发电机中性点接地变压器作用

合集下载

发电机中性点接地作用

发电机中性点接地作用

发电机中性点接地作用
发电机中性点接地作用
1、中性点不接地
当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。

发电机中性点不接地方式,一般适用于小容量的发电机。

2、中性点经单相电压互感器接地
实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。

这种接地方式能实现无死区的定子接地保护。

3、中性点经单相变压器高阻接地
发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经。

电厂300MW发电机中性点的接地方式选型与计算

电厂300MW发电机中性点的接地方式选型与计算

电厂300MW发电机中性点的接地方式选型与计算发表时间:2013-09-09T10:03:56.983Z 来源:《科学教育前沿》2013年第6期供稿作者:顾进良[导读] 但是合理选择这个电阻的大小与机组安全运行密切相关。

顾进良(河北大唐国际张家口热电有限责任公司设备工程部河北张家口 075000)【摘要】发电机中性点接地方式与定子接地保护的构成密切相关,正确选择发电机中性点的接地方式和接地设备,对发电机甚至电网的安全运行有着举足轻重的作用。

【关键词】汽轮发电机;中性点设备;单相接地故障;接地变压器;电阻中图分类号:G62 文献标识码:A文章编号:ISSN1004-1621(2013)06-013-01电厂300MW汽轮发电机中性点接地方式的选择与发电机100%范围定子接地保护装置相关联,中性点设备参数的选择与保护要相配合,在保证发电机定子绕组电气绝缘安全的前提下使得发生单相接地短路时健全相电压不超过2.6倍额定电压,避免烧伤定子铁芯,并且可使流过故障点的是一固定的电阻性电流,保证接地保护可靠动作。

一、发电机定子单相接地电流电压值发电机内部单相接地时,流经接地点的电流为发电机所在电压网络(一般为发电机本身、封闭母线、主变等元件网络)对地的电容电流之和,而不同之处在于故障点零序电压随发电机内部接地点的位置而改变。

假设发电机A相发生单相接地,位置在距离绕组中心处,表示故障点绕组占全部绕组的百分数(0~100%),如图1所示,则--故障点零序电压;--故障点零序电流;--发电机电动势;--发电机每相对地电容;--发电机以外设备每相对地电容。

上述式中为发电机相电动势,一般在计算时常用发电机额定相电压代替。

综上可见,故障点的零序电压和零序电流值均与成正比,在发电机出线端子附近 ≈1,此时零序电压和零序电流值最大,分别为和。

二、发电机定子单相接地电流允许值大中型发电机中性点多为不接地或者经高阻抗接地方式,定子单相接地故障时并不产生太大的故障电流,所以定子绕组单相接地保护可以只发信号而不直接跳闸,故障机组经负荷转移后才平稳停机。

发电机中心点接地变压器的作用

发电机中心点接地变压器的作用

为什么要装设发电机中性点接地变压器1.高电阻接地,可以限制接地电流,还可以适当减少接地过电压,但是没有必要弄一个很大的高电阻直接接到发电机中性点与大地之间.而是弄一个小电阻,再弄一台接地变压器,接地变压器的原边接中性点与地之间,副边接上一个小电阻即可,根据公式,一次侧呈现的阻抗等于二次侧电阻乘以变压器变比的平方,所以有接地变压器,可以用一个小电阻来发挥一个高电阻的作用.2.发电机接地的时候,中性点对地有电压,这个电压等于就加在了接地变压器的原边,那么副边自然能感应出一个电压,这个电压可以做为发电机接地保护的判据,即可以用接地变压器抽取零序电压.我本来的意思时,高阻接地方式,比中性点不接地的过电压要小,但相比中性点直接接地的话,短路电流小了,所以是一个折中的方法.这里短路电流小是相对与直接接地方式来说的.楼上师傅批评的是,如果相对与自然电容电流来讲,中性点经高电阻构成了回路,电阻再高也有了回路,所以肯定比中性点不接地时接地电流要大了,但是为了限制过电压,也只能这样.总之,过电压和过电流总是相互矛盾的.但也许限制过电压和限制过电流都是相对与中性点不接地的时候来说的,也就是相对与自然电容电流,小弟受教了,谢谢师傅!~经sutsosth师傅的批评,反省一下自己不大严谨的毛病, 阅读了相关专著,作个总结:对于各种接地方式的接地短路电流和弧光接地过电压的大小,一目了然,和大家分享.,.自己也学习了,..常用中性点接地方式: 不接地直接接地经高电阻接地经消弧线圈接地接地时短路电流: 较小最大较大最小(同脱谐度有关)接地弧光过电压: 最大最小较小较大(但过电压概率不高)关于PT开口三角电压对于中性点接地的110kv和220kv的大电流接地系统,发生单相金属性接地时开口三角的电压是100v,虽然电压都仍为相电压但开口三角的pt变比是110kv/1.732(根3,根号不好打)/100/3;所以发生单相接地是100v;对于10kv和6kv中性点不接地系统他的开口三角pt变比是10kv/1.732/100/1.732,所以发生单相接地时的电压也是100v。

发电机中性点接地方式及作用

发电机中性点接地方式及作用

发电机中性点接地方式及作用随着现代电力系统的发展,发电机的中性点接地方式也越来越多样化。

发电机的中性点接地方式根据电力系统的要求和实际情况选择,以确保系统的安全运行和设备的可靠工作。

本文将介绍几种常见的发电机中性点接地方式及其作用。

1.无中性点接地方式无中性点接地方式是指发电机中性点不接地,即不与任何接地点相连。

这种方式适用于一些特殊的发电机系统,如高压直流输电系统或其他要求无中性点接地的电力系统。

该方式的作用是防止中性点电流的产生,以及减小对系统产生的潮流冲击。

2.直接接地方式直接接地方式是指发电机中性点直接接地。

这种方式适用于小型和中型的发电机系统,一般用于低电压和小容量的发电机组。

直接接地方式的作用是将发电机的中性点电位固定在地电位,避免中性点电位漂移造成的不稳定。

3.高阻抗接地方式高阻抗接地方式是指通过中性点接线电抗或电容将发电机中性点与地相连。

这种方式适用于中型和大型的发电机系统,一般用于额定电压为10kV以上的发电机组。

高阻抗接地方式的作用是限制中性点电流的大小,减小对系统的影响,并增强系统的抗干扰能力。

4.低阻抗接地方式低阻抗接地方式是指通过中性点接线电阻将发电机中性点与地相连。

这种方式适用于大型的发电机系统,一般用于输电系统或大容量的发电机组。

低阻抗接地方式的作用是提供系统的绝对保护,能够及时检测和隔离发电机的接地故障,并快速恢复电力系统的运行。

除了上述几种常见的发电机中性点接地方式,还有一些其他的方式,如星形接地方式、虚地方式等。

每种方式都有其特点和适用范围,选择时需根据具体情况综合考虑。

发电机的中性点接地方式在电力系统中具有重要的作用,它能够保护电力设备和人身安全,减小电力系统的故障和事故发生的概率,提高电力系统的可靠性和稳定性。

总之,发电机的中性点接地方式是电力系统中重要的技术措施,它能够保证系统的安全运行和设备的可靠工作。

各种接地方式具有不同的作用和适用范围,选择时应根据实际情况进行合理选择,并加强对接地方式的监测和维护,以确保电力系统的正常运行。

主变压器中性点接地及保护的应用

主变压器中性点接地及保护的应用

主变压器中性点接地及保护的应用目录大型变压器是电力生产的核心设备,由于其成本较高,故在110kV及以上的中性点直接接地的电网中,普遍采用分级绝缘的变压器。

在中性点直接接地的电网中,接地短路故障是较常见的故障(约占故障总数的85%以上)。

虽然在实际运行中,部分变压器的中性点是直接接地的,它能够反映变压器高压绕组、引出线上的接地短路故障,并可作为大型电力变压器的主保护和相邻母线、线路接地保护的后备保护。

但还有部分变压器的中性点不接地运行,当系统发生接地故障,中性点接地的变压器跳开后,电网零序电压升高或谐振过电压等都会危及这些不接地的变压器中性点绝缘。

因此,处于该系统中运行的大型变压器必须装设中性点保护。

一、变压器中性点过电压的三种保护方式变压器中性点过电压保护可采用间隙、避雷器及避雷器联合放电间隙三种方式。

变压器中性点的过电压可分为三种形式:大气过电压、单相接地故障引起的过电压及断路器非全相分合闸引起的过电压。

(一)间隙间隙的优点是结构简单可靠、运行维护量小,在雷电、操作和工频过电压下都可对变压器进行保护;缺点是间隙参数确定较为困难、放电分散性大、保护性能一般、工频续流较大、灭弧能力差、在系统有不对称接地短路故障时有较大和较长时间的工频零序电流冲击主变压器,另外,间隙放电产生的谐波对主变压器的绕组绝缘也有一定的影响。

(二)避雷器避雷器具有优异的非线性伏安特性,残压随冲击电流波头时间变化的特性平稳,陡波响应特性好,无间隙的击穿和灭弧问题,通流容量大,无续流,动作迅速,对主变压器冲击小;其缺点是不能防护工频过电压,在较高的工频过电压下往往自身难保,需定期进行预防性试验,维护工作量较大。

(三)避雷器联合放电间隙避雷器并联间隙的保护分工是工频、操作过电压由间隙承担,雷电、暂态过电压由避雷器承担,同时,又用间隙来限制避雷器上可能出现的过高幅值的工频过电压和过高的残压。

这种方式既对变压器中性点进行保护,又起到互为保护的作用。

110KV及以上变压器停送电操作时,为什么要推上变压器中性点接地刀闸分析

110KV及以上变压器停送电操作时,为什么要推上变压器中性点接地刀闸分析

110KV及以上变压器停送电操作时,为什么要推上变压器中性点接地刀闸分析摘要:我国110 kV及以上电压等级的电力变压器一般采取中性点直接接地的运行方式,此时变压器中性点附近的绕组对地电压比较低,不易发生绝缘故障,达到了节约制造成本的目的。

这样,一旦中性点产生过电压,就直接威胁变压器中性点的绝缘。

为防止此类事件的发生,在变压器停、送电操作时,都要推上变压器中性点接地刀闸,防止操作时断路器三相不同期分、合闸产生过电压而损坏变压器。

关键词:变压器;中性点;过电压;接地刀闸1. 变压器中性点绝缘水平:我国变压器中性点绝缘分为两种:一种为全绝缘,另一种为半绝缘。

1. 1 全绝缘:变压器首端与尾端绝缘水平一样的称为全绝缘,多用在110 kV 以下电压等级的电力变压器。

1. 2 半绝缘:半绝缘变压器中性点的绝缘水平比绕组首端要低,通常只有首端的一半,这些变压器一般采取中性点有效接地的运行方式,此时变压器中性点附近的绕组对地电压比较低,不易发生绝缘故障,因此变压器中性点的绝缘水平大都设计得比端部绝缘低,多用在110 kV及以上电压等级的变压器,例如,220kV 变压器中性点绝缘水平为110kV;110kV变压器中性点绝缘水平为60kV或38kV。

2.变压器工作原理:变压器的基本工作原理是电磁感应原理。

当交流电压加到一次侧绕组后交流电流流入该绕组就产生励磁作用,在铁芯中产生交变的磁通,这个交变磁通不仅穿过一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中引起感应电动势,这时如果二次侧与外电路的负载接通,便有交流电流流出,于是输出电能。

三绕组变压器与双绕组变压器在原理上没有根本区别。

三相变压器的每个铁心柱上,都套着三个同心式绕组,分别为高、中、低压绕组。

高压绕组总是排列在最外层,低压绕组和中压绕组则可以有不同的排列位置,低压绕组在中间,宜作升压变压器使用;中压绕组绕组在中间,宜作降压变压器使用。

它的工作原理和双绕组变压器是一样的。

变压器的各类中性点接地知识.

变压器的各类中性点接地知识.

变压器的各类中性点接地知识变压器的各类中性点接地知识?1、变压器停送电操作时,其中性点为什么一定要接地?答:这主要是为防止过电压损坏被投退变压器而采取的一种措施。

对一侧有电源的受电变压器,当其断路器非全相断、合时,若其中性点不接地有以下危险:(1)变压器电源侧中性对地电压最大可达相电压,这可能损坏变压器绝缘。

(2)当变压器高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”。

(3)当变压器高低压绕组之间电容耦合,低压侧会有电压达到谐振条件时,可能会出现谐振过电压,损坏绝缘。

对于低压侧有电源的送电变压器:(1)由于低压侧有电源,在并入系统前,变压器高压侧发生单相接地,若中性点未接地,则其中性点对地电压将是相电压,这可能损坏变压器绝缘。

(2)非全相并入系统时,在一相与系统相连时,由于发电机和系统的频率不同,变压器中性点又未接地,该变压器中性点对地电压最高将是二倍相电压,未合相的电压最高可达2.73倍相电压,将造成绝缘损坏事故。

:2、变压器中性点间隙接地保护是怎样构成的?变压器中性点间隙接地保护采用零序电流继电器与零序电压继电器并联方式,带有0.5S的限时构成。

当系统发生接地故障时,在放电间隙放电时有零序电流,则使设在放电间隙接地一端的专用电流互感器的零序电流继电器动作;若放电间隙不放电,则利用零序电压继电器动作。

当发生间隙性弧光接地时,间隙保护共用的时间元件不得中途返回,以保证间隙接地保护的可靠动作。

3、对空载变压器送电时,变压器中性点必须接地。

答案电力系统的暂态稳定是指电力系统在某种运行方式下突然受到大的扰动后,经过一个机电暂态过程达到新的稳定运行状态或回到原来的稳定状态。

答:对空载变压器送电时,若中性点不接地会有以下危险:⑴变压器电源侧中性点对地电压最大可达相电压,这可能损坏变压器绝缘;⑵变压器的高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”;⑶当变压器高、低压绕组之间电容耦合,可能会出现谐振过电压,损坏绝缘。

发电机中性点接地方式选择

发电机中性点接地方式选择

发电机中性点接地方式选择发电机是电力系统中最重要的设备之一,发电机定子绕组单相接地,是发电机最常见的一种电气故障。

发电机定子接地是指发电机定子绕组回路及与定子绕组回路直接相连的一次系统发生的单相接地短路。

发电机定子接地后,接地电流经故障点、三相对地电容、三相定子绕组而构成通路。

当接地电流较大时,能在故障点引起电弧,造成定子绕组和定子铁芯烧伤,甚至扩大为相间或匝间短路。

因此,为了确保发电机的安全,发电机发生定子接地时,接地电流必须限制在一定范围内,使故障点不产生电弧或者电弧瞬间熄灭,避免单相接地故障发展成为相间或匝间短路,烧坏定子铁芯和绕组绝缘。

1 发电机单相接地危害及采用不同中性点接地的目的由于发电机及发电机端所连接设备和装置存在大小不等的对地电容,当发电机组发生单相接地等不对称故障时,接地点流过的故障电流即上述对地电容电流。

该电流一般为数安或数十安。

发生故障时,故障处产生弧光过电压,将损伤发电机定子绝缘,造成匝间或相间短路,扩大事故范围,严重的将烧伤定子铁芯。

一旦烧伤铁芯,由于大型发电机定子铁芯结构复杂,修复困难,所以停机时间更长。

如果说定子绕组绝缘损坏和单相接地故障是难免,由此而殃及定子铁芯则应该尽量避免,为此应设法减小定子绕组单相接地电流,同时缩短故障的持续时间。

当发电机外部元件发生单相接地故障等不对称性故障时,同发电机内部故障一样,将对发电机和其他设备造成伤害。

而中性点的接地方式,直接影响到单相接地弧光的产生和限制力度。

发电机中性点采取不同的接地方式,主要目的是防止发电机和其他设备不受损害,具体有以下几方面:①.限制故障时定子一点接地电流,防止产生电弧烧伤铁芯;②.限制故障时的稳态和暂态过电压,防止设备绝缘遭到破坏;③.提供接地保护,准确灵敏的发出信号或有选择性的断开故障发电机。

2 发电机中性点接地方式发电机中性点接地方式与定子单相接地故障电流的大小、定子绕组的过电压、定子接地保护的实现等因素有关。

变压器中心点接地优缺点

变压器中心点接地优缺点

变压器中性点接地与不接地系统1.1 变压器中性点接地系统的优缺点:(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。

(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;1.2 变压器中性点不接地系统的优、缺点:(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。

(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。

2 各种电压等级供电线路的接地方式(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。

(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc 大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。

在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。

(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。

3 电气设备的保护接地3.1 保护接地将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。

发电机中性点接地方式的优缺点分析

发电机中性点接地方式的优缺点分析

1发电机中性点接地方式的优缺点分析发电机中性点接地的五种方式随着电力系统发电机装机容量和单机容量由小到大的不断快速增大,发电机中性点的接地方式经历了以下五种方式的变化和发展:①中性点经高电阻(发电机中性点接地电阻柜)接地;②中性点经消弧线圈(谐振)接地。

③中性点不接地;④中性点直接接地;⑤中性点经低阻抗接地;发电机中性点接地方式优缺点对于300MVA及以上的大容量发电机组,目前世界各国普遍采用的是第①种或第②种接地方式。

采用第①接地方式,中性点经高电阻接地的主要目的,是限制接地电弧重燃、中性点出现的积累性电压升高,从而降低电弧接地过电压。

发电机中性点经高电阻接地方式有许多方案,其中以单相配电变压器电阻的方案为最优。

配电变压器二次侧所接的电阻为一消能元件,可增大零序回路阻尼,抑制暂态过电压,但因此也增大了接地电流,这就要求当发电机定子绕组发生单相接地故障时能迅速切除机组。

由于此种装置简单且易于配置,故得到广泛的应用,在西方欧美国家已经形成一种使用惯例,在国内许多大型汽轮发电机组和水轮发电机也都采用配电变压器的接地方式。

但是这种接地方式的缺点是无法减小接地电容电流,而是增大接地故障电流。

因此对于大电容电流发电机,接地故障电流数倍乃至十数倍地超过发电机的安全接地电流,暂态接地电流更大,即使短时间跳开故障的发电机铁芯迭片的熔化焊接现象也很难避免,这种接地方式就难于适用了。

对于第③种不接地方式,由于发电机的中性点不接地运行,当定子绕组发生单相接地时,流过故障点的电流仅为很小的电容电流,有效地限制了接地电流的破坏作用。

到目前为止我国、前苏联及一些其他国家的电容电流较小的发电机,中性点仍采用这一不接地方式。

但是,随着机组容量的增大和运行电压的升高,当电容电流接近或达到某一临界值时,接地电弧不能自行熄灭。

电弧接地过电压又会产生新的危害。

随着机组容量的增大,铁芯烧损后果严重,允许的接地故障电流日趋减少。

所以这一不接地方式的应用,受到接地电容电流的限制。

变压器中性点接地电阻柜工作原理

变压器中性点接地电阻柜工作原理

变压器中性点接地电阻柜工作原理变压器中性点接地电阻柜是电力系统中的重要设备之一,它的工作原理直接影响到电力系统的稳定性和可靠性。

本文将详细介绍变压器中性点接地电阻柜的工作原理。

一、变压器中性点接地电阻柜的基本结构变压器中性点接地电阻柜主要由变压器中性点接地电阻器、隔离开关、电流互感器、避雷器等组成。

其中,变压器中性点接地电阻器是核心部件,用于将中性点电压限制在规定范围内。

二、变压器中性点接地电阻柜的工作原理1、接地电阻器的作用变压器中性点接地电阻器的主要作用是将中性点电压限制在规定范围内。

当电力系统发生单相接地故障时,接地电阻器能够吸收多余的电流,降低中性点的电压,从而保证电力系统的稳定运行。

2、隔离开关的作用隔离开关是变压器中性点接地电阻柜中的重要设备之一,它主要用于隔离中性点电压。

当电力系统发生单相接地故障时,隔离开关能够迅速将中性点电压隔离,保证其他设备的正常运行。

3、电流互感器的作用电流互感器是用来测量中性点电流的设备。

它能够将通过接地电阻器的电流转换成二次电流,以便于监测和管理。

4、避雷器的作用避雷器是用来保护变压器中性点接地电阻柜中的其他设备免受雷电冲击的设备。

当雷电冲击到来时,避雷器能够迅速将雷电引入地下,从而保护其他设备的正常运行。

变压器中性点接地电阻柜的工作原理主要涉及接地电阻器、隔离开关、电流互感器和避雷器等设备的协同工作。

这些设备共同作用,保证了电力系统的稳定性和可靠性。

发电机中性点接地方式分析选择随着电力系统的不断发展,大容量、高电压的发电机被广泛应用在各种工业和商业环境中。

发电机的正常运行与其接地方式密切相关,特别是发电机的中性点接地方式,对于保障发电机的稳定运行以及整个电力系统的稳定性具有重要意义。

本文将就发电机中性点接地方式的选择进行分析。

一、发电机中性点接地方式的种类1、中性点不接地方式这种接地方式是最简单的,也是最常见的。

在这种接地方式下,发电机的中性点与大地之间没有直接的连接。

关于地铁主变电站主变压器中性点接地

关于地铁主变电站主变压器中性点接地

电力系统的中性点(实际是指系统中发电机、变压器中性点)接地或不接地是一个综合性的问题,中性点接地方式对于电力系统的运行,特别是对发生故障后的系统运行,有多方面的影响,所以在选择中性点接地方式时,必须考虑许多因素。

电力系统中性点的接地有中性点直接接地、经电阻接地和经消弧线圈接地三大类。

其中经电阻接地又分经高电阻接地、中电阻接地和低电阻接地三种。

中性点直接接地、经中电阻接地和经低电阻接地称为大接地电流系统;中性点不接地、经消弧线圈接地和经高电阻接地称为小接地电流系统。

在中性点直接接地电网中,当发生单相接地短路时,将出现大的短路电流,故中性点直接接地电网又称为大接地电流电网。

大接地电流电网不允许接地运行,发生接地时,保护动作跳闸。

1.中性点不接地系统:电力系统的每一相对地都有电容,分布在输电线路全线上和电气设备中。

中性点不接地系统中发生一相接地时,电力系统相间电压并没有改变,因而相间电容所引起的电容电流也不改变。

当中性点不接地系统发生一相接地时,故障相对地电压升高至√3倍,所以在中性点不接地电网中,各种设备的对地绝缘应按线电压设计,才能承受一相接地时,非故障相对地电压的升高影响,同时增加电网建设费用。

当中性点不接地系统发生一相接地时,接在相间电压上的用电设备的供电并未遭到破坏,可以继续运行,但是长期接地状态运行是不允许的,因为一相接地时非故障相电压升高,绝缘薄弱点很可能被击穿,而引起两相接地短路。

所以在中性点不接地电网中,需加设监察装置。

在中性点不接地系统中,当接地的电容电流较大时,在接地处引起电弧很难熄灭,在接地点还有可能出现间隙电弧,及周期性熄灭和重燃。

由于电网是电感和电容的振荡回路,间隙电弧很容易引起过电压,导致另一相对地击穿,从而引起两相接地短路。

过电压会对设备的绝缘造成极大的威胁,且对接地型电压互感器产生磁饱和,引起铁磁谐振,以致造成电压互感器烧毁。

2.中性点经消弧线圈接地系统:当一相接地电容电流超过系统允许值时,可以通过中性点经消弧线圈接地方法来解决。

接地变压器的作用

接地变压器的作用

接地变压器的作用接地变压器专为消弧线圈所设,一般消弧线圈装设在小电流接地系统的变压器三角形侧,用来补偿电网单相接地时的接地电容电流。

但变压器的三角形侧没有中性点,接地变就是为安装消弧线圈提供人为中性点的。

我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。

电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。

当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。

由于该运行方式简单、投资少,所以在我国电网初期阶段一直采用这种运行方式,并起到了很好的作用。

但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。

1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。

2),由于持续电弧造成空气的离解,拨坏了周围空气的绝缘,容易发生相间短路; ),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸; 3这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。

为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。

为了解决这样的办法。

接地变压器(简称接地变)就在这样的情况下产生了。

接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。

另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。

由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。

主变压器和发电机的中性点接地方式

主变压器和发电机的中性点接地方式
优缺点
系统过电压水平较低,但单相接地 故障电流大,需要装设自动选线装 置。
经消弧线圈接地系统
系统特点
中性点经消弧线圈接地,系统发 生单相接地故障时,消弧线圈产 生的感性电流补偿接地点的容性
电流。
适用范围
适用于35kV及以下电网,特别 是对接地故障电流有严格限制的
场所。
优缺点
减小了接地故障电流,降低了弧 光接地过电压的概率,但需要装
系统特点
优缺点
中性点不接地或经高阻抗接地,系统 发生单相接地故障时,故障电流很小。
系统结构简单,供电连续性好,但系 统过电压水平较高,需要装设绝缘监 测装置。
适用范围
适用于3~10kV电网,特别是供电连 续性要求较高、接地故障对设备影响 不大的场所。Leabharlann 03 发电机中性点接地方式
发电机中性点直接接地
考虑当地供电条件及环境因素
当地供电条件包括电网电压、频率、谐波等,这 些因素会影响中性点接地方式的选择。
环境因素如气候、海拔、地质等也会对中性点接 地方式产生影响,需进行综合考虑。
在选择接地方式时,应充分了解当地供电条件和 环境因素,并进行必要的现场测试和评估。
遵循相关标准规范,确保安全可靠
中性点接地方式的选择应遵循国家和行业相关标准规范,如《电力变压 器 第1部分:总则》、《旋转电机 定额和性能》等。
主变压器和发电机的中性点接地方 式
contents
目录
• 中性点接地基本概念与重要性 • 主变压器中性点接地方式 • 发电机中性点接地方式 • 中性点接地方式对系统运行影响 • 选择合适中性点接地方式原则与建议
01 中性点接地基本概念与重 要性
中性点定义及作用
中性点定义

发电机中性点为什么经接地变压器接地

发电机中性点为什么经接地变压器接地

发电机中性点为什么经接地变压器接地
发电机中心点接地变压器就是一台单相变压器,一次侧的额定电压是发电机相电压乘以1.05(考虑电压上升幅度),二次侧电压一般取100V。

如果在二次侧要接电阻(作为发电机中心点高电阻接地),应当根据电阻的额定电压来选择二次绕组电压。

但是此时变压器应当有第三个额定电压为100V的绕组,用于测量和保护。

接地变压器一次绕组的一头接发电机中心点,另一头接地。

根据设计或者二次绕组接电阻,或者二次绕组接保护和测量
接地变压器二次侧所接的负载电阻的阻值很小,但是换算至一次侧的阻值是很大的(几千欧)。

所以发电机中性点实际为高电阻接地,可以有效的限制电容电流。

中性点接地方式6

中性点接地方式6

应选择下列哪项数值?
(A)22kVA
(B)25kVA
(C)30kVA (D)28kVA
答案:[ C ] 2006年考题
解答过程:
根据电气工程电气设计手册(1)80页(3-1)公式
又根据《导体和电器选择设计技术规定》 DL/T5222-2005 第 18.1.4,式
18.1.4 消弧线圈的补偿容量,
b)装在电网的变压器中性点的消弧线圈,以及具有直配线的发电机 中性点的消弧线圈应采用过补偿方式。对于采用单元连接的发电机中 性点的消弧线圈,宜采用欠补偿方式。 C)系统中消弧线圈装设地点应符合下列要求:
应保证系统在任何运行方式下,大部分电网不得失去消弧线圈的 补偿。不应将多台消弧线圈集中安装在一处,并因避免电网仅装一台 消弧线圈。
18.1.4 消弧线圈的补偿容量,可按下式计算
Q
KIC
UN 3
= 1.35 × 22.2 ×35/1.732= 605.6KVA
其中 k 为补偿系数,过补偿取 1.35。k 的取值可根据DL/T5222-2005 第
18.1.6 条:装在电网变压器中性点的消弧线圈,以及具有直配线的发电机
中性点的消弧线圈应采用过补偿方式。 故选 D。
1 发电机及变压器中性点的接地方式
1.1 电力系统中性点接地方式
电力系统中性点的接地方式主要分两大类:中性点非直接接地和 中性点直接接地。
1.1.1 中性点非直接接地。
中性点非直接接地可分为三种形式: (1)中性点不接地。中性点不接地方式最简单,单相接地时允
许带故障运行两小时,供电连续性好,接地电流仅为线路及设备 的电容电流。但由于过电压水平高,要求有较高的绝缘水平,不 宜用于110kV及以上电网。在6-63kV电网中,则采用中性点不接地 方式,但电容电流不能超过允许值,否则接地电弧不易自熄,易 产生较高弧光间歇接地过电压,波及整个电网。

发电机中性点接地方式

发电机中性点接地方式

经高阻接地与经消弧线圈接地的不同点
经高阻接地: 有效降低重燃弧过电压,且配置简单
定子接地保护的灵敏度较经消弧线圈 接地低 定子接地故障电流可能很大
经消弧线圈接地:
可有效减少接地故障电流
定子接地保护有更高的灵敏度
调谐要求高,配置难度大,存在谐振过电 压的危险
中性点位移电压、传递过电压、重燃弧过 电压
3)定子单相接地保护原则:保护动作区覆盖整个定子绕组(100%保护), 且应有足够高的灵敏度。
选择接地方式的三条原则
1)接地故障电流原则:定子绕组单相Байду номын сангаас地故障电流不应超过安全电流,确保定 子铁芯安全。
2)过电压原则:定子绕组单相接地故障重燃弧暂态过电压数值要小,避免 故障发展为相间或匝间短路而威胁发电机的安全运行。
中性点接地装置的作用
作用一:通过补偿电容电流,限制接地故障电流过大,避免伤及定子铁芯
如果选择一种接地方式,使得In与Ic大小相近,且近似相反,故障电流If就可 以被大大消弱。
作用二:限制间隙性的定子单相接地故障电弧引起的积累性电压升高,从而限制 定子单相接地故障重燃弧暂态过电压
间隙性接地故障:指具有在短时间内反复地燃弧、熄弧、再燃弧过程的 接地故障。
THE END
发电机中性点的接地方式
重要性
随着发电机单机容量不断增大,对发电机安全运行的要求也越来越高。发 电机中性点接地方式的选择是涉及安全运行的一个重要方面。发电机中性 点接地方式与单相接地故障电流、定子绕组过电压、定子接地保护等问题 有着密切的关系 。
概况
美国、加拿大、法国等国家多采用经高阻接地方式。 我国早年学习苏联,大型水轮发电机中性点绝大多数是经消弧线圈 接地。 20世纪60年代末、70年代初丹江口水电站6台150MW水轮发电机采 用经消弧线圈接地方式; 20世纪80年代,葛洲坝19台125MW和2台170MW水轮发电机采用经 消弧线圈接地方式; 在此之后,我国逐渐向美国等西方国家学习,大型机组大多改为经 配电变压器高阻接地方式。比如,三峡,隔河岩,二滩,锦屏…..

发电机中性点接地方式及作用综合

发电机中性点接地方式及作用综合

发电机中性点接地方式及作用发电机中性点接地一般有以下几类:1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。

发电机中性点不接地方式,一般适用于小容量的发电机。

(中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。

这种接地方式能实现无死区的定子接地保护)2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。

3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。

这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。

大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。

注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。

发电机中性点经单相变压器高阻接地接地装置设计及选型1.发电机中性点接地电阻的计算原则1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线电压1.5U N=2.6U X)2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求;3)10kv 10MW发电机最大容性电流<4A C<2.1 uF2.电容及电容电流计算:1)发电机定子绕组三相对地电容C of=0.7242uF(发电机厂家提供);2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排)0.05×2.6=0.13A即三相对地电容C ol=0.06829uF3)发电机出口至升压主变低压绕组间单相对地等值电容为C02=0.2uF(经验值);4)主变低压侧三相对地电容20470PF即0.02047 uF5)阻容参数:单相电容0.1 uF,三相为0.3 uF发电机的三相对地总电容:C =0.7242+0.06829+0.6+0.02047+0.3=1.71296uF发电机系统电容电流为:I C =ω CU X ×103=2πf CU X ×103=314×1.71296×106-×10.5/3×103=3.26A2. 接地电阻值的选择:接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.发电机中性点接地方式一般有中性点不接地、中性点经消弧线圈接地,以及中性点经电阻接地等多种方式。

2.发电机定子绕组发生单相接地故障时,接地点流过的电流是发电机及其连接的厂用分支,封闭母线和主变低压绕组的对地电容电流。

当接地电容电流超过允许值时(300MW机组的接地允许电流为lA)。

将烧伤定子铁芯,进而可能损坏定子绕组绝缘,导致匝间或相间短路。

4 发电机中性点采用“经高电阻接地”方式,即经副边带电阻的配电变压器接地,也就是在中性点和地之间连接一配电变压器,在其二次侧连接一只电阻,使中性点线路的阻抗值增大,起到限制接地电流的作用.
3 这种接地方式可保持发电机单相接地时继续运行,使运行可靠性提高,但这种方式有三个限制。

1)为了保证系统在单相接地故障时,系统内的健全相过电压不超过额定相电压的2.6倍,因此,中性点接地电阻在单相接地时消耗的功率不能少于正常时三相总容量的充电无功。

相关文档
最新文档