平面上两点间的距离课件

合集下载

高中数学人教A版 选择性必修第一册 两点间的距离公式 课件

高中数学人教A版 选择性必修第一册  两点间的距离公式 课件
追问3 :你能利用 , , , 构造直角三角形,再用
勾股定理推导两点间距离公式吗?与向量法比较,你有什么体会?
y
P2
x
O

P1
A
探究新知
追问4 :如何求 1 2 ?
y
P2
x
O

P1
A
探究新知
追问5:如果直线 与坐标轴平行,或在坐标轴上,两点间距离是否满足
经典例题
题型一
两条直线的交点问题
跟踪训练1
(1)若两直线 2x+3y-k=0 和 x-ky+12=0 的交点在 y 轴上,则 k=________;
(2)求经过点 P(1,0)和两直线 l1:x+2y-2=0,l2:3x-2y+2=0 交点的直线方程.
k
k
(1)在 2x+3y-k=0 中,令 x=0,得 y=3,将(0,3)代入 x-ky+12=0,解得 k=±6.
课堂小结
已知平面内两点 , , , ,能否说出两点间的距离
公式?
y
P2
能否描述这句话对应的几何图形?
2 −1
证明两点间距离公式的基本方法
x
O
P1
2 − 1
A
课堂小结
回归两道例题的求解过程,总结它们的共同点,谈一谈你的感受?
几何
代数
坐标
几何
随堂检测
1.求下列两点间的距离:
跟踪训练2
(1)已知点 A(-1,2),B(2, 7),在 x 轴上求一点 P,使|PA|=|PB|,并求|PA|的值.
(2)已知在等腰梯形 ABCD 中,AB∥DC,对角线为 AC 和 BD.求证:|AC|=|BD|.
解:

优秀老师课件-两点间距离公式

优秀老师课件-两点间距离公式
详细描述
已知三角形的三个顶点坐标,我们可以使用两点 间距离公式计算任意两个顶点之间的距离,从而 得到三角形的边长。
求解球面距离
总结词
在地理学中,两点间距离公式可以用于计算地球表面上两点之间的最短路径, 即球面距离。
详细描述
给定地球上两点的经纬度坐标(纬度θ1,经度λ1)和(纬度θ2,经度λ2),我 们可以使用两点间距离公式计算地球表面上这两点之间的最短路径,即球面距 离。
公式推导
利用勾股定理推导
设两点A(x1, y1)和B(x2, y2),连接AB,形成一个直角 三角形。根据勾股定理,直角三角形的斜边长(即AB 的距离)为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$。
利用向量的模长推导
设向量$overset{longrightarrow}{AB} = (x_2 - x_1, y_2 - y_1)$,则向量$overset{longrightarrow}{AB}$ 的模长为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,即 AB的距离。
证明方法二:利用向量点积
总结词:数学严谨
详细描述:利用向量的点积性质,我们可以推导出两点间距离公式。假设向量$overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$,则向量的模长即为两点间距离,即$d = |overrightarrow{AB}| = sqrt{(x_2 x_1)^2 + (y_2 - y_1)^2}$。
04
两点间距离公式的应用实例
求解线段中点坐标
总结词
利用两点间距离公式,我们可以快速准确地求解线段的中点坐标。
详细描述

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册
为AC,另一条小路过点D,问:是否在BC上存在一点M,使得
两条小路AC与DM相互垂直?若存在,求出小路DM的长.
解:以B 为坐标原点,BC,BA 所在直线分别为 x 轴 、y 轴建立如图所示的 平面直角坐标系.
因为 |AD|=5 m,|AB|=3 m,所 以C(5,0),D(5,3),A(0,3). 设点M 的坐标为(x,0),
解得
5.光线从点A(-3,4)射到x轴上,经反射后经过点B(4,10),则反 射光线所在直线的方程为 2x-y+2=0 ,光线从A到B的路线长 度为7√5 解析:由题意知,反射光线过(-3,-4)和(4,10)两点,故斜率为
所以反射光线为 y+4=2(x+3),整理得2x-y+2=0,
光线从A到 B 的路线长度,即为(-3,-4)与(4,10)间的距离,所
[例2] 已知点A(3,6), 在x轴上的点P与点A的距离等于 10,则点P的坐标为(-5,0)或(11,0) 解析:设点P 的坐标为(x,0),
由 |PA|=10得
解得x=11 或x=-5. 所以点P 的坐标为(-5,0)或(11,0).
解 :法一 因 为
所以|AB|=|AC|,且 |AB|²+|AC|²=|BC|²,所以△ABC是等腰直角三角形.
法二 因 为 所以kAc ·kAB=-1.所以AC⊥AB.
所以|AC|=|AB|.所以△ABC是等腰直角三角形.
方法 总 结
利用两点间距离公式判断三角形形状的方法 已知三个顶点的坐标判断三角形的形状时,利用两点间的距离公式 求三边长,从边长间的关系入手,如果边长相等,则可能是等腰或等 边三角形;如果满足勾股定理,则是直角三角形.
C.直角三角形 D.以上都不是

平面直角坐标系中的距离公式课件-2024-2025学年高二上学期数学北师大版(2019)选择性必修一

平面直角坐标系中的距离公式课件-2024-2025学年高二上学期数学北师大版(2019)选择性必修一

D.2 7
).
解析:易知两直线之间的距离的最大值为 P,Q 两点间的距离,由两点间的距离公
式得|PQ|= (2+ 1)2 + (-1-3)2=5.故直线 l1 ,l2 之间的距离 d 的取值范围为(0,5],
所以 0<
3 2 1
- 2 - 4
所以当 =
3
,即
2

1
1
,0<S≤
.
4
8
9
m=4时,△ABC 的面积
S 最大.
=
=
-1
,即
4-1
| -3 +2|
,
10
x-3y+2=0.
1.此题要求△ABC面积的最大值,可转化成求点B到直线AC的距离的最大
值.
2.在解题过程中将得到的式子进行转化,利用函数的思想把问题转化成二
|AC|= (4-5)2 + (1-5)2 = 17,
2
2
|BC|= (4-1) + (1-4) = 18,
因为|AB|=|AC|≠|BC|,
所以△ABC 为等腰三角形.
(2)AB 边的中点 M 的坐标为
9
3, 2
,
2
由两点间的距离公式得|CM|= (3-4) +
2
9
-1
2
=
53
.
2
1.对于任意两点,只要给出两点的坐标,就可利用两点间的距离公式求出两
分别对应相等.
2.一般地,与已知直线l的距离为d(d>0)的直线有两条,且都与l平行.求其方
程时,可利用平行直线系方程的设法,设出其方程,再利用两条平行直线间

2.3.2 两点间的距离公式 (共25张PPT)

2.3.2 两点间的距离公式 (共25张PPT)
求证:|AB|2=|AD|2+|BD|·|DC|.
思路分析:建立适当的直角坐标系,设出各顶点的坐标,应用两点间的距离公式证明.
证明:如图,以BC的中点为原点O,BC所在的直线为x轴,建立直角坐标系.
设A(0,a),B(-b,0),C(b,0),D(m,0)(-b<m<b).
则|AB|2=(-b-0)2+(0-a)2=a2+b2,
)
解析:|AB|=|AC|= 17,|BC|= 18,故△ABC 为等腰三角形.
答案:B
5.已知点A(3,6),在x轴上的点P与点A的距离等于10,则点P的坐标为
________.
[解析] 设点 P 的坐标为(x,0),由 d(P,A)=10 得 (x-3)2+(0-6)2=10,
解得 x=11 或 x=-5.
人教2019 A版 选择性必修 一
第二章
直线和圆的方程
2.3.2 两点间的距离公式
学习目标
1.掌握平面上两点间的距离公式
2.会运用坐标法证明简单的平面几何问题
情境导学
在一条笔直的公路同侧有
两个大型小区,现在计划在公路
上某处建一个公交站点C,以方
便居住在两个小区住户的出行.
如何选址能使站点到两个,
∴B

-2,0
,C

,0
2
|PA|2+|PB|2+|PC|2
,A 0, 3a .设 P(x,y),由两点间的距离公式,得
2
2 2
2 2
=x +
x+2 +y + x-2 +y
52
2
2
=3x +3y - 3ay+ 4

151平面上两点间的距离共17张PPT

151平面上两点间的距离共17张PPT

第1讲 I 描述m 运动的N 第基1本章概a 念直o 线g 与方程 e
解析 (1)设点A关于直线l的对称点为A'(m,n),

n m m
0 2 2 2
2, 2 n
2
0
8
0,
解得 mn 8,2,故A'(-2,8).
因为P为直线l上一点,所以PA+PB=PA'+PB≥A'B,当且仅当B,P,A'三点共线时,PA+
第1讲 I 描述m 运动的N 第基1本章概a 念直o 线g 与方程 e
直线关于点的对称 直线关于点的对称实际上可以转化为点关于点的对称.
直线关于直线的对称 已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,求直线l1关于直线l2的对称直线的方程. 如果l1∥l2,则设所求直线的方程为A1x+B1y+m=0(m≠C1),然后在l1上找一点P,求出 点P关于直线l2的对称点P'(x',y'),再代入A1x+B1y+m=0,即可解出m. 如果l1与l2相交,则先找出l1与l2的交点P,然后在l1上确定一点M(不同于交点),找出 这一点关于l2的对称点M',由两点即可确定所求直线的方程.
将(x2,y2)代入直线l的方程得x'2+2y'2-4=0,所以直线l'的方程为x+2y-4=0. 方法技巧 关于对称问题,要充分利用“垂直平分”这个基本条件,“垂直”是 指两个对称点的连线与已知直线垂直,“平分”是指两个对称点连成的线段的中 点在已知直线上,可通过这两个条件列方程组求解.
第1讲 I 描述m 运动的N 第基1本章概a 念直o 线g 与方程 e

2.3.2两点间的距离公式课件(人教版)

2.3.2两点间的距离公式课件(人教版)

1.求下列两点间的距离 :
(1) A(6, 0), B( 2, 0);
(2)C (0, 4), D(0, 1);
(3) P (6, 0), Q(0, 2);
(4) M (2,1), N (5, 1).
(1) AB ( 2 6) (0 0) 8;
2
2
(2) CD (0 0)2 ( 1 4) 2 3;
段的长度?
追问2 如何求向量1 2 的模长?
1 2 =
2 − 1
2
+ 2 − 1
2
, , , 两点间的距离公式
1 2 =
2 − 1
2
+ 2 − 1
2
特别地,原点O(0,0)与任一点 , 间的距离
=
2 + 2.
上式利用向量法证明!
(3) PQ (0 6) ( 2 0) 2 10;
2
ቤተ መጻሕፍቲ ባይዱ
2
(4) MN (5 2) ( 1 1) 13.
2
2
2.已知点A(a, 5)与B(0,10)间的距离是17, 求a的值.
解: AB (0 a ) (10 5) 17,
2
解得a 8.
=
=
+



+ −

+ −
+ + ,
=

=
− + .
由 = ,得
+ + = − + .
解得 =1.
所以,所求点为P(1,0),且
=
+

两点间的距离公式-PPT课件

两点间的距离公式-PPT课件
A 为原点,以 AB 所在直线为 x 轴建立直角坐 标系.
设|AB|=m,|AD|=n, 则 A(0,0),B(m,0),C(m,n),D(0,n). ∴|AC|= m2+n2, |BD|= 0-m2+n-02= m2+n2. ∴|AC|=|BD|,即矩形的对角线相等.
高效课堂
•●互动探究
•求平面上两点间距离
∴kAEkBF=12×(-2)=-1,即 BF⊥AE.
•●探索延拓
•两点间距离公式的应用

已知△ABC的三个顶点坐标是A(1,
-1),B(-1,3),C(3,0).
• (1)判定△ABC的形状;
• (2)求△ABC的面积.
• [探究] 可按照以下流程进行思考:
• [解析] (1)如图,△ABC可能为直角三角形, 下面进行验证
• A.等边三角形 B.直角三角形 • C.等腰三角形 D.等腰直角三角形 • [答[解案析]] ∵C|AB|= 4-22+3-12=2 2,
|AC|= 0-22+5-12=2 5,
|BC|= 5-32+0-42=2 5,
∴|AC|=|BC|.
又∵A、B、C 三点不共线,∴△ABC 为等腰三角形.
当堂检测
• A.重合 B.平行 • C.垂直 D.相交但不垂直 • [答案] A
5.直线 y=2x+10,y=x+1,y=ax-2 交于一点,则 a
的值是( )
A.1
B.-23
C.23
D.-1
• [答案] C
• 6.过直线2x-y+4=0与x-y+5=0的交点, 且平行于直线x-2x-y=2y+0的11=直0 线方程是 ______________.
解得 x=11 或 x=-5. ∴点 P 的坐标为(-5,0)或(11,0).

2.3.2两点间的距离公式ppt课件新教材人教A版选择性必修第一册

2.3.2两点间的距离公式ppt课件新教材人教A版选择性必修第一册

知识点
任务型课堂
课后素养评价
两点间的距离
1 . 平 面 内 的 两 点 P1(x1 , y1) , P2(x2 , y2) 间 的 距 离 公 式 , |P1P2| =
2 − 1 2 + 2 − 1 2
______________________.
2.两点间距离的特殊情况
2 + 2

(1)原点O(0,0)与任一点P(x,y)间的距离|OP|= __________.
|x2-x1|
(2)当P1P2∥x轴(y1=y2)时,|P1P2|=_______.
|y2-y1|
(3)当P P ∥y轴(x =x )时,|P P |=_______.
1 2
1
2
1 2
问题式预习
2.3.2 两点间的距离公式
任务型课堂
课后素养评价
[微训练]
1.已知M(2,1),N(-1,5),则|MN|=(
的中线AM的长为(
)
A.8
B.13
C.2 15
D. 65
D
解析:由B(10,4),C(2,-4)可得M(6,0),又A(7,8),所以
|AM|=
6−7
2
+ 0 − 8 2 = 65.
问题式预习
2.3.2 两点间的距离公式
任务型课堂
课后素养评价
2.已知线段AB的两个端点分别在x轴和y轴上,且线段AB的中点为
第二章 直线和圆的方程
2.3
直线的交点坐标与距离公式
2.3.2 两点间的距离公式
问题式预习
2.3.2 两点间的距离公式
学习任务目标
掌握两点间的距离公式并会简单应用.(逻辑推理)

5《平面上两点间的距离》课件1.ppt

5《平面上两点间的距离》课件1.ppt

yห้องสมุดไป่ตู้
A ( 1, 3)
y
D (2,4)
A ( 1,3)
O
B (3, 2)
C (6, 1)
x
O
RtPAB
P ( 1, 2)
x
B (3, 2 ) 所以,2 2 2 2 2 AB PA 在 PB 5 4 41 中, AB 4 1 类似可得 C D 4 1 ,所以A B C D .
平面上两点间的距离
已知四点A(-1,3),B(3,-2), C(6,-1),D(2,4),则四边形ABCD 是否为平行四边形? 分析:如何判断一个四边形是否为平行四边形? 1.判断两组对边是否对应平行
2.判断一组对边是否平行且相等
3.对角线互相平分的四边形为平行四边形
问题:如何计算两点间的距离?
过点A向X轴作垂线,过点B向Y轴作垂线, 两条垂线交于点P,则点P的坐标是(-1,-2), 且 P A 3 ( 2 ) 5, P B 3 ( 1) 4
2 2
2
x2 y1
Q ( x2 , y2 )
2
P1 ( x1 , y1 )
2
x
( x 2 x1 ) ( y 2 y 1 )
(

)
同理有 B C D A ,故四边形ABCD为平行四边形
一般地说,已知两点 P1 ( x1 , y 1 ), P2 ( x 2 , y 2 )
如何求两点间的距离?
x 如果 x1 x 2 , y 1 y 2 ,过P1 , P2 分别向 y 轴、 轴作 垂线交于点 Q ,则点 Q 的坐标为 ( x 2 , y 1 ) .
y
y2 x1

2.3.2两点间的距离公式 课件(共15张PPT)

2.3.2两点间的距离公式 课件(共15张PPT)

.
解:设点的坐标为(,0),
PA
( x 1)2 (0 2)2 x2 2x 5
PB ( x 2)2 (0 7)2 x2 4x 11
由||=||,得 2 + 2 + 5= 2 − 4 + 11. 解得=1.
∴所求点为(1,0), 且||= (1 1)2 (0 2)2 2 2
(1) x1≠x2, y1=y2

P1(x1,y1) P2(x2,y2)
| P1 P2 || x 2 x1 |
(2) x1 = x2, y1 ≠ y2
| P1 P2 || y 2 y1 |
P2(x2,y2)

x
思考:你能利用1(1, 1), 2(2, 2)构造直角三角形,再用勾股定理推导两点间的距离公式吗?
与向量法比较,你有什么体会?
y P (x1,y1)
1
(3) x1 ≠ x2, y1 ≠ y2
Q (x2,y1)
| 1 |= |2 − 1 |
| 2 |= | 2 − 1 |
| 1 2 |=
2 − 1
2
+ 2 − 1
2
P2 (x2,y2)

x
即时巩固
求下列两点间的距离:
(1) (6,0), (−2,0);
例2 证明:平行四边形四条边的平方和等于两条对角线的平方和.
由两点间的距离公式,得
y
D (b,c)
C(a+b,c)
||² = ||² = ²,
||² = ||² = ² + ²,
||² = ( + )² + ²
o A(0,0)

高中数学北师大版必修2《第2章11.5平面直角坐标系中的距离公式》课件

高中数学北师大版必修2《第2章11.5平面直角坐标系中的距离公式》课件
A2+B2
3
思考:点到直线的距离公式对于 A=0 或 B=0 时的直线是否仍 然适用?
4
提示:仍然适用,①当 A=0,B≠0 时,直线 l 的方程为 By+C =0,
即 y=-CB,d=y0+CB=|By|0B+| C|,适合公式. ②当 B=0,A≠0 时,直线 l 的方程为 Ax+C=0,x=-CA,d= x0+CA=|Ax|0A+| C|,适合公式.
A.1
B.2
1 C.2
D.4
29
B [∵36=m4 ≠-143,∴m=8,直线 6x+my+14=0 可化为 3x+ 4y+7=0,两平行线之间的距离 d=|-332+-472|=2.]
30
1.点到直线的距离即是点与直线上的点连线的距离的最小值, 利用点到直线的距离公式,解题时要注意把直线方程化为一般式.当 直线与坐标轴垂直时可直接求之.
26
[解] 设 P(x,y)为 l 上任一点. 则 d1=|7x+728+y+829|,d2=|7x+728+y-823|. 由dd12=12,即 d2=2d1,得 |7x+8y-3|=2|7x+8y+9|. ∴7x+8y-3=2(7x+8y+9) 或 7x+8y-3=-2(7x+8y+9). 化简得 l 的方程为 7x+8y+21=0 或 7x+8y+5=0.
提示:能,由于一条直线上任意一点到另一条直线的距离都是两 条平行直线间的距离,所以只要在一条直线上找到一个已知点,求这 点到另一条直线的距离即可.
23
2.已知 l1:Ax+By+C1=0,l2:Ax+By+C2=0,如何推导出 l1 与 l2 的距离公式呢?
24
提示:由 l1 与 l2 的方程可知直线 l1∥l2,设 P0(x0,y0)是直线 Ax +By+C2=0 上任一点,则点 P0 到直线 Ax+By+C1=0 的距离为 d =|Ax0+AB2+y0+ B2C1|.又 Ax0+By0+C2=0,即 Ax0+By0=-C2,∴d= |CA1-2+CB22| .

平面上两点间的距离公式PPT教学课件

平面上两点间的距离公式PPT教学课件

初步感知
• 这是一篇回忆性的记叙


• 事情发生的地点在寄园

• “情”是文章的中心内

深容入感知

关于“寄园” 为何难忘 是怎样的一种感情
我在童年和少年时代曾
在寄园求学,得到钱名 山先生的教诲,令我终 生难忘,迄今对他充满 感恩和怀念
作文马虎 找我谈话
寄 夜幕降临 促膝长谈 园 欣赏书画 读 书 先生评画
➢复习回顾: 判断两条直线的位置关系有以下结论:
平行 重合 相交 垂直
L1:y=k1x+b1 L2:y=K2x+b2 (K1,k2均存在)
K1=K2且b1≠b2
K1=K2且b1=b2
K1≠K2
K1k2=-1
L1:A1X+B1Y+C1=0 L2:A2X+B2Y+C2=0 (A1B1C1 ≠0 ,A2B2C2≠0)
炫耀诗才 先生批评
第二课时
教学目标
• 了解回忆性文章的特点 • 初步学习细致观察的作用
以及实际应用
• 体会先生爱生之心、作者 敬师之情
回忆性叙事文的特点
• 选择典型事例 • 挖掘重点词语 • 体悟真挚情感
作文马虎 找我谈话
寄 夜幕降临 促膝长生评画 终生受益
炫耀诗才 先生批评
y
y1
•P1 x1,y1
x1 o
x2 x
P1P2 =|x2 - x1 |
o
x
y2
•P2 x2,y2
P1P2 =|y2 - y1 |
➢构建数学:
3)x1 ≠ x2 ,y1 ≠ y2
y
P1 x1,y1 •
o
• P2 x2,y2

两点间的距离公式课件

两点间的距离公式课件

工具。
精度要求
对于需要高精度计算的应用场景,如地理信息系统(GIS),需要使用更 高精度的计算方法。
在某些特定领域,如物理学或工程学,对距离计算的精度有更高的要求 。
在日常应用中,一般使用默认的浮点数精度即可满足需求。
THANKS
感谢观看
实例计算
使用两点间的距离公式:d = sqrt[(x2-x1)^2 + (y2-y1)^2]。
计算过程中需要注意运算顺序和精度 ,确保结果准确。
将点A和点B的坐标值代入公式中进行 计算。
实例结果分析
根据计算结果,分析两点间的距离。 比较不同点对之间的距离,了解距离与坐标值之间的关系。
通过实例分析,加深对两点间距离公式的理解和应用。
公式推导
该公式是通过勾股定理推导出来 的,即直角三角形的斜边平方等
于两直角边平方之和。
在平面直角坐标系中,设两点 A(x1, y1)和B(x2, y2),则线段
AB的中点M的坐标为 ((x1+x2)/2, (y1+y2)/2)。
线段AB的长度即为AM的长度, 根据勾股定理,有d² = [(x2-
x1)² + (y2-y1)²],开方得到d = √[(x2-x1)² + (y2-y1)²]。
公式应用场景
两点间的距离公式在几何学、 物理学、工程学等领域都有广 泛应用。
在计算两点之间的直线距离、 确定物体运动轨迹、解决实际 问题等方面都需要用到该公式 。
在地理信息系统、地图绘制、 导航等领域,该公式也是不可 或缺的工具。
02
公式中的符号解释
符号含义
d:表示两点间的距 离。
√:表示开平方运算 。
06
公式注意事项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
2
所以线段的中点坐标为 ( 5 ,1) 2
同理可得线段BD的中点坐标也为
(
5 2
,1)
,因此四边形
ABCD的对角线AC,BD在M点互相平分,故这个
四边形为平行四边形
一般地, 对于平面上两点 P1(x1, y1),P2(x2, y2) ,线段P1P2
的中点是 M(x0, y0),则
此即 中点坐标公式
平面上两点间的距离
已知四点A(-1,3),B(3,-2), C(6,-1),D(2,4),则四边形 ABCD 是否为平行四边形?
分析:如何判断一个四边形是否为平行四边形?
1.判断两组对边是否对应平行
2.判断一组对边是否平行且相等
3.对角线互相平分的四边形为平行四边形
问题:如何计算两点间的距离?
过点A向X轴作垂线,过点B向Y轴作垂线, 两条垂线交于点P,则点P的坐标是 (-1,-2),
y1
x2
Q(x2,y1) x
探 究
因为 P1Q ? x2 ? x1 ,
P2Q ? y2 ? y1
y y2
所以,在 Rt? P1P2Q 中,
P1P22 ? P1Q2 ? P2Q 2
x1
o
P1(x1, y1)
y1
P2(x2,y2)
x2
Q(x2, y2) x
? ? (x2 ? x1)2 ? ( y2 ? y1)2 ( )
求BC边上的中线AM的长和AM所在的直线方程.
分析: 1.先利用中点坐标公式求出点M 的坐标,
2.再利用两点间距离公式求得中 线AM的长
3.可利用两点式求中线AM所在直 线的方程
例3
已 M知,建立? A适B当C的是直直角角坐三标角系形,证,斜明边: BACM的?中1点B为C
2
分析:
y
设出两点坐标 B(b,0), C(0, c) ,
x0
?
x1 ? x2 2
y0 ?
y1 ? y2 2
中点坐标公式的证明
可仿照上例的推导过程加以证明,亦可用 距离公式及 斜率公式证明.
下面我们仅就 x1 ? x2 的情况,用后一种方法加以证明
PP M 第一步:利用斜率公式证明点 在
上.
由 kMP1 ? kMP2 ?
y1 ? y2 x1 ? x2
12 得三点共线.
一般地说,已知两点 P1( x1, y1 ), P2 ( x2 , y2 )
如何求两点间的距离?
x 如果 x1 ? x2 , y1 ? y2,过P1, P2 分别向 y 轴、 轴作
垂线交于点 Q,则点 Q 的坐标为 (x2 , y1 ) .
y y2
P2(x2, y2)
合 作
x1
o
P1(x1, y1)
且 PA ? 3 ? ( ? 2) ? 5, PB ? 3 ? (? 1) ? 4
y
A(?1,3)
O
x
R所?PAB 以,
P(?1,?2)
AB2 ? PA 2在? PB2 ? 52 ? 42 ? 41
B(3,?2)
AB ? 41 类中似,可得 CD ? 41 ,所以AB ? CD. 同理有BC ? DA , 故四边形ABCD为平行四边形
如果 x1 ? x2 , 那么 P1P2 ? y2 ? y1
?( ) 式也成立
,y
y2
P2(x2, y2)
如果 y1 ? y2, 那么 P1P2 ? x2 ? x1
?( ) 式仍成立 .
o
y1
x
P1(x1, y1)
由此,我们得到平面上两点 P1(x1, y1), P2 (x2, y2 ) 间的
距离公式
C (0,c)
M
则由中点坐标公式 M ( b , c ) 22
由两点间距离公式易证得
O A B(b,0) x
AM ? 1 BC 2
练习
P92练习y1), P2 (x2, y2 ) 间的距离公式
P1P2 ? (x2 ? x1 )2 ? ( y2 ? y1 )2
2. 平面上两点 P1(x1, y1),P2(x2, y2) 对应线段 P1P2 的
中点坐标公式
设中点 M (x0 , y0 )
x0 ?
x1 ? x2 2
y0 ?
y1 ? y 2 2
作业
习题2.1(3)
第 1, 3, 4 题
第二步:利用距离公式证明 MP1 ? MP2
由 MP1 ? MP2 ?
? ??
x1
? 2
x2
2
? ??
?
? ??
y1
? 2
y2
2
? ??
得 MP1 ? MP2
所以点 M为 P1P2 的中点 当 x1 ? x2 时,结论显然成立 .
例2.
已知 ?ABC的顶点坐标为 A(? 1,5), B(? 2, ? 1),C(4,7) ,
P1P2 ? (x2 ? x1 )2 ? ( y2 ? y1 )2
例题讲解 例1
(1) 求 A(?1,3),B(2,5) 两点间的距离; (2)已知 A(0,10),B(a,?5)两点间的距离是 17,求实数
a 的值.
分析:利用距离公式
现那在怎再样来求考线察段本A节C开中头点的的问坐题标呢,由?于两条对角线互 相平分的四边形是平行四边形 ,所以,只需说明对角
设线线AC段和ABCD的的中中点点M相的同坐,标即为可推(x得, y四)边,过形点AAB,CMD,C为向平x
轴行作四垂边线形,.垂足分别为 A1, M1, C1 , 则 A1 ,M1,C1 的横坐标分别为-1,x,6
y
A?1,3) M
A1 O M C x C(6?, 1)
由解A得1M1x??M?11C?1 ,6 得? 5 x ?同(?理1可) 得? 6y?? x3 ?,(?1) ? 1
相关文档
最新文档