点动构造直角三角形问题

合集下载

函数中因动点产生的直角三角形问题

函数中因动点产生的直角三角形问题

专题6:函数中因动点产生的直角三角形问题构造直角三角形的方法: 1.要分别考虑以三点为直角顶点的情况 2.再利用相似、勾股定理或者锐角三角函数的相关知识计算,从而求出对应的点坐标.例题、已知:如图一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =12x 2+bx +c 的图象与一次函数y =12x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.解:(1)将B (0,1),D (1,0)的坐标代入y =12x 2+bx +c 得 1,10.2c b c =⎧⎪⎨++=⎪⎩得解析式y =12x 2-32x +1………………3分 (2)设C (x 0,y 0),则有00200011,13 1.22y x y x x ⎧=+⎪⎨⎪=-+⎩解得004,3.x y =⎧⎨=⎩∴C (4,3).………6分 由图可知:S =S △ACE -S △ABD .又由对称轴为x =32可知E (2,0). ∴S =12AE ·y 0-12AD ×OB =12×4×3-12×3×1=92………………………8分 当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F .∵Rt△BOP ∽Rt△PFC ,∴BO OP PF CF =.即143a a =-. 整理得a 2-4a +3=0.解得a =1或a =3∴所求的点P 的坐标为(1,0)或(3,0)综上所述:满足条件的点P 共有二个………………12分(3)设符合条件的点P 存在,令P (a ,0):当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F ,∵Rt △BOP ∽Rt △PFC ,∴CF OP PF BO =,即341a a =-, 整理得a 2-4a+3=0,解得a=1或a=3,∴所求的点P 的坐标为(1,0)或(3,0), 综上所述:满足条件的点P 共有二个。

动点生成直角三角形问题

动点生成直角三角形问题

二次函数的动点生成直角三角形的问题1.综合与探究:如图,抛物线213y x x 442=--与x 轴交于A,B 两点(点B 在点A 的右侧)与y 轴交于点C,连接BC,以BC 为一边,点O 为对称中心作菱形BDEC,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q 。

(1)求点A,B,C 的坐标。

(2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M,N 。

试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由。

(3)当点P 在线段EB 上运动时,是否存在点 Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由。

2.如图,抛物线2y ax bx 4=++的对称轴是直线x=32,与x 轴交于点A 、B 两点,与y 轴交于点C ,并且点A 的坐标为(—1,0).(1)求抛物线的解析式;(2)过点C 作CD//x 轴交抛物线于点D ,连接AD 交y 轴于点E ,连接AC ,设△AEC 的面积为S 1, △DEC 的面积为S 2,求S 1:S 2的值;(3)点F 坐标为(6,0),连接D ,在(2)的条件下,点P 从点E 出发,以每秒3个单位长的速度沿E→C→D→F 匀速运动;点Q 从点F 出发,以每秒2个单位长的速度沿F→A 匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P 、Q 同时出发,设运动时间为t 秒,当t 为何值时,以D 、P 、Q 为顶点的三角形是直角三角形?请直接写出所有符合条件的t 值..3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F 的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.4.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x 轴的另一个交点B 的坐标;(2)点D 是抛物线与y 轴的交点,点C 是抛物线上的另一点.已知以AB 为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E 的坐标;(3)点P 是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E 向上运动.设点P 运动的时间为t 秒.①当t 为 秒时,△PAD 的周长最小?当t 为 秒时,△PAD 是以AD 为腰的等腰三角形?(结果保留根号)②点P 在运动过程中,是否存在一点P ,使△PAD 是以AD 为斜边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.6.(2013年四川攀枝花12分)如图,抛物线y=ax 2+bx+c 经过点A (﹣3,0),B (1.0),C (0,﹣3).(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.7.如图,已知一次函数y 0.5x 2=+的图象与x 轴交于点A ,与二次函数2y ax bx c =++的图象交于y 轴上的一点B ,二次函数2y ax bx c =++的图象与x 轴只有唯一的交点C ,且OC=2.(1)求二次函数2y ax bx c =++的解析式;(2)设一次函数y 0.5x 2=+的图象与二次函数2y ax bx c =++的图象的另一交点为D ,已知P 为x 轴上的一个动点,且△PBD 为直角三角形,求点P 的坐标.8.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,23-),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.9.如图,在平面直角坐标系中,二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),与y 轴交于点C ,点D 在线段OC 上,OD=t ,点E 在第二象限,∠ADE=90°,tan ∠DAE=,EF ⊥OD ,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示);(3)当△ECA 为直角三角形时,求t 的值.参考答案1.解:(1)当y=0时,213x x 4042--=,解得,12x 2x 8=-=,,∵点B 在点A 的右侧,∴点A ,B 的坐标分别为:(-2,0),(8,0)。

动点直角三角形问题的解法

动点直角三角形问题的解法

“动点直角三角形问题”的三种解法李永红中考数学压轴题中常会出现“动点直角三角形问题”,如2013年山西、成都、攀枝花、长春、济宁、绵阳、襄阳等省市中考数学试卷中均出现了“动点直角三角形问题”,对于这类问题的解决,即使是数学尖子生也感到很棘手.其实,解决“动点直角三角形问题”有“法”可循,并不算“难”.一、例题分析例1 在直角坐标系中,已知点)0,1(A ,)2,0(-B ,将线段AB 绕点A 按逆时针方向旋转090至AC ,如图1.(1)求点C 的坐标;(2)若抛物线2212++-=ax x y 经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外)使ABP ∆是以AB 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.分析(1)构造三垂图可求得点C 的坐标为)1,3(-C .(2)①将点C 的坐标代入2212++-=ax x y 可求得抛物线的解析式为221212++-=x x y . ②法1(利用数形结合):如图2,易求得直线AC 的解析式为2121+-=x y . 由⎪⎪⎩⎪⎪⎨⎧++-=+-=2212121212x x y x y 解得⎩⎨⎧=-=11y x 或⎩⎨⎧-==13y x (舍去).此时点P 的坐标为)1,1(-.设过点B 且与直线AC 平行的直线的解析式为b x y +-=21,将点)2,0(-B 代入,得2-=b ,所以过点B 且与直线AC 平行的直线的解析式为221--=x y .由⎪⎪⎩⎪⎪⎨⎧++-=--=221212212x x y x y 解得⎩⎨⎧-=-=12y x 或⎩⎨⎧-==44y x .此时点P 的坐标为)1,2(--或)4,4(-.综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法2(构造三垂图):如图3,延长CA 交抛物线于点),(1n m P ,过点1P 作x D P ⊥1轴于点D ,易证DA P 1∆∽AOB ∆,∴OBAD OA D P =1.∵1=OA ,2=OB ,m AD -=1,n D P =1,∴211m n -=,即m n 2121-=.∵点),(1n m P 在抛物线上,∴221212++-=m m n .由⎪⎪⎩⎪⎪⎨⎧++-=-=2212121212m m n m n 解得⎩⎨⎧=-=11n m 或⎩⎨⎧-==13n m (舍去).此时点P 的坐标为)1,1(-.过点B 作直线AC 的平行线,交抛物线于点2P ,3P .过点2P 作y E P ⊥2轴于点E ,易证2BEP ∆∽AOB ∆,可求得点2P 的坐标为)1,2(--;过点3P 作y F P ⊥3轴于点F ,易证3BFP ∆∽AOB ∆,可求得点3P 的坐标为)4,4(-;综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法3(利用勾股定理): 设抛物线上存在点)22121,(2++-m m m P ,使ABP ∆是以AB 为直角边的直角三角形.分别利用勾股定理可得52=AB ,,)22121()1(2222++-+-=m m m AP 2222)42121(++-+=m m m BP . 当点A 、B 分别为直角顶点时,分别由+2AB =2AP 2BP 、+2AB 2BP 2AP =得到关于m 的一元四次方程,用已学知识难以求解.例2 已知抛物线32++=bx ax y 与x 轴交于点)0,3(-A ,)0,1(B ,与y 轴交于点C ,如图4. (1)求抛物线的解析式及顶点的坐标;(2)在抛物线的对称轴l 上存在点Q ,使ACQ ∆为直角三角形,请求出点Q 的坐标.分析(1)易求得抛物线的解析式为322+--=x x y ,顶点坐标为)4,1(-.(2)法1(利用数形结合):由于不易求直线AQ 或CQ 的解析式,所以本题不适合利用数形结合来解决. 法2(构造三垂图):如图5,在对称轴l 上存在四个符合条件的点Q ,分别构造三垂图并利用三角形相似可求得)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 法3(利用勾股定理):设点Q 的坐标为),1(n -,分别利用勾股定理可得182=AC ,,422n AQ +=22)3(1-+=n CQ .当090=∠ACQ 时,由+2AC =2CQ 2AQ 得224)3(118n n +=-++,解得4=n ,所以)4,1(1-Q .当090=∠CAQ 时,由+2AC =2AQ 2CQ 得22)3(1418-+=++n n ,解得2-=n ,所以)2,1(2--Q .当090=∠AQC 时,由+2AQ =2CQ 2AC 得18)3(1422=-+++n n ,解得2173±=n ,所以)2173,1(3+-Q ,)2173,1(4--Q . 综上,符合条件的点Q 有四个,分别为)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 二、方法比较利用数形结合:该方法并不是对每一个题都适用,当相应的直线方程能较容易求出时,可以使用该方法,而且解法比较简捷.构造三垂图:该方法对每一个题都适用,但解法较繁,当考虑情况不周时容易漏解.利用勾股定理:当动点在曲线上时,利用勾股定理得到的方程是一元四次方程,用已学知识难以求解,该方法不适用;当动点在直线上时,利用勾股定理得到的三个方程是一元一次方程或一元二次方程,容易求解而且不易漏解.通过上述分析和比较可以看到,解“动点直角三角形问题”通常有三种解法,解题时应根据题设条件选择恰当的解法,才能使问题快速地得以解决.。

二次函数压轴之直角三角形的存在性问题,方法集锦

二次函数压轴之直角三角形的存在性问题,方法集锦


AF BG
BF CG

3 m
3
3 (m2 3m)
解得m1 2 7(舍去), m 2 7
C2 (2 7,5 7)
方法一:一线三角构相似
① ②合并
第一种情况
E
设C(m, m2 3m)如图可得AOB : BEC
C
AO BO 得
3
3
BE EC |m2 3m 3| |m|

解得m1 2 7, m 2 7
C=900, AC2 CB2 AB2 (m 3)2 (m2 3m)2 m2 (m2 3m 3)2 18
m1
0,
m2
3 2
17
,
m3
3 2
17
C(0, 0),C(3 17 , 2)C(3 17 , 2)
2
2
ቤተ መጻሕፍቲ ባይዱ
方法三:利用勾股定理
设C(m,m2 -3m)A(3,0)B(0,3) AB2 18, AC 2 (m 3)2 (m2 3m)2 BC 2 m2 (m2 3m 3)2
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标

初中数学解题:动点形成直角三角形问题

初中数学解题:动点形成直角三角形问题

学校集体备课纸 课 题 8.动点形成直角三角形问题 学期第( )课时 课时目标 1. 在动态背景下的直角三角形存在性问题,解题关键是以直角顶点分类,画出各种状态图,转化为方程解决;2. 列方程的方法常常用到勾股定理、三角形相似等.教学重难点1.重点:分类讨论思想.2.难点:方程思想解决直角三角形存在性问题. 教学过程二度备课(手写稿) 一、知识探究【探究1】双动点与一定点构成直角三角形如图,AB 是⊙O 的直径,弦BC =2 cm ,∠ABC =60°.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连接CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2 cm /s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1 cm /s 的速度从B 点出发沿BC 方向运动,设运动时间为t ,连接EF ,当t 为何值时,△BEF 为直角三角形.【探究2】单动点与两定点构成直角三角形(2015·广东从化一模)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,AC =BC ,OA =1,OC =4,抛物线y=x 2+bx +c 经过A ,B 两点.(1)求点N 的坐标(用含x 的代数式表示);(2)在两个动点运动过程中,是否存在某一时刻若存在,求出x 的值;若不存在,请说明理由.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A,B除外),过点E 作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E,F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.(2015·益阳改编)已知抛物线E1∶y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图,在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(三)思考(2015·无锡改编)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0),A(5,0),B(m,2),C(m-5,2).若BC上总存在点P,使∠OPA=90°,此时m的范围是____________________二、感悟提升。

函数图像上由动点产生的直角三角形解题策略

函数图像上由动点产生的直角三角形解题策略
如 图 2,由 点 P的坐 标 为 (m,0),可 得 M
(m,一吉m+4),Q(m, m2一兰m一4). 所以 Q=(一 1 m+4)一‘ 1 m 一吾m一4)
(3)设 点 Q的坐 标 为 ( , 1( +2)( 一8))
①如图 4,@ADBQ=90。时 , QG : :

GB HD 2‘
所以 =圭.
解得 =6.此时 Q(6,一4)




c \
图 4
一 rn +m+s.
② 如 N 5, ̄ ̄BDQ=90。
= =2.
当MQ=DC=8时 .四边 形 CQMD是平 行 边 形 .

义 ‘ /一




解方 程一{g4 m +m+8-8,得 m=4或 m=0(舍

p 图 3
图 6
I 43


轴 交 于 /l、B两 点 (点 B在 点 A的 右 侧 ),与 Y轴
交 于 点 C,连 接 BC,以 BC为一 边 ,点 0为 对 称
中心作 菱形 BDEC,点 P是 轴上 的一 个动点 ,
设 点 ,)的 坐标 为 (,n,0),过 点 J【)作 轴一



Q 图 1
【思路点拨 】 1.笫 (2)题 先用 龠 Ⅲ的式子 丧乐线 段 MQ 的 , 根据 MQ=DC洲 .
42 I 策 略 方 法
初 数 学 -策 略 方 法
2.第 (2)题 要判 断 网边 形 CQBM 的形 状 , 最 直接 的方法就 是根据 求得 的 m的 值画一 个 准确 的示意 图 ,先得到结论.

初三数学平面直角坐标系内已知一边取点构造特殊三角形 华东师大版

初三数学平面直角坐标系内已知一边取点构造特殊三角形 华东师大版

初三数学平面直角坐标系内已知一边取点构造特殊三角形华东师大版一. 本周教学内容:平面直角坐标系内已知一边取点构造特殊三角形二. 教学过程:问题:在平面直角坐标系内已知一边(比如线段AB),按要求在坐标系内取一点(比如P),使△PAB为等腰三角形(直角三角形、等腰直角三角形)解题思路:按已知的边在特殊三角形中所“扮演”的角色进行分类讨论,具体如下:(1)当要构造的特殊三角形为等腰三角形时:①如果已知的边AB“扮演”底边,则要作AB的中垂线,点P一定在中垂线上。

②如果已知的边AB“扮演”腰,且A为要构造的等腰三角形的顶点,则要以A为圆心,AB长为半径画圆,点P一定在这个圆上。

③如果已知的边AB“扮演”腰,且B为要构造的等腰三角形的顶点,则要以B为圆心,AB长为半径画圆,点P一定在这个圆上。

(2)当要构造的特殊三角形为直角三角形时:①如果已知的边AB“扮演”斜边,则要以AB为直径画圆,点P一定在这个圆上。

②如果已知的边AB“扮演”直角边,且A为直角顶点,则要过A作AB的垂线,点P 一定在这条垂线上。

③如果已知的边AB“扮演”直角边,且B为直角顶点,则要过B作AB的垂线,点P 一定在这条垂线上。

例1. 如图所示,在直角坐标系中,点A(2,1),在坐标轴上求一点B,使△AOB是等腰三角形,并确定点B的坐标。

、,解:情形1:当OA为△AOB的底边时,作OA的中垂线,和x、y轴分别交于B B12如图(1)图(1)∵在Rt △AOC 中,OC AC ==21,∴AO =5∵B B 21是OA 的中垂线∴OE =52又∵∠∠OEB OCA 190==︒ ∠∠EOB COA 1=∴∆O ∆EB OCA 1~∴OE OC OB OA =1,即52251=OB∴∴(,)OB B 1154540=同理可得:B 2052(,)情形2:当OA 为腰且A 为顶点时,以A 为圆心,AO 长为半径画圆,如图(2)图(2)易得:B B 344002(,),(,)情形3:当OA 为腰且O 为顶点时,以O 为圆心,AO 长为半径画圆,如图(3)图(3)易得:B B 565005(,),(,)-B B 785005(,),(,)-例2. 已知:在直角坐标系中,点A (-10,)和点B (1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,那么满足这样条件的点P 有多少个?( ) A. 8个 B. 6个 C. 4个 D. 2个 解:情形1:当AB 为斜边时,作以AB 为直径的圆 ∵(,),(,)A B -1012 ∴在Rt △ABC 中,AC =BC =2 ∴∠BAC =45° ∴OD =1∴AD AB ==212,即D 是AB 的中点∴即画以D 为圆心,AD 长为半径的圆,如图(1)图(1)易得:P P P 12301201210(,),(,),(,)+-情形2:当AB 为直角边,且A 为直角顶点时,过点A 作AB 的垂线,如图(2):图(2)易得:P 401(,)-情形3:当AB 为直角边,且B 为直角顶点时,过点B 作AB 的垂线,如图(3):图(3)易得:P P 563003(,),(,)∴满足这样条件的点P 有6个例3. 在数学活动课上,老师请同学们在一张长为18cm 、宽为14cm 的长方形纸板上剪下一个腰长为12cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上)。

二次函数压轴题第五讲 因动点产生的直角三角形问题

二次函数压轴题第五讲  因动点产生的直角三角形问题

第五讲因动点产生的直角三角形问题【知识要点】求直角三角形的存在性方法:(1)几何法:一个圆两条线;(2)代数法:盲解【典型例题】例1.如图,y=ax2+bx+c的图像与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点N是对称轴上一动点,且△NAC是直角三角形,求点N的坐标;例2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.例3.如图,直线33+-=x y 与x 轴、y 轴分别交于点A 、B .抛物线k x a y +-=2)2(经过A 、B ,并与x 轴交于另一点C ,其顶点为P ,(1)求a ,k 的值;(2)在图中求一点Q ,A 、B 、C 为顶点的四边形是平行四边形,请直接写出相应的点Q 的坐标;(3)抛物线的对称轴上是否存在一点M ,使△ABM 的周长最小?若存在,求△ABM 的周长;若不存在,请说明理由;(4)抛物线的对称轴是上是否存在一点N ,使△ABN 是以AB 为斜边的直角三角形?若存在,求出N 点的坐标,若不存在,请说明理由.例4.如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由。

中考压轴题动态几何之直角三角形存在性问题

中考压轴题动态几何之直角三角形存在性问题

中考压轴题动态几何之直角三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写直角三角形存在性问题模拟题.在中考压轴题中,直角三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△P AB为直角三角形时,AP的长为.原创模拟预测题2.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q 从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?原创模拟预测题3.如图,抛物线212y x bx c =-++与x 轴分别相交于点A (﹣2,0),B (4,0),与y 轴交于点C ,顶点为点P .(1)求抛物线的解析式;(2)动点M 、N 从点O 同时出发,都以每秒1个单位长度的速度分别在线段OB 、OC 上向点B 、C 方向运动,过点M 作x 轴的垂线交BC 于点F ,交抛物线于点H .①当四边形OMHN 为矩形时,求点H 的坐标;②是否存在这样的点F ,使△PFB 为直角三角形?若存在,求出点F 的坐标;若不存在,请说明理由.原创模拟预测题4.如图,已知抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.原创模拟预测题5.如图,已知直线3y x =-+与x 轴、y 轴分别交于A ,B 两点,抛物线2y x bx c =-++经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.原创模拟预测题6.如图,二次函数2+y x bx c 的图象交x 轴于A (﹣1,0)、B (3,0)两点,交y 轴于点C ,连接BC ,动点P 以每秒1个单位长度的速度从A 向B 运动,动点Q以每秒2个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;t时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ (3)如图2,当2的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.原创模拟预测题7.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x <4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.原创模拟预测题8.如图,已知二次函数232y ax x c =++的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数232y ax x c =++的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;(4)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.原创模拟预测题9.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x =﹣1和x =3时,y 的值相等,直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式.(2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQP 的面积有最小值,最小值是多少?(3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(0<m <2),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.。

直角三角形的存在性问题

直角三角形的存在性问题

直角三角形的存在性问题(因动点产生的直角三角形的存在性问题)课前预热1、两点式2、两直线互相垂直,两直线的解析式为11b x k y +=与22b x k y += → 121-=⋅k k3、三角形相似:射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=24、三角函数求解新课认知问题提出:已知直角三角形的一边(即直角三角形的两个点确定),求 解第三点解决方法:1、找点方法:双线一圆(两垂线一圆)一圆指以已知边为直径作圆,双线指过线段(边)端点(顶点)做垂线. 2、分析题目中的定长、定角3、确定点的坐标情况分类:(1)当动点在直线上运动时常用方法:①121-=⋅k k ;②三角形相似;③勾股定理;(2)当动点在曲线上运动是时情况分类:①已知点处做直角方法:①121-=⋅k k ;②三角形相似;③勾股定理.②动点处做直角方法:寻找特殊角.动点在直线上运动时例1如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为秒时,△PAD的周长最小?当t为秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由当动点在曲线上运动时 (1)求解过程中只有已知点处做直角例2 如图,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.(2)求解过程中动点处做直角例3 如图,已知抛物线y=x 2+bx+c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ=43AB,求tan ∠CED 的值②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.1、(2012山东枣庄10分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C为 (-1,0) .如图所示,B 点在抛物线y =12x 2+12x -2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌△COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2.已知抛物线y=ax 2+bx+3(a ≠0)经过A (3,0),B (4,1)两点,且与y 轴交于点C .(1)求抛物线y=ax 2+bx+3(a ≠0)的函数关系式及点C 的坐标;(2)如图(1),连接AB ,在题(1)中的抛物线上是否存在点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(2),连接AC ,E 为线段AC 上任意一点(不与A 、C 重合)经过A 、E 、O 三点的圆交直线AB 于点F ,当△OEF 的面积取得最小值时,求点E 的坐标.3、(2012内蒙古)如图,抛物线2y x bx 5=--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.例1(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+例2(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D 为直角顶点.连接AD ,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AB 2+BD 2=AB 2,∴△ABD 为直角三角形,即点A 为所求的点Q . ∴Q 1(﹣2,0);③以点B 为直角顶点.如图,设Q 2点坐标为(x ,y ),过点Q 2作Q 2K ⊥x 轴于点K ,则Q 2K=﹣y ,OK=x ,BK=8﹣x . 易证△QKB ∽△BOD , ∴,即,整理得:y=2x ﹣16.∵点Q 在抛物线上,∴y=x 2﹣x ﹣4. ∴x 2﹣x ﹣4=2x ﹣16,解得x=6或x=8,当x=8时,点Q 2与点B 重合,故舍去;当x=6时,y=﹣4,∴Q 2(6,﹣4).例3 ⑴∵抛物线的对称轴为直线x=1, ∴1221b b a -=-=⨯ ∴b =-2.∵抛物线与y 轴交于点C (0,-3),∴c =-3,∴抛物线的函数表达式为y =x 2-2x -3.⑵∵抛物线与x 轴交于A 、B 两点,当y =0时,x 2-2x -3=0.∴x 1=-1,x 2=3.∵A 点在B 点左侧,∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y =kx +m , 则033k m m =+⎧⎨-=⎩,∴13k m =⎧⎨=-⎩∴直线BC 的函数表达式为y =x -3. ⑶①∵AB =4,PO =34AB , ∴PO =3∵PO ⊥y 轴∴PO ∥x 轴,则由抛物线的对称性可得点P 的横坐标为12-, ∴P (12-,74-)∴F(0,74 -),∴FC=3-OF=3-74=54.∵PO垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2).过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(12),P2(1-252).练习1、【答案】解:(1)证明:∵∠BCD +∠ACO =90°,∠ACO +∠OAC =90°,∴∠BCD =∠OAC 。

利用解析法破解中考数学压轴题中的动点直角三角形问题

利用解析法破解中考数学压轴题中的动点直角三角形问题

利用解析法破解中考数学压轴题中的动点直角三角形问题在中考数学的二次函数压轴题中,由动点产生的直角三角形问题也是热门考点之一。

通常的解法都是在以动点分别向x轴和y轴作垂线,构造我们熟悉的几何模型,例如“一线三等角”后者“8字型”等等。

那么对于一些想追求高分的同学,如果能够利用关于垂直问题的几个解析法小技巧,就可以大大加快解题速度,尤其是对于那些题目中要求只写出答案,不用给出解题过程的题目。

本文全部例题的可编辑电子版的获取方式在文末第一题是2019河南中考数学压轴题的二次函数【分析】第一问,由一次函数表达式可以确定A、C两点的坐标,然后将其代入二次函数表达式即可。

【分析】对于△PCM为直角三角形这样的条件,正常的思路应该是分为三种情况来考虑,即P、C、M分别为直角顶点情况。

本题的点M,为在抛物线上的动点P向x轴做垂线与直线AC相交所得,则∠PMC一定为锐角,那么就只剩下两种情况需要考虑,分别是P为直角顶点和C为直角顶点。

当P为直角顶点时,情况比较简单,就是点P和点C的纵坐标相同时就是所求。

当C为直角顶点时,过C点做直线AC垂线,与抛物线的交点就是P点位置。

所以问题的关键在于求出直线PC的表达式,方法有三种:第一种:利用三角形相似得到对应边成比例,求出直线PC与x轴的交点D的坐标,进而求得直线PC第二种:利用两条垂直的直线,斜率相乘等于-1,利用直线的点斜式方程,直接写出直线PC的表达式。

第三种:根据P点在抛物线上,直接设出点P坐标,再利用P、C 两点求出直线PC斜率的表达式,与直线AC的斜率相乘等于-1,直接确定P点坐标。

这里需要注意的是,“斜率相乘等于-1”、“点斜式方程”和“两点求斜率”属于高中解析几何中直线部分的知识点,初中并未涉及,所以在中考时,如果题目要求写解答过程,这种方法需要慎用。

在中考时,部分题目要求直接写出答案的,可以使用上述的第二种和第三种方法来提升做题效率。

建议有能力的同学要在中考之前将这部分的高中知识进行学习,最好熟练应用,一是可以提升在中考时的解题效率;二可以减轻高中学习的压力;三是提前锻炼解析几何处理图形问题的思维,因为上了高中就知道了,初中的平面几何思路基本不用。

直角三角形上的动点问题

直角三角形上的动点问题

直角三角形上的动点问题直角三角形上的动点问题通常涉及到几何和代数的结合,需要运用一些基本的几何定理和代数技巧来解决。

这类问题一般会给出一个直角三角形,并在其上设定一个或多个动点,动点的位置会随着某种条件(如时间、速度等)的变化而变化。

问题的目标通常是找出动点在某个特定条件下的位置或轨迹。

解决这类问题的一般步骤包括:1.理解题意:首先,需要清楚地理解题目的条件和要求。

这包括理解动点的运动规则,以及需要求解的问题是什么。

2.应用几何定理:根据题目条件,可能需要应用一些基本的几何定理,如勾股定理、相似三角形定理等。

3.建立代数方程:根据几何定理和题目条件,可以建立一些代数方程。

这些方程可能会涉及到动点的坐标、速度、加速度等。

4.解方程:解这些代数方程,找出动点的位置或轨迹。

这可能需要一些代数技巧,如因式分解、求根公式等。

5.检验答案:最后,需要检验答案是否符合题目条件。

这可以通过将答案代入原方程或几何图形中进行验证。

以下是一个简单的例子:在直角三角形ABC中,∠C=90°,AC=3,BC=4,动点P从A点出发,沿AC方向以1单位/秒的速度向C点移动。

求当AP=PC时,点P的坐标。

解:设点P的坐标为(x,0),因为点P从A点出发,沿AC方向移动,所以x的取值范围是0≤x≤3。

根据勾股定理,有PC²=x²+BC²=x²+16。

因为AP=PC,所以有(3-x)²=x²+16。

解这个方程,得到x=0.5。

所以,当AP=PC时,点P的坐标为(0.5,0)。

这只是一个简单的例子,实际的直角三角形上的动点问题可能会更复杂,需要运用更多的几何和代数知识来解决。

专题02 因动点产生的直角三角形问题(解析版)

专题02 因动点产生的直角三角形问题(解析版)

备战2020中考数学之解密压轴解答题命题规律专题02 因动点产生的直角三角形问题【类型综述】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.【方法揭秘】我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA 为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341mm-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.【典例分析】【例1】如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B 关于y轴的对称点分别为点A′、B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.图1 图2【例2】已知在平面直角坐标系xOy中,直线l别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x-别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,22为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【例3】如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G.(1)当CE=3时,求S△CEF∶S△CAF的值;(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.图1【例4】综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=43,当△AB′D恰好为直角三角形时,BC的长度为.【例5】如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.【例6】如图,抛物线y=mx2+nx﹣3(m≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求点C坐标及抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点D,使得△BCD是以CD为直角边的直角三角形?若存在,直接写出D点坐标;若不存在,请说明理由.【变式训练】1.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP 为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个B.3个C.4个D.5个2.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.817B.717C.49D.593.如图,在△ABC中,AB=2,AO=BO,P是直线CO上的一个动点,∠AOC=60°,当△PAB是以BP为直角边的直角三角形时,AP的长为()A.,1,2 B.,,2 C.,,1 D.,24.如图,是的直径,弦,是弦的中点,.若动点以的速度从点出发沿着方向运动,设运动时间为,连结,当是直角三角形时,(s)的值为A.B.1 C.或1 D.或1 或5.若D点坐标(4,3),点P是x轴正半轴上的动点,点Q是反比例函数12(0)y xx=>图象上的动点,若△PDQ为等腰直角三角形,则点P的坐标是________.6.如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,点E为射线AD上的一个动点,若△ABE与△A′BE关于直线BE对称,当△A′BC为直角三角形时,AE的长为______.7.如图,AB 为O 的直径,C 为O 上一点,过B 点的切线交AC 的延长线于点D ,E 为弦AC 的中点,10AD =,6BD =,若点P 为直径AB 上的一个动点,连接EP ,当AEP ∆是直角三角形时,AP 的长为__________.8.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.9.如图,AB 是⊙O 的直径,弦BC=6cm ,AC=8cm .若动点P 以2cm/s 的速度从B 点出发沿着B→A 的方向运动,点Q 以1cm/s 的速度从A 点出发沿着A→C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t(s),当△APQ 是直角三角形时,t 的值为___________.10.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c,y =3+b d那么称点T 是点A ,B 的融合点.例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =143-+=1,y =8(2)3+-=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.11.如图,在矩形ABCO 中,AO=3,tan ∠ACB=43,以O 为坐标原点,OC 为x 轴,OA 为y 轴建立平面直角坐标系.设D ,E 分别是线段AC ,OC 上的动点,它们同时出发,点D 以每秒3个单位的速度从点A 向点C 运动,点E 以每秒1个单位的速度从点C 向点O 运动,设运动时间为t 秒. (1)求直线AC 的解析式;(2)用含t 的代数式表示点D 的坐标; (3)当t 为何值时,△ODE 为直角三角形?(4)在什么条件下,以Rt △ODE 的三个顶点能确定一条对称轴平行于y 轴的抛物线?并请选择一种情况,求出所确定抛物线的解析式.12.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在一点P ,使得PAM ∆为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D ,满足DA OA =,过D 作DG x ⊥轴于点G ,设ADG ∆的内心为I ,试求CI 的最小值.13.如图,在等腰Rt ABC 中,90,142ACB AB ∠==.点D,E 分别在边AB,BC 上,将线段ED 绕点E 按逆时针方向旋转90º得到EF .(1)如图1,若AD BD =,点E 与点C 重合,AF 与DC 相交于点O .求证:2BD DO =. (2)已知点G 为AF 的中点.①如图2,若,2AD BD CE ==,求DG 的长.②若6AD BD =,是否存在点E ,使得DEG △是直角三角形?若存在,求CE 的长;若不存在,试说明理由.14.已知在平面直角坐标系xOy 中,直线1l 分别交x 轴和y 轴于点()()3,0,0,3A B -. (1)如图1,已知P 经过点O ,且与直线1l 相切于点B ,求P 的直径长;(2)如图2,已知直线2: 33l y x =-分别交x 轴和y 轴于点C 和点D ,点Q 是直线2l 上的一个动点,以Q 为圆心,22为半径画圆.①当点Q 与点C 重合时,求证: 直线1l 与Q 相切;②设Q 与直线1l 相交于,M N 两点, 连结,QM QN . 问:是否存在这样的点Q ,使得QMN ∆是等腰直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.15.如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.16.在平面直角坐标系中,抛物线y=x 2+(k ﹣1)x ﹣k 与直线y=kx+1交于A ,B 两点,点A 在点B 的左侧.(1)如图1,当k=1时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.17.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.18.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.19.已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.20.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.21.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.22.如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.备战2020中考数学之解密压轴解答题命题规律专题02 因动点产生的直角三角形问题【类型综述】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.【方法揭秘】我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341mm-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.【典例分析】【例1】如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B 关于y轴的对称点分别为点A′、B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.图1 图2思路点拨1.判断点P是线段OP′的中点是解决问题的突破口,这样就可以用一个字母表示点P、P′的坐标.2.分别求线段AA′∶BB′,点P到AA′的距离∶点P′到BB′的距离,就可以比较△P AA′与△P′BB′的面积之比.满分解答(1)当x=1时,y=x2=1,所以A(1, 1),m=1.设抛物线E2的表达式为y=ax2,代入点B(2,2),可得a=12.所以y=12x2.(2)点Q在第一象限内的抛物线E1上,直角三角形QBB′存在两种情况:图3 图4 ①如图3,过点B作BB′的垂线交抛物线E1于Q,那么Q(2, 4).②如图4,以BB′为直径的圆D与抛物线E1交于点Q,那么QD=12BB'=2.设Q(x, x2),因为D(0, 2),根据QD2=4列方程x2+(x2-2)2=4.解得x=3±.此时Q(3,3).图5 图6考点伸展第(2)中当∠BQB′=90°时,求点Q(x, x2)的坐标有三种常用的方法:方法二,由勾股定理,得BQ2+B′Q2=B′B2.所以(x-2)2+(x2-2)2+(x+2)2+(x2-2)2=42.方法三,作QH⊥B′B于H,那么QH2=B′H·BH.所以(x2-2)2=(x+2) (2-x).【例2】已知在平面直角坐标系xOy中,直线l别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x-别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)32(2)①见解析;②(32,632+).-)或(32,632思路点拨(1)证明△ABC为等腰直角三角形,则⊙P的直径长=BC=AB,即可求解;(2)证明2454222CM AC sin=︒=⨯==圆的半径,即可求解;(3)分点M、N在两条直线交点的下方、点M、N在两条直线交点的上方两种情况,分别求解即可.满分解答(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=32;(2)①过点作CM⊥AB,由直线l2:y=3x-3得:点C(1,0),则245422CM AC sin =︒=⨯==圆的半径, 故点M 是圆与直线l 1的切点,即:直线l 1与⊙Q 相切; ②如图3,当点M 、N 在两条直线交点的下方时, 由题意得:MQ =NQ ,∠MQN =90°,设点Q 的坐标为(m ,3m -3),则点N (m ,m +3), 则33322NQ m m =+-+=, 解得:32m =当点M 、N 在两条直线交点的上方时, 同理可得:32m =+;故点Q 的坐标为(32,632-)或(32+,632+).思路点拨解决第(3)问,要分点M 、N 在两条直线交点的下方、点M 、N 在两条直线交点的上方两种情况求解. 【例3】 如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G . (1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式; (3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1思路点拨1.第(1)题中的△CEF和△CAF是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG分两种情况讨论.满分解答所以∠EMA=∠EAM.所以y=EA=EM=26-x.图3 图4图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt△AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图8【例4】综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,3△AB′D恰好为直角三角形时,BC的长度为.【答案】(1)①BD′//AC ,菱形;(2)见解析;(3)1:13:1;(4)4或6或8或12.思路点拨(1)①②根据折叠的相关性质即可解答,可得到展开的图形为菱形.(2)①根据四边形ABCD 是平行四边形可得到DAC ACB ∠=∠,再根据翻折的定义即可得到AEC ∆是等腰三角形,随之可解答.②求出AD BC =,根据翻折得到CB D ADB ∠=∠'',即可解答.(3)分类讨论不同长宽比下的情况进行解答即可.(4)求出四边形'ACB D 是等腰梯形,再根据题意设''ADB CB D y ∠=∠=,解出y,求出BC 的长再分类讨论即可.满分解答(1)①'//BD AC .②将AEC ∆剪下后展开,得到的图形是菱形;故答案为'//BD AC ,菱形;(2)①选择②证明如下:四边形ABCD 是平行四边形,//AD BC ∴,DAC ACB ∴∠=∠,将ABC ∆沿AC 翻折至△'AB C ,'ACB ACB ∴∠=∠,'DAC ACB ∴∠=∠,AE CE ∴=,AEC ∴∆是等腰三角形;∴将AEC ∆剪下后展开,得到的图形四边相等,∴将AEC ∆剪下后展开,得到的图形四边是菱形.②选择①证明如下,四边形ABCD 是平行四边形,AD BC ∴=,将ABC ∆沿AC 翻折至△'AB C ,'B C BC =,'B C AD ∴=,'B E DE ∴=,''CB D ADB ∴∠=∠,'AEC B ED ∠=∠,'ACB CAD ∠=∠'ADB DAC ∴∠=∠,'//B D AC ∴.(3)①当矩形的长宽相等时,满足条件,此时矩形纸片的长宽之比为1:1;''90AB D ADB ∠+∠=︒, 3090y y ∴-︒+=︒,②当矩形的长宽之比为3:1时,满足条件,此时可以证明四边形'ACDB 是等腰梯形,是轴对称图形;综上所述,满足条件的矩形纸片的长宽之比为1:1或3:1;(4)AD BC =,'BC B C =,'AD B C ∴=,//'AC B D ,∴四边形'ACB D 是等腰梯形,30B ∠=︒,'30AB C CDA ∴∠=∠=︒,△'AB D 是直角三角形,当'90B AD ∠=︒,AB BC >时,如图3中,设''ADB CB D y ∠=∠=,'30AB D y ∴∠=-︒,解得60y =︒,'3030AB D y ∴∠=-︒=︒,'43AB AB ==,3434AD ∴=⨯=,4BC ∴=,当'90ADB ∠=︒,AB BC >时,如图4,AD BC =,'BC B C =,'AD B C ∴=,//'AC B D ,∴四边形'ACB D 是等腰梯形,'90ADB ∠=︒,∴四边形'ACB D 是矩形,'90ACB ∴∠=︒,90ACB ∴∠=︒,30B ∠=︒,3AB =33436BC AB ∴===;当'90B AD ∠=︒,AB BC <时,如图5,AD BC =,'BC B C =,'AD B C ∴=,//'AC B D ,'90B AD ∠=︒,30B ∠=︒,'43AB =, '30AB C ∴∠=︒,4AE ∴=,'28BE AE ==, 4AE EC ∴==,'12CB ∴=,当'90AB D ∠=︒时,如图6,AD BC =,'BC B C =,'AD B C ∴=,//'AC B D ,∴四边形'ACDB 是等腰梯形,'90AB D ∠=︒,∴四边形'ACDB 是矩形,90BAC ∴∠=︒,30B ∠=︒,3AB =38BC AB ∴=÷=; ∴已知当BC 的长为4或6或8或12时,△'AB D 是直角三角形.故答案为平行,菱形,1:1或3:1,4或6或8或12;考点伸展解决第(4)问,△AB′D 恰好为直角三角形时,可得'90B AD ∠=︒(AB BC >)时,如图3;当'90ADB ∠=︒(AB BC >)时,如图4;当'90B AD ∠=︒(AB BC <)时,如图5;当'90AB D ∠=︒时,如图6;根据这几种情况求得BC 的长.【例5】如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN 为直角三角形时,t 的值为1或4. 思路点拨(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形;(3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论. 满分解答(1)将()1,0A 、()3,0B 代入23y ax bx =++,得: 309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x =-+=--,∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=,∴点C 的坐标为()0,3.点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠,将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x ty x x =-++⎧⎨=-+⎩,解得:11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点M 的坐标为32)2t +,点N 的坐标为,322t ++.点A 的坐标为()1,0,(222210571AM t t t⎫⎫∴=-+=++-+⎪⎪⎪⎪⎝⎭⎝⎭(222210571AN t t t ⎫⎫=+-=++++⎪⎪⎪⎪⎝⎭⎝⎭222188MN t =+-=+⎝⎭⎝⎭.AMN ∆为直角三角形,∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.考点伸展(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.【例6】如图,抛物线y =mx 2+nx ﹣3(m≠0)与x 轴交于A(﹣3,0),B(1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x ﹣3;(2)2128;(3)点D 的坐标为:310,﹣3﹣1010)、(310,﹣3+1010)、(1,﹣3) 思路点拨(1)设抛物线的表达式为:()22(3)(1)23=23=+-=+-+-y a x x a x x ax ax a ,解出a 的值即可; (2)设点P (x ,x 2+2x ﹣3)、点M (x ,﹣x ),则PH =22PM =()22232---+x x x ,将表达式配成顶点式即可得出答案; (3)分∠BCD =90°、∠CDB =90°两种情况,作出图形分别求解即可.满分解答解:(1)∵抛物线与x 轴交于A(﹣3,0),B(1,0)两点,∴抛物线的表达式为:()22(3)(1)23=23=+-=+-+-y a x x a x x ax ax a ,即﹣3a =﹣3,解得:a =1,故抛物线的表达式为:y =x 2+2x ﹣3;(2)过点P 作PM ∥y 轴交直线EF 于点M ,设点P(x,x2+2x﹣3)、点M(x,﹣x),则PH=22PM=()2222321223=2x x x x⎛⎫---+-++⎪⎝⎭,当x=﹣32时,PH的最大值为212;(3)①当∠BCD=90°时,如图2左侧图,当点D在BC右侧时,过点D作DM⊥y轴于点M,则CD=1,OB=1,OC=3,tan∠BCO=13=tan∠CDM=tanα,则sinα10,cosα10x D=CDcosα310,同理y D=﹣310故点310,﹣3﹣1010);同理当点D(D′)在BC的左侧时,同理可得:点D′(﹣310,﹣3+10);②当∠CDB=90°时,如右侧图,CD=OB=1,则点D(1,﹣3);综上,点D的坐标为:(310,﹣3﹣10)、(﹣310,﹣3+10)、(1,﹣3).【变式训练】1.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP 为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个B.3个C.4个D.5个【答案】C【详解】当M运动到(-1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的P点;又当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有-x=-(2x+3),解得x=-3,所以点P坐标为(0,-3).。

专题03 因动点产生的直角三角形问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版)

专题03 因动点产生的直角三角形问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版)

【类型综述】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.【方法揭秘】我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341mm-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.【典例分析】例1 如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B 关于y轴的对称点分别为点A′、B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△P AA′与△P′BB′的面积之比.图1 图2例2如图1,二次函数y=x2+bx+c的图象与x轴交于A(-1, 0)、B(3, 0)两点,与y轴交于点C,连结BC.动点P以每秒1个单位长度的速度从点A向点B运动,动点Q2个单位长度的速度从点B向点C运动,P、Q两点同时出发,连结PQ,当点Q到达点C时,P、Q两点同时停止运动.设运动的时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点,若存在,求出点N的坐标与t的值;若不存在,请说明理由.图1 图2例3 如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G.(1)当CE=3时,求S△CEF∶S△CAF的值;(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.图1例4如图1,二次函数y=a(x2-2mx-3m2)(其中a、m是常数,且a>0,m>0)的图像与x轴分别交于A、B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图像上,CD//AB,联结AD.过点A作射线AE交二次函数的图像于点E,AB平分∠DAE.(1)用含m的式子表示a;(2)求证:ADAE为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G,联结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.图1例5如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1例6如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1【变式训练】1.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP 为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个B.3个C.4个D.5个2.如图,在矩形中,是边上的一个动点,当点在(不含两点)上运动时,若是以为斜边的直角三角形,则等于()A.B.或C.D.或3.如图,在△ABC中,AB=2,AO=BO,P是直线CO上的一个动点,∠AOC=60°,当△PAB是以BP为直角边的直角三角形时,AP的长为()A.,1,2 B.,,2 C.,,1 D.,24.如图,是的直径,弦,是弦的中点,.若动点以的速度从点出发沿着方向运动,设运动时间为,连结,当是直角三角形时,(s)的值为A.B.1 C.或1 D.或1 或5.若D点坐标(4,3),点P是x轴正半轴上的动点,点Q是反比例函数12(0)y xx=>图象上的动点,若△PDQ为等腰直角三角形,则点P的坐标是________.6.如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,点E为射线AD上的一个动点,若△ABE与△A′BE关于直线BE对称,当△A′BC为直角三角形时,AE的长为______.7.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P,Q同时出发,用t(s)表示移动的时间,当t=________s时,△POQ是等腰三角形;当t=_______s时,△POQ是直角三角形.8.如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为___________.9.如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.10.如图所示,已知抛物线经过点A (-2,0)、B (4,0)、C (0,-8),抛物线y =a x 2 +b x +c (a≠0)与直线y =x -4交于B ,D 两点.(1)求抛物线的解析式并直接写出D 点的坐标;(2)点P 为抛物线上的一个动点,且在直线BD 下方,试求出△BDP 面积的最大值及此时点P 的坐标;(3)点Q 是线段BD 上异于B 、D 的动点,过点Q 作QF ⊥x 轴于点F ,交抛物线于点G .当△QDG 为直角三角形时,求点Q 的坐标.11.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B 在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.12.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣2,0)、B(4,0)、C(0,﹣8),与直线y=x ﹣4交于B,D两点(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.13.如图,抛物线与直线交于A 、B 两点.点A 的横坐标为-3,点B 在y 轴上,点P 是y 轴左侧抛物线上的一动点,横坐标为m ,过点P 作PC ⊥x 轴于C ,交直线AB 于D . (1)求抛物线的解析式; (2)当m 为何值时,;(3)是否存在点P ,使△P AD 是直角三角形,若存在,求出点P 的坐标;若不存在,说明理由.14.(本小题满分12分)已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.(3)在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标.15.如图,抛物线与x 轴相交于点A 、B ,与y 轴相交于点C ,抛物线的对称轴与x 轴相交于点M .P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上).分别过点A 、B 作直线CP 的垂线,垂足分别为D 、E ,连接点MD 、ME .(1)求点A ,B 的坐标(直接写出结果),并证明△MDE 是等腰三角形;(2)△MDE 能否为等腰直角三角形?若能,求此时点P 的坐标;若不能,说明理由;(3)若将“P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上)”改为“P 是抛物线在x 轴下方的一个动点”,其他条件不变,△MDE 能否为等腰直角三角形?若能,求此时点P 的坐标(直接写出结果);若不能,说明理由. 16.如图,直线与抛物线相交于和,点P 是线段AB 上异于A 、B 的动点,过点P 作轴于点D ,交抛物线于点C .求抛物线的解析式;是否存在这样的P 点,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; 连接AC ,直接写出为直角三角形时点P 的坐标. yx O DEA BC17.如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求该抛物线的对称轴和线段AB的长;(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求△AED的面积的最大值;(3)如图2,点G是线段AB上的一动点,点H在第一象限,AC∥GH,AC=GH,△ACG与△A′CG关于直线CG对称,是否存在点G,使得△A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.18.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.19.已知,是边长的等边三角形,动点以的速度从点出发,沿线段向点运动.请分别解决下面四种情况:()如图,设点的运动时间为,那么__________时,是直角三角形;()如图,若另一动点从点出发,沿线段向点运动,如果动点、都以的速度同时出发.设运动时间为,那么为何值时,是直角三角形?()如图,若另一动点从点出发,沿射线方向运动.连接交于.如果动点、都以的速度同时出发.设运动时间为,那么为何值时,是等腰三角形?()如图,若另一动点从点出发,沿射线方向运动,连接交于,连接.如果动点、都以的速度同时出发.请你猜想:在点、的运动过程中,和的面积有什么关系?并说明理由.20.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y 轴上运动.(1)求直线AB的函数解析式;(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由.。

动点问题与相似三角形有何关系

动点问题与相似三角形有何关系

动点问题与相似三角形有何关系嘿,同学们!今天咱们来聊聊动点问题和相似三角形之间那妙不可言的关系。

先给大家讲个我自己遇到的事儿。

有一次我在公园里散步,看到一个小朋友拿着风筝在草坪上跑来跑去。

一开始风筝飞得很低,小朋友跑的速度也比较慢。

后来他加快了速度,风筝就飞得越来越高。

这就好比动点问题中的点,它的位置和运动速度在不断变化。

那相似三角形在这当中扮演啥角色呢?咱们来看一个数学例子。

比如有一个三角形 ABC,另外一个动点 D 在边 AB 上移动。

随着 D 点的位置改变,三角形 ADC 和三角形 ABC 有可能会相似。

为啥会相似呢?这就好比两个长得有点像的双胞胎,只是某些部位的大小比例不太一样。

比如说,三角形 ABC 的两条边的比例是 2:3,当动点 D 移动到某个特定位置时,三角形 ADC 对应的两条边比例也成了 2:3,那这两个三角形不就相似了嘛。

再举个例子,假如有一块长方形的黑板,一个点从左上角开始沿着边框向右下角移动。

在移动的过程中,我们可以通过相似三角形的知识来计算这个点到各个顶点的距离变化。

动点问题常常会让同学们感到头疼,一会儿这个点动到这儿,一会儿又动到那儿。

但如果我们能巧妙地运用相似三角形的性质,就好像找到了一把神奇的钥匙,能打开解决问题的大门。

比如说,在一个直角三角形中,有一个动点沿着斜边移动。

我们通过找出相似三角形,就能根据已知的边的长度比例,求出动点移动过程中相关线段的长度。

有时候动点的运动轨迹不是直线,而是曲线,比如一个点在圆上运动。

这时候,我们还是可以通过构造相似三角形来找到解题的思路。

还记得我开头说的那个在公园里放风筝的小朋友吗?他跑的路线其实也可以看作是一个动点问题。

而风筝在空中形成的形状和小朋友奔跑的轨迹,说不定也能和相似三角形联系起来呢!总之,动点问题和相似三角形就像是一对好伙伴,它们相互配合,帮助我们解决数学中的难题。

只要同学们认真观察、仔细思考,就能发现它们之间隐藏的秘密,让数学变得不再那么可怕!加油吧,小伙伴们!。

确定点的位置 构造直角三角形

确定点的位置 构造直角三角形

( √ 2+1 ,0 ) ,C ( √ 2+ 1 ,1 ) .设一 次函数 的解 析式为
Y =k x+b , 因 为 点 A、 点 B 在 直 线 上 , 所 以
r , / 2k+b:0, 一

一 解得 k = 1 ,b =一 √ 2 ,所以一次函数的解 边 在 轴 的上 方 可 以 画 一个 等 腰 直 角 三 角 形 . 【 b: 一 4 2 .
解 ( 1 )① 设 直 线 A B的 解 析 式 为 Y=k x+b ,代
析式为 Y: 一
设 反 比例 函数 的解 析式 为 Y= ,
r一4 | l } +b=0.
函数 图 象 交 于 C 、 D 两 点 , 又
OA = 0B =AC =BD .

1 .根 据 j 三 角 形 两 边 之 和 大 于 第 三 边 ,得 到 两 个 不
等 式 ,组 成 不 等 式组 解 之 ,得 到 的取 值 范 围. 2 .若 AA B C为 直 角 三 角 形 ,则 有 可 能 是 LA C B= 9 0 。 ,或 C A B=9 0 。 ,或  ̄A B C=9 0 。 ,所 以 要 分 三 种 情 况 讨 沦.
例2 如图 ( 1 ) ,一 次 函 数 的 图 象 与 轴 、Y轴 分 别 交 于 A、 B 两 点 , 且 点 的 的 坐 标 为
/A
) , ‘
( 1 )求 的取值范 围;
( 2 ) 若 AA B C为 直 角 二 三 角彤 ,求 的值 .
分 析
(  ̄ , 2,0 ) ,点 C ,D 分 别 在 第 一 、 三 象 限 ,且 此 一 次 函 数 与 反 比 例

f i - 小 …: 解 得 … < … 2 : : :

已知两点在坐标轴上找点构成直角三角形问题

已知两点在坐标轴上找点构成直角三角形问题

方法总结:将已知两点连‎成线段,以此线段中点‎为圆心、此线段长为直‎径画圆,这个圆与坐标‎轴的交点均符‎合题意(线段两端点除‎外);再过线段两端‎点分别作此线‎段的垂线,这两条直线分‎别与坐标轴的‎交点也符合题‎意。

两线一圆:利用k₁×k₂=﹣1计算1.已知直线y=x+3与x、y轴分别交于‎A、B两点,在坐标轴上求‎一点C,使△ABC为直角‎三角形,满足条件的点‎C共有几个.2.已知A(-1,0)B(1,2)在坐标轴上求‎一点C,使△ABC为直角‎三角形,满足条件的点‎C共有几个.3.在平面直角坐‎标系中有两点‎A(-2,2),B(3,2),C是坐标轴上‎的一点,若△ABC是直角‎三角形,满足条件的点‎C共有几个.4.已知两点M(-2,2),N(5,-2)在坐标轴上求‎一点P,使∠MPN为直角‎,满足条件的点‎C共有几个.练习一:在平面直角坐‎标系中,反比例函数与‎二次函数y=k(x2+x-1)的图象交于点‎A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数‎的解析式;(2)要使反比例函‎数和二次函数‎都是y随x的‎增大而增大,求k应满足的‎条件及x的取‎值范围。

(3)设二次函数的‎图象的顶点为‎Q,当△ABQ是以A‎B为斜边的直‎角三角形时,求k的值.练习二:如图,抛物线与x轴‎交于A,B两点(点B在点A的‎右侧)与y轴交于点‎C,连接BC,以BC为一边‎,点O为对称中‎心作菱形BD‎E C,点P是x轴上‎的一个动点,设点P的坐标‎为(m,0),过点P作x轴‎的垂线l交抛‎物线于点Q。

(1)求点A,B,C的坐标。

(2)当点P在线段‎O B上运动时‎,直线l分别交‎B D,BC于点M,N。

试探究m为何‎值时,四边形CQM‎D是平行四边‎形,此时,请判断四边形‎C Q BM的形‎状,并说明理由。

(3)当点P在线段‎E B上运动时‎,是否存在点 Q,使△BDQ为直角‎三角形,若存在,请直接写出点‎Q的坐标;若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题系列讲座一:点动构造直角三角形专题
模型1:两定一动构造 直角三 角形
例题解析: 例1 如图1-1,在平面直角坐标 系xOy中,已知点A的坐标为 (3, 4),点P是坐标轴上的一个动 点,如果△AOP是直角三角形, 求点P的坐标.
中考数学压轴题系列讲座一:点动构造直角三角形专题
例题 如图1,已知抛物线的顶点 为A(2,1),且经过原点O, 与x轴的另一个交点为B。 ⑴求抛物线的解析式;(用顶点 式求得抛物线的解析式为 ) 连接OA、AB,如图2,在x轴下 方的抛物线上是否存在点P,使 得△OBP与△OAB相似?若存 在,求出P点的坐标;若不存在, 说明理由。
中考数学压轴题系列讲座一:点动构造直角三角形专题
中考数学压轴题系列讲座一:点动构造直角三角形专题
总结: 两定一动构造直角三角形解题总思路为: 利用两线加一圆先确定动点的位置,再利用 代数法或几何法求出点的坐标。 其中,代数法易想但运算复杂,利用几 何法时常通过勾股定理、三角形相似或三角 函数等手段来解决。
中考数学压轴题系列讲座一:点动构造直角三角形专题
因动点产生的相似三角形问题
中考数学压轴题系列讲座一:点动构造直角三角形专题
模型1:两定一动构造 直角三 角形
例题解析: 例1 如图1-1,在平面直角坐标 系xOy中,已知点A的坐标为 (3, 4),点P是坐标轴上的一个动 点,如果△AOP是直角三角形, 求点P题系列讲座一:点动构造直角三角形专题
例题解析: 例 如图1-1,在平面直角坐标系 xOy中,已知点A (3, 4),B(5,6), 点P是坐标轴上的一个动点,如果 △ABP是直角三角形,求点P的坐 标.
中考数学压轴题系列讲座一:点动构造直角三角形专题
例题解析: 例 如图1-1,在平面直角坐标系 xOy中,已知点A (3, 4),B(5,6), 点P是坐标轴上的一个动点,如果 △ABP是直角三角形,求点P的坐 标.
中考数学压轴题系列讲座一:点动构造直角三角形专题
例题解析: 例 如图1-1,在平面直角坐标系 xOy中,已知点A (3, 4),B(5,6), 点P是坐标轴上的一个动点,如果 △ABP是直角三角形,求点P的坐 标.
中考数学压轴题系列讲座一:点动构造直角三角形专题
中考数学压轴题系列讲座一:点动构造直角三角形专题
相关文档
最新文档