重庆市历年数学中考试题及答案
重庆市中考数学A卷真题及答案(解析)
重庆市中考数学A卷真题及答案(解析)重庆市中考数学A卷真题及答案(解析)第一题:某公司今年的收入与去年相比增加了20%,如果去年的收入是x万元,今年的收入是多少万元?解析:根据题意,今年的收入是去年收入的1.2倍。
所以今年的收入为1.2x万元。
第二题:一个长方体的长、宽、高分别是5cm,4cm,3cm,它的体积是多少立方厘米?解析:长方体的体积等于长乘以宽乘以高。
所以这个长方体的体积为5cm × 4cm × 3cm = 60立方厘米。
第三题:若ab = 3,bc = 4,ac = 5,求a、b、c的值。
解析:由已知条件可以得到以下等式组:a *b = 3b *c = 4a * c = 5将第一个式子两边同时除以b,得到a = 3/b。
将第三个式子两边同时除以a,得到c = 5/a。
将这两个式子代入第二个式子,可得:(3/b) * (5/a) = 4化简得到:ab = 15 = 3所以,b = 1。
代入第一个式子可得:a * 1 = 3,所以,a = 3。
代入第三个式子可得:3 * c = 5,所以,c = 5/3。
综上所述,a = 3,b = 1,c = 5/3。
第四题:已知x+1/y = -2,y - 1/x = 1,求x和y的值。
解析:根据已知条件,可以得到以下等式组:x + 1/y = -2y - 1/x = 1将第一个式子两边同时乘以x,得到:x^2 + x/y = -2x将第二个式子两边同时乘以y,得到:y^2 - y/x = y将这两个式子相加,得到:x^2 + y^2 + x/y - y/x = -2x + y移项并整理可得:x^2 + y^2 + (x^2 - y^2)/(xy) = -2x + y化简得到:2x^2 - xy + y^2 = -2x + y移项并整理可得:2x^2 + 2x + 2y - xy + y^2 + y = 0将方程进行因式分解,得到:(x + y)(2x + y - 1) = 0根据因式分解,得到两个方程:x + y = 02x + y - 1 = 0解第一个方程得到:x = -y代入第二个方程得到:2(-y) + y - 1 = 0-y - 1 = 0y = -1代入x + y = 0得到:x + (-1) = 0x = 1综上所述,x = 1,y = -1。
重庆数学中考试题及答案
重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A3. 以下哪个表达式的结果不是整数?A. 3 * 4B. 5 / 2C. 7 - 2D. 8 ÷ 2答案:B4. 下列哪个是二次方程?A. x + 2 = 0B. x^2 + x + 1 = 0C. x^3 - 2x^2 + x = 0D. x^2 - 4 = 0答案:B5. 圆的周长公式是?A. C = πdB. C = 2πrC. A = πr^2D. A = πd^2答案:B6. 一个数的平方根是它自己,这个数是?A. 1B. -1C. 0D. 2答案:C7. 以下哪个是立方体的体积公式?A. V = a^2B. V = a^3C. V = 2aD. V = πa^3答案:B8. 一个数的倒数是1/5,这个数是?A. 5B. 4C. 3D. 2答案:A9. 以下哪个是正弦函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 双曲线答案:C10. 如果一个角的正弦值是0.5,那么这个角的度数是?A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题2分,共20分)11. 已知一个数的平方是25,这个数是________。
答案:±512. 一个圆的半径是7,那么它的直径是________。
答案:1413. 一个长方体的长、宽、高分别是2、3、4,它的体积是________。
答案:2414. 一个等腰三角形的两个底角相等,如果顶角是60°,那么底角是________。
答案:60°15. 一个数的立方是-27,这个数是________。
答案:-316. 一个直角三角形的两个直角边分别是6和8,那么斜边的长度是________。
2024重庆中考数学试卷
2024重庆中考数学试卷一、下列实数中,是无理数的是:A. 3.14B. √2 (答案)C. 0D. -1/3二、若a//b,b//c,则a与c的关系是:A. a//c (答案)B. a⊥cC. a与c相交但不垂直D. a与c无法确定关系三、在△ABC中,∠A = 50°,∠B = 70°,则∠C的度数是:A. 50°B. 60° (答案)C. 70°D. 80°四、下列运算正确的是:A. 3a + 2b = 5abB. (a2)3 = a5C. a6 ÷ a3 = a3 (答案)D. a2 · a4 = a6 (此选项也正确,但题目要求单选,故不作为答案)五、若一元二次方程ax2 + bx + c = 0 (a ≠ 0)有两个相等的实数根,则判别式Δ = b2 - 4ac的值是:A. Δ > 0B. Δ < 0C. Δ = 0 (答案)D. Δ无法确定六、在平面直角坐标系中,点P(-3,4)到x轴的距离是:A. -3B. 3C. 4 (答案)D. 5七、下列函数中,是一次函数的是:A. y = x2 + 1B. y = 1/xC. y = 2x - 1 (答案)D. y = √x八、若圆的半径为r,则圆的面积S与r之间的函数关系是:A. S = πrB. S = 2πrC. S = πr2 (答案)D. S = 2πr2九、在比例尺为1:50000的地图上,两城市间的图上距离为2cm,则这两城市间的实际距离为:A. 1kmB. 100mC. 1000m (答案)D. 10km十、已知数据x₁,x₁,…,x₁的平均数为5,若每个数据都加3,则新数据的平均数为:A. 2B. 5C. 8 (答案)D. 10。
重庆数学中考试题及答案
重庆数学中考试题及答案第一部分选择题(每小题4分,共60分)1. 某商品原价300元,现在打8折出售,折后价格是多少元?A. 24元B. 30元C. 240元D. 260元2. 若1根绳子长8米,则8根这样的绳子长____米。
A. 1B. 8C. 16D. 643. 若2/3 ÷ 4/5 = 16/15,则2/3 × 5/4 = ______。
A. 8/15B. 5/6C. 4/15D. 16/34. 若x + 3 = 7,则-2x - 3 = ______。
A. 0B. 7C. -1D. -135. 根据图中所示,酒店的正方形花坛边长是10米,花坛四角各种了一个长方体花盆。
若花盆的尺寸如图中所示,那么花盆的体积是多少立方米?(图略)A. 150B. 200C. 250D. 400...第二部分解答题(共40分)1. 一列火车经过一条长600米的隧道时,司机看到前方出现红灯,立即踩下紧急制动,火车停下来需8秒钟。
请问,火车进入隧道起停下来前,它究竟进入了隧道多长的距离?解:火车停下来前的时间是8秒,假设火车进入隧道x米时司机看到前方出现红灯,则火车行进x米所需的时间也是8秒。
根据题意,火车行进600 + x 米所需的时间是8秒。
由此可得方程:(600 + x)/v = 8,其中v为火车的速度(米/秒)解方程可得x = 8v - 600因此,火车进入隧道x米时司机看到前方出现红灯,其中0 ≤ x ≤ 600-8v2. 某公司在一季度的销售情况如下表所示。
请你根据表格,回答以下问题。
(表格略)(1) 在哪个月销售量最高?销售最低?(2) 三个月的销售总额是多少?(3) 三个月平均每月的销售额是多少?(4) 这三个月中,有几个月的销售量超过1000件?解:(1) 从表格中可以看出,在三个月中销售量最高的是3月,销售最低的是1月。
(2) 三个月的销售总额是:15000 + 12000 + 13000 = 40000元。
中考重庆数学试题卷及答案
中考重庆数学试题卷及答案重庆市中考数学试题卷一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 240B. 480C. 360D. 6003. 下列哪个表达式的结果为偶数?A. 21 + 17B. 23 + 19C. 22 + 18D. 24 + 164. 如果一个数除以3的余数是2,那么这个数除以5的结果是什么?A. 无余数B. 余数1C. 余数2D. 余数35. 下列哪个选项的因数个数最多?A. 12B. 9C. 15D. 206. 一个数的60%加上它的40%等于这个数的多少?A. 100%B. 90%C. 80%D. 110%7. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 368. 一个数的1/4加上它的3/4等于这个数的多少?A. 1/2B. 1C. 3/4D. 4/49. 下列哪个选项的数值是最小的?A. πB. √2C. 2.71828D. 110. 如果一个数的1/3与它的2/3相等,那么这个数是多少?A. 0B. 1C. 2D. 311. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 16B. 32C. 48D. 6412. 下列哪个选项的数值最接近于1000?A. 999B. 1000C. 1001D. 1002二、填空题(每题4分,共24分)13. 一个数的1.5倍是45,那么这个数是_________。
14. 一本书的价格是35元,打8折后的价格是_________元。
15. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是_________厘米。
16. 一个数的75%是30,那么这个数的50%是_________。
17. 一个班级有50名学生,其中3/4是优秀学生,那么这个班级有多少名非优秀学生?_________名。
重庆数学中考试题及答案
重庆数学中考试题及答案****一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -0.5**答案:C**2. 以下哪个选项是二次方程的解?A. x^2 - 4x + 4 = 0B. x^2 + 4x + 4 = 0C. x^2 - 4x - 4 = 0D. x^2 + 4x - 4 = 0**答案:A**3. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 2C. y = 3x^3 - 2D. y = 1/x**答案:A**4. 以下哪个图形是轴对称图形?A. 圆B. 椭圆C. 抛物线D. 双曲线**答案:A**5. 以下哪个选项是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为2, 2, 3C. 三边长分别为1, 1, 2D. 三边长分别为4, 5, 6**答案:B**6. 下列哪个选项是锐角三角形?A. 三角形内角分别为30°, 60°, 90°B. 三角形内角分别为45°, 45°, 90°C. 三角形内角分别为60°, 60°, 60°D. 三角形内角分别为50°, 70°, 60° **答案:D**7. 以下哪个选项是不等式?A. 2x + 3 = 5B. 3x - 2 > 4C. 5y - 7 = 0D. 4z + 6 ≤ 10**答案:B**8. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = 3x + 2**答案:B**9. 以下哪个选项是相似三角形?A. 三角形ABC和三角形DEF,AB/DE = AC/DF = BC/EFB. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF = BC/EFC. 三角形ABC和三角形DEF,AB/DE = AC/DF ≠ BC/EFD. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF ≠ BC/EF **答案:A**10. 以下哪个选项是圆的标准方程?A. (x - 2)^2 + (y - 3)^2 = 1B. x^2 + y^2 = 4C. (x - 1)^2 + (y + 1)^2 = 9D. x^2 + y^2 - 2x + 4y - 4 = 0**答案:B**二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是 _______。
2024年重庆市中考数学真题(B卷)(解析版)
[机密]2024年6月13日11:00前重庆市2024年初中学业水平暨高中招生考试数学试题(B卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a=++≠的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭,对称轴为2bxa=-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列各数中最小的数是()A.1-B.0C.1D.2【答案】A【解析】【分析】根据正数大于0,0大于负数,即可作出判断.【详解】1-是负数,其他三个数均是非负数,故1-是最小的数;故选:A.【点睛】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.2.下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C .该标点符号不是轴对称图形,故此选项不符合题意;D .该标点符号不是轴对称图形,故此选项不符合题意.故选:A .3.反比例函数10y x =-的图象一定经过的点是()A.()1,10 B.()2,5- C.()2,5 D.()2,8【答案】B【解析】【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =-=-,图象不经过()1,10,故A 不符合要求;当2x =-时,1052y =-=-,图象一定经过()2,5-,故B 符合要求;当2x =时,1052y =-=-,图象不经过()2,5,故C 不符合要求;当2x =时,1052y =-=-,图象不经过()2,8,故D 不符合要求;故选:B .4.如图,AB CD ∥,若1125∠=︒,则2∠的度数为()A .35︒ B.45︒ C.55︒ D.125︒【答案】C【解析】【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒-∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .5.若两个相似三角形的相似比为1:4,则这两个三角形面积的比是()A.1:2B.1:4C.1:8D.1:16【答案】D【解析】【分析】本题主要考查了相似三角形的性质,根据相似三角形的面积之比等于相似比的平方进行求解即可.【详解】解:∵两个相似三角形的相似比为1:4,∴这两个三角形面积的比是221:41:16=,故选:D .6.估计1223的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【解析】【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.122366=,而424265<=<,∴106611<+<,故答案为:C7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是()A.20B.21C.23D.26【答案】C【解析】【分析】本题考查了图形类的规律探索,解题的关键是找出规律.利用规律求解.通过观察图形找到相应的规律,进行求解即可.【详解】解:第①个图案中有()131112+⨯-+=个菱形,第②个图案中有()132115+⨯-+=个菱形,第③个图案中有()133118+⨯-+=个菱形,第④个图案中有()1341111+⨯-+=个菱形,∴第n 个图案中有()131131n n +-+=-个菱形,∴第⑧个图案中菱形的个数为38123⨯-=,故选:C .8.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为()A.28︒B.34︒C.56︒D.62︒【答案】B【解析】【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出COB ∠,根据等腰三角形的三线合一性质求出AOB ∠,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵28D ∠=︒,∴256BOC D ∠=∠=︒,∵OC AB ⊥,OA OB =,∴2112AOB BOC ∠=∠=︒,OAB OBA ∠=∠,∴()1180342OAB AOB ∠=︒-∠=︒,故选:B .9.如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为()A.2B.C.D.125【答案】D【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到AE AF =,进一步证明()SAS AEM AFM △≌△得到EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得()()222134x x +=+-,解方程即可得到答案.【详解】解:∵四边形ABCD 是正方形,∴904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,又∵1BE DF ==,∴()SAS ABE ADF △≌△,∴AE AF =,∵AM 平分EAF ∠,∴EAM FAM ∠=∠,又∵AM AM =,∴()SAS AEM AFM △≌△,∴EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得222EM CE CM =+,∴()()222134x x +=+-,解得125x =,∴125DM =,故选:D .10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是()A.0B.1C.2D.3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105nn n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:023-+=______.【答案】3【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.12.甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种,故他们选择同一个景点的概率是:3193=,故答案为:13.13.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045︒÷︒可求得边数.【详解】解: 多边形外角和是360度,正多边形的一个外角是45︒,360458∴︒÷︒=即该正多边形的边数是8,故答案为:8.【点睛】本题主要考查了多边形外角和以及多边形的边数,解题的关键是掌握正多边形的各个内角相等,各个外角也相等.14.重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.【答案】()22001401x +=【解析】【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为x ,则第二季度低空飞行航线安全运行了()2001x +架次,第三季度低空飞行航线安全运行了()22001x +架次,据此列出方程即可.【详解】解:设第二、第三两个季度安全运行架次的平均增长率为x ,由题意得,()22001401x +=,故答案为:()22001401x +=.15.如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.【答案】2【解析】【分析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据等边对等角和三角形内角和定理求出72C ABC ∠=∠=︒,再由角平分线的定义得到36ABD CBD ∠=∠=︒,进而可证明A ABD BDC C ==∠∠,∠∠,即可推出2AD BC ==.【详解】解:∵在ABC 中,AB AC =,36A ∠=︒,∴180722A C ABC ︒︒-∠∠=∠==,∵BD 平分ABC ∠,∴1362ABD CBD ABC ∠=∠=∠=︒,∴72A ABD BDC A ABD C ==+=︒=∠∠,∠∠∠∠,∴AD BD BD BC ==,,∴2AD BC ==,故答案为:2.16.若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.【答案】12【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出2a >;解分式方程得到102a y -=,再由关于y 的分式方程8122a y y y --=++的解均为负整数,推出10a <且6a ≠且a 是偶数,则210a <<且6a ≠且a 是偶数,据此确定符合题意的a 的值,最后求和即可.【详解】解:2133423x x x a +⎧≤⎪⎨⎪-<+⎩①②解不等式①得:4x ≤,解不等式②得:2x a <+,∵不等式组的解集为4x ≤,∴24a +>,∴2a >;解分式方程8122a y y y --=++得102a y -=,∵关于y 的分式方程8122a y y y --=++的解均为负整数,∴1002a -<且102a -是整数且102202a y -+=+≠,∴10a <且6a ≠且a 是偶数,∴210a <<且6a ≠且a 是偶数,∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=.故答案为:12.17.如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.【答案】①.203##263②.83##223【解析】【分析】由直径所对的圆周角是直角得到90ADB BDC ∠=∠=︒,根据勾股定理求出4BD =,则3cos 5CD C BC ==,由切线的性质得到90ABC ∠=︒,则可证明C ABD ∠=∠,解直角三角形即可求出20cos 3BD AB ABD ==∠;连接AE ,由平行线的性质得到BAF ABE ∠=∠,再由F ADE ∠=∠,ADE ABE ∠=∠,推出F BAF ∠=∠,得到203BF AB ==,则208433DF BF BD =-=-=.【详解】解:∵AB 是O 的直径,∴90ADB BDC ∠=∠=︒,在Rt BDC中,由勾股定理得4BD ==,∴3cos 5CD C BC ==,∵BC 是O 的切线,∴90ABC ∠=︒,∴90C CBD CBD ABD +=+=︒∠∠∠∠,∴C ABD ∠=∠,在Rt △ABD 中,4203cos 35BD AB ABD ===∠;如图所示,连接AE,∵AF BE ∥,∴BAF ABE ∠=∠,∵FADE ∠=∠,ADE ABE ∠=∠,∴F BAF ∠=∠,∴203BF AB ==,∴208433DF BF BD =-=-=;故答案为:203;83.【点睛】本题主要考查了切线的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,解直角三角形,等腰三角形的判定等等,证明F BAF ∠=∠是解题的关键.18.一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.【答案】①.3456②.6273【解析】【分析】本题主要考查了新定义,根据新定义得到9a d b c +=+=,再由1b a c b -=-=可求出a 、b 、c 、d 的值,进而可得答案;先求出9999099M a b =++,进而得到()36981313F M ab cda b a ++++=++,根据()13F M ab cd++是整数,得到369813a b a ++++是整数,即3613a b ++是整数,则36a b ++是13的倍数,求出8a ≤,再按照a 从大到小的范围讨论求解即可.【详解】解:∵abcd 是一个“友谊数”,∴9a d b c +=+=,又∵1b a c b -=-=,∴45b c ==,,∴36a d ==,,∴这个数为3456;∵M abcd =是一个“友谊数”,∴100010010M a b c d=+++()10001001099a b b a=++-+-9999099a b =++,∴()11110119M F M a b ==++,∴()13F M ab cd++1111011101013a b a b c d++++++=()111101*********a b a b b a+++++-+-=12011013a b ++=1173104613a a b ++++=369813a b a ++=++,∵()13F M ab cd++是整数,∴369813a b a ++++是整数,即3613a b ++是整数,∴36a b ++是13的倍数,∵a b c d 、、、都是不为0的正整数,且9a d b c +=+=,∴8a ≤,∴当8a =时,313638a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当7a =时,283635a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当6a =时,253632a b ≤++≤,此时可以满足36a b ++是13的倍数,即此时2b =,则此时37d c ==,,∵要使M 最大,则一定要满足a 最大,∴满足题意的M 的最大值即为6273;故答案为:3456;6273.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭.【答案】(1)42a -(2)2x x +【解析】【分析】本题主要考查了整式的混合计算,分式的混合计算∶(1)先根据单项式乘以多项式的计算法则和多项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.【小问1详解】解:()()()312a a a a -+-+22322a a a a a =-+-+-42a =-;【小问2详解】解:22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭()()()2222222x x x x x +--+=÷--()()()22222x x x x x -=⋅-+-2x x =+.20.数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数七年级8687b八年级86a 90根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【解析】【分析】本题主要考查了中位数,众数,用样本估计总体,扇形统计图等等:(1)根据中位数和众数的定义可求出a 、b 的值,先求出把年级A 组的人数,进而可求出m 的值;(2)根据八年级学生成绩的中位数和众数都比七年级学生成绩的高即可得到结论;(3)用七年级的人数乘以七年级样本中优秀的人数占比求出七年级优秀人数,用八年级的人数乘以八年级样本中优秀的人数占比求出八年级优秀人数,再二者求和即可得到答案.【小问1详解】解:八年级C 组的人数为1020%2⨯=人,而八年级B 组有4人,则把八年级10名学生的成绩按照从低到高排列,处在第5名和第6名的成绩分别为88分,88分,∴八年级学生成绩的中位数8888882a +==;∵七年级10名学生成绩中,得分为87分的人数最多,∴七年级的众数87b =;由题意得,1041020%%100%40%10m --⨯=⨯=,∴40m =;故答案为:88;87;40;【小问2详解】解:八年级学生数学文化知识较好,理由如下:∵两个年级10名学生的平均成绩相同,但是八年级学生成绩的中位数和众数都比七年级学生成绩的高,∴八年级学生数学文化知识较好;【小问3详解】解:350040040%31010⨯+⨯=人,∴估计该校七、八年级学生中数学文化知识为“优秀”的总共有310人.21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【解析】【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键;(1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【小问1详解】解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,∴()300300215000x x +-=,解得:26x =,∴224x -=,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.【小问2详解】设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;∴500500545y y -=,解得:25y =,经检验:25y =是原方程的根且符合题意,答:甲每小时粉刷外墙的面积是25平方米.23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)【答案】(1)()()124606063y x x y x x=<≤=<≤,(2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【解析】【分析】本题主要考查了一次函数与反比例函数综合,相似三角形的性质与判定:(1)证明APQ ABC ∽,根据相似三角形的性质得到APQABC C PQ AP C BC AB==△△,据此可得答案;(2)根据(1)所求利用描点法画出对应的函数图象并根据函数图象写出对应的函数图象的性质即可;(3)找到一次函数图象在反比例函数图象上方时自变量的取值范围即可.【小问1详解】解:∵PQ BC ∥,∴APQ ABC ∽,∴APQABC C PQ AP C BC AB==△△,∴12686y x AB y AP x ===,∴()()124606063y x x y x x =<≤=<≤,;【小问2详解】解:如图所示,即为所求;由函数图象可知,1y 随x 增大而增大,2y 随x 增大而减小;【小问3详解】解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米.1.41≈,1.73≈, 2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?【答案】(1)2.5千米(2)甲选择的路线较近【解析】【分析】本题主要考查了解直角三角形的实际应用:(1)过点B 作BE AC ⊥于E ,先求出45ACB ∠=︒,再解Rt ABE △得到3BE =千米,进一步解Rt BCE 即可得到6 2.5sin BE BC BCE ==≈∠千米;(2)过点C 作CF AD ⊥于D ,先解Rt ABE △得到1AE =千米,则(13AC AE CE =+=+千米,再Rt AFC △得到132CF +=千米,332AF =千米,最后解Rt DCF 得到336DF =千米,333CD =千米,即可得到336 4.033CD BC ++=+≈千米, 5.15AD AB +≈千米,据此可得答案.【小问1详解】解:如图所示,过点B 作BE AC ⊥于E ,由题意得,903060901575CAB ABC =︒-︒=︒=︒-︒=︒∠,∠,∴18045ACB CAB ABC ∠=︒-∠-∠=︒,在Rt ABE △中,902AEB AB =︒=∠,千米,∴cos 2cos603BE AB BAE =⋅=⋅︒=∠千米,在Rt BCE 中,36 2.5sin sin 45BE BC BCE ===≈︒∠千米,∴BC 的长度约为2.5千米;【小问2详解】解:如图所示,过点C 作CF AD ⊥于D ,在Rt ABE △中,cos 2cos 601AE AB BAE =⋅=⋅︒=∠千米,∴(13AC AE CE =+=+千米,在Rt AFC △中,(13sin 13sin 302CF AC CAF +=⋅∠=⋅︒=千米,(33cos 13cos302AF AC CAF =⋅∠=⋅︒=千米,在Rt DCF 中,3090DCF DFC =︒=︒∠,∠,∴13tan tan3026DF CF DCF +=⋅=⋅︒=∠千米,1332cos cos303CF CD DCF +===︒∠千米,∴3 4.033CD BC ++=≈千米,332 5.1562AD AB DF AF AB +++=++=++≈千米,∵4.03 5.15<,∴甲选择的路线较近.25.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC2PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.【答案】(1)215322y x x =--(2)2PD PE +最大值为152;()5,3P -;(3)5,42N ⎛- ⎝或112⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式即可;(2)如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H,求解BC ==25sin 5OB BCO BC ∠===,证明5PE PH =,设215,322P x x x ⎛⎫-- ⎪⎝⎭,2132PH x x =-+,25PD x =-,再建立二次函数求解即可;(3)由抛物线沿射线BC方向平移个单位,即把抛物线向左平移2个单位,再向下平移1个单位,可得新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,证明()0,1M -,可得45AMO OAM FMK ∠=∠=︒=∠,证明NMK ABC ∠=∠,如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T ,同理可得:N MT ABC '∠=∠,再进一步结合三角函数建立方程求解即可.【小问1详解】解:∵抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =,∴30522a b b a --=⎧⎪⎨-=⎪⎩,解得1252a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴215322y x x =--;【小问2详解】解:如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H,∵当2153022y x x =--=时,解得:11x =-,26x =,∴()6,0B ,当0x =时,=3y -,∴()0,3C -,∴BC ==,∴25sin5OB BCO BC ∠===,∵PD x 轴,∴PHE BCO ∠=∠,∴sin 5PE PHE PH ∠==,∴5PE PH =,∵()6,0B ,()0,3C -,设BC 为3y mx =-,∴630m -=,解得:12m =,∴直线BC 为:132y x =-,设215,322P x x x ⎛⎫-- ⎪⎝⎭,∴1,32H x x ⎛⎫- ⎪⎝⎭,∴2132PH x x =-+,∵抛物线215322y x x =--的对称轴为直线52x =,∴25PD x =-,∴2552512532252PD PE x x x ⎛⎫+=-+-+ ⎪⎝⎭21552x x =-+-,当55122x =-=⎛⎫⨯- ⎪⎝⎭时,52PD PE +取得最大值,最大值为152;此时()5,3P -;【小问3详解】解:∵抛物线沿射线BC方向平移个单位,即把抛物线向左平移2个单位,再向下平移1个单位,∴新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,∵()1,0A -,同理可得:直线AF 为=1y x --,当0x =时,1y =-,∴()0,1M -,∴45AMO OAM FMK ∠=∠=︒=∠,∵45NMF ABC ∠-∠=︒,∴4545NMK ABC ∠+︒-∠=︒,∴NMK ABC ∠=∠,∴1tan tan 2NMK ABC ∠=∠=,设211,722N n n n ⎛⎫-- ⎪⎝⎭,∴211121722NK n MK n n -==--++,解得:52n =或5732+(舍去)∴573,42N ⎛- ⎝⎭;如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T,同理可得:N MT ABC '∠=∠,设211,722N x x x ⎛-'⎫- ⎪⎝⎭,则(),1T x -,同理可得:211711222x x x --+=,∴1x =+或1,∴13112N ⎛⎫+ ⎝'⎪⎪⎭.【点睛】本题属于二次函数的综合题,难度很大,考查了待定系数法,二次函数的性质,锐角三角函数的应用,关键是做出合适的辅助线进行转化,清晰的分类讨论是解本题的关键.26.在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:22AM CN BD =+;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP 的最大值.【答案】(1)证明见解析(2)证明见解析(3)2++【解析】【分析】(1)证明()ASA ACE CBD ≌得到BD CE =,再由点E 是BC 的中点,得到22BC CE BD ==,即可证明2AC BD =;(2)如图所示,过点G 作GH AB ⊥于H ,连接HF ,先证明()AAS AGF DBF ≌,得到AG BD =,BF GF =,再证明AHG 是等腰直角三角形,得到22AH AG BD ==;由直角三角形斜边上的中线的性质可得12FH FC BF BG ===,则FBH FHB FBC FCB ==∠∠,∠∠,进而可证明290HFC ABC ==︒∠∠,则HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,可得135HMF BFM FBM x =+=︒-∠∠∠由角平分线的定义可得1452GCN ACB ==︒∠∠,则可证明HMF CNF =∠∠,进而证明()AAS HFM CFN ≌,得到HM CN =,即可证明2AM BD CN =+;(3)如图所示,过点D 作DH AC ⊥交AC 延长线与H ,连接FH ,则四边形BCHD 是矩形,可得BC DH AC ==,证明FDH △是等边三角形,得到60DFH FDH ==︒∠∠,进而得到30BDA DAH ==︒∠∠,30FHA FAH ==︒∠∠;由旋转的性质可得60FQ FP PFQ DFH ==︒=,∠∠,证明()SAS DFQ HFP ≌,得到30FDQ FHP ==︒∠∠,则点Q 在直线DQ 上运动,设直线DQ 交FH 于K ,则113022DK FH FK FH FDK FDH ===︒⊥,,∠,可得60BDQ ∠=︒,由垂线段最短可知,当BQ DQ ⊥时,BQ 有最小值,则30DBQ ∠=︒,设6AC DH a ==,则AH ==6BD CH a ==-,则3DQ a =-,9BQ a =-;再求出3FK a =,则DK =,3QK DK DQ a =-=,由勾股定理得FQ =;由全等三角形的性质可得3PH DQ a ==-,则3CP a =-;由折叠的性质可得9TQ BQ a ==-,由FT FQ TQ ≤+,得到当点Q 在线段FT 上时,FT CP 此时有最大值,最大值为FQ TQ CP+,据此代值计算即可.【小问1详解】证明:∵90ACB ∠=︒,BD AC ∥,∴18090CBD ACB ∠∠︒︒=-=,∵AE CD ⊥,∴90ACD CAE ∠+∠=︒,∵90ACD BCD ∠+∠=︒,∴CAE BCD ∠=∠,又∵90AC CB CBD ACE ===︒,∠∠,∴()ASA ACE CBD ≌,∴BD CE =,∵点E 是BC 的中点,∴22BC CE BD ==,∴2AC BD =;【小问2详解】证明:如图所示,过点G 作GH AB ⊥于H ,连接HF ,∵BD AC ∥,∴FBD FGA D FAG ==∠∠,∠∠,∵点F 是AD 的中点,∴AF DF =,∴()AAS AGF DBF ≌,∴AG BD =,BF GF =,∵90AC BC ACB =∠=︒,,∴45CAB ACB ∠=∠=︒,∵GH AH ⊥,∴AHG 是等腰直角三角形,∴22AH AG BD ==;∵90BHG BCG BF GF ==︒=∠∠,,∴12FH FC BF BG ===,∴FBH FHB FBC FCB ==∠∠,∠∠,∴22GFH FBH FHB FBH GFC FBC FCB FBC =+==+=∠∠∠∠,∠∠∠∠,∴22290HFC GFH GFC FBH FBC ABC =+=+==︒∠∠∠∠∠∠,∵FM BG ⊥,∴90BFM ∠=︒,∴HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,∴135HMF BFM FBM x =+=︒-∠∠∠,∵CN 平分ACB ∠,∴1452GCN ACB ==︒∠,∴135CNF CGN GCN x =+=︒-∠∠∠,∴HMF CNF =∠∠,∴()AAS HFM CFN ≌,∴HM CN =,∵AM AH HM =+,∴2AM BD CN =+;【小问3详解】。
重庆市历年数学中考试题及答案
五、解答题:(本大题2个小题,第25题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.
25.某企业为重庆计算机产业 基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格 (元)与月份 (1≤ ≤9,且 取整数)之间的函数关系如下表:
9.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑥个图形中平行四边形的个数为( )
A.55 B. 42 C. 41 D. 29
10. 如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。将△ADE沿对折至△AFE,延长EF交边BC于点G,连结AG、CF。下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④ . 其中正确结论的个数是( )
(参考数据:992=9901,982=960.4,972=9409,962=9216,952=9025 )
26.如图,矩形ABCD中,A B=6,BC= ,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧。设运动的时间为t秒( t≥0).
13.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是.
14. 在半径为 的圆中,45°的圆心角所对的弧长等于.
重庆数学中考试题及答案
重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 4答案:B2. 一个三角形的两边长分别为3和4,第三边长x满足三角形的三边关系,那么x的取值范围是?A. 1 < x < 7B. 2 < x < 5C. 3 < x < 7D. 1 < x < 5答案:C3. 一个数的平方根是4,那么这个数是?A. 16B. 8C. 6D. 4答案:A4. 一个圆的半径是5,那么它的面积是?A. 25πB. 50πC. 100πD. 200π答案:C5. 函数y = 2x + 3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (-1, 0)D. (1, 0)答案:B6. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A7. 一个等腰三角形的底角是45度,那么它的顶角是?A. 90度B. 45度C. 60度D. 30度答案:A8. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C9. 一个等差数列的首项是2,公差是3,那么第5项是?A. 17B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(2, -1),那么这个函数的对称轴是?A. x = 2B. x = -2C. x = 1D. x = 3答案:A二、填空题(每题3分,共30分)1. 一个数的立方根是2,那么这个数是______。
答案:82. 一个数的倒数是1/3,那么这个数是______。
答案:33. 一个数的平方是25,那么这个数是______。
答案:±54. 一个数除以3余1,除以5余2,那么这个数最小是______。
答案:115. 一个三角形的内角和是______。
重庆数学中考试题及答案2019a卷
重庆数学中考试题及答案2019a卷重庆数学中考试题及答案2019A卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,最小的数是()A. -3B. -2C. 0D. 1答案:A2. 已知a=2019,b=2020,则a^{2}-b^{2}的值为()A. -1B. 1C. 3999D. 4039答案:B3. 已知方程x-3=2的解是x=5,则方程2x-6=4的解是()A. 2B. 3C. 4D. 5答案:B4. 已知x=2是方程x^{2}-5x+6=0的一个根,则另一个根是()A. 1B. 2C. 3D. 6答案:C5. 已知函数y=-3x+4与y=2x-1的交点坐标为()A. (1,1)B. (1,3)C. (3,1)D. (3,3)答案:C6. 已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长是()A. 8B. 11C. 13D. 16答案:C7. 已知一个扇形的圆心角为60°,半径为4,则这个扇形的面积是()B. 6πC. 8πD. 12π答案:B8. 已知一个圆柱的底面半径为2,高为3,则这个圆柱的体积是()A. 12πB. 18πC. 24πD. 36π答案:C9. 已知一个圆锥的底面半径为3,高为4,则这个圆锥的体积是()A. 12πC. 24πD. 36π答案:B10. 已知一个球的半径为2,则这个球的表面积是()A. 16πB. 32πC. 64πD. 128π答案:B二、填空题(本大题共5小题,每小题3分,共15分)11. 已知a=-2,b=3,则a+b的值为______。
答案:112. 已知一个直角三角形的两直角边长分别为3和4,则这个三角形的斜边长为______。
答案:513. 已知一个圆的半径为5,则这个圆的周长为______。
答案:10π14. 已知一个长方体的长、宽、高分别为2、3、4,则这个长方体的体积为______。
答案:2415. 已知一个正方体的棱长为a,则这个正方体的表面积为______。
2024年重庆市中考数学试卷(B卷)正式版含答案解析
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,最小的数是( )A. −1B. 0C. 1D. 22.下列标点符号中,是轴对称图形的是( )A. B. C. D.的图象一定经过的点是( )3.反比例函数y=−10xA. (1,10)B. (−2,5)C. (2,5)D. (2,8)4.如图,AB//CD,若∠1=125°,则∠2的度数为( )A. 35°B. 45°C. 55°D. 125°5.若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:166.估计√ 12(√ 2+√ 3)的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 268.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,连接BD,CD.若∠D=28°,则∠OAB的度数为( )A. 28°B. 34°C. 56°D. 62°9.如图,在边长为4的正方形ABCD中,点E是BC上一点,点F是CD延长线上一点,连接AE,AF,AM平分∠EAF交CD于点M.若BE=DF=1,则DM的长度为( )A. 2B. √ 5C. √ 6D. 12510.已知整式M:a n x n+a n−1x n−1+⋯+a1x+a0,其中n,a n−1,…,a0为自然数,a n为正整数,且n+a n+a n−1+⋯+a1+a0=5.下列说法:①满足条件的整式M中有5个单项式;②不存在任何一个n,使得满足条件的整式M有且只有3个;③满足条件的整式M共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:本题共8小题,每小题4分,共32分。
重庆市中考数学标准测试卷含答案解析
重庆市中考数学标准测试卷一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a54.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>05.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是357.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.409.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有(填写序号)16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.17.已知正方形ABCD的边长为a,分别以B,D为圆心,以a为半径画弧,如图所示,则阴影部分的面积为.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.重庆市中考数学标准测试卷参考答案与试题解析一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a5【考点】幂的乘方与积的乘方.【分析】根据积的乘方计算即可.【解答】解:(﹣a2)3=﹣a6,故选B.【点评】此题考查积的乘方,关键是根据法则进行计算.4.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>0【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式即可.【解答】解:根据二次根式有意义的条件可知,x,y满足≥0时,是二次根式.故选:C.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【考点】平行线的判定与性质;垂线.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质求出∠BPF,即可求出∠2的度数.【解答】解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.【点评】本题考查了邻补角和平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.7.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】新定义.【分析】根据规定5*(3x﹣1)可化成﹣,再根据解分式方程的步骤即可得出答案.【解答】解:根据题意得:﹣=2,解得:x=;经检验x=是原方程的解;故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【考点】矩形的性质.【分析】通过证得△AMN∽△DCM,对应边成比例即可求得.【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.【点评】本题考查了矩形的性质,三角形相似的判定和性质以及解直角三角形等,证得三角形相似是解题的关键.9.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.【解答】解:∵A(4,0)、C(0,4),∴OA=AB=BC=OC=4,①当P由点A向点B运动,即0≤t≤4,S=OA•AP=2t;②当P由点A向点B运动,即4<t≤8,S=OA•AP=8;③当P由点A向点B运动,即8<t≤12,S=OA•AP=2(12﹣t)=﹣2t+24;结合图象可知,符合题意的是A.故选:A.【点评】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】探究型.【分析】根据函数图象和题意,可以判断题目中①②③④的正确与否,从而解答本题,得到正确的选项.【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.【点评】本题考查二次函数和一次函数的图象的相关知识,关键是会看函数的图象,能弄懂题意,能找出所求问题需要的条件.11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【考点】规律型:图形的变化类.【分析】由题意可知:四个数字以下、左、上、右的顺序依次循环,由此用除以4根据余数判定得出答案即可.【解答】解:由已知图形可知,每四个数字一循环,∵÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.【点评】此题考查图形的变化规律,找出数字循环的规律,利用规律解决问题.12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A .6B .9C .10D .12【考点】反比例函数图象上点的坐标特征.【分析】过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,得出四边形AFOD 是矩形,四边形OEBF 是矩形,得出S 矩形AFOD =3,S 矩形OEBF =k ,根据平行线分线段成比例定理证得AB=2OD ,即OE=3OD ,即可求得矩形OEBF 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【解答】解:过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,∵AB ∥x 轴,∴AF ⊥y 轴,∴四边形AFOD 是矩形,四边形OEBF 是矩形,∴AF=OD ,BF=OE ,∴AB=DE ,∵点A 在双曲线y=上,∴S 矩形AFOD =3,同理S 矩形OEBF =k ,∵AB ∥OD , ∴==,∴AB=2OD ,∴DE=2OD ,∴S 矩形OEBF =3S 矩形AFOD =9,∴k=9,故选B .【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:根据倒数的定义得:的倒数是.故答案为:.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.【考点】相似三角形的判定与性质.【分析】先根据DE∥BC得出△ADE∽△ACB,由相似三角形的性质求出两个相似三角形的面积比,进而求出的值.【解答】解:DE∥BC,∴△ADE∽△ABC,∴=()2=()2,∵AD=1,DB=2,∴,∴.故答案为:.【点评】本题主要考查了相似三角形的判定和性质,本题的关键是利用相似三角形的面积比等于相似比的平方求值.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有①③④(填写序号)【考点】正方形的性质;全等三角形的判定与性质;勾股定理;解直角三角形.【分析】根据正方形的性质得出BC=CD,∠ABC=∠BCD=90°,然后根据SAS证得△BMC≌△CND,得出∠MCB=∠NDC.进而即可证得∠DOC=90°,即DN⊥MC;根据勾股定理求得DN,然后根据NC•CD=ND•OC,求得OC=,OM=13﹣=,则OC≠OM,因为∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,得出∠OCD=∠DNC,所以sin∠OCD=sin∠DNC==;由△BMC≌△CND,=S△ODC.得出S△BMC=S△CND,求得S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠BCD=90°,在△BMC和△CND中,,∴△BMC≌△CND,∴∠MCB=∠NDC.又∠MCN+∠MCD=90°,∴∠MCD+∠NDC=90°,∴∠DOC=90°,∴DN⊥MC,故①正确;在Rt△CDN中,∵CD=12,CN=5,∴DN==13.又∵∠BCD=90°,∠COD=90°∴NC•CD=ND•OC,∴OC=,OM=13﹣=,∴OC≠OM,故②错误;∵∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,∴∠OCD=∠DNC,∴sin∠OCD=sin∠DNC==,故③正确;∵△BMC≌△CND,∴S△BMC=S△CND=S△ODC,故④正确.S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON综上,正确的结论是①③④.故答案为①③④.【点评】本题考查了正方形的性质,三角形全等的判定和性质,勾股定理的应用,解直角三角形以及三角形面积等,熟练掌握待定系数法是解题的关键.16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A 组“引体向上”的概率是.【考点】列表法与树状图法.【分析】分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,据题意画出树状图,然后由树状图即可求得所有等可能的结果;再利用概率公式求解即可求得答案.【解答】解:分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A 组“引体向上”的概率=.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.已知正方形ABCD 的边长为a ,分别以B ,D 为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为 (π﹣1)a 2 .【考点】列代数式.【专题】计算题.【分析】根据圆的面积公式和利用S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD 进行计算.【解答】解:∵S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD ,∴S 阴影部分=2וπ•a 2﹣a 2=(π﹣1)a 2.故答案为(π﹣1)a2.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的根据是利用面积的和差计算阴影部分的面积.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理,可得∠D=∠ABC=50°,继而求得答案.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【考点】解直角三角形;勾股定理.【分析】(1)过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;(2)在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.【点评】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=,y=1代入进行计算即可.【解答】解:原式=[﹣][﹣]=•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【考点】条形统计图;扇形统计图.【分析】(1)根据①种的人数除以①所占的百分比,可得答案;(2)④种情况的人数除以总人数乘以圆周角,可得答案,总人数乘以第③种情况所占的百分比,可得第③种情况的人数,根据总人数减去第①种情况的人数,减去第③种情况的人数,减法第④种情况的人数,可得第②中情况的人数;(3)根据概率的意义:④的人数除以总人数,可得答案.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W=2610元,最小∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)根据菱形的性质得到AC⊥BD,由于DH⊥AB于H,于是得到∠DHA=∠DOG=90°,推出△AGH∽△DGO,根据相似三角形的性质得到,于是得到结论;(2)根据已知条件得到∠DAB=60°,AB=AD=6,得到△ABD是等边三角形,根据菱形的性质得到AC⊥DB,OD=OB=BD=3,得到∠ODG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,熟记个性质定理是解题的关键.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将N点坐标代入即可求得;(2)由于A、B关于对称轴对称,所以相当于求AH+CH的最小值,根据两点之间线段最短,当A、H、C三点共线时AH+CH最小,即连接AC与对称轴的交点就是H,求出AC解析式,再与对称轴方程联立即可求得;(3)分两种情况:①作BF∥AC交抛物线于点F,先求出BF解析式,再与抛物线方程联立求出F 点坐标,再用两点间的距离公式表示出BF的长度,接着利用相似比例关系列出方程求解;②在x 轴下方作∠ABF=∠ABC=45°,同样先求出BF解析式,再求出F点坐标,进而表示出BF长度,最后利用相似比例关系列方程求解.算的过程中,可能有一种情况无解,舍去就是了.【解答】解:(1)∵抛物线y=﹣(x+2)(x﹣a)(a>0)过点N(6,一4),∴﹣4=,解得,a=4,即实数a的值为4;(2)∵a=4∴令y=0,得x1=﹣2,x2=4;令x=0,得y=2∴点A的坐标为(4,0),点B的坐标为(﹣2,0),点C的坐标为(0,2)∵点A和点B关于抛物线的对称轴x=对称,∴在抛物线的对称轴上找一点H,使得BH+CH最小,即AH+CH最小,连接AC,则AC与抛物线的对称轴x=1的交点即为所求如下图所示:设过点A(4,0),C(0,2)的直线解析式为:y=kx+b则解得k=,b=2∴y=令x=1代入y=,得y=∴点H的坐标为(1,)即点H的坐标为(1,)时,使得BH+CH最小;(3)①作BF∥AC交抛物线于点F,如图:则∠FBA=∠BAC,由y=﹣(x+2)(x﹣a)=﹣,令x=0,则y=2,∴C(0,2),又∵A(a,0),∴AC的解析式为y=,设BF的解析式为y=,∵BF过点B(﹣2,0),∴b=,∴BF的解析式为:y=,∴,解得:F(a+2,﹣2﹣),∴BF=∵△BFA∽△ABC,∴AB2=BF•AC,∴,化简整理得:16=0,不存在这种情形,即这种情况不存满足要求的F点;②∵B(﹣2,0),C(2,0),∴BC的解析式为y=x+2,∠ABC=45°,在x轴下方作∠ABF=∠ABC=45°,如图:∴BF⊥BC,∴BF的解析式为y=﹣x﹣2,∴,解得:F(2a,﹣2a﹣2),∴BF=,∵△BFA∽△BAC,∴AB2=BF•BC,∴,整理得:a2﹣4a﹣4=0,解得a=或a=(舍去),综上所述,a=时,以点B,A,F为顶点的三角形与△BAC相似.【点评】考查了二次函数综合题,解决二次函数问题应注意对称性的应用,若已知三点坐标,可设一般式;若已知顶点坐标,可设顶点式;若已知抛物线与x轴两交点坐标,可设两点式,从而简化运算,整个问题围绕二次函数展开,并将二次函数、三角形等多个问题紧密地结合在一起,无论是题设的给出还是思维方式的考查都很新颖.一道考题不仅考查了二次函数、三角形相似等初中数学中的重点内容,还考查了待定系数法等数学思想方法,这是中考试卷的创新题型和发展趋势,代数知识与几何知识得到了很好的整合,是一个典型的在知识网络交汇点处设计的热点试题.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【考点】四边形综合题.【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【解答】解:(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC=4.又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×4=16.。
2023年重庆市中考数学真题(A卷)(答案解析)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。
2023年重庆市中考数学试卷(B卷)及其答案
2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.267.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为(结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=,m=,n=;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.4【解答】解:4的相反数是﹣4.故选:C.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.【解答】解:从正面看,可得选项A的图形.故选:A.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.5【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.5.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.7.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°【解答】解:连接OC,∵直线CD与⊙O相切于点C,∴∠OCD=90°,∵∠ACD=50°,∴∠ACO=90°﹣50°=40°,∵OC=OA,∴∠BAC=∠ACO=40°,故选:B.9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m ﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=6.【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为800°.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为4.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程301(1+x)2=500.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB 长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为4﹣π(结果保留π).【解答】解:∵AD=2AB=4,E为BC的中点,∴BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为13.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为6200;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a ﹣5,若能被10整除,则满足条件的M的最大值为9313.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=15,m=88,n=98;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B 款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?【解答】解:(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据题意得:80%(x+10000)=x,解得:x=40000,∴x+10000=40000+10000=50000.答:甲区有农田50000亩,乙区有农田40000亩;(2)设派往甲区每架次无人机平均喷洒y亩,则派往乙区每架次无人机平均喷洒(y﹣)亩,根据题意得:=×1.2,解得:y=100,经检验,y=100是所列分式方程的解,且符合题意.答:派往甲区每架次无人机平均喷洒100亩.24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)【解答】解:(1)过点C作CD⊥AB于点D,在Rt△ACD中,∠ACD=60°,AC=3600米,cos60°=,sin60°=,∴AD=3600×=1800(米),CD=×3600=1800(米).在Rt△BCD中,∠BCD=45°,∴∠B=45°=∠BCD,∴BD=CD=1800(米),∴BC==1800≈1800×1.414≈2545(米).答:B养殖场与灯塔C的距离约为2545米;(2)AB=AD+BD=1800+1800≈1800×1.732+1800≈4917.6(米),600×9=5400(米),∵5400米>4917.6米,∴能在9分钟内到达B处.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2+x﹣3;(2)令y=x2+x﹣3=0,则x=﹣4或3,则点A(﹣4,0),由点A、C知,直线AC的表达式为:y=﹣x﹣3,过点P作y轴的平行线交AC于点H,则∠PHC=∠ACO,则tan∠PHC=tan∠ACO=,则sin∠PHC=,则PD=PH•sin∠PHC=PH,设点H(x,﹣x﹣3),则点P(x,x2+x﹣3),则PD=PH=(﹣x﹣3﹣x2﹣x+3)=﹣(x+2)2+,即PD的最大值为:,此时点P(﹣2,﹣);(3)平移后的抛物线的表达式为:y=(x﹣5)2+(x﹣5)﹣3=x2﹣x+2,则点F(0,2),设点Q(,m),则QF2=()2+(m﹣2)2,QE2=+(m+)2,EF2=9+,当QE=QF时,则()2+(m﹣2)2=+(m+)2,解得:m=,则点Q的坐标为(,);当QF=EF时,则()2+(m﹣2)2=9+,解得:m=5或﹣1,则点Q的坐标为:(,5)或(,﹣1);综上,点Q的坐标为:(,)或(,5)或(,﹣1).26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=AC,∴∠AGF=90°,又∵DG=AC=CG,∠ACD=60°,∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,,∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=AC=2,由(2)可知G是AC的中点,则GA=GD,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=PG=GQ,∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=GC=DC=1,∴PQ=,∴PQ+QF=+2.。
重庆中考数学试卷及答案
C B O A 重庆中考数学试卷及答案 (本卷共四个大题 满分150分 考题时间120分钟)参照公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2ab ac a b --,对称轴公式为a b x 2-= 一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1、2的倒数是( )A 、21 B 、21- C 、21± D 、2 2、计算23x x ⋅的结果是( )A 、6xB 、5xC 、2xD 、x3、不等式042≥-x 的解集在数轴上表示正确的是( ) A B C D4、数据2,1,0,3,4的平均数是( )A 、0B 、1C 、2D 、35、如图,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为( ) A 、30° B 、45° C 、60° D 、90°6、如图是由4个大小相同的正方体搭成的几何体,其主视图是( )7、计算28-的结果是()A 、6B 、6C 、2D 、28、若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为()A 、2∶3B 、4∶9C 、2∶3D 、3∶29、今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )A 、21B 、31C 、41D 、61 20-220正面6题图5题图 BC M NA D10题图l 2l 1l 321A DBC 10、如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上.11、方程062=-x 的解为 .12、分解因式:=-ay ax .13、截止5月28日12时,全国共接受国内外社会各界为地震灾区人民捐赠款物约为3480000万元.那么3480000万元用科学记数法表示为 万元. 14、在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 .15、如图,直线21l l 、被直线3l 所截,且1l ∥2l ,若∠1=60°,则∠2 的度数为 . 16、如图,在□ABCD 中,AB=5cm ,BC=4cm ,则□ABCD 的周长为__________cm.17、分式方程121+=x x 的解为 . 18、光明中学七年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考题的成绩统计如下:(每组分数喊最小值,不含最大值) 分数 50~60 60~70 70~80 80~90 90~100人数 1 4 15 11 9根据以上图、表提供的信息,则80~90分这一组人数最多的班是 .142856yO t 2856y O t 2856y O t 142856y O tA B C D15题图16题图l A B CD O G F B D AC E19、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有 个.20、如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG.其中正确结论的序号是 .三、解答题(本大题6个小题,每小题10分,共60分)解答时每小题必须给出必要的演算过程或推理步骤. 21、(每小题5分,共10分)(1)计算:)1()32(3)21(01-+-+-+-(2)解方程:0132=++x x22、(10分)作图题:(不要求写作法)如图,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上)(1)在给出的方格纸中,画出四边形ABCD向下平移5格后的四边形A 1B 1C 1D 1;(2)在给出的方格纸中,画出四边形ABCD关于直线l 对称的四边形A 2B 2C 2D 2.20题图23、(10分)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中24、(10分)已知:如图,反比例函数的图象经过点A 、B ,点A 的坐标为(1,3),点B 的纵坐标为1,点C的坐标为(2,0).(1)求该反比例函数的解析式; (2)求直线BC 的解析式.25、将背面完全相同,正面上分别写有数字1、2、3、4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数,将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.26、(10分)已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。
2023年重庆市中考数学真题(A卷)(原卷版和解析版)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒6.估计2810+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,23AB =3BC =,则OC 的长度是()A.3B.23C.13 D.69.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别AB平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中=a ___________,b =___________,m =___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A 款智能玩具飞机200架、B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.24.为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图;①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:2 1.41,3 1.73)≈≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.26.在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC =,BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-【答案】A 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,【答案】C 【解析】【分析】根据题意将各项的坐标代入反比例函数4y x=-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B 【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计2810+的值应在()A.7和8之间B.8和9之间C .9和10之间 D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.28101620=45=+∵25 2.5<<,∴455<<,∴8459<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-【答案】A【解析】【分析】利用三角形逆时针旋转90︒后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将ADF 绕点A 逆时针旋转90︒至ABH ,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵x y z m n >>>>,∴x y z m n x y z m n ----=----,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式x y z m n ----(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0,故②正确;∵在多项式x y z m n ----(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下:∴x y z m n x y z m n ----=----,x y z m n x y z m n ----=-+--,x y z m n x y z m n x y z m n ----=----=--+-,x y z m n x y z m n x y z m n ----=----=---+,x y z m n x y z m n ----=-+-+,共有5种不同运算结果,故③错误;故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.【答案】1.5【解析】【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023-+=11=1.52+.故答案为1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.【答案】36°【解析】【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.【答案】19【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.【答案】()2150111815x +=【解析】【分析】设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.【答案】3【解析】【分析】证明AFC BEA ≌△△,得到,BE AF CF AE ==,即可得解.【详解】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.【点睛】本题考查全等三角形的判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)【答案】25124π-【解析】【分析】根据直径所对的圆周角是直角及勾股定理得到5BD =,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a 的取值范围6a ≤,再把分式方程去分母转化为整式方程,解得12a y -=,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y -+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.【答案】①.4312②.8165【解析】【分析】根据递减数的定义进行求解即可.【详解】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a a b b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义,是解题的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭【答案】(1)21a -(2)11x +【解析】【分析】(1)先计算单项式乘多项式,平方差公式,再合并同类项即可;(2)先通分计算括号内,再利用分式的除法法则进行计算.【小问1详解】解:原式2221a a a =-+-21a =-;【小问2详解】原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.【点睛】本题考查整式的混合运算,分式的混合运算.熟练掌握相关运算法则,正确的计算,是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:a___________,b=___________,m=___________;(1)上述图表中=(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1)72,70.5,10;(2)B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】【分析】(1)由A款数据可得A款的众数,即可求出a,由B款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知10架A款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该a=;组数据的众数为72,即72由B款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,⨯=(架)则B款智能玩具飞机运行时间合格的架次为:1040%4则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;【小问2详解】B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面90份【解析】【分析】(1)设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解。
2024重庆中考数学b试题及答案
2024重庆中考数学b试题及答案2024年重庆中考数学B试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.0B. √2C. 0.5D. π2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 14D. 无法确定3. 一个二次函数y=ax^2+bx+c的顶点坐标为(2,1),且过点(0,3),则a的值为?A. -1B. 1C. -2D. 24. 以下哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆5. 一个圆的半径为r,那么它的面积是多少?A. πr^2B. 2πrC. πrD. r^26. 一个数的立方根等于它本身,这个数可能是?A. 0B. 1C. -1D. A和C7. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 无法确定8. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 0D. A和B9. 一个数的平方是25,那么这个数可能是?A. 5B. -5C. 0D. A和B10. 一个数的倒数是1/2,那么这个数是?A. 2B. 1/2C. -2D. -1/2二、填空题(每题3分,共15分)11. 一个等差数列的首项为2,公差为3,那么第5项的值是_________。
12. 一个直角三角形的两直角边长分别为3和4,那么斜边长是_________。
13. 一个数的平方根是2,那么这个数是_________。
14. 一个数的立方是8,那么这个数是_________。
15. 一个圆的直径为10,那么它的周长是_________。
三、解答题(每题15分,共45分)16. 已知一个二次函数y=ax^2+bx+c,其中a>0,且该函数的图像与x 轴有两个交点,求证:b^2-4ac>0。
17. 一个等腰三角形的两边长分别为5和10,求证:这个三角形是等腰三角形。
18. 一个数列的前三项分别为1,2,3,且每一项都是前一项的2倍,求证:这个数列是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市2011年初中毕业暨高中招生考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a --,对称轴公式为2b x a=-。
一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.在-6,0,3,8这四个数中,最小的数是( )A . -6B .0C .3D . 82.计算()23a 的结果是( )A .aB . 5aC .6aD . 9a3.下列图形中,是中心对称图形的是( )4. 如图,AB ∥CD ,︒=∠90C ,︒=∠60CAD ,则∠BAD 的度数等于( )5.下列调查中,适宜采用抽样方式的是( )A . 调查我市中学生每天体育锻炼的时间B . 调查某班学生对“五个重庆”的知晓率C . 调查一架“歼20”隐形战机各零部件的质量D . 调查广州亚运会100米参赛运动员兴奋剂的使用情况6.如图,⊙O 是△ABC 的外接圆,∠OCB =400,则∠A 的度数等于( ) A .60° B . 50° C .45° D .40°A .BC D7. 已知抛物线2(0)y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A .0>aB . 0<bC .0<cD . 0>++c b a8.为了建设社会主义新农村,我市积极推进“行政村通畅工程”。
张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按完成了两村之间的道路改造。
下面能反映该工程尚未改造的道路里程y (公里)与时间x (天)的函数关系的大致图象是( )9.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑥个图形中平行四边形的个数为( )A .55B . 42C . 41D . 2910. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。
将△ADE 沿对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF 。
下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF;④3=∆FGC S . 其中正确结论的个数是( )A .1B .2C .3D .4二、填空题:(本大题6个小题,每小题4分,共24分)A B C D11. 据第六次全国人口普查结果显示,重庆常住人口约为2880万人。
将数2880万用科学记数法表示为 万. 12. 如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D、E两点,若AD :AB =1:3,则△ADE 与△ABC 的面积比为 .13.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是 .14. 在半径为4π的圆中,45°的圆心角所对的弧长等于 . 15.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为 . 16.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了 ______________朵.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17.()()22011031313272π-⎛⎫-+-⨯--+ ⎪⎝⎭18. 解不等式3132+<-x x ,并把解集在数轴上表示出来.19.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A=∠D ,AF=DC .求证:BC ∥EF .20.为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求意象喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:22122 121x x x x xx x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足012=--x x .22. 如图,在平面直角坐标系xOy 中,一次函数)0(≠+=k b kx y 的图象与反比例函数()0my m x=≠的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(n ,6).线段5=OA ,E 为x 轴上一点,且sin ∠AOE=45.(1)求该反比例函数和一次函数的解析式; (2)求△AOC 的面积.AC23.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.24.如图,梯形ABCD中,AD∥BC,∠DCB=450,CD=2,BC⊥CD。
过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连结EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.五、解答题:(本大题2个小题,第25题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格1y (元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表: 月份x1 2 3 4 5 6 7 8 9 价格2y (元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格2y (元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出1y 与x 之间的函数关系式,根据如图所示的变化趋势,直接写出2y 与x 之间满足的一次函数关系式; (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量1p (万件)与月份x 满足函数关系式1.11.01+=x p (1≤x ≤9,且x 取整数)10至12月的销售量2p (万件)与月份x 满足函数关系式9.21.02+-=x p (10≤x ≤12,且x 取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a %,与此同时每月销售量均在去年12月的基础上减少a 1.0%. 这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值 (参考数据:992=9901,982=960.4,972=9409,962=9216,952=9025)26.如图,矩形ABCD中,A B=6,BC= 23,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧。
设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t ,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.重庆市2011年初中毕业暨高中招生考试数学试题参考答案一、选择题:二、填空题:11.32.8810⨯ 12.19: 13.9 14.1 15.1416.4380 三、解答题:17.解:原式3(-1)1-34=+⨯+ 3=. 18.解:3(23)1x x -<+. 691x x -<+. 510x <. 2x <.∴原不等式的解集是2x <.它在数轴上的表示如图:19.证明:AF DC AC DF =∴=Q ,. 又AB DE A D ==Q ,∠∠ABC DEF ∴△≌△. ACB DFE ∴=∠∠.BC EF ∴∥.20.作图如下:-1-2-3 -4四、解答题: 21.解:原式2(1)(1)(2)(21)(1)(1)(1)x x x x x x x x x x x ⎡⎤-+--=-÷⎢⎥+++⎣⎦ 22222(1)(2)(1)(1)(21)21(1)(1)(21)1x x x x x x x x x x x x x x x x ---+=+--+=+-+=··.22101x x x x --=∴=+Q ,.∴原式=111x x +=+. 22.解:(1)过点A 作AD x ⊥轴于D .4sin 55AOE OA ==Q ∠,,∴在Rt ADO △中,4sin 55DA DA AOE OA ===∠,4DA ∴=.223DO OA DA ∴=-=.又Q 点A 在第二象限,∴点A 的坐标为(-3,4).将(34)A -,代入m y x =,得43m=-,12m ∴=-. ∴该反比例函数的解析式为12y x=-.将(6)B n ,代入12y x =-,得1226n =-=-.∴点B 的坐标为(6,-2).将(34)A -,和(62)B -,分别代入y kx b =+,得 3462k b k b -+=⎧⎨+=-⎩,.解得232k b ⎧=-⎪⎨⎪=⎩,.∴该一次函数的解析式为223y x =-+.(2)在223y x =-+中,令0y =,即22033x x -+=∴=,.∴点C 的坐标为(3,0),3OC ∴=.又11434622AOC DA S OC DA =∴==⨯⨯=Q △,·.23.解:(1)该校班级个数为:420%20÷=(个).只有2名留守儿童的班级个数为:20-(2+3+4+5+4)=2(个). 该校平均生班留守儿童人数为:122233445564420⨯+⨯+⨯+⨯+⨯+⨯=(名). 补图如下:(2)由(1)知只有2名留守儿童的班级有2个,共4名学生.设12A A 、来自一个班,12B B 、来自另一个班.画树状图如下:1A 2A2A 1B 2B 1A 1B 2B12()A A ,11()A B ,12()A B , 21()A A ,21()A B ,22()A B ,1B 2B1A 2A 2B 1A 2A 1B1名2名 3名 4名 5名 6名人数1 2 3 4 5 6 234542班级人数23题答图11()B A ,12()B A ,12()B B , 21()B A ,22()B A ,21()B B ,或列表:由树状图或列表可知,共有12种等可能情况,共中来自同一个班级的有4种. 所以,所选两名留守儿童来自同一个班级的概率41123P ==. 24.(1)解:45BD CD DCB ⊥=oQ ,∠,452DBC DCB BD CD ∴==∴==o ∠∠,.在Rt BDC △中,BC ==CE BE ⊥Q ,点G 为BC 的中点,12EG BC ∴== (2)证明:在线段CF 上截取CH BA =,连结DH .BD CD BE CE ⊥⊥Q ,,9090EBF EFB DFC DCF ∴+=+=o o ∠∠,∠∠.又EFB DFC EBF DCF =∴=∠Q ∠∠,∠. 又BD CD BA CH ==Q ,,ABD HCD ∴△≌△.AD HD ADB HDC ∴==∠,∠.又45AD BC ADB DBC ∴==oQ ∥,∠∠. 45HDC ∴=o ∠.A BEG CDF24题答图45HDB BDC HDC ∴=-=o ∠∠∠.ADB HDB ∴=∠∠.又AD HD DF DF ==Q ,,ADF HDF AF HF ∴∴=△≌△..CF CH HF AB AF ∴=+=+.五、解答题:25.解:(1)154020(19)y x x x =+≤≤,且取整数.263010(1012)y x x x =+≤≤,且取整数.(2)设去年第x 月的利润为W 万元. 当19x ≤≤,且x 取整数时,1122(10005030)(0.1 1.1)(1000503054020)2164182(4)450W p y x x x x x =•---=+----=-++=--+.19x Q ≤≤,∴当4x =时,450W =最大.当1012x ≤≤,且x 取整数时.222(10005030)(0.1 2.9)(1000503063010)(29)W p y x x x =•---=-+----=-.1012x Q ≤≤时,W 随x 的增大而减小.∴当10x =时,361W =最大.450361>Q ,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月销售量为:0.112 2.9 1.7-⨯+=(万件). 今年原材料价格为:750+60=810(元). 今年人力成本为:50(120%)60⨯+=(元).由题意,得[]51000(1%)8106030 1.7(10.1%)1700a a ⨯+---⨯-=. 设%t a =,整理,得21099100t t -+=. 解得99940120t ±=.2979409=Q ,2969216=,而9401更接近9409..10.1t ∴≈或29.8t ≈.110a ∴≈或2980a ≈. 21.7(10.1%)1980a a -∴Q ≥,≈舍去.10a ∴≈.答:a 的整数值为10.26.解:(1)当边FG 恰好经过点C 时,(如图①)603CFB BF t ==-o ∠,.在Rt CBF △中,BC =tan BC CFB BF =∠,tan 60∴=o2BF ∴=.即321t t -=∴=,.∴当边FG 恰好经过点C 时,1t =.(2)当01t <≤时,S =+.当13t <≤时,222S =-++. 当34t <≤时,S =-+. 当46t <≤时,2S =-+.(3)存在.理由如下: 在Rt ABC △中,tan 303BC CAB CAB AB ==∴=o ∠∠, 又6030HEO HAE AHE =∴==ooQ ∠,∠∠, 33AE HE t t ∴==--或.(ⅰ)当3AH AO ==时(如图②),过点E 作EM AH ⊥于M .ADOBPF E 26题答图①则1322AM AH ==. 在Rt AME △中,cos AMMAE AE=∠, 即32cos30AE=o ,AE ∴=.即33t t -=-=33t t ∴=-=+.(ⅱ)当HA HO =时,(如图③), 则30HOA HAO ==o∠∠,又6090HEO EHO =∴=o oQ ∠,∠, 22EO HE AE ∴==.又323AE EO AE AE +=∴+=Q ,.1AE ∴=.即31t -=或31t -=. 24t t ∴==或.(ⅲ)当OH OA =时(如图④), 则30OHA OAH ==o∠∠.60HOB HEB ∴==o ∠∠. ∴点E 和O 重合.3AE ∴=.即3333t t -=-=或.6()0t t ∴==舍去或.综上所述,存在5个这样的t 值,使AOH △是等腰三角形,即33240t t t t t =-=+===或或.ADO BPE 26题答图②ADO BP26题答图③ADO (E ) BP26题答图④重庆市2010年初中毕业暨高中招生考试题号 一 二 三 四 五 总分 总分人得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—b2a ,4ac —b 4a ),对称轴公式为x =—b 2a .一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.1.3的倒数是()A .13B .— 13 C .3 D .—3 2.计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x 53.不等式组⎩⎨⎧>≤-62,31x x 的解集为()A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,若∠C =50°,∠BDE =60°,则∠CDB 的度数等于()A .70°B .100°C .110°D .120° 5.下列调查中,适宜采用全面调查(普查)方式的是()A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC 的度数等于() A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。