高等数学复习计划word参考模板

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学复习计划》

本复习计划总共分为五个阶段: 第一阶段(7月——9月中旬) 第二阶段(9月中旬——10月底) 第三阶段(11月初——11月底) 第四阶段(12月初——12月底) 第五阶段(元旦后——考研前)

第一阶段(7月——9月中旬):重点复习以下内容,能够将课本内容和对应的课后练习至少过一遍,最好能认真过两遍。做到心中有数。

第一部分 函数、连续与极限

一、理论要求 1.函数概念与性质

函数的基本性质(单调、有界、奇偶、周期)

几类常见函数(复合、分段、反、隐、初等函数) 2.极限

极限存在性与左右极限之间的关系 夹逼定理和单调有界定理

会用等价无穷小和罗必达法则求极限 二、题型与解法 A.极限的求法 (1)用定义求

(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法

(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法

(7)洛必达法则与Taylor 级数法

(8)其他(微积分性质,数列与级数的性质) 1.61

2arctan lim )21ln(arctan lim

3030-=-=+->->-x

x x x x x x x (等价小量与洛必达) 2.已知2

030)

(6lim

0)(6sin lim

x x f x x xf x x x +=+>->-,求

解:2

0303'

)(6cos 6lim )(6sin lim

x xy x f x x x xf x x x ++=+>->- 72

)0(''06)0(''32166

'

''''36cos 216lim

6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x

362

72

2''lim 2'lim )(6lim

0020====+>->->-y x y x x f x x x (洛必达) 3.1

21)1

2(

lim ->-+x x

x x x (重要极限) 4.已知a 、b 为正常数,x

x x x b a 3

0)2(

lim +>-求 解:令]2ln )[ln(3

ln ,)2(3

-+=+=x x x x x b a x

t b a t 2/300)()

ln(23)ln ln (3lim

ln lim ab t ab b b a a b a t x

x x x x x =∴=++=>->-(变量替换) 5.)

1ln(1

2

)(cos lim x x x +>- 解:令)ln(cos )

1ln(1

ln ,)

(cos 2

)

1ln(1

2

x x t x t x +==+ 2/100

2

1

2tan lim

ln lim ->->-=∴-=-=e t x x t x x (变量替换)

6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim

2

2

=⎰

>-x

x x dt

t f x

dt

t f

(洛必达与微积分性质)

7.已知⎩⎨⎧=≠=-0

,0

,)ln(cos )(2x a x x x x f 在x=0连续,求a

解:令2/1/)ln(cos lim 2

-==>-x x a x (连续性的概念)

第二部分 导数、微分及其应用

一、理论要求 1.导数与微分

导数与微分的概念、几何意义、物理意义

会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程

2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题

3.应用

会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)

二、题型与解法

A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导

1.⎩⎨

⎧=+-==52arctan )(2t

e ty y t x x y y 由决定,求dx

dy

2.x y x y x x y y sin )ln()(3

2

+=+=由决定,求

1|0==x dx

dy

解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy

+==2

)(由决定,则dx dy x )12(ln |0-==

B.曲线切法线问题

4.求对数螺线)2/,2

/πθρρπθ

e e (),在(==处切线的直角坐标方程。

解:1|'),,0(|),(,sin cos 2/2

/2/-==⎪⎩⎪⎨⎧====πθππθθ

θ

θ

θy e y x e y e x x e y -=-2/π

5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0

)6(22)1('8)1('4])1()1(3)1()1([lim sin )

sin 1(3)sin 1(lim

0sin 0-=∴=∴==--+-+=--+>-=>-x y f f t f t f t f t f x x f x f t t x x C.导数应用问题

6.已知x

e

x f x x xf x x f y --=+=1)]('[2)('')(2

满足对一切,

)0(0)('00≠=x x f 若,求),(00y x 点的性质。

解:令⎩⎨⎧<>>>===-0

,00

,0)(''0001000

0x x x e e x f x x x x 代入,,故为极小值点。

相关文档
最新文档