《固体物理学》读书笔记
固体物理(黄昆)第一章总结
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
固体理论读书笔记..
读书笔记第二章声子--- ---第七节极化激元1、极化激元的定义是什么?答:当光子的频率ω=kc与横波光学模声子(TO声子)的频率ωT(约1013s-1)相近时,两者的耦合很强,其结果将使光子与TO声子的色散曲线都发生很大的改变,形成光子-横光学模声子的耦合模式,其量子称为极化激元,是离子晶体中的元激发。
2、研究极化激元有什么意义?答:极化激元对于解释晶体中的光学现象起重要作用。
(判据)3、如何理解:极化激元称为长波长横向光频支振动与电磁场耦合模量子?答:由于ω=ωT时对应光子波数k=ω/c=ωT/c(约103cm-1)与布里渊区的尺寸(约108cm-1)相比为小量,属于长波范围,因此激化激元是长波长横向光频支振动与电磁场耦合模量子。
第二章声子--- ---第八节态密度1、格波模式的态密度:平均每个元胞内的格波模式的态密度g(ω)的定义是什么?答:单位频率间隔内的格波模式数被总元胞数N除2、求出格波模式的态密度能用来算什么问题?答:态密度是计算晶格热力学特性的重要物理量(内能U,热容量C v和熵S)3、格波模式的态密度如何导出?答:声子系统总振动能量---晶格振动的配分函数---晶格振动的自由能---格波模式的态密度4、格波模式的态密度中的奇点出现的原因是什么?答:求和化积分5、范霍夫奇点的定义式如何引出?答:将求和化积分和后的态密度公式沿等能面积分得到态密度的另一表达式,式中存在被积发散点,此点称为范霍夫奇点。
第二章声子--- ---第九节范霍夫奇点1、研究范霍夫奇点的物理意义是什么?答:如果定出了霍夫奇点的位置,就能作出这些点附近的态密度曲线,因此利用霍夫奇异性可以简化态密度的计算2、通过什么来划分范霍夫奇点的种类,范霍夫奇点分为哪几类?答:(1)极值点(2)1极小、1极大、2鞍点3、如何计算并分析四类范霍夫奇点附近态密度曲线?答:ω在极值附近展开---标度变换---ω(k)在霍夫奇点附近展开---利用态密度等效表示确定ω(k0)附近g(ω)---分类计算---极值点附近的态密度---作图第二章声子--- ---第十节晶格振动的局域模1、局域模出现原因是什么?答:含有杂质和缺陷的晶体,由于平移对称性被破坏,其声子谱将不同于完整晶格,会产生以杂质或缺陷为中心的局域振动模式。
固体物理学习笔记
固体物理学习笔记固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态及其相互关系的科学。
它是物理学中内容极丰富、应用极广泛的分支学科。
固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。
固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。
以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动以及它们和宏观物理性质的关系。
这类研究统称为凝聚态物理学。
固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。
简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。
新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。
极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。
由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。
同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。
固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。
其经济影响和社会影响是革命性的。
这种影响甚至在日常生活中也处处可见。
固体物理各章节知识点详细总结
3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32
由
2π Kh
d h1h2h3
2π
d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
固体物理各章节重点总结
固体物理各章节重点总结第一章1、晶体的共性:长程有序、自限性、各向异性2、长程有序:晶体中的原子都是按照一定规则排列的,这种至少在微米数量级范围内的有序排列,称为长程有序。
3、自限性:晶体具有自发地形成封闭几何多面体的特性。
4、原子之间的结合遵从能量最小原理5、一个原子周围最近邻的原子数,称为该晶体的配位数,用来表征原子排列的紧密程度,最紧密的堆积称密堆积6、布喇菲提出了空间点阵学说:晶体内部结构可以看成是由一些相同的点子在空间做规则的周期性的无线分布。
这一学说是对实际晶体结构的一个数学抽象,它只反映出晶体结构的周期性。
人们把这些点子的总体称为布喇菲点阵7、沿三个不同方向通过点阵中的结点作平行的直线,把结点包括无遗,点阵便构成一个三维网格。
这种三维格子称为晶格,又称为布喇菲格子,结点又称点阵。
8、某一方向上两相邻结点的距离为该方向上的周期,以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元,体积最小的重复单元,称为原胞或固体物理学原胞,它能反映晶格的周期性。
9、为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心。
这种重复单元称作晶胞,惯用晶胞或布喇菲原胞10、简立方:a1=a,a2=b,a3=c11、体心立方:a1=0.5(-a+b+c)|a2=0.5(a-b+c)|a3=0.5(a+b-c)12、面心里放:a1=0.5(b+c)|a2=0.5(a+c)|a3=0.5(a+b)|13、氯化铯结构为简立方结构14、氯化钠结构为面心立方结构15、金刚石结构为面心立方结构16、所欲格点都分布在相互平行的一平面族上,每一平面都有格点分布,称这样的平面为晶面17、若ij=1,2…则可用正格基失来构造倒格基失18、将正格基失在空间平移可构成正格子,相应地我们把倒格基失平移形成的格子叫做倒格子19、正格原胞体积与倒格原胞体积之积等于(2π)3;正格子与倒格子互为多方的倒格子;倒格失K h=h1b1+h2b2+h3b3与正格子晶面族正交;倒格失的模K h与晶面族(h1h2h3)的面间距成反比20、晶体有230种对称类型,称其为空间群;若不包括平移,有32种宏观对称类型,称其为点群21、晶体的宏观对称操作一共有八种基本对称操作P1922、计算题P25P34第二章1、五种基本结合类型:共价结合、离子结合、金属结合、分子结合、氢键结合2、体积弹性模量3、计算题P53P63第三章1、玻恩和卡门提出了一个遐想的边界条件,即所谓的周期性边界条件。
现代固体物理学导论阎守胜读后感
现代固体物理学导论阎守胜读后感【最新版】目录1.现代固体物理学导论阎守胜读后感概述2.阎守胜的科学成就与贡献3.现代固体物理学的基本概念与理论4.固体物理学的应用与发展前景5.总结正文一、现代固体物理学导论阎守胜读后感概述《现代固体物理学导论》是阎守胜教授编写的一本固体物理学教材,全面系统地介绍了现代固体物理学的基本概念、理论和应用。
通过阅读这本书,我对固体物理学有了更深刻的理解,对其在科学领域中的重要地位和应用价值有了更清晰的认识。
二、阎守胜的科学成就与贡献阎守胜教授是我国著名的物理学家,在固体物理学领域有着卓越的成就。
他长期从事固体物理学的教学和研究工作,发表了许多有影响力的论文,为我国固体物理学的发展做出了巨大的贡献。
三、现代固体物理学的基本概念与理论现代固体物理学是研究固体材料宏观性质和微观过程的物理学分支。
固体材料包括晶体、非晶体和介于两者之间的准晶体。
在自然界的矿物中,晶态物质占到 98% 以上。
理想晶体中原子排列十分规则,主要是原子间的相互作用力使晶体保持稳定。
而固体的宏观性质,如力学性能、导电性、光学性能等,都可以从微观结构和原子间的相互作用力来解释。
四、固体物理学的应用与发展前景固体物理学的应用领域非常广泛,涉及到材料科学、电子技术、信息技术等众多领域。
随着科学技术的不断发展,固体物理学在纳米技术、超导技术、光电子技术等方面的应用也越来越广泛。
在未来,固体物理学将为我国科技进步和经济社会发展发挥更大的作用。
五、总结《现代固体物理学导论》是一本极具价值的教材,让我对固体物理学有了更加系统的认识。
阎守胜教授的学术成就和贡献,让我感受到了科学家们对知识的追求和对教育的热爱。
关于固体物理教学工作中的心得体会
关于固体物理教学工作中的心得体会《固体物理学》课程是材料物理专业、材料科学与工程专业的一门专业基础课。
材料专业学生通过学习《固体物理学》,为学习后续专业课以及从事有关固体材料教学、科研和生产等方面的工作打下理论基础。
因此,根据材料专业的特点,如何使学生充分掌握固体物理知识,这对老师的教学方法、手段等是一个较高的要求。
在几年的教学实践与改革工作中,我总结了以下几条心得体会:一、加强教学内容现代化,强调理论联系实际改革固体物理的教学内容,使之内容较为齐全、体系较为完整。
同时精选狭义相对论、量子力学、原子物理等教学内容,尤其要把那些已成为现代科技重要基础的近代物理知识和理论列为教学的辅助内容,使学生对物理前沿知识有一定的了解。
加强经典和近代内容的相互渗透和教学相关性,注意用现代科技和人类科技进步的眼光来认识、审视、组织和讲授经典内容,使学生不仅认识到经典内容的历史贡献,而且能体会到经典内容在今天科技进步中的地位和作用。
扩大教学内容中定性和半定量描述的比重,使学生充分领悟物理问题的精华,强调揭示物理思想和方法的内涵。
建立现代工程技术人才的最优知识体系,除通常的基本教学内容之外,像流体力学、声学、几何光学、物性学等在工程科技应用中发挥重要作用的基本内容都有所反映。
重视例题、习题、思考题以及考试题的实用价值,从生产实践、科研工作和科技应用中提炼和归纳出各种典型的物理模型,获取真实的数据,提供实际条件,使学生在物理课学习和训练中贴近实践和时代。
二、加强能力培养,活化教学方法教学观念和教学方法在教学过程中是十分重要的。
固体物理教学中应鼓励学生冒尖、创新和标新立异。
例如,教学中让学生通过集体讨论的方式来交流和汇报各自的学习情况,介绍各自分析和研究的结果,在讨论中互相启发、学习、促进,让学生从知识运用、技能训练、语言表达和归纳总结诸方面得到充分的锻炼和表现。
教师应参与学生的集体讨论,但主要是提问题、设障碍、启发思路和引导争论,而不是“抱”着学生走,这对教师的水平要求相当高。
固体物理导论读书随笔
《固体物理导论》读书随笔1. 固体物理导论概述在开始阅读这本《固体物理导论》时,我被其深厚的理论底蕴和丰富的实践应用所吸引。
这本书作为固体物理学的入门教材,为初学者提供了一个全面、系统的学习框架,让我对固体物理学有了更加清晰的认识。
固体物理学是研究固体物质的物理性质和行为的一门科学,它不仅探究固体的微观结构,还研究固体中的电子行为、力学性质、热学性质等。
在现代科技领域,固体物理学的重要性日益凸显,因为固体材料的应用几乎无处不在,涉及到能源、电子、光学、磁学等多个领域。
这本书的导论部分详细介绍了固体的基本性质,包括晶格结构、晶体缺陷、相变等。
接着介绍了固体的电子理论,包括能带理论、费米能级等概念。
还介绍了固体的力学性质、热学性质以及电磁性质等。
这些内容构成了固体物理学的核心知识体系。
固体物理的研究方法涉及到实验和理论两个方面,实验方面主要包括各种物理性质的测量和表征,如X射线衍射、电子显微镜等。
理论方面则涉及到量子力学的应用,如波函数、量子力学方程等。
计算机模拟也成为现代固体物理研究的重要工具。
通过阅读《固体物理导论》的导论部分,我对固体物理学有了更深入的了解。
这本书为我揭示了固体物理学的奥秘,激发了我对这门学科的浓厚兴趣。
在接下来的学习中,我将继续深入探索固体的微观世界,理解固体的各种物理性质和行为。
通过不断学习和实践,我将能够更好地掌握固体物理学的基本原理和应用。
1.1 固体物理的定义与意义在量子力学和现代物理学的宏大舞台上,固体物理以其独特的魅力占据了重要的一席之地。
它不仅仅是对微观粒子在固态条件下的行为进行研究,更是探讨物质的基本组成、结构、性质以及演变规律的学科。
当我们谈论固体物理时,我们实际上是在探索物质世界的本质,以及在这些性质中体现出来的宏观现象。
固体的定义多种多样,但最基本的特征是具有固定的晶格结构和电子排布。
晶格结构为固体提供了稳定的几何外形,而电子排布则决定了物质的内在特性,如导电性、磁性等。
黄昆教授《固体物理学》读后感.
固体物理学读后感
《固体物理学》是在黄昆教授原著《固体物理学》的基础上改编而成的。
原书概念准确、讲解透彻,在改写过程中力图保持原书的特点。
对固体物理学中的一些基础部分:如晶体结构、晶格振动、固体能带论。
半导体电子论和固体磁性等部分在内容上都做了必要的补充,内容更加丰富;《固体物理学》反映了固体物理学领域的新进展,增加了超导物理、非晶态物理、表面物理、固体中的元激发和低维系统物理等固体物理新兴领域中的基本概念。
固体材料是由大量的原子(或离子)组成的,每1cm3体积中大约有1023个原子,如此巨大数目的原子以一定方式排列,原子排列的方式称为固体的结构。
长期以来,人们认为固体材料分为两大类:晶体和非晶体。
理想晶体中原子排列是十分有规则的,主要体现是原子排列具有周期性,或者称为是长程有序的。
而非晶体则不然,它不具有长程的周期性,1984年从实验上发现了一类既区别与晶体又区别于非晶体的固体材料,称为准晶体,准晶体的发现开辟了固体结构研究的新领域。
固体中原子排列的形式是研究固体材料的宏观性质和各种微观过程的基础。
早在两个世纪以前,就开始了对晶体结构的研究。
阿羽依(Hatiy)从理论上推断,晶体具有规则的几何外形,是晶体中原子、分子规则排列的结果,本世纪由劳埃(Laue)等提出的X射线衍射方法,从实验上验证了这一结论,通过几十年的工作,已经测定了大量晶体原子排列的具体形式,对非晶体材料的结构也进行了大量的研究工作,对其主要特征有了一定的了解,但还有不少问题有待研究解决,而对准晶体材料结构的研究还仅仅是开始。
本章的主要内容将是阐明晶体中原子排列的几何规则性。
固体物理精品教学(华南理工大学)《固体物理》基本概念和知识点.docx
《固体物理》基本概念和知识点第一章基本概念和知识点1)什么是晶体、非晶体和多晶?(□)□晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程屮不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2)什么是原胞和晶胞?(0)□原胞是最小的晶格重复单元,不考虑对称性,原胞只包含1个原子;从对称性的角度,选取几倍于原胞大小的重复单元,称为品胞,一个品胞中有大于2个以上的原子。
3)晶体共有几种晶系和布喇菲格子?(□)□按结构划分,晶体可分为7大晶系,共14布喇菲格子。
4)立方晶系有几种布喇菲格子?画出相应的格子。
(□)□立方晶系有简单立方、体心立方和面心立方三种布喇菲格子。
5)什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
(□)0简单晶格中,一个原胞只包含一个原子,所有的原子在儿何位置和化学性质上是完全等价的。
复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格(子晶格),复式格子由它们的子晶格相套而成。
Au、Ag和Cu具有面心立方晶格结构,碱金属Li、Na. K为体心立方结构,它们均为简单晶格。
NaCK CsCl、ZnS以及具有金刚石结构的Si、Ge等均为复式格子。
6)钛酸顿是由几个何种简单晶格穿套形成的?(□)□ BaTiO.在立方体的项角上是锲(Ba),钛(Ti)位于体心,面心上是三组氧(0)。
三组氧(01, OIL 0111)周围的情况各不相同,整个晶格是由Ba、Ti和01、OIL 0111各自组成的简立方结构子晶格(共5个)套构而成的。
7)为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(□)□金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
金刚石结构由两套完全等价的面心立方格子穿套构成。
金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。
固体物理总结
固体物理课程报告通过30多个学时的学习,我对固体物理有了一定的了解:固体是指在承受切应力时具有一定程度刚性的物质,在压强和温度一定且无外力作用时,它的形状和体积保持不变。
而固体物理学就是研究固体的性质、微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。
固体物理学的基本任务:从宏观到微观研究固体的各种物理性能并阐明其规律性;研究对象:金属、无机半导体、无机绝缘体 、晶态和非晶态固体和有机固体等;研究内容:晶体与非晶体的微观结构、各种无激发、杂质与缺陷等。
固体物理学顾名思义就是研究固体的学科。
固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性。
以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动以及它们和宏观物理性质的关系。
而固体指的是在承受切应力时,具有一定程度刚性的物质,包括晶态和非晶态固体。
固体物理学有两个最基本的问题:第一:固体是由什么原子组成的?它们是怎样排列和组合的?第二:结构是如何形成的?固体物理的研究领域是相当广泛的,主要包括介质物理、铁电物理、晶体物理、半导体物理、铁磁物理、超导物理、纳米物理和非晶态物理。
固体物理学科的建立和发展决定于几个方面:晶体结构的认知;晶体结合的认知;晶格振动和固体比热容的认识和发展;缺陷的认知;固体电子论的发展;相变的研究;固体磁性;超导现象的认识和发展;半导体物理的研究以及无序系统和一些新的发展。
固体物理学讲述了固体中的原子结构、结合规律、运动状态和能量关系,固体中电子的运动方程、电子的能带结构、金属导体的导电机制、半导体的基本原理、超导性的基本规律,是20世纪物理学发展最快的一门学科。
一 晶体结构和周期性晶体结构是固体物理学中非常重要的部分,它为固体物理的研究奠定了基础。
固体材料是由大量的原子(分子、离子)组成的,不同原子构成的晶体具有不同的性质,即使是由同种原子构成的晶体,由于结构不同其性质也会有很大的差别。
固体物理(黄昆)第一章
形成许多分支学科。
固体物理研究固体材料中那些最基本的、有普遍意义的
问题。
晶格结构
晶格理论
晶格动力学
晶格热力学
理想晶格
实际晶格理论
固
体
能带理论(包括电磁场中的电子运动
物
电子理论
金属中的自由电子气)
理
功函数、接触电势等
输运理论
:电子与晶格的相互作用
固体物理分论
半导体、磁学、超导、非线性光学
第九页,共66页。
➢ 准晶体: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
没有缺陷和杂质的晶体叫做理想晶体。缺陷: 缺陷是指微量的不规则性。
第五页,共66页。
非晶体
晶 体
规则网络
第六页,共66页。
无规网络
准晶
Al65Co25Cu10合金
第七页,共66页。
二、固体物理学的发展历史
阿羽依
规则几何外形 ↔ 内部规则性
下面对结晶学中属于立方晶系的布拉格原胞简立方、体心立 方和面心立方的固体物理原胞进行分析。
晶胞:
原胞:
a ai 基矢 b aj c ak
基矢
a1 ai a2 aj
a3 ak
sc
体积 V a3
体积 V a3
第三十六页,共66页。
bcc
晶胞:
a ai 基矢 b aj c ak
(晶面的概念是以格点组成互相平行的平面,再构成晶体。 )
第四十六页,共66页。
通常用密勒指数来标记不同的晶面。
确定密勒指数的步骤:
1)选任一结点为原点,作 、a1 、a2 的a轴3线。
2)求出晶面族中离原点最近的第一个晶面在
固体物理学后感
固体物理学后感
固体物理学是研究物质在固态下的性质与行为的学科,是物理学
中一个非常重要的分支。
在学习固体物理学过程中,我收获了许多宝
贵的体验,对此有如下的感悟:
第一,固体物理学是一门很基础的学科。
从晶体结构、电子结构
到物质物理性质的研究,都需要基础知识和工具进行支撑。
在学习的
过程中,我体会到要有一个全面系统的基础知识,才能更好地理解固
体物理的内容。
因此,需要从学习大学物理学的基础上再全面掌握一
些数学、化学等基础知识,才能做好这门学科的学习。
第二,固体物理学是一门实用的学科。
在今天的社会,固体物理
学在人们生活、工业、环保等方面都扮演着重要的角色。
例如,固体
物理学的研究可以用于制造新型材料、电子器件、化学反应等方面。
此外,固体物理学还对人们认识物质的内在本质也有重要的贡献。
通
过通过掌握固体物理学的知识和技能,可以更准确地认识和应用物质,更好地服务于实践。
第三,固体物理学是一门不断发展的学科,包括欧姆定律、化学键、晶格、点缺陷、电导率、功函数等内容。
学生们需要注重质量和
深度,然后通过不断的思考、实践和交流,去不断地加深对固体物理
学的理解和认识,使自己在未来成为更专业的固体物理学家。
总之,学习固体物理学需要足够的基础知识和实践经验,也需要
不断的学习和思考。
学生们在此过程中需要寻求帮助,并向更具有经
验和知识的学者学习。
通过不断的努力和学习,我们可以在未来为社会做出更多的贡献。
固体物理各章节重点总结
7、S态紧束缚电子的能带为 Rn是最近邻格失
8、电子的平均速度
9、有效质量的分量
10、K空间内,电子的能量等于定值的曲面称为等能面。
11、在等能面与布里渊区边界相交处,等能面在垂直于布里渊区边界的方向上的梯度为零,即等能面与布里渊区边界垂直截交。费密面是一等能面,
12、布拉格反射结果:波失K落在布里渊区边界上的电子,其垂直于界面的速度分量必定为零。若电子的速度不为零,则它的速度方向与布里渊区界面平行。
8、某一方向上两相邻结点的距离为该方向上的周期,以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元,体积最小的重复单元,称为原胞或固体物理学原胞,它能反映晶格的周期性。
9、为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心。这种重复单元称作晶胞,惯用晶胞或布喇菲原胞
7、长声学波描述的是原胞的刚性运动,代表了原胞质心的运动
8、长光学波:原胞中不同原子作相对振动,质量大的振幅小,质量小的振幅大,保持质心不动的一种模式。
9、晶体内原子在平衡位置附近的振动可以近似看成是3N个独立的谐振子的振动
10、简正振动:每一个原子都以相同的频率作振动,是最基本最简单的振动方式
11、声子是晶格振动能量的量子P80
2、一维简单格子:由质量为m的全同原子构成,相邻原子平衡位置的间距,即晶格常数为a,用un表示序号为n的原子在t时刻偏离平衡位置的位移
3、色散关系P67
4、一维复式格子:由质量分别为m和M的两种不同原子所构成。这种晶格也可视为一维分子链。P69
5、声学波、光学波P70
6、长声学波,相邻原子的位移相同,原胞内的不同原子以相同的振幅和相位作整体运动。
固体物理学读书报告
《固体物理学》读书报告这学期学习了《固体物理学》这门课,《固体物理学》这门课是后续专业课的一门基础课,具有重要的地位。
其中的第四章的能带理论又是这门课的重中之重,现在我就把我读过能带理论后的一些理解和感受写出来,和大家一起来分享。
黄昆版的《固体物理学》中的能带理论讲了九个小节,基本把能带理论的基础的东西都说的很清楚了,概括起来的话,能带理论研究的是固体中电子运动规律的一种近似理论。
固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。
为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。
能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。
具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。
前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。
首先,我来说说能带理论中的几个很重要的名词:能级(Energy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。
每个壳层上的电子具有分立的能量值,也就是电子按能级分布。
为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。
能带(Energy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。
致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。
从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。
固体物理重要知识点总结
固体物理重要知识点总结晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点:微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。
晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。
(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。
布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区爱因斯坦模型在低温下与实验存在偏差的根源是什么?答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。
固体物理学第三章总结
在声子碰撞的________过程中, 声子的动量发生很 大的变化, 从而破坏了热流的方向。 翻转 固体中声子平均自由程的大小由两种过程决定: 一是______________________________; 另一是____________________________。 声子间的相互碰撞 缺陷对声子的散射
晶格热容量的量子理论 Einstein 模型与 Debye 模型 晶格振动模式密度 Grü neisen 状态方程 热膨胀与非谐效应
晶格热传导 声子的平均自由程
确定晶格振动谱的实验方法 局域振动 高频模、隙模、共振模
非晶固体中的原子振动
模式密度
在一个振动模下
对于确定的 i:第 i 个原子的位移随时间作简谐振动
NaCl 晶体有多少个色散关系?___. 6 在离子晶体中 TO、LO、LA、TA 声子, 哪一种频 率最高?_____. LO
晶格热容的 Einstein 模型假设晶体中所有原子 ____________________振动。 以相同频率 晶格热容的 Debye 模型假设晶格振动的色散关系是 _____. ω= cq
______________________是测定晶格振动谱最重要 的实验方法。 中子非弹性散射
热膨胀是由_________________引起的。 原子间非谐作用 写出晶体热膨胀的格临爱森关系______________。 CV
存在有杂质(或缺陷)的晶体中, 晶格振动可能产 生______________。 局域振动
每个点占据的 q 空间体积
b1 b 2 b3 1 (2 )3 倒格子原胞的体积 N1 N 2 N3 N V
《固体物理学》读书笔记
《固体物理学》读书笔记认真读完一本名著后,相信大家都增长了不少见闻,何不写一篇读书笔记记录下呢?那么我们如何去写读书笔记呢?下面是作者为大家整理的《固体物理学》读书笔记600字内容,仅供参考,希望能够帮助到大家。
《固体物理学》读书笔记 1罗素认为,哲学是介于神学与科学之间的东西。
人类自脱离动物界以来,一直借以这三种方式探索自然和人类本身的奥秘。
在科学中,物理学是最基础的学科,它与哲学的渊源最深,它研究的是自然界的物质结构以及物质运动的最基本的规律。
固体物理学又是物理学中研究固体材料宏观性质和微观过程的重要分支。
固体材料可分为晶体、非晶体和介于两者之间的准晶体。
在自然界的矿物中,晶态物质占到98%以上。
理想晶体中原子排列十分规则,主要是原子排列具有周期性(或称为长程有序),这种排列的具体形式又称为晶格,按宏观对称性,世界丰富的晶体类型分属于十四种晶格。
但物质并不是理想中的完美,实际的晶体中总是存在着各种缺陷,影响着晶体的性质。
格点是晶体中原子的平衡位置,由于热性质原子会在格点附近做微小振动。
晶格振动的研究对固体材料宏观性质和微观过程的研究有着重要作用,但固体中大量的`粒子之间存在着很强的相互作用,使晶格振动成为一个复杂的多体问题,很难严格求解器运动状态。
具有能量但不具有质量的准粒子——声子的引入,对描述晶格振动起到了简化的作用:可以用声子数来描述简正振动运动的量子态;可以用声子数的变化,来描述简正振动量子态之间的跃迁;可以用声子间的相互碰撞来描述非简谐作用。
非晶体原子排列不具有长程有序,但任具有一定规则,称为短程有序。
准晶体是固体研究的一个新领域。
《固体物理学》读书笔记 2在生活中,爱因斯坦是一个爱思索的人,有一次朋友请爱因斯坦喝茶,他用小勺搅了搅杯里的茶水,水慢慢转起来,茶叶随着水的转动转到了水杯的中心并开始聚拢在一起。
爱因斯坦看到了这个现象,开始思考起来,忘记了朋友,忘记了喝茶。
还有,爱因斯坦初到普林斯顿市,不熟悉那里的街道,在散步的时候又往往专心考虑问题,因此经常迷路,找不到自己的家。
固体物理知识点
44、金属中的电子对固体热容的贡献: 在量子理论中,大多数电子的能量远远低于费密能量 E F ,由于受到泡利原理的限制不 能参与热激发,只有在 E F 附近约 ~ k B T 范围内电子参与热激发,对金属的热容量有贡献。 计算结果表明电子的热容量与温度一次方成正比。 在量子理论中,大多数电子的能量远远低于费密能量 E F ,由于受到泡利原理的限制不
-2-
固体物理知识点
33、满带、空带、价带、导带、带隙的概念。 34、能带顶部电子和能带底部电子的效质量及其物理意义。 35、温度对金属和半导体导电率影响机制。 36、自由电子气系统的费米能级、空间费米半径和电子的平均能量。 37、绝对零度时,三维自由电子气的体系能量。 38、将粒子看作是经典粒子时, 电子状态变化的基本公式及电子的速度。 39、杜隆-珀替定律、德拜模型和爱因斯坦模型: (1) 杜隆-珀替定律: 根据经典统计的能量均分原理, 每一个自由度的平均能量为 k BT , 其中
关固体比热的杜隆-珀替定律。 (2)爱因斯坦模型:N 个原子构成的晶体,所有的原子以相同的频率ω0 振动 ,总能
量
,
hω0 2 e hω0 / k BT ∂E 晶体热容 CV = ( ) )V = 3 Nk B ( k BT (e hω0 / k BT − 1) 2 ∂T
高温下,与杜隆-珀替定律一致。低温下,按指数规律趋向于零,与实验现象不符,表 明爱因斯坦模型存在缺陷。这是因为“所有的原子以相同的频率ω0 振动”的假设过于简单。 (3)德拜模型:假设:不可忽略低频振动对比热的贡献,将晶体可看作是各向同性的 连续介质,晶格振动看作是在连续介质中传播的弹性波。
40、离子性、共价性、金属性和范德瓦耳斯性结合力的特点: (1)离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度 时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《固体物理学》读书笔记
《固体物理学》读后感600字
罗素认为,哲学是介于神学与科学之间的东西。
人类自脱
离动物界以来,一直借以这三种方式探索自然和人类本身的奥秘。
在科学中,物理学是最基础的学科,它与哲学的渊源最深,它研
究的是自然界的物质结构以及物质运动的最基本的规律。
固体物
理学又是物理学中研究固体材料宏观性质和微观过程的重要分支。
固体材料可分为晶体、非晶体和介于两者之间的准晶体。
在自然界的矿物中,晶态物质占到98%以上。
理想晶体中
原子排列十分规则,主要是原子排列具有周期性(或称为长程有序),这种排列的具体形式又称为晶格,按宏观对称性,世界丰富的晶体类型分属于十四种晶格。
但物质并不是理想中的完美,实
际的晶体中总是存在着各种缺陷,影响着晶体的性质。
格点是晶体中原子的平衡位置,由于热性质原子会在格点
附近做微小振动。
晶格振动的研究对固体材料宏观性质和微观过
程的研究有着重要作用,但固体中大量的粒子之间存在着很强的
相互作用,使晶格振动成为一个复杂的多体问题,很难严格求解
器运动状态。
具有能量但不具有质量的准粒子——声子的引入,
对描述晶格振动起到了简化的作用:可以用声子数来描述简正振
动运动的量子态;可以用声子数的变化,来描述简正振动量子态
之间的跃迁;可以用声子间的相互碰撞来描述非简谐作用。
非晶体原子排列不具有长程有序,但任具有一定规则,称为短程有序。
准晶体是固体研究的一个新领域。