t tt ttt t t CC C Cx--==-==++===+=+⎰综上所述:原式= ln1Cx+.(37)2222sec sec11()(1tan)1tan(1tan)(1tan)1tand d dx xx x x C x x x x==+=-+ ++++⎰⎰⎰.(38)令e x=t,则x=ln t,d x=1td t.11ln1111(ln)(ln)(1)ln(1ln)ln(1ln)ln1ln11(ln)(1ln)ln lnln1lnln1lnln ln ln ln ln ln111d d d ded dee e ee xxx x xx x tx t t t t t x x t t t t t t t t t t t tt t t t Ct t t tt t t txC C x Cxx x xx ++⎡⎤=⋅==-⎢⎥++++⎣⎦=-+=-+++=-+=+-+=+++++⎰⎰⎰⎰⎰⎰习题5-31.求下列不定积分:(1) sin dx x x⎰; (2) e d x x x-⎰;(3) arcsin d x x ⎰; (4) ecos d xx x -⎰;(5) 2e sin d 2xx x -⎰; (6) 2tan d x x x ⎰; (7) 2e d t t t -⎰; (8)2(arcsin )d x x ⎰; (9)2e sin d x x x ⎰;(10) x ⎰;(11)cos(ln )d x x ⎰; (12)2(1)sin 2d x x x -⎰;(13)ln(1)d x x x -⎰; (14)22cosd 2x x x ⎰; (15)32ln d xx x⎰; (16)sin cos d x x x x ⎰;(17)2cot csc d x x x x ⎰; (18)22(1)e d xx x x +⎰; (19)1(ln ln )d ln x x x+⎰; (20)e ln(1e )d x x x +⎰; (21) 23sin d cos x x x ⎰;(22)22ln(d (1)x x x x +⎰; (23)2e d (1)x x x x +⎰; (24)arctan 322e d (1)xx x x +⎰. 解 (1)sin cos cos cos cos sin d d d x x x x x x x x x x x x C =-=-+=-++⎰⎰⎰(2)()(1)e d de e e d e e d e e e x x x x x x xxxx x x x x x x x C x C---------=-=-+=---=--+=-++⎰⎰⎰⎰21(3)arcsin arcsin arcsin (1)2arcsin d x x x x x x x x x x x C=-=+-=+⎰⎰⎰(4)cos cos cos (sin )cos sin cos sin cos e d de e e d e de e e e d x x x x x x x x x x x x x x x x x x x x x---------=-=-+-=-+=-+-⎰⎰⎰⎰⎰12cos (sin cos )(sin cos )cos 2e d e e e d x x x xx x x x C x x x x C----∴=-+-∴=+⎰⎰22221111(5)sin sin sin cos 22222222e d de e e d x x x x x x x xx x ----=-=-+⋅⎰⎰⎰2222222211sin cos 22821111sin cos (sin )2282822111sin cos sin 2282162e de e e e d e e e d x xx x x x x x x xx x x x x x x x--------=--=--+-=---⎰⎰⎰2221221711sin sin cos 16222822sin (cos 4sin )21722e d e e e d e x x x x x x x xx C x x xx C-----∴=--+∴=-++⎰⎰222222222222221(6)tan (sec )sec 211(tan )tan tan 221tan ln cos 2111(7)2221111(2)2424d d d d de d de e e d e e d e t t t t t t t x x x x x x x x x x x x x x x x x x x x x x Cx t t t t tt t t -------=-=-=-=--=+-+=-=-+=---=--⎰⎰⎰⎰⎰⎰⎰⎰222222(8)(arcsin )(arcsin )2arcsin (arcsin )2arcsin (arcsin )2(arcsin )2e d d t Cx x x x x x xx x x x x x xx x x x -+=-⋅=+=+-=+-⎰⎰⎰⎰⎰22(arcsin )21cos 211(9)sin cos 222211cos 222e d e d e d e d e e d x x x x x x x x x x Cx x x x x x xx x=+-+-==-=-⎰⎰⎰⎰⎰而cos 2cos 2cos 22sin 2cos 22sin 2e d de e e d e de x x x x x xx x x x x x x x ==+=+⎰⎰⎰⎰cos 22sin 24cos 2e e e d x x x x x x x =+-⎰11cos 2(cos 22sin 2),511111(cos 22sin 2)(sin 2cos 2).2102510e d e 原式e e e x x x x x x x x x C x x C x x C ∴=++∴=-++=--+⎰(10)t =,则32,3d d x t x t t ==22222223336363663663(22)32)e d de e e d e de e e e d e e e e t t t t t t t t t t t t t x t t t t t tt t t t t t t C t t C C===-=-=-+=-++=-++=+⎰⎰⎰⎰⎰⎰(11)令ln x =t ,则,e d e d ttx x t ==,cos(ln )cos cos de e cos e sin e cos sin e e cos e sin e cos cos(ln )sin(ln )cos(ln )cos(ln )[cos(ln )sin(ln )]2d e d d d d d d t t t ttttttx x t t t t t t t t t t t tx x x x x xxx x x x C===+=+=+-=+-∴=++⎰⎰⎰⎰⎰⎰⎰⎰22222211(12)(1)sin 2sin 2sin 2cos 2sin 2(2)2211cos 2cos 2cos 222111cos 2cos 2sin 222211cos 2cos 2sin 222d d d d d d d x x x x x x x x x x x x x x x x x xx x x x xx x x x -=-=--=-++=-++=-++⎰⎰⎰⎰⎰⎰⎰2212sin 22111cos 2cos 2sin 2cos 2222413()cos 2sin 2222d x x xx x x x x x Cxx x x C-=-++++=--++⎰2222222221(13)ln(1)ln(1)()ln(1)2221111111ln(1)ln(1)(1)2212221111ln(1)()ln 122221(1)ln(1)2d d d d d d x x x x x x x x xx x x x x x x x x xx x x x x x Cx x x -=-=----+=--=--+---=--+-+-=--⎰⎰⎰⎰⎰⎰211.42x x C --+ 2222232321cos 11(14)cos cos 22221111sin sin sin 6262d d d d d d x x x x x x x x x x xx x x x x x x x x+=⋅=+=+=+-⎰⎰⎰⎰⎰⎰3232321111sin cos sin cos cos 626211sin cos sin .62d d x x x x x x x x x x x x x x x x x x C =++=++-=++-+⎰⎰333222323223232232ln 111(15)ln ()ln 3ln 11131ln 3ln ()ln ln 6ln 131ln ln 6ln ()1361ln ln ln 613ln ln d d d d d d d x x x x x xx x x xx x x x x xx x x x x x x x x x x x x x xx x x x x x x =-=-+=--=--+=---=---+=--⎰⎰⎰⎰⎰⎰⎰3266ln 1(ln 3ln 6ln 6) x x Cx x x x x Cx --+=-++++ 11(16)sin cos sin 2cos 22411cos 2cos 2cos 2cos 2244481cos 2sin 248d d d d d x x x x x x x x x x x x x x x x x x x x C==-=-+=-+=-++⎰⎰⎰⎰⎰()222221(17)cot csc csc csc csc 211csc csc csc cot 2222d d d d x x x x x x x x x x x x x x x x C=-=-=-+=--+⎰⎰⎰⎰222222222222222222211(18)(1)(1)(1)221111(1)2(1)()2222111(1)222e d e d de e e d e e d e e e x x x x x x x x x x x x x x x x x x x x x x C x C+=+=+=+-⋅=+-=+-+=+⎰⎰⎰⎰⎰11111(19)(ln ln )ln ln ln ln ln ln ln ln 11ln ln ln ln ln ln d d d d d d d x x x x x x x x x x x x x x xx x x x x x Cx x+=+=-⋅⋅+=-+=+⎰⎰⎰⎰⎰⎰⎰(20)ln(1)ln(1)(1)(1)ln(1)(1)1(1)ln(1)(1)ln(1)e e e d e d e e e e d e e e e d e e e xxxxxxxxxx x x x x x x x x C +=++=++-+⋅+=++-=++-+⎰⎰⎰⎰2233sin (21)tan sec tan (sec )tan sec sec cos d d d d x x x x x x x x x x x x=⋅==-⎰⎰⎰⎰ 2223323cos sin sin tan sec tan sec sec cos cos sin tan sec ln sec tan cos d d d d x x xx x x x x x x x x xxx x xx x x+=-=--=--+⎰⎰⎰⎰ 于是 213sin 2tan sec ln sec tan cos d xx x x C x x x =-++⎰, 所以 23sin 11tan sec ln sec tan cos 22d x x x x C x x x =-++⎰. 22211(22)ln(()211121ln(12(1)2d d d x x x x x x x =-++=+++=-++⎰⎰⎰令x =tan t , (,)22ππt ∈-,则d x =sec 2t dt21131sec cos sin sec d d d t t t t t C C t =⋅==+=+⎰⎰ ∴原式=2ln(2(1)x C x +. 211(23)()(1)111111e e d e d e e d e e ee d e x x x x xxxxx x x x x x x x x x x x x x x C C x x x=-=-+⋅+++++=-+=-++=++++⎰⎰⎰⎰arctan arctan arctan arctan 322(24)(1)e e d e xx xx x x x x ==+⎰⎰arctan arctan arctan arctan arctan 322(1)e 1e e e x x x x xx x =-=+⎰于是arctan arctan 13222(1)e e d x xx x C x =++⎰,所以arctan arctan 322(1)e e d x x x x C x =++⎰.习题5-4求下列不定积分:(1) 21d 1x x +⎰; (2)5438d x x x x x +--⎰;(3)sin d 1sin xx x +⎰; (4) cot d sin cos 1xx x x ++⎰.解 (1)令322111(1)(1)11A Bx Cx x x x x x x +==+++-++-+ 则 2331()()()11A B x B C A x A C x x +++-++=++ 从而 001A B B C A A C +=⎧⎪+-=⎨⎪+=⎩ 解得 131323A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩于是2322222123(1)3(1)1112111331612()2411ln ln 11361(1)ln 61d d d d d x x x x x x x x x x x x x x x Cx x x x Cx x -⎡⎤-=⎢⎥+-++⎣⎦-=-++-+-+=-++-++=-+⎰⎰⎰⎰⎰542233323323288(2)(1)11832111111ln 8()13221218ln 3ln 4ln 1132d d d d d x x x x x x x x x x x xx x x x xx x xx x x xx x x x x x x Cx x x +-+-=+++--=+++---=+++--++⋅--+=+++--+-+⎰⎰⎰⎰⎰ 222sin sin (1sin )1(3)cos (sec 1)1sin cos cos 1tan sec tan cos d d d d x x x x x x x x x x xx x C x x x Cx-==---+=-++=-++⎰⎰⎰⎰注 本题亦可用万能代换法(4)令tan2xt =,则 222222112sin ,cos ,cot ,2arctan ,1121d d t t t x x x x t x t t t t t--=====+++ 则222221cot 21111221sin cos 112221111111ln ln tan tan 222222d d d d d t x t t x t t t t t t x x t t t t t x x t C Ct --=⋅==--+++++++=-+=-+⎰⎰⎰⎰⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章练习参考答案
5.1-5.2
三、提示:先用描点作图法画出星形的图像 0
3
3
2
2
4
2
2
46
20
2
2
2
44sin (cos )
43sin cos 12(sin sin )31531312(
)42
64228
a
A ydx a td a t a t tdt a
t t dt a a
ππ
πππ===-=-⨯⨯⨯=-
=⨯⨯⨯⎰⎰⎰⎰
5.3-5.4
一、求两个半径为R 的正交圆柱体公共部分的体积(如图:为所求立体的八分之一图像)
.
解: 上图为所求立体的八分之一图像,先求它的体积.
可见在x 轴上取任意点x ,[]0,x R ∈,过点x 垂直于x 轴的截面均为正方形 其中,阴影部分为在任意点x
则(
)2
22
A x R x ==-
()0
R V A x dx =

()2
2
R
R
x
dx =
-⎰
2
313R R x x o
⎛⎫=- ⎪⎝⎭323R =
所以 两个半径为R 的正交圆柱体公共部分的体积为3
1683
V R =
将上题中的R 换成a ,就可以得到第一题的解答过程.
这道题还可以用二重积分来解.
三. 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=a
x dx y V ππ202⎰-⋅-=π
π2022)c o s 1()c o s 1(dt t a t a ⎰-+-=ππ20323)c o s c o s 3c o s 31(dt t t t a =5π 2a 3.
所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则
⎰⎰-=a
a
y dy y x dy y x V 20
2
12022)()(ππ ⎰⎰⋅--⋅-=π
ππππ022222s i n )s i n (s i n )s i n (t d t a t t a t d t a t t a
⎰--=π
π20
23s i n )s i n (t d t t t a =6π 3a 3 .
第四、五章综合测试题参考答案
一、5、 ()(
)
(
)
[][]0
2
2
00(cos cos sin sin )cos cos sin sin sin cos cos cos sin sin sin sin cos cos 1cos x
x
x
x
x
x
x
f
x t x t x dt
x tdt x tdt
x tdt x x tdt x x t x t x
'
=+'
=+=-+++=-+-+=⎰⎰⎰⎰⎰
三、
sin []
2,2,
cos 1.sin cos 1
(sin cos )(cos sin )
2
sin cos x t
t
dt
t t t t t t dt
t t
ππ
=∈-
=
+++-=+⎰⎰⎰(
)11
1
11sin cos ln sin cos 22sin cos 2
2
11arcsin ln 2
2t d t t t t t C
t t
x x C
=+
+=+
+++=
++
+⎰
x y 五、2此题中的旋转轴不是轴,也不是轴,因此不能用教材上旋转体体积的计算公式计算,但能用已知截面面积立体体积的计算方法:
先画出题中曲边三角边的图象,在区间11,2⎡⎤
⎢⎥⎣⎦上任取一点x ,过点x 作与x 轴
(或直线
1
y =)垂直的的平面,得截面面积为:
(
)(
(
()
2
2
111212
A x dx x dx ππππ=-
-
=-+=
⎰⎰11
220
所求旋转体体积:V=
()()()()()()()0
cos ,
1,C,C cos C cos ,C
2
2
f
x x f
x xdx x f x f
x x f
x xdx x xdx f
x x π
π
π
=
-
'=∴=
+∴=-=-+=∴=
+⎰
⎰⎰
七. 将上式两边同时对求导得:解得。

相关文档
最新文档