尖端放电的实验研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尖端放电的实验研究

文/赵强

尖端放电现象是静电学的重要内容,有不少文献对尖端放电的演示实验(主要指烛焰偏向实验)作了论述,但结论不一,且存在一些不妥.本文将从理论和实验两个方面对这一现象作一探讨,并结合有关文献观点谈一下笔者的分析,同时介绍笔者在教学中自创的新实验.以供同仁参考讨论.

一、尖端放电原理[1]

对尖端放电现象,教材通常的解释是:电荷在导体上分布时,导体的尖端处电荷最多,因而尖端附近的电场特别强.在尖端强电场的作用下,空气中残留的离子会发生激烈的运动.在激烈运动过程中,它们和空气分子相碰撞,会使空气分子电离,从而产生大量的新离子.与尖端上电荷异号的离子受到吸引而趋向尖端,与尖端上的电荷中和.与尖端上电荷同号的离子受到排斥,远离尖端形成“电风”.

二、“电风”问题的理论分析[2]、[3]

根据上面的解释,学生常提出这样的疑问:既然与尖端上电荷异号的离子受到吸引而趋向尖端,那么,这些离子流也应形成“电风”,它不是向外的“吹风”,而是指向尖端的“吸风”.不少文献的作者也持“吸风”的观点.

尖端放电时有没有“吸风”现象呢?要解释这一问题,就应对气体放电的物理过程作进一步分析.绝对纯净、中性状态的气体是不导电的,只有在气体中出现了带电粒子(电子、正离子、负离子)以后,气体才可能导电,并在电场作用下发展成为各种形式的气体放电现象.空气中含有数量很少的带电粒子,它们在电场的作用下会被吸向与之异号的电极,形成电流.此电流值极小,只能看作是微小的泄漏.但如果电场足够大时,吸向电极的带电粒子就会有足够的动能撞击中性气体分子使之电离,即发生碰撞游离.游离出来的带电粒子又参加到撞击中去,于是游离过程就象雪崩似地增长起来,称为电子崩.电场足够大时,这种电子崩可不必依赖外界游离因素而仅由电场作用自行维持和发展,这就形成了自持放电,发生自持放电的最低电场强度称为临界场强.

在大体均匀的电场中,各处的强场差异不大.任意某处形成自持放电时,电子崩所形成的空间电荷将促使其它部分电场增长,自持放电会很快发展到电极间的整个间隙,气隙即被击穿.击穿后的气隙间正负带电粒子分别顺着和逆着场强方向向电极运动,不会形成固定指向的“电风”,即不会有“吹风”或“吸风”现象.

在尖端电极的情况下,放电的发展过程有所不同.当电压还比较低时,尖端处的电场强度就有可能超过临界场强,即发生自持放电,由于离尖端稍远处场强已大为减弱,故自持放电只能局限在尖端附近的空间内,不能扩展出去.于是撞击游离产生的大量正负带电粒子大都集中在尖端附近,距尖端不过几个毫米,这一小区域我们不防称之为游离区.这样与尖端电荷同号的的带电粒子受到排斥而离开游离区,飞向远方,形成“吹风”现象.相反,与尖端电荷异号的带电粒子,受到吸引而趋向尖,并与尖端上的电荷中和.这部分趋向尖端的带电粒子大都分布在范围很小的游离区内,因而不会对外部形成“吸风”现象.教材中,有关尖端放电的插图中将游离区画得过大,又没加文字说明,是造成学生提出“吸风”疑问的主要原因.

三、“电风车”反冲运动的分析[4]

用感应起电机的两个电极分别给“电风车”带电,即分别使“电风车”带上正电荷或负电荷.两种情形下,“电风车”都会背离尖端指向而旋转,这是由于尖端放电时形成的“吹风”的反冲作用.

图1

如图1所示,此时“电风车”的尖端受到三个力作用:(1)异号电荷的吸引作用;(2)同号电荷对尖端的排斥作用;(3)异号电荷被吸引到尖端中和时的碰撞作用.(1)和(3)对尖端的作用相反,可以抵消.但不论尖端电荷的正负,由于(2)的排斥作用的存在,就使得“电风车”做反冲运动.

四、烛焰偏向的实验研究

(一)文献观点

“电风”作用下的烛焰偏向实验,是说明尖端放电现象和“电风”存在的常用方法.已有不少文献对烛焰偏向的机理进行了深入探讨,

其中对尖端带正电荷时“吹开”烛焰的问题,都得出了相同的结论(这里不再探讨),但对尖端带负电荷时的烛焰偏向及解释说法不一.有人认为[4]、[5]:尖端放电时,空气被电离产生正离子和电子(虽然也有负离子,但和电子相比数量极少).由于正离子的质量和体积远大于电子的质量和体积,所以当正离子流、电子流对烛焰产生碰撞时,起主要作用的是正离子流.故尖端带负电荷时,形成所谓的“吸风”而使烛焰偏向尖端,他们似乎从实验中也得到证实.

从前文对气体放电的物理过程分析可知,“吸风”现象是不存在的,对持“吸风”观点的人,纠其原因主要是他们对尖端放电时的“游离区”没作深入研究.尖端带负电荷时,烛焰偏向如何?实验中出现的“吸焰”现象是不是“电风”所为?又作何解释呢?下面就这些问题作一实验探讨.

(二)实验及结果[6]

为较全面地了解尖端带负电荷时烛焰偏向问题,实验时可在烛焰附近选取四个有代表性的点:A、B、C、D,如图2所示.

图2 图3

实验时,依次把尖端放入这四个点后,再用感应起电机(由转动快慢调节电压)或晶体管高压电源给导体带负电,得到如下实验结果.结果1将尖端置于A点,即离烛焰根部较近时,烛焰偏向如图3所示.可看到:电压较低时,尖端处的烛焰被“吸引”,烛焰顶端稍有偏离,如图3(a)所示;电压较高时(近20kV或更高),尖端上方且离尖端较近的烛焰被“吸引”,其余部分的烛焰是被“吹开”的,如图3(b)所示.

结果2将尖端置于B点,即离烛焰根部较远时,烛焰偏向如图4所示,提高电压烛焰偏向更大一些.可见,这时的烛焰是被“电风”吹开的.

结果3将尖端置于C点,即离烛焰上部较近时,随着电压由低到高,烛焰先是被尖端“吸引”一下后,再被“电风”吹成如图5所示的情况.

图4 图5

结果4将尖端置于D点,即离烛焰上部较远时,“电风”一致表现为把烛焰吹向远方.

(三)实验结果分析

由实验结果可知:尖端带负电荷时,烛焰总体表现为被“吹开”,但有时也被“吸引”.这是为什么呢?

首先,我们应明确,烛焰明火部分正离子的密度比负离子大;形成尖端放电时有临界场强;放电“游离区”仅限于尖端附近几毫米的区域,且“电风”在“游离区”外.

结果1的解释电压较低时,可分两种情形:(1)尖端末达到临界场强,又离烛焰明火接近.此时,表现为近尖端明火中的正离子和尖端负电荷相“吸引”;离开尖端稍远处,由于场强已很小,对烛焰上部的“吸引”作用已不明显.(2)尖端刚达到临界场强,相对讲放电较弱,形成的“电风”不强”.此时,近尖端处的明火小部分处于“游离区”,表现为近尖端处的正离子(含明火处的正离子和空气电离出的正离子)和尖端电荷相“吸引”.尖端稍远处,即烛焰上部受较弱“电风”作用,稍有倾斜.可见,电压较低时的“吸引”观点

相关文档
最新文档