聚合物(高分子材料)的力学性能
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50-70°C 70°C
Results
脆性断裂 屈服后断裂
韧性断裂 无屈服
30
M1
25
P173
20
Yield stress(MPa)
15
10
5 20
40
60Baidu Nhomakorabea
80
Temperature(oC)
100
120
屈服应力与测试温度的关系曲线
(b)应变速率
(1)
(3)
应变速率
(2)
(4) 1>2>3>4
应力
弹性变形后继续施加载荷,则产生塑性形变,称为继 续屈服,包括: •应变软化:屈服后,应变增加,应力反而有稍许下跌
的现象,原因至今尚不清楚。 •呈现塑性不稳定性,最常见的为细颈。 •塑性形变产生热量,试样温度升高,变软。 •发生“取向硬化”,应力急剧上升。 •试样断裂。
11.2.1 细颈
本质:剪切力作用下发生塑性流动 A0
第十一章 聚合物的力学性能
主要学习内容
高分子材料的 拉伸应力-应变特性
应力-应变曲线及其类型 影响拉伸行为的外部因素 强迫高弹形变与“冷拉伸”
高分子材料的 断裂和强度
宏观断裂方式,脆性断裂和韧性断裂 断裂过程,断裂的分子理论 高分子材料的强度
高分子材料的增强改性
高分子材料的 抗冲击强度和增韧改性
抗冲击强度实验 影响抗冲击强度的因素 高分子材料的增韧改性
E A A
B point:
Breaking point 断裂点
A 弹性极限应变 A弹性极限应力 B 断裂伸长率 B断裂强度 Y 屈服应力
从分子运动机理解释形变过程
你能解 释吗?
弹性形变 断裂
屈服
应变硬化
应变软化 冷拉
12
10
1psi
8
= 6890Pa
6
, 1000 psi
Strain
(6)断裂韧性
以应力应变曲线测定的韧性
d 量纲=Pam/m=N/m2 m/m= J/m3
影响应力-应变曲线的因素
T
(a) 不同温度
T
Temperature
a: T<<Tg b: T<Tg
c: T<Tg (几十度) d: T接近Tg
Example-PVC
0°C 0-50°C
应变软化更明显, 冷拉时晶片倾斜、 滑移、转动,形成 微晶或微纤束。
(e) The Size of Spherulites 球晶大 小
(f) The Degree of Crystallization 结晶 度
§11.1.2 晶态聚合物的应力一应变曲线
整个曲线可分为三个阶段: 到y点后,试样截面开始变得不均匀,出现 “细颈”。
屈 取向。 服 •高聚物在屈服点的应变相当大,剪切屈服应变为10%- 主 20%(与金属相比)。
•屈服点以后,大多数高聚物呈现应变软化,有些还非常
要 迅速。 特 •屈服应力对应变速率和温度都敏感。 征 •屈服发生时,拉伸样条表面产生“银纹”或“剪切带”,
继
而整个样条局部出现“细颈”。
Strain softening 应变软化
11.1应力-应变曲线 测试拉伸性质的样品
(a)
(b)
§ 11.1.1 非晶态高聚物的应力-应变曲线
σ B
Y
σB σy
0
εB
ε
非晶态高聚物的应力-应变曲线
应力-应变曲线
A point: Point of elastic limit 弹性极限点
Y point: Yielding point 屈服点
区别:(1)产生冷拉的温度范围不同,非晶态聚合物的冷
拉温度区间是Tb到Tg,而结晶聚合物则为Tg至Tm。 (2)非晶态聚合物在冷拉过程中聚集态结构的变化比晶态聚 合物简单得多,它只发生分子链的取向,并不发生相变,而 后者尚包含有结晶的破坏,取向和再结晶等过程。
§ 11.1.3 应力一应变曲线类型
聚合物应力-应变类型
晶态聚合物“冷拉”的原因: •晶态:Tm以下,发生结晶的破坏, 取向,再结晶过程,与温度、应 变速率、结晶度、结晶形态有关。 •非晶态:Tg以下冷拉,只发生分 子链的取向
结晶聚合物应力-应变曲线
非晶态聚合物与结晶聚合物的拉伸比较
相似之处:两种拉伸过程均经历弹性变形、屈服、发展大形
变以及应变硬化等阶段,其中大形变在室温时都不能自发回 复,而加热后则产生回复,故本质上两种拉伸过程造成的大 形变都是高弹形变。该现象通常称为“冷拉”。
当法向应力大于拉伸强度,材料发生 断裂 当切向应力大于剪切强度,材料发生 屈服
几何因素决定细颈产生的位置: 试样尺寸在各处的微小差异,导致应力
的差异,在某一点将首先达到屈服点,使形 变更为容易。
工程应力和真应力 Engineering stress and true stress
Engineering stress
应变
Example: PMMA
(c) 不同的化学结构
a: 脆性材料 b: 半脆性材料 c: 韧性材料 d: 橡胶
酚醛或环氧树脂 PS, PMMA PP, PE, PC Nature rubber, PIB
(d) Crystallization 结晶
与非晶态聚 合物的拉伸 机理相同吗?
结晶聚合物应力-应变曲线
e
F A0
True stress
true
F A
Force Initial cross-section area Force Cross-section area
F
F
F
F
Fn
F
A
F
α
Fs
正应力
0
F A0
斜截面面积 A A0 sin
法向力 Fn=F·sinα
切向力 Fs=F·cosα
法应力: n
Fn A
0
sin 2
切应力: S
FS A
0
sin cos
1 2
0
sin
2
∴当α=90°时,法向应力最大; α=45°或135°,切向应力最大
“软”和“硬”用于区分 模量的低或高,“弱”和 “强”是指强度的大小, “脆”是指无屈服现象而 且断裂伸长很小,“韧” 是指其断裂伸长和断裂应 力都较高的情况,有时可 将断裂功作为“韧性”的 标志。
11.2 聚合物的屈服
•高聚物屈服点前形变是完全可以回复的,屈服点后高聚
物将在恒应力下“塑性流动”,即链段沿外力方向开始
4
2
0
注意细颈
0
1
2
3
4
5
现象
, inch
非晶态聚合物典型应力-应变曲线
Stress
Elongation at yield
Elongation at break
重要参数: (1)杨氏模量 (2)屈服强度
Yield stress
Ultimate (3)屈服应变
Strength
(4)断裂强度 (5)断裂伸长率
Results
脆性断裂 屈服后断裂
韧性断裂 无屈服
30
M1
25
P173
20
Yield stress(MPa)
15
10
5 20
40
60Baidu Nhomakorabea
80
Temperature(oC)
100
120
屈服应力与测试温度的关系曲线
(b)应变速率
(1)
(3)
应变速率
(2)
(4) 1>2>3>4
应力
弹性变形后继续施加载荷,则产生塑性形变,称为继 续屈服,包括: •应变软化:屈服后,应变增加,应力反而有稍许下跌
的现象,原因至今尚不清楚。 •呈现塑性不稳定性,最常见的为细颈。 •塑性形变产生热量,试样温度升高,变软。 •发生“取向硬化”,应力急剧上升。 •试样断裂。
11.2.1 细颈
本质:剪切力作用下发生塑性流动 A0
第十一章 聚合物的力学性能
主要学习内容
高分子材料的 拉伸应力-应变特性
应力-应变曲线及其类型 影响拉伸行为的外部因素 强迫高弹形变与“冷拉伸”
高分子材料的 断裂和强度
宏观断裂方式,脆性断裂和韧性断裂 断裂过程,断裂的分子理论 高分子材料的强度
高分子材料的增强改性
高分子材料的 抗冲击强度和增韧改性
抗冲击强度实验 影响抗冲击强度的因素 高分子材料的增韧改性
E A A
B point:
Breaking point 断裂点
A 弹性极限应变 A弹性极限应力 B 断裂伸长率 B断裂强度 Y 屈服应力
从分子运动机理解释形变过程
你能解 释吗?
弹性形变 断裂
屈服
应变硬化
应变软化 冷拉
12
10
1psi
8
= 6890Pa
6
, 1000 psi
Strain
(6)断裂韧性
以应力应变曲线测定的韧性
d 量纲=Pam/m=N/m2 m/m= J/m3
影响应力-应变曲线的因素
T
(a) 不同温度
T
Temperature
a: T<<Tg b: T<Tg
c: T<Tg (几十度) d: T接近Tg
Example-PVC
0°C 0-50°C
应变软化更明显, 冷拉时晶片倾斜、 滑移、转动,形成 微晶或微纤束。
(e) The Size of Spherulites 球晶大 小
(f) The Degree of Crystallization 结晶 度
§11.1.2 晶态聚合物的应力一应变曲线
整个曲线可分为三个阶段: 到y点后,试样截面开始变得不均匀,出现 “细颈”。
屈 取向。 服 •高聚物在屈服点的应变相当大,剪切屈服应变为10%- 主 20%(与金属相比)。
•屈服点以后,大多数高聚物呈现应变软化,有些还非常
要 迅速。 特 •屈服应力对应变速率和温度都敏感。 征 •屈服发生时,拉伸样条表面产生“银纹”或“剪切带”,
继
而整个样条局部出现“细颈”。
Strain softening 应变软化
11.1应力-应变曲线 测试拉伸性质的样品
(a)
(b)
§ 11.1.1 非晶态高聚物的应力-应变曲线
σ B
Y
σB σy
0
εB
ε
非晶态高聚物的应力-应变曲线
应力-应变曲线
A point: Point of elastic limit 弹性极限点
Y point: Yielding point 屈服点
区别:(1)产生冷拉的温度范围不同,非晶态聚合物的冷
拉温度区间是Tb到Tg,而结晶聚合物则为Tg至Tm。 (2)非晶态聚合物在冷拉过程中聚集态结构的变化比晶态聚 合物简单得多,它只发生分子链的取向,并不发生相变,而 后者尚包含有结晶的破坏,取向和再结晶等过程。
§ 11.1.3 应力一应变曲线类型
聚合物应力-应变类型
晶态聚合物“冷拉”的原因: •晶态:Tm以下,发生结晶的破坏, 取向,再结晶过程,与温度、应 变速率、结晶度、结晶形态有关。 •非晶态:Tg以下冷拉,只发生分 子链的取向
结晶聚合物应力-应变曲线
非晶态聚合物与结晶聚合物的拉伸比较
相似之处:两种拉伸过程均经历弹性变形、屈服、发展大形
变以及应变硬化等阶段,其中大形变在室温时都不能自发回 复,而加热后则产生回复,故本质上两种拉伸过程造成的大 形变都是高弹形变。该现象通常称为“冷拉”。
当法向应力大于拉伸强度,材料发生 断裂 当切向应力大于剪切强度,材料发生 屈服
几何因素决定细颈产生的位置: 试样尺寸在各处的微小差异,导致应力
的差异,在某一点将首先达到屈服点,使形 变更为容易。
工程应力和真应力 Engineering stress and true stress
Engineering stress
应变
Example: PMMA
(c) 不同的化学结构
a: 脆性材料 b: 半脆性材料 c: 韧性材料 d: 橡胶
酚醛或环氧树脂 PS, PMMA PP, PE, PC Nature rubber, PIB
(d) Crystallization 结晶
与非晶态聚 合物的拉伸 机理相同吗?
结晶聚合物应力-应变曲线
e
F A0
True stress
true
F A
Force Initial cross-section area Force Cross-section area
F
F
F
F
Fn
F
A
F
α
Fs
正应力
0
F A0
斜截面面积 A A0 sin
法向力 Fn=F·sinα
切向力 Fs=F·cosα
法应力: n
Fn A
0
sin 2
切应力: S
FS A
0
sin cos
1 2
0
sin
2
∴当α=90°时,法向应力最大; α=45°或135°,切向应力最大
“软”和“硬”用于区分 模量的低或高,“弱”和 “强”是指强度的大小, “脆”是指无屈服现象而 且断裂伸长很小,“韧” 是指其断裂伸长和断裂应 力都较高的情况,有时可 将断裂功作为“韧性”的 标志。
11.2 聚合物的屈服
•高聚物屈服点前形变是完全可以回复的,屈服点后高聚
物将在恒应力下“塑性流动”,即链段沿外力方向开始
4
2
0
注意细颈
0
1
2
3
4
5
现象
, inch
非晶态聚合物典型应力-应变曲线
Stress
Elongation at yield
Elongation at break
重要参数: (1)杨氏模量 (2)屈服强度
Yield stress
Ultimate (3)屈服应变
Strength
(4)断裂强度 (5)断裂伸长率