复旦大学学生评教信度效及非教学影响因素研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.040 .042 .044 .045
.204
.203 .203 .203 .203
a. 预测变量: (常量), 问卷类型。 b. 预测变量: (常量), 问卷类型, 应答率。
c. 预测变量: (常量), 问卷类型, 应答率, 课程性质。
d. 预测变量: (常量), 问卷类型, 应答率, 课程性质, 学期。 e. 预测变量: (常量), 问卷类型, 应答率, 课程性质, 学期, 班级规模。 f. 预测变量: (常量), 问卷类型, 应答率, 课程性质, 学期, 班级规模, 职称。

非教学因素对学生评教结果影响之多元线性回 归分析(逐步法)摘要
模型 模型a R .161a R方 .026 调整 R 方 .026 标准 估计误差 .205
模型b
模型c 模型d 模型e 模型f
.191b
.201c .207d .212e .215f
.037
.040 .043 .045 .046
.036
评教指标体系(实验课)
实验要求明确,内容安排充实, 学生实验技能得到有效训练 实验过程中能及时发现并解决学生的问题 认真批改实验报告,对学生有帮助 讲解清楚细致耐心,能引导学生思考
统计学方法

效度研究主要采用,
◦ t检验教学名师与非教学名师 ◦ t检验精品课程与非精品课程 ◦ 单因素方差分析不同职称教师得分

信度:Cronbach Alpha系数

多元线性回归进行;非教学因素对评教 的影响
三、研究结果
三个学期是否教学名师的学生评教得分比较
教学名师否 否 是
记录数 7016 592
均值 4.80 4.85
标准差 .216 .190
标准误 .003 .008
方差齐性检验,F= 24.729, P<0.000, 两组方差不齐 T检验, t= -6.683, P=0.000 < 0.01
多元线性回归方程系数及检验
非标准化系数 标准系数
模型
1 (常量) 学期 课程性质 职称 问卷类型 应答率 班级规模
a. 因变量: 得分
B
标准 误差
试用版
t
Sig.
4.644 .012 -.020 .005 .018 .145 -.003
.025 .003 .003 .002 .002 .018 .001 .048 -.089 .037 .117 .097 -.052

标准化回归方程 △评教得分 = 0.048 *学期 – 0.089 *课程 性质 + 0.037 * 职称 + 0.117*问卷类型 + 0.094 * 作答率 – 0.052 * 班级规模

主要疑惑
模型系数 解释 评教均分有增高 的趋势 数据特征 ANOVA F=5.083, P=0.006<0.01 且随学期提高 , 有规律 F=61.383, P=0.000<0.01, 不同性质课程的 组间有差异, 有规律 模型与 现实
三个学期教授与非教授群体得分之比较
记录数 教授 非教授 1992 5108
均值 4.80 4.81
标准差 .218 .203
标准误 .005 .003
方差齐性检验,F= 4.030, P=0.045, 两组方差不齐 T检验, |t|= 1.784, P=0.074> 0.05
Cronbach’s Alpha
教师序号
1
问卷类型
理论课
2 3 4 ……
5 6
……
理论课 理论课 理论课
实验课 实验课
参与评教学 生 44 88 65 64
64 7
Cronbach’s Alpha 0.950 0.952 0.868 0.920
0.898 0.924
3.2 非教学因素的影响
2009秋-2010秋三个学期 各学期各课程的加权得分(5分制) 教师职称 有效问卷 选课学生人数 问卷类型 班级规模 使用多元线性回归模型进行拟合分析
复旦大学学生评教信度、效度 及非教学影响因素研究
曾勇 刘寒冰 复旦大学教务处教学研究室 2011年6月14日
主要内容

研究目的 研究对象与方法 研究结果 简单讨论与存在的疑问(向专家请教)
研究目的

对现有学生评教指标体系的信度和 效度进行研究,有利于发现其指标 体系的问题。 对学生评教非教学因素的分析,有 利于发现教师教学之外的影响因素, 在可能的情况下对教学进行干预。
三个学期是否精品课程教学团队教师之学生评 教得分比较
精品课程否 否 是 记录数 7107 509 均值 4.80 4.85 标准差 .218 .157 标准误 .003 .007
方差齐性检验,F= 4.355, P<0.037, 两组方差不齐 T检验, t= -6.128, P=0.000 < 0.01
184.849 4.131 -6.713 3.004 9.067 8.137 -4.213
.000 .000 .000 .003 .000 .000 .000
回归方程
一般方程 Y = 4.644 + 0.12 * 学期 – 0.20 * 课程性质 + 0.05 * 职称 + 0.17 * 问卷类型 + 0.174 * 作答率 – 0.03 * 班级规模

研究对象与方法

对复旦大学近3个学期的学生评教结果 进行分析

主要使用数理统计学方法进行实证分析
统计软件为SPSS17.0
评教指标体系(理论课)
学生评教指标
教师有良好的课堂组织能力
教师善于与学生交流沟通,能够提供给学生提问和发表意见的机会 教师对教学工作认真负责,能够按计划完成教学任务 教师选用优秀教材或讲义,能够为学生自主学习提供参考文献和资料 教师讲课思路清晰,善于表达
学期
匹配
公共课程的学生 评教分数相对 课程性 较高,文理基 质 础课程次之, 专业课程相对 最低。
匹配
职称
职称高, 得分高
F=4.26, P=0.000<0.01 不同职称组教师 得分有差异, 无规律
问卷3,均分最 低 应答率在0.8左右 最多,两个变 量相关
不匹配wk.baidu.com
问卷类 问卷代码增大, 型 均分提高 应答率增加,得 作答率 分增加
不匹配
不匹配
班级规 班级规模越大, 模 得分越低
F=8.562 P=0.000< 0.01 班级规模为20-29 人的得分最高
不匹配
请专家指点:
使用多元线性回归是否合适?
◦ 如果不合适,应该使用何种统计方法? ◦ 如果合适,如何更好地解释现有矛盾?
相关文档
最新文档