基于管道的进程通信--操作系统实验报告2
操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。
通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。
2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。
3、为新进程指定可执行文件的路径、命令行参数、进程属性等。
4、编写代码来等待新进程的结束,并获取其退出代码。
(二)进程同步实验1、设计一个生产者消费者问题的模型。
2、使用信号量来实现生产者和消费者进程之间的同步。
3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。
4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。
(三)进程通信实验1、选择使用管道来实现进程之间的通信。
2、创建一个匿名管道,父进程和子进程分别读写管道的两端。
3、父进程向管道写入数据,子进程从管道读取数据并进行处理。
四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。
通过观察进程的创建和执行过程,加深了对进程概念的理解。
(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。
分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。
(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。
数据能够准确地在进程之间传递,验证了管道通信的有效性。
五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。
通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。
(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。
操作系统-进程管理实验报告

操作系统-进程管理实验报告实验一进程管理1.实验目的:(1)加深对进程概念的理解,明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象,研究解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。
2.实验预备内容(1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件,分析进程的创建过程。
3.实验内容(1)进程的创建:编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果,并分析原因。
源代码如下:#include<XXX>#include<XXX>#include<unistd.h>#include <XXX>#include <XXX>int main(int argc,char* argv[]){pid_t pid1,pid2;pid1 = fork();if(pid1<0){fprintf(stderr,"childprocess1 failed");exit(-1);}else if(pid1 == 0){printf("b\n");}else{pid2 = fork();if(pid2<0){fprintf(stderr,"childprocess1 failed"); exit(-1);}else if(pid2 == 0){printf("c\n");}else{printf("a\n");sleep(2);exit(0);}}return 0;}结果如下:分析原因:pid=fork();操纵体系创建一个新的历程(子历程),而且在历程表中相应为它建立一个新的表项。
操作系统Lab2实验报告

深入学习 操作系统的原理和实 现细节,包括进程通 信、死锁处理、虚拟 化技术等。
实践应用
希望将所学的操作系 统知识应用到实际项 目中,提高自己的实 践能力。
持续学习
随着技术的不断发展 ,操作系统也在不断 更新和进步,需要保 持持续学习的态度。
探索新领域
对于新兴的操作系统 领域,如云操作系统 、物联网操作系统等 ,也希望有所涉猎和 探索。
学生将了解操作系统内核的组成和功能,以及操作系统如何通过内核 实现各种基本功能。
学生将通过实验深入了解操作系统的内部实现细节,提高自己对操作 系统设计和实现的认知水平。
02
实验内容
进程管理实验
总结词
理解进程状态及其转换、进程控制块PCB的组成、进程调度算法。
详细描述
通过实验,我们深入了解了进程的概念、状态及其转换。进程控制块PCB的组成,包括进程标 识符、进程状态、优先级、CPU寄存器内容等信息。此外,我们还学习了进程调度算法,如先 来先服务、最短作业优先、优先级调度等,并进行了模拟实验。
THANKS
感谢观看
操作系统Lab2实验 报告
汇报人:
202X-01-08
目录
• 实验目的 • 实验内容 • 实验结果与分析 • 问题与改进建议 • 总结与展望
01
实验目的
理解操作系统的基本概念
01
掌握核心概念
02
操作系统是计算机系统的核心软件,负责管理计算机硬件和软件资源 ,为用户提供便利的操作界面和高效的服务。
03
操作系统具有并发性、虚拟性、异步性和随机性的特点,这些特点决 定了操作系统在计算机系统中的重要地位和作用。
04
操作系统的基本功能包括进程管理、内存管理、文件管理和设备管理 ,这些功能是操作系统实现其核心目标的基础。
操作系统实验2-计算机操作系统(第3版)-郁红英-清华大学出版社

操作系统实验
(课程设计)实验报告
学院
专业
班级/学号
学生姓名
成绩
实验地点_
实验日期___ __
指导教师_____ ___ _____
(课程上机)实验报告
1.实验名称、实验目的、实验内容、实验要求由教师确定,实验前由教师事先填好,然后作为实验报告模版供学生使用;
2.实验准备由学生在实验或上机之前填写,教师应该在实验前检查;
3.实验过程由学生记录实验的过程,包括操作过程、遇到哪些问题以及如何解决等;
4.实验总结由学生在实验后填写,总结本次实验的收获、未解决的问题以及体会和建议等;
5.源程序、代码、具体语句等,若表格空间不足时可作为附录另外附页。
《Linux操作系统》实验报告模板

课程编号:B080103040Linux操作系统实验报告姓名姚柯杰学号******** 班级软工1212 指导教师石凯实验名称Linux操作系统实验开设学期2014-2015第一学期开设时间第11周——第18周报告日期评定成绩评定人石凯评定日期东北大学软件学院实验一熟悉Linux环境一、举例列出常用的shell命令使用方法1.目录操作(1)mkdir abc 创建一个目录abc(2)cd /abc 将工作目录改变到abc(3)cd 改变当前目录到主目录(4)ls 列出当前目录的内容(5)ls -l 输出当前目录内容的长列表,每个目录或文件占一行(6)pwd 显示当前目录的全路径(1)cat mx.c 显示mx.c文件内容(2)more mx.c 分屏显示mx.c内容(3)cat file1 file2 连接file1 和file2(1) cp file1 file2 将文件1复制到文件2(2)mv file1 file2 将文件重命名为file2(3)rm filename 删除文件filename二、通过实例写出Linux下C程序编辑运行过程。
在终端命令下输入vi filename 命令,这里我输入vi helloworld.c 创建并打开helloworld.c 文件按i进入编辑模式,输入下列code:# include <stdio.h>void main(void){Printf(“hello world!\n”);}输入:wq保存退出输入cc helloworld.c编译,在输入./a.out运行三、实验总结在实验一中,我初步对linux有了初步的了解,能熟练目录和文件进行操作,并且能用linux进行基本简单的基于c的编程。
师傅领进门,修行在个人,算是通过这个实验进入了linux的门。
实验二文件操作一、实现CP命令实现思路:提取出源路径和目标路径到函数中,放于定义的两个int变量,定义缓冲区buf,对两个变量进行判断,如果符合要求打开读取源文件信息存于缓冲区,然后写到目标文件中,关闭两个文件以实现等同cp效果。
进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
进程通信的实验报告

一、实验目的1. 理解进程通信的概念和作用。
2. 掌握进程通信的常用方法,包括管道、消息队列、信号量等。
3. 通过编程实践,加深对进程通信机制的理解和应用。
二、实验环境操作系统:Linux开发环境:gcc三、实验内容1. 管道通信2. 消息队列通信3. 信号量通信四、实验步骤及分析1. 管道通信(1)实验步骤1)创建一个父进程和一个子进程;2)在父进程中创建一个管道,并将管道的读端和写端分别赋给父进程和子进程;3)在父进程中,通过管道的写端发送数据给子进程;4)在子进程中,通过管道的读端接收父进程发送的数据;5)关闭管道的读端和写端;6)结束进程。
(2)实验分析通过管道通信,实现了父进程和子进程之间的数据传递。
管道是半双工通信,数据只能单向流动。
在本实验中,父进程向子进程发送数据,子进程接收数据。
2. 消息队列通信(1)实验步骤1)创建一个消息队列;2)在父进程中,向消息队列中发送消息;3)在子进程中,从消息队列中接收消息;4)删除消息队列;5)结束进程。
(2)实验分析消息队列是一种进程间通信机制,允许不同进程之间传递消息。
消息队列的创建、发送、接收和删除等操作都是通过系统调用实现的。
在本实验中,父进程向消息队列发送消息,子进程从消息队列接收消息,实现了进程间的消息传递。
3. 信号量通信(1)实验步骤1)创建一个信号量;2)在父进程中,对信号量执行P操作,请求资源;3)在子进程中,对信号量执行V操作,释放资源;4)结束进程。
(2)实验分析信号量是一种用于实现进程同步的机制。
在进程通信中,信号量可以用来协调多个进程对共享资源的访问。
在本实验中,父进程和子进程通过信号量实现了对共享资源的同步访问。
五、实验结果1. 管道通信实验结果:父进程成功向子进程发送数据,子进程成功接收数据。
2. 消息队列通信实验结果:父进程成功向消息队列发送消息,子进程成功从消息队列接收消息。
3. 信号量通信实验结果:父进程成功获取资源,子进程成功释放资源。
进程通讯管理实验报告(3篇)

第1篇一、实验目的1. 理解进程通信的概念和原理;2. 掌握进程通信的常用机制和方法;3. 能够使用进程通信机制实现进程间的数据交换和同步;4. 增强对操作系统进程管理模块的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C3. 开发环境:GCC三、实验内容1. 进程间通信的管道机制2. 进程间通信的信号量机制3. 进程间通信的共享内存机制4. 进程间通信的消息队列机制四、实验步骤1. 管道机制(1)创建管道:使用pipe()函数创建管道,将管道文件描述符存储在两个变量中,分别用于读和写。
(2)创建进程:使用fork()函数创建子进程,实现父子进程间的通信。
(3)管道读写:在父进程中,使用read()函数读取子进程写入的数据;在子进程中,使用write()函数将数据写入管道。
(4)关闭管道:在管道读写结束后,关闭对应的管道文件描述符。
2. 信号量机制(1)创建信号量:使用sem_open()函数创建信号量,并初始化为1。
(2)获取信号量:使用sem_wait()函数获取信号量,实现进程同步。
(3)释放信号量:使用sem_post()函数释放信号量,实现进程同步。
(4)关闭信号量:使用sem_close()函数关闭信号量。
3. 共享内存机制(1)创建共享内存:使用mmap()函数创建共享内存区域,并初始化数据。
(2)映射共享内存:在父进程和子进程中,使用mmap()函数映射共享内存区域。
(3)读写共享内存:在父进程和子进程中,通过指针访问共享内存区域,实现数据交换。
(4)解除映射:在管道读写结束后,使用munmap()函数解除映射。
4. 消息队列机制(1)创建消息队列:使用msgget()函数创建消息队列,并初始化消息队列属性。
(2)发送消息:使用msgsnd()函数向消息队列发送消息。
(3)接收消息:使用msgrcv()函数从消息队列接收消息。
(4)删除消息队列:使用msgctl()函数删除消息队列。
进程控制与进程通信程序实验报告

进程控制与进程通信程序实验报告一、引言进程是计算机系统中最基本的概念之一,是操作系统中最小的资源管理单位。
进程控制与进程通信是操作系统中重要的内容,涉及到进程的创建、调度和终止,以及进程间的信息传递和同步管理。
本实验旨在通过编写进程控制与进程通信程序,加深对操作系统中进程管理和通信机制的理解。
二、实验目的1. 理解进程的概念和特点,掌握进程的创建、调度和终止方法。
2. 掌握进程通信的基本原理和方法,包括共享内存、管道、消息队列和信号量等。
3. 能够编写简单的进程控制和进程通信程序。
三、实验内容1. 进程控制实验:编写一个程序,实现进程的创建、调度和终止。
通过调用系统调用函数,创建多个子进程,并通过进程控制函数实现父子进程的协作与同步。
2. 进程通信实验:编写一个程序,实现进程间的信息传递和同步管理。
通过共享内存、管道、消息队列或信号量等机制,实现不同进程之间的数据交换和共享。
四、实验步骤1. 进程控制实验:(1)创建父进程和子进程:使用fork()函数创建子进程,并通过判断返回值来区分父子进程。
(2)调度子进程:使用wait()函数等待子进程的结束,以实现父子进程的同步。
(3)终止子进程:使用exit()函数终止子进程的运行。
2. 进程通信实验:(1)共享内存:使用shmget()函数创建共享内存段,使用shmat()函数映射共享内存到进程的地址空间,实现共享数据的读写。
(2)管道:使用pipe()函数创建管道,使用fork()函数创建子进程,通过读写管道实现进程间的数据传输。
(3)消息队列:使用msgget()函数创建消息队列,使用msgsnd()函数向消息队列发送消息,使用msgrcv()函数从消息队列接收消息,实现进程间的消息传递。
(4)信号量:使用semget()函数创建信号量,使用semop()函数对信号量进行P操作和V操作,实现进程间的同步和互斥。
五、实验结果通过实验,我们成功实现了进程的创建、调度和终止,以及进程间的信息传递和同步管理。
进程操作的实验报告

一、实验目的1. 理解进程的基本概念和进程控制块(PCB)的作用。
2. 掌握进程创建、调度、同步和通信的基本方法。
3. 熟悉进程状态转换及进程同步机制。
4. 提高编程能力,加深对操作系统进程管理的理解。
二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 开发环境:Visual Studio 2019三、实验内容1. 进程创建与销毁2. 进程调度3. 进程同步4. 进程通信四、实验步骤1. 进程创建与销毁(1)定义进程结构体```ctypedef struct {int pid; // 进程IDchar name[50]; // 进程名int status; // 进程状态struct PCB next; // 指向下一个进程的指针} PCB;```(2)创建进程```cPCB createProcess(char name) {PCB newProcess = (PCB )malloc(sizeof(PCB)); newProcess->pid = ...; // 分配进程IDstrcpy(newProcess->name, name);newProcess->status = ...; // 初始化进程状态 newProcess->next = NULL;// ... 其他初始化操作return newProcess;}```(3)销毁进程```cvoid destroyProcess(PCB process) {free(process);}```2. 进程调度(1)定义进程队列```ctypedef struct {PCB head; // 队列头指针PCB tail; // 队列尾指针} ProcessQueue;```(2)初始化进程队列```cvoid initProcessQueue(ProcessQueue queue) {queue->head = NULL;queue->tail = NULL;}```(3)入队```cvoid enqueue(ProcessQueue queue, PCB process) { if (queue->head == NULL) {queue->head = process;queue->tail = process;} else {queue->tail->next = process;queue->tail = process;}}(4)出队```cPCB dequeue(ProcessQueue queue) {if (queue->head == NULL) {return NULL;}PCB process = queue->head;queue->head = queue->head->next; if (queue->head == NULL) {queue->tail = NULL;}return process;}```3. 进程同步(1)互斥锁```ctypedef struct {int locked; // 锁的状态} Mutex;void initMutex(Mutex mutex) {mutex->locked = 0;void lock(Mutex mutex) {while (mutex->locked) {// 等待锁释放}mutex->locked = 1;}void unlock(Mutex mutex) {mutex->locked = 0;}```(2)信号量```ctypedef struct {int count; // 信号量值Mutex mutex; // 互斥锁} Semaphore;void initSemaphore(Semaphore semaphore, int count) { semaphore->count = count;initMutex(&semaphore->mutex);}void P(Semaphore semaphore) {lock(&semaphore->mutex);while (semaphore->count <= 0) {// 等待信号量}semaphore->count--;unlock(&semaphore->mutex);}void V(Semaphore semaphore) {lock(&semaphore->mutex);semaphore->count++;unlock(&semaphore->mutex);}```4. 进程通信(1)管道通信```cint pipe(int pipefd[2]) {// 创建管道}void writePipe(int pipefd[2], const void buf, size_t nbyte) { // 向管道写入数据}void readPipe(int pipefd[2], void buf, size_t nbyte) {// 从管道读取数据}```(2)消息队列通信```cint msgget(key_t key, int msgflg) {// 创建消息队列}void msgsnd(int msqid, const void msgp, size_t msgsz, int msgflg) {// 向消息队列发送消息}void msgrcv(int msqid, void msgp, size_t msgsz, long msgtype, int msgflg) {// 从消息队列接收消息}```五、实验结果与分析1. 进程创建与销毁:通过创建和销毁进程,验证了进程结构体的正确性。
操作系统实验报告

操作系统实验报告专业:软件工程姓名:李程星学号:2011221104220092实验一操作系统的用户界面LINUX操作系统提供了图形用户界面和命令行界面,本实验主要熟悉命令行界面,为后续的实验编程做准备。
一、系统启动1. 开机,选择进入Linux系统,约40秒后系统启动成功,系统提示输入用户名:user输入口令:111111 然后进入Linux系统桌面。
2.进入Linux命令行方式单击小红帽图标,选择“系统工具”,单击“终端”图标,出现Linux的shell提示符.....@......$,,即可输入命令。
实验二进程管理一、实验目的(1)加深对进程概念的理解,明确进程和程序的区别。
(2)进一步认识并发执行的实质。
二、实验内容1、进程的创建执行下面的程序,分析执行的结果。
#include <stdio.h>main(){ int i;printf("just 1 process.\n");i=fork();if (i==0)printf("I am child.\n");elseif (i>0)printf("I am parent.\n");elseprintf("fork() failed.\n");printf("program end.\n");}输出结果:just 1 process.I am parent.program end.I am a child.program end.2、进程的同步执行下面的程序,分析执行的结果。
#include <stdio.h>main(){ int i;printf("just 1 process.\n");i=fork();if (i>0){printf("I am parent.\n");wait();}elseif (i==0) {printf("I am child.\n");exit(1);}printf("program end.\n");}输出结果:just 1 process.I am parent.I am child.program end.3、进程的延迟执行下面的程序,分析执行的结果。
《操作系统》实验二

《操作系统》实验二一、实验目的本实验旨在加深对操作系统基本概念和原理的理解,通过实际操作,提高对操作系统设计和实现的认知。
通过实验二,我们将重点掌握进程管理、线程调度、内存管理和文件系统的基本原理和实现方法。
二、实验内容1、进程管理a.实现进程创建、撤销、阻塞、唤醒等基本操作。
b.设计一个简单的进程调度算法,如轮转法或优先级调度法。
c.实现进程间的通信机制,如共享内存或消息队列。
2、线程调度a.实现线程的创建、撤销和调度。
b.实现一个简单的线程调度算法,如协同多任务(cooperative multitasking)。
3、内存管理a.设计一个简单的分页内存管理系统。
b.实现内存的分配和回收。
c.实现一个简单的内存保护机制。
4、文件系统a.设计一个简单的文件系统,包括文件的创建、读取、写入和删除。
b.实现文件的存储和检索。
c.实现文件的备份和恢复。
三、实验步骤1、进程管理a.首先,设计一个进程类,包含进程的基本属性(如进程ID、状态、优先级等)和操作方法(如创建、撤销、阻塞、唤醒等)。
b.然后,实现一个进程调度器,根据不同的调度算法对进程进行调度。
可以使用模拟的方法,不需要真实的硬件环境。
c.最后,实现进程间的通信机制,可以通过模拟共享内存或消息队列来实现。
2、线程调度a.首先,设计一个线程类,包含线程的基本属性(如线程ID、状态等)和操作方法(如创建、撤销等)。
b.然后,实现一个线程调度器,根据不同的调度算法对线程进行调度。
同样可以使用模拟的方法。
3、内存管理a.首先,设计一个内存页框类,包含页框的基本属性(如页框号、状态等)和操作方法(如分配、回收等)。
b.然后,实现一个内存管理器,根据不同的内存保护机制对内存进行保护。
可以使用模拟的方法。
4、文件系统a.首先,设计一个文件类,包含文件的基本属性(如文件名、大小等)和操作方法(如创建、读取、写入、删除等)。
b.然后,实现一个文件系统管理器,包括文件的存储和检索功能。
计算机操作系统实验报告表格

计算机与信息学院 实验课程:操作系统阜阳师范学院 Fuyang Teachers College实验报告 ====================================================================专业:年级班级: ~ 学年 第 学期姓名 学号:实验报告实验报告实验报告}exit(0);}main( ){ client( );}2.server.c#include <sys/types.h>#include <sys/msg.h>#include <sys/ipc.h>#define MSGKEY 75struct msgform{ long mtype;char mtext[1000];}msg;int msgqid;void server( ){msgqid=msgget(MSGKEY,0777|IPC_CREAT); do{msgrcv(msgqid,&msg,1030,0,0);printf(“(server)received\n”);}while(msg.mtype!=1);msgctl(msgqid,IPC_RMID,0);exit(0);}main( ){server( );}实验报告#include <stdio.h>#include <stdlib.h>#include <time.h>#define N 12#define B 3#define P 5int isInBuf(int buf[], int x, int *p){ int i, j = -1;for (i = 0; i < B; i++){ if(buf[i] == x){ j = i;break;}else if (buf[i] == -1){ (*p)++;buf[i] = x;j = i;break;}}if(j==-1) (*p)++;return j;}int oldopt(int i, int buf[ ], int list[ ], int f[ ]) { int k, h, j=0, max=-1;for (k = 0; k < B; k++){ for (h = i; h < N; h++)if (buf[k] == list[h]){ f[k] = h;break;}if(h==N)f[k] = N;}for (k = 0; k < B; k++){ if (max < f[k]){ max = f[k];j = k;}}return j;}int main(){ int list[N]; #include <stdio.h>#include <stdlib.h>#include <time.h>#define N 12#define B 3#define P 5int isInBuf(int buf[], int x, int *p) { int i, j = -1;for (i = 0; i < B; i++){ if(buf[i] == x){ j = i;break;}else if (buf[i] == -1){ (*p)++;buf[i] = x;j = i;break;}}if(j==-1) (*p)++;return j;}int oldlru(int f[ ]){ int i, j = 0, max = -1;for (i = 0; i < B; i++){ if(f[i] > max){ max = f[i];j = i;}f[i]++;}return j;}int main(){ int list[N];int change[N];int buf[B], f[B], i, j,k;int result[B][N];int old;int absent;srand((int)time(NULL));printf("\n The Random List:\n");for (i = 0; i < N; i++)int change[N];int buf[B],f[B],i,j,k;int result[B][N];int old;int absent;srand((int)time(NULL));printf("\n The Random List:\n");for (i = 0; i < N; i++){ list[i] = rand() % P+1;printf("%3d", list[i]);}printf("\n----------------------------------------------\n");printf("\nOPT:\n");absent=0;for(i = 0; i < B; i++)buf[i] = f[i] = -1;for(i = 0; i < N; i++){ j=isInBuf(buf, list[i],&absent);if(j== -1) //需置换页面{ old=oldopt(i, buf, list, f);change[i]=buf[old];buf[old] = list[i];}else change[i]=-1;for(k=0;k<B;k++)result[k][i]=buf[k];}printf("the result is:\n");for(i=0;i<B;i++){ for(j=0;j<N;j++)printf("%3d",result[i][j]);printf("\n");}printf("\nthe page is changed:\n");for(i=0;i<N;i++){ if(change[i]== -1)printf(" ");else printf("%3d",change[i]);}printf("\nabsent:%d\n",absent);printf("the absent vote is:%f\n",(float)absent/N);}{ list[i] = rand() % P+1;printf("%3d", list[i]);}printf("\n-------------------------------------------\n");printf("\nLRU:\n");absent = 0;for(i = 0; i < B; i++)buf[i] = f[i] = -1;for(i = 0; i < N; i++){ j = isInBuf(buf, list[i],&absent);old = oldlru(f);if(j== -1){ change[i]=buf[old];buf[old] = list[i];f[old] = 0;}else{ f[j]=0;change[i]=-1;}for(k=0;k<B; k++)result[k][i]=buf[k];}printf("the result is:\n");for(i=0;i<B;i++){ for(j=0;j<N;j++)printf("%3d",result[i][j]);printf("\n");}printf("\nthe page is changed:\n");for(i=0;i<N;i++){ if(change[i]== -1)printf(" ");elseprintf("%3d",change[i]);}printf("\nabsent:%d\n",absent);printf("the absent vote is:%f\n",(float)absent/N); }实验报告。
操作系统原理_实验报告

一、实验目的1. 理解操作系统基本原理,包括进程管理、内存管理、文件系统等。
2. 掌握操作系统的基本命令和操作方法。
3. 通过实验加深对操作系统原理的理解和掌握。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:Eclipse三、实验内容本次实验主要分为以下几个部分:1. 进程管理实验2. 内存管理实验3. 文件系统实验四、实验步骤及结果1. 进程管理实验实验步骤:- 使用C语言编写一个简单的进程管理程序,实现进程的创建、调度、同步和通信等功能。
- 编写代码实现进程的创建,通过调用系统调用创建新的进程。
- 实现进程的调度,采用轮转法进行进程调度。
- 实现进程同步,使用信号量实现进程的互斥和同步。
- 实现进程通信,使用管道实现进程间的通信。
实验结果:- 成功创建多个进程,并实现了进程的调度。
- 实现了进程的互斥和同步,保证了进程的正确执行。
- 实现了进程间的通信,提高了进程的效率。
2. 内存管理实验实验步骤:- 使用C语言编写一个简单的内存管理程序,实现内存的分配、释放和回收等功能。
- 实现内存的分配,采用分页存储管理方式。
- 实现内存的释放,通过调用系统调用释放已分配的内存。
- 实现内存的回收,回收未被使用的内存。
实验结果:- 成功实现了内存的分配、释放和回收。
- 内存分配效率较高,回收内存时能保证内存的连续性。
3. 文件系统实验实验步骤:- 使用C语言编写一个简单的文件系统程序,实现文件的创建、删除、读写等功能。
- 实现文件的创建,通过调用系统调用创建新的文件。
- 实现文件的删除,通过调用系统调用删除文件。
- 实现文件的读写,通过调用系统调用读取和写入文件。
实验结果:- 成功实现了文件的创建、删除、读写等功能。
- 文件读写效率较高,保证了数据的正确性。
五、实验总结通过本次实验,我对操作系统原理有了更深入的理解和掌握。
以下是我对实验的几点总结:1. 操作系统是计算机系统的核心,负责管理和控制计算机资源,提高计算机系统的效率。
操作系统课内实验报告

.. 西安交通大学实验报告操作系统实验报告2130505133计算机36班操作系统实验实验一:用户接口实验实验目的1)理解面向操作命令的接口Shell。
2)学会简单的shell编码。
3)理解操作系统调用的运行机制。
4)掌握创建系统调用的方法。
操作系统给用户提供了命令接口和程序接口(系统调用)两种操作方式。
用户接口实验也因此而分为两大部分。
首先要熟悉Linux的基本操作命令,并在此基础上学会简单的shell 编程方法。
然后通过想Linux内核添加一个自己设计的系统调用,来理解系统调用的实现方法和运行机制。
在本次实验中,最具有吸引力的地方是:通过内核编译,将一组源代码变成操作系统的内核,并由此重新引导系统,这对我们初步了解操作系统的生成过程极为有利。
实验内容1)控制台命令接口实验该实验是通过“几种操作系统的控制台命令”、“终端处理程序”、“命令解释程序”和“Linux操作系统的bash”来让实验者理解面向操作命令的接口shell和进行简单的shell编程。
➢查看bash版本。
在shell 提示符下输入:$echo $BASH_VERSION我们的版本是4.3.42(1)-release(2)建立bash 脚本,输出Hello word在编辑器中输入以下内容#!/bin/bashecho Hello World!执行脚本使用指令:$./script➢编写bash脚本,统计/my目录下c语言文件的个数通过bash 脚本,可以有多种方式实现这个功能,而使用函数是其中个一个选择。
在使用函数之前,必须先定义函数。
进入自己的工作目录,编写名为count 的文件脚本程序:#! /bin/bashfunction count{echo –n " Number of matches for $1: " #接收程序的第一个参数ls $1|wc –l #对子程序的第一个参数所在的目录进行操作}将count 文件复制到当前目录下,然后在当前目录下建立文件夹,在my 目录下建立几个c 文件,以便用来进行测试2)系统调用实验该实验是通过实验者对“Linux操作系统的系统调用机制”的进一步了解来理解操作系统调用的运行机制;同时通过“自己创建一个系统调用mycall()”和“编程调用自己创建的系统调用”进一步掌握创建和调用系统调用的方法。
实验三_进程间的通信

本科实验报告专用纸课程名称操作系统原理成绩评定实验项目名称进程间的通信指导教师实验项目编号实验项目类型实验地点学生姓名学号学院系专业实验时间年月日上午~月日上午温度℃湿度一、实验目的和要求1.实验目的:1.学习如何利用管道机制或消息缓冲队列进行进程间的通信,并加深对上述通信机制的理解。
提高学生分析问题和解决问题的能力,并学习撰写规范的科学研究报告(论文)。
2.实验要求:了解系统pipe(),msgsnd(),msgrcv()的功能和实现过程。
二、实验原理和主要内容1.实验内容:(1)编写一段程序,使用管道来实现父子进程之间的进程通信。
子进程向父进程发送自己的进程表示符,以及某字符串。
父进程则通过管道读出子进程发来的消息,将消息显示在屏幕上,然后终止。
(2)编写一段程序,使其用消息缓冲队列来实现client和server 进程之间的通信。
2.实验原理:(使用的系统调用命令说明或算法及程序详细设计)3.实验函数说明(1)包含头文件#include <sys/types.h>#include <sys/ipc.h>#include <sys/msg.h>(2)msgsnd()函数int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);//将消息送入消息队列参数:msqid:消息队列的识别码。
msgp:指向消息缓冲区的指针,此位置用来暂时存储发送和接收的消息,是一个用户可定义的通用结构,形态如下struct msgbuf {long mtype; /* 消息类型,必须> 0 */char mtext[1]; /* 消息文本*/};msgsz:消息的大小。
msgtyp:从消息队列内读取的消息形态。
如果值为零,则表示消息队列中的所有消息都会被读取。
msgflg:用来指明核心程序在队列没有数据的情况下所应采取的行动。
操作系统 实验2进程控制管理 实验报告

{
while((p2=fork( ))= = -1); /*创建子进程p2*/
if(p2= =0)
for(i=0;i<10;i++)
printf("son %d\n",i);
else
for(i=0;i<10;i++)
printf("parent %d\n",i);
}
}
5.退出后,用同样方法查看此文件的代码内容。
2)修改上述程序,每一个进程循环显示一句话。子进程显示'daughter…'及'son……',父进程显示'parent……',观察结果,分析原因。
实验用到的软件(:)
虚拟机VMWare/Virtual Box
fedora15
实验内容及关键步骤(代码)Q3(15分)
1.按照上一次实验的步骤,进入后需要切换到管理员,输入“su root”,输入密码之后,可以输入“ls”查看目录下的文件。附加:为了熟悉上一节实验课内容,我先创建了一个myleb2的文件夹,然后再在这个文件夹里创建一个子文件夹love,再在里面编译。
6.查看无问题后,输入“gcc –o test2 test2.c”,修改运行文件名,然后查看该文件夹下的所有文件,能看到“test2”运行文件。
7.运行“test2”文件,输入“./test2”,可查看运行结果为“daughter 0,daughter 1,daughter 2,daughter 3….. daughter 9”。
3.首先是读入文件内容,再次是看文件有没有指定程序运行,如果有则运行,如果没有则输出出错的信息。
实验中的问题及解决办法:
进程的控制_实验报告

### 实验目的1. 理解操作系统进程控制的基本概念和原理。
2. 掌握进程的创建、同步、通信和终止等操作。
3. 熟悉Linux系统中的进程控制命令和系统调用。
4. 理解进程调度算法的基本原理和实现方法。
### 实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 编译器:gcc4. 开发工具:vim### 实验内容本实验主要涉及以下内容:1. 进程的创建与终止2. 进程同步与通信3. 进程调度算法#### 1. 进程的创建与终止实验一:利用fork()创建进程```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>int main() {pid_t pid;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {printf("Child process, PID: %d\n", getpid()); printf("Child process is running...\n");sleep(2);printf("Child process is exiting...\n");return 0;} else {printf("Parent process, PID: %d\n", getpid()); printf("Parent process is running...\n");sleep(3);printf("Parent process is exiting...\n");wait(NULL);}return 0;}```实验二:利用exec()创建进程```c#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>int main() {pid_t pid;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {execlp("ls", "ls", "-l", (char )NULL); printf("execlp() error\n");return 1;} else {wait(NULL);}return 0;}```实验三:进程终止```c#include <stdio.h>#include <sys/types.h>#include <sys/wait.h>int main() {pid_t pid;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {printf("Child process, PID: %d\n", getpid()); sleep(2);printf("Child process is exiting...\n");exit(0);} else {wait(NULL);}return 0;}```#### 2. 进程同步与通信实验四:使用信号实现进程同步```c#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>#include <signal.h>int main() {pid_t pid;int status;int signalNo = 1;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {printf("Child process, PID: %d\n", getpid()); while (1) {pause();printf("Child process is running...\n"); }} else {printf("Parent process, PID: %d\n", getpid()); sleep(1);kill(pid, signalNo);wait(NULL);}return 0;}```实验五:使用管道实现进程通信```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>int main() {int pipefd[2];pid_t pid;char buffer[100];if (pipe(pipefd) == -1) {printf("pipe() error\n"); return 1;}pid = fork();if (pid < 0) {printf("fork() error\n"); return 1;} else if (pid == 0) {close(pipefd[0]);read(pipefd[1], buffer, sizeof(buffer));printf("Child process, PID: %d, Received: %s\n", getpid(), buffer);} else {close(pipefd[1]);write(pipefd[0], "Hello, Child!\n", 14);wait(NULL);}return 0;}```#### 3. 进程调度算法实验六:先来先服务(FCFS)调度算法```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/wait.h>#define NUM_PROCESSES 5#define TIME_QUANTUM 2typedef struct {int pid;int arrival_time;int burst_time;} Process;int main() {Process processes[NUM_PROCESSES] = {{1, 0, 5},{2, 1, 3},{3, 2, 4},{4, 3, 2},{5, 4, 1}};int i, j, time = 0, completed = 0;int wait_time[NUM_PROCESSES], turnaround_time[NUM_PROCESSES]; // Calculate waiting timefor (i = 0; i < NUM_PROCESSES; i++) {wait_time[i] = 0;}for (i = 0; i < NUM_PROCESSES; i++) {for (j = 0; j < i; j++) {wait_time[i] += processes[j].burst_time;}}// Calculate turnaround timefor (i = 0; i < NUM_PROCESSES; i++) {turnaround_time[i] = wait_time[i] + processes[i].burst_time;}// Calculate average waiting time and turnaround timeint total_wait_time = 0, total_turnaround_time = 0;for (i = 0; i < NUM_PROCESSES; i++) {total_wait_time += wait_time[i];total_turnaround_time += turnaround_time[i];}printf("Average waiting time: %.2f\n", (float)total_wait_time / NUM_PROCESSES);printf("Average turnaround time: %.2f\n",(float)total_turnaround_time / NUM_PROCESSES);return 0;}```实验七:时间片轮转调度算法```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/wait.h>#define NUM_PROCESSES 5#define TIME_QUANTUM 2typedef struct {int pid;int arrival_time;int burst_time;} Process;int main() {Process processes[NUM_PROCESSES] = {{1, 0, 5},{2, 1, 3},{3, 2, 4},{4, 3, 2},{5, 4, 1}};int i, j, time = 0, completed = 0;int wait_time[NUM_PROCESSES], turnaround_time[NUM_PROCESSES]; // Calculate waiting timefor (i = 0; i < NUM_PROCESSES; i++) {wait_time[i] = 0;}for (i = 0; i < NUM_PROCESSES; i++) {for (j = 0; j < i; j++) {wait_time[i] += processes[j].burst_time;}}// Calculate turnaround timefor (i = 0; i < NUM_PROCESSES; i++) {turnaround_time[i] = wait_time[i] + processes[i].burst_time;}// Calculate average waiting time and turnaround timeint total_wait_time = 0, total_turnaround_time = 0;for (i = 0; i < NUM_PROCESSES; i++) {total_wait_time += wait_time[i];total_turnaround_time += turnaround_time[i];}printf("Average waiting time: %.2f\n", (float)total_wait_time / NUM_PROCESSES);printf("Average turnaround time: %.2f\n",(float)total_turnaround_time / NUM_PROCESSES);return 0;}```### 实验总结通过本次实验,我对操作系统进程控制有了更深入的了解。
进程通信实验报告

进程通信实验报告进程通信实验报告概述进程通信是操作系统中非常重要的一个概念,它允许不同的进程之间进行数据的交换和共享。
在本次实验中,我们通过使用不同的进程通信机制,如管道、消息队列和共享内存,来实现进程之间的数据传输和通信。
本报告将详细介绍实验的背景、实验过程、结果分析以及对实验的总结。
实验背景进程通信是操作系统中的一个核心概念,它允许多个进程之间进行数据的交换和共享。
在现代操作系统中,进程通信是实现并发和协作的重要手段。
了解不同的进程通信机制以及它们的优缺点对于深入理解操作系统的原理和实现至关重要。
实验过程在本次实验中,我们使用了三种不同的进程通信机制:管道、消息队列和共享内存。
首先,我们创建了两个进程,一个作为发送方,一个作为接收方。
然后,我们分别使用了管道、消息队列和共享内存来实现进程之间的数据传输和通信。
管道是一种最简单的进程通信机制,它可以在父进程和子进程之间进行单向的通信。
我们通过创建一个管道,并将其连接到父进程和子进程的标准输入和标准输出,实现了父子进程之间的数据传输。
消息队列是一种更为灵活的进程通信机制,它可以实现多个进程之间的双向通信。
我们使用了系统提供的消息队列函数,创建了一个消息队列,并在发送方将消息发送到队列中,接收方则从队列中接收消息。
通过消息队列,我们实现了进程之间的异步通信。
共享内存是一种高效的进程通信机制,它允许多个进程共享同一块内存空间。
我们使用了共享内存函数,创建了一个共享内存区域,并将其映射到两个进程的虚拟地址空间中。
通过共享内存,我们实现了进程之间的数据共享和同步。
结果分析通过实验,我们发现不同的进程通信机制各有优缺点。
管道是最简单的一种机制,但只能实现单向通信,且只能用于具有亲缘关系的进程。
消息队列可以实现多个进程之间的双向通信,但消息的顺序可能会被打乱。
共享内存是最高效的一种机制,但需要额外的同步机制来保证数据的一致性。
总结进程通信是操作系统中非常重要的一个概念,它允许不同的进程之间进行数据的交换和共享。
基于管道的进程通信 操作系统实验报告2

}
else
{
wait(0);
if((r=read(fd[0],s,50))==-1)
printf("can not read pipe\n");
else printf("%s\n",s);
}
}
\\创建管道
\\创建子进程p1
\\p1抢上CPU
\\p1将字符串写入管道
\\撤销进程
\\父进程抢上CPU
内蒙古师大计算机与信息工程学院
《操作系统》课程实验报告
实习题目
实验二
基于管道的进程通信
指导教师
职称
学生姓名
学号
日期
实现工具
C语言
实现环境
Linux
实习内容(功能、目标)
内容:
编写一段程序,使用系统调用pipe()创建一无名管道,同时父进程创建一个子进程p1;并使子进程通过管道向父进程传递数据“p1 process is sending data to father.”,父进程通过管道接收到该字符串后输出。
char buf[50],s[50];
pipe(fd);
while((p1=fork())==-1);
if(p1==0)
{
sprintf(buf,"p1is sending data to father.");
printf("childp1!\n");
write(fd[1],buf,50);
sleep(5);
\\父进程从管道中读取字符串失败
\\读取成功输出字符串
结果分析(含实现中出错原因分析)
思考问题:
(1)为什么要在父进程与子进程之间通过管道同步传递数据?不同步而任意写入或读取数据结果如何?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古师大计算机与信息工程学院《操作系统》课程实验报告
实习题目实验二
基于管道的进程通信
指导教师职称学生姓名
学号
日期
结果分析︵含实现中出错原因分析︶思考问题:
(1)为什么要在父进程与子进程之间通过管道同步传递数据?不同步而任意写入或读取数据结果如何?
答:因为子进程将字符串写入管道向父进程发出信号,然后父进程从管道中读取字符串。
不同步有可能不能读到字符串。
(2)若两个子进程通过管道分别向父进进程传递数据,则如何实现,同时注意查看执行结果,父进程读取各子进程传来的数据顺序如何?(注意各子进程间利用lockf()加锁互斥向管道写入数据)
答:两个子进程互斥的将信息写入管道。
,子进程与父进程仍是同步
指
导
教
师
评
语
︑
评
分
评分:
指导教师:
年月日。