(完整版)解一元二次方程配方法练习题

合集下载

(完整版)配方法解一元二次方程练习题及答案

(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。

1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。

32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。

1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。

解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

解一元二次方程练习题(公式法)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2-4a c≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.2.方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则有____ ____ ,•若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.5.用公式法解方程4y 2=12y+3,得到6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0解一元二次方程练习题(因式分解法)因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

解一元二次方程配方法练习题

解一元二次方程配方法练习题

解一元二次方程练习题(配方法)步骤:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空:①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2+ x+ =(x+ )2;④ x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________. 5.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( ) A .2B .-2C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41x 2-x-4=0(5)6x 2-7x+1=0 (6)4x 2-3x=5211.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。

(完整版)一元二次方程求解(配方法求解)

(完整版)一元二次方程求解(配方法求解)

一元二次方程求解(配方法求解)一.解答题(共30 小题)1 .解方程:X2- 6x- 4=0.2. 解方程:«+4x-仁0.3. 解方程:x2- 6x+5=0 (配方法)4. 解方程:x2- 2x=4.5. 用配方法解方程:2x2- 3x- 3=0.6. 解方程:x2+2x- 5=0.7. 用配方法解方程2x2- 4x- 3=0.8. 解方程:x2- 2x- 2=0.9. 用配方法解方程:x2- 2x- 4=0.10. 解方程:2x2- 4x+1=0.11. 2X2- 5x+2=0 (配方法)12.解方程:x2- 2x- 4=0.13.解方程:( 2x- 1 ) 2=x( 3x+2)- 7.14 .解一元二次方程:x2- 6x+3=0.15 .解方程:x2- 2x- 5=0.16. 有n 个方程:x2+2x- 8=0; x2+2X 2x- 8 X22=0;•••X+2nx-8n2=0.小静同学解第一个方程x2+2x- 8=0的步骤为:①x2+2x=8;②x2+2x+仁8+1;③(x+1)2=9;④x+仁±3;⑤x=1 ± 3;⑥X1=4, x2= - 2. ”(1)小静的解法是从步骤—开始出现错误的.(2)用配方法解第n个方程x2+2nx- 8n2=0.(用含有n的式子表示方程的根)17. 解方程:4/-6x- 4=0 (用配方法)18 .用配方法解方程:2x2+3x -仁0.19 .用配方法解方程:貳+x - 2=0.20.用配方法解方程:2X2+1=3X.21 .用配方法解方程:3x2+6x -仁0.22.用配方法解方程:2x2+2x-仁0.23 .解方程:x2- 6x+2=0 (用配方法).24.解下列方程:(1)«+6x+7=0 (用配方法解)26. 用配方法解方程:6x2-x- 12=0.2 «+2x- 1=0.25 .用配方法解方程:4x2- 3=4x.27. 用配方法解方程:2x2- 8x- 198=0.28. 用配方法解方程:6x2- x- 12=0.29. 用配方法解方程:2x2- 5x+2=0.30. 用配方法解方程:2x2- x- 1=0.一元二次方程求解(配方法求解)参考答案与试题解析一•解答题(共30小题)1. (2015?大连)解方程:x2- 6x- 4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2- 6x=4,配方得x2- 6x+9=4+9,即(x- 3)2=13,开方得x- 3=± I ';,x i=3+.;「.,X2=3-L.i 匚【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可. (2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成X+px+qrO,然后配方.2(2016?淄博)解方程:x2+4x-仁0.【分析】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解答】解:••• x2+4x-仁0•x2+4x=1•x2+4x+4=1+4••(x+2)2=5•x=- 2±!■• X1 = —2+. ~,x2= - 2-个仟【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1, 一次项的系数是2的倍数.3. (2016?金乡县一模)解方程:x2-6x+5=0 (配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2- 6x=- 5,等式两边同时加上一次项系数一半的平方32.得x2- 6x+32=- 5+32,即(x - 3) 2=4,二x=3± 2,•••原方程的解是:X1=5, x2=1 .【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项左边就是完全平方的系数是2的倍数. 33(2016?安徽)解方程:x2- 2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方, 式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方X2- 2x+1=4+1•( x- 1) 2=5•x=1± 口解题方法.5. (2016?天门模拟)用配方法解方程:2x 2- 3x - 3=0.【分析】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加 上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方 根的定义即可求解.【解答】解:2« - 3x - 3=0,:x-2 x 2 — 2 (r 好使方程的二次项的系数为1,一次项的系数是2的倍数.6. (2015?畐州模拟)解方程:x 2+2x - 5=0.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系 数化为1; (3)等式两边同时加上一次项系数一半的平方.【解答】解::《+2x - 5=0,••• X+2x=5,«+2x+1=5+1,•(x+1) 2=6,• x+1=± 「',• x=- 1 ± '-.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应• X 1=1+ 一 -, x 2= 1-「.9 =9 + 3 16 15 2,■= + 二 4 — 4 x 【点评】在实数运算中要注意运算顺序, 在解一元二次方程时要注意选择适宜的x 2-W33 4【点评】此题考查利用配方法解一元二次方程, 解得:x i = ,x 2= 用配方法解一元二次方程时,最2— 16用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7. (2015?岳池县模拟)用配方法解方程2X2- 4x- 3=0.【分析】借助完全平方公式,将原方程变形为工_ .-—,开方,即可解决问题.【解答】解::2x2 - 4x-3=0,【点评】该题主要考查了用配方法来解一元二次方程的问题;准确配方是解题的关键.8. (2015?厦门校级质检)解方程:x2-2x- 2=0.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数- 2的一半的平方.【解答】解:移项,得x2- 2x=2,配方,得x2- 2x+1= 2+1,即(x- 1)2=3,开方,得x- 1=±:.解得X1 = 1+J^,x2=1 - Vs.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可. (2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成X+px+qr。

解一元二次方程配方法练习题

解一元二次方程配方法练习题

解一元二次方程配方法练习题Updated by Jack on December 25,2020 at 10:00 am解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2±.-2±..9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=0 11.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

另外: 12.将二次三项式4x 2-4x+1配方后得( )A .(2x -2)2+3B .(2x -2)2-3C .(2x+2)2D .(x+2)2-313.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( )A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-11二、综合提高题:每题10分1.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。

(完整版)配方法解一元二次方程练习题及答案

(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1 .用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= ______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2C.D.9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7 C .可为任何实数 D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9 x2+12x-15=01x2-x-4=0 所以方程的根为?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

21 、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。

1 、.y2?6y?6?0 、3x2?2?4x 、x2?4x?964 、x2?4x?5?05 、2x2?3x?1?0 、3x2?2x?7?07 、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。

32y 、3y2?1?2y1 、x2?2x?8?0 、4y?1?4 、2x2?5x?1?0 、?4x2?8x??16、2x2?3x?2?08εθeεe×∂2×' Ze9 •乙U乙乙9乙X乙X ' 17C"乙乙乙说"、Le 0=9+2×ε'82OdLdXZ∂2×9' 920∂0C∂×2∂2×2 P o=2k×l7+×'£ 0乙乙陀乙q乙X陀乙乙X ' 乙况LL0∂2e×6∂2×ε ' L OaC×cZ× '00乙q乙X乙乙Xe ^IZCaCKCCZCKC^ZLOd2θeθe×∂2× '和乙q乙陀乙X£2乙乙q<iZx' PIoCQZCZac×Zc ' 2L 乙比X乙£乙乙乂X乙X17 '0∂θC∂×∂2×ε '6L9C∂×εLC∂2× ' 9L乙帥乙乙q乙X%乙乙X、CL兀乙比心乙说心' OL 0∂0C∂×Z∂2×、60“%"£ '0乙说乙比X* ' LOCCzC×c×ccZc×cP ccZc×ccZc×c ' OdOLd×Ze2× ' 陀0乙9〃乙乙X ε×9eεe×2 Zc9c×c×ccU×c×Z ' 比o SW~3r-≡±⅛IW≡⅛^宙、荘OCZC Oc×cZ× 9凸说乙17 ' P0∂8e×9∂2× ' OCZCZ ' X乙乙乙X ' Lo畐卑盪二卫一陋丄搦滚搦岳芒厘宙'H26 、5x2?8x??1 7、x2?2mx?3nx?3m2?mn?2n2?、0 ?22x30 、3x2?4x?1 、x2?4?5x3 、2x2?5x?4?0 、2x2?2x?30?06 、x2+4x-12=0 、x2?x?139 、3y2?1?2y 解一元二次方程配方法练习题1 .用适当的数填空:①、x2=2;③、x22;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= _______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,以方程的根为 ____________ .5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2D .9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7C .可为任何实数D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9x2+12x-15=0 1x2-x-4=0所?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。

解一元二次方程练习题(配方法)

解一元二次方程练习题(配方法)

解一元二次方程练习题(配方法)1.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=02.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。

一、用直接开平方法解下列一元二次方程。

1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=-3、9642=-x x4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x三、用公式解法解下列方程。

1、0822=--x x2、22314y y -= 3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x三、 用因式分解法解下列一元二次方程。

1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x4、22)2(25)3(4-=+x x5、0)21()21(2=--+x x6、0)23()32(2=-+-x x四、用适当的方法解下列一元二次方程。

1、()()513+=-x x x x2、x x 5322=- 3、2260x y -+=4、01072=+-x x5、()()623=+-x x6、()()03342=-+-x x x7、()02152=--x 8、0432=-y y 9、03072=--x x10、()()412=-+y y 11、()()1314-=-x x x 12、()025122=-+x13、22244a b ax x -=- 14、()b a x a b x +-=-2322 15、022=-+-a a x x16、3631352=+x x 17、()()213=-+y y 18、)0(0)(2≠=++-a b x b a ax19、03)19(32=--+a x a x 20、012=--x x 21、02932=+-x x22、02222=+-+a b ax x 23、 x 2+4x -12=0 24、030222=--x x25、01752=+-x x 26、1852-=-x x 27、02332222=+---+n mn m nx mx x28、3x 2+5(2x+1)=0 29、x x x 22)1)(1(=-+ 30、1432+=x x31、y y 2222=+ 32、x x 542=- 33、04522=--x x34、()1126=+x x . 35、030222=--x x 36、x 2+4x -12=037、032=-+x x 38、12=+x x 39、y y 32132=+40、081222=+-t t 41、1252+=y y 42、7922++x x =0一元二次方程解法练习题五、用直接开平方法解下列一元二次方程。

用配方法解一元二次方程练习题

用配方法解一元二次方程练习题

解一元二次方程配方法练习题1.用适当的数填空:①、x2+6x+ =x+ 2;②、x2-5x+ =x-2;③、x2+ x+ =x+ 2;④、x2-9x+ =x-22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2x-b2的形式,则ab=_______.4.将一元二次方程x2-2x-4=0用配方法化成x+a2=b的形式为_______,•所以方程的根为_________.5.若x2+6x+m2是一个完全平方式,则m的值是A.3 B.-3 C.±3 D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.a-22+1 B.a+22-1 C.a+22+1 D.a-22-17.把方程x+3=4x配方,得A.x-22=7 B.x+22=21 C.x-22=1 D.x+22=28.用配方法解方程x2+4x=10的根为A.2B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值A.总不小于2 B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:13x2-5x=2.2x2+8x=93x2+12x-15=0 441x2-x-4=011.用配方法求解下列问题1求2x2-7x+2的最小值;2求-3x2+5x+1的最大值;用配方法解一元二次方程练习题答案:1.①9,3 ②, ③, ④,2.2x-342-4983.4 4.x-12=5,1 5.C 6.A 7.•C 8.B 9.A10.1方程两边同时除以3,得 x 2-53x=23,配方,得 x 2-53x+562=23+562,即 x-562=4936,x-56=±76,x=56±76.所以 x 1=56+76=2,x 2=56-76=-13.所以 x 1=2,x 2=-13.2x 1=1,x 2=-93x 1211.1∵2x 2-7x+2=2x 2-72x+2=2x-742-338≥-338,∴最小值为-338,2-3x 2+5x+1=-3x-562+3712≤3712,•∴最大值为3712.。

配方法解一元二次方程专项练习111题(有答案)ok

配方法解一元二次方程专项练习111题(有答案)ok

配方法解一元二次方程专项练习111题(有答案)ok配方法解一元二次方程专项练习111题(有答案)1.x2﹣2x=4.2.3x2=5x+23.2x2﹣4x+1=0.4. x2+2x=2;5.x2﹣2x﹣4=0.6..7.x2+4x﹣1=0.8.2x2+x﹣30=0 9.x2﹣28x﹣4=010.x2﹣8x﹣1=0.11.x2+2x=5.12.2x2+6=7x13.2x2+1=8x14.3x2﹣2x﹣6=015..16.x2+2x﹣15=0.17.x2+6x﹣16=018.2x2﹣5x﹣3=019.x2﹣4x+2=020.(x+3)(x﹣1)=1221.2x2﹣12x+6=022.2x2﹣3x﹣2=0.23.x(x+2)﹣5=0.24.x2﹣6x+2=025.3x2﹣6x﹣1=0 26.2x2+4x﹣1=0 27.x2﹣4x+3=0.28.x2﹣6x﹣3=0 29.2x2﹣8x+3=0.30.3x2﹣4x+1=0;31.x2﹣6x+1=0.32.2x2﹣4x+1=0 33.x2+5x﹣3=0.34.x2+2x﹣4=035.2x2﹣4x+1=0.36..37.5(x2+17)=6(x2+2x)38.4x2﹣8x+1=039.2x2+1=3x.40.x2+x﹣2=0.41.x2﹣6x+1=042.x2﹣8x+5=043.x2+3x﹣4=0.44.3x2+8x﹣3=045.x2+8x=2.46.x2+3x+1=047. 2x2﹣3x+1=048.x2﹣4x﹣6=049. x2﹣8x+1=050.x2+4x+1=051.x2﹣4x+1=052.x2﹣6x﹣7=0 54. x2﹣6x﹣5=0.55.2x2+1=3x56. x2+3x+1=0 57.x2﹣8x+1=0.58. x2﹣8x﹣16=0 59..60.6x2﹣7x﹣3=0 61. x2﹣6x=﹣8;62. 2x2﹣5x+1=0.63.3x2+8x﹣3=064.3x2﹣4x+1=065.2x2+3x﹣1=0.66.2x2﹣5x﹣1=067.4x2﹣8x﹣1=068.3x2+4x﹣7=069.3移项得3x2﹣10x=﹣6.70.3x2﹣10x﹣5=071.2x2+3=7x72.x2+2x﹣224=073.x2﹣5x﹣14=074..75.x2+8x﹣20=076.x2﹣x+.77.2t2﹣6t+3=0.78.3x2﹣6x﹣12=0.79.x2﹣4x+1=080. 3x2﹣3=2x.81.2x2﹣5x+1=0.82.2y2+8y﹣1=083.x2﹣6x﹣18=084.x2﹣2x﹣1=0.85. x2﹣4x﹣1=0;86. 2x2+3x+1=0.87.2x2﹣6x﹣7=0 88.ax2+bx+c=0(a≠0).89.4x2﹣4ax+a2﹣b2=0.90. x2﹣4x﹣2=091. x(x+4)=6x+1292. 2x2+7x﹣4=093. 3(x﹣1)(x+2)=x+494. 3x2﹣6x=895. 2x2﹣x﹣30=0,96. x2+2=2x,97.x2+px+q=O(p2﹣4q≥O),98. m2x2﹣28=3mx(m≠O),99. x2﹣6x+7=0;100. 2x2+6=7x;101. ﹣5x2+10x+15=0.102. x2+6x+8=0;103. x2=6x+16;104.2x2+3=7x;105. (2x﹣1)(x+3)=4.106. x2+4x=﹣3;107. 2x2+x=0.108.x2+4x﹣3=0;109.x2+3x﹣2=0;110. x2﹣x+=0;111. x2+2x﹣4=0.参考答案:1.x2﹣2x=4.配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.2. 3x2=5x+2x2﹣x+=+=x=2,x=﹣3.2x2﹣4x+1=0.由原方程,得2(x﹣1)2=1,∴x=1±,∴原方程的根是:x1=1+,x2=1﹣.4.x2+2x=2;原式可化为x2+2x﹣2=0即x2+2x+1﹣3=0(x+1)2=3x=1.5.x2﹣2x﹣4=0.由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+x2=1﹣.6..,移项得:x2﹣2x=,配方得:x2﹣2x+1=+1,(x﹣1)2=,x﹣1=,7.x2+4x﹣1=0.解:移项得:x2+4x=1,配方得:x2+4x+4=1+4,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.8.2x2+x﹣30=0原方程变形为x2+x=15∴x2+x+()2=15+()2.∴(x+)2=,∴x1=﹣3,x2=.9.x2﹣28x﹣4=0原方程可化为x2﹣28x+142=4+142(x﹣14)2=200x﹣14=∴x1=14+,x2=14﹣.10.原方程移项得,x2﹣8x=1,⇒x2﹣8x+16=1+16,(x﹣4)2=17,⇒解得11.x2+2x=5.x2+2x+1=5+1,即(x+1)2=6,所以x+1=±,解得:x1=﹣1+,x2=﹣1﹣.12.2x2+6=7x移项得:2x2﹣7x=﹣6,二次项的系数化为1得:,解得:x1=2,.2∴2x2﹣8x=﹣1,∴x2﹣4x=﹣,即(x﹣2)2=,∴x﹣2=,∴x1=2+,x2=2﹣14.3x2﹣2x﹣6=0系数化1得,x2﹣x﹣2=0方程两边加上一次项系数一半的平方即得:∴(x ﹣)2=∴x1=,x2=15..配方得:x2﹣2x+3=12,即(x ﹣)2=12,开方得:x ﹣=±2,则x1=3,x2=﹣.16.x2+2x﹣15=0.x2+2x=15,x2+2x+1=15+1.(x+1)2=42.x+1=±4.∴x1=3,x2=﹣5.17.(1)x2+6x﹣16=0 由原方程,得x2+6x=16,等式的两边同时加上一次项系数6的一半的平方,得x2+6x+9=25,即(x+3)2=25,直接开平方,得x+3=±5,∴x1=2,x2=﹣8;18.2x2﹣5x﹣3=0(用配方法)∴∴;19. x2﹣4x+2=0x2﹣4x+4=﹣2+4(x﹣2)2=2,,∴;两边都加上12,得x2+2x+12=15+12即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4∴x1=3,x2=﹣521.2x2﹣12x+6=0 (配方法).把方程2x2﹣12x+6=0的常数项移到等号的右边,得到2x2﹣12x=﹣6,把二次项的系数化为1得:x2﹣6x=﹣3,程两边同时加上一次项系数一半的平方,得到x2﹣6x+9=﹣3+9即(x﹣3)2=6,∴x﹣3=±,∴x=3±,∴x1=3+,x2=3﹣.22.2x2﹣3x﹣2=0.移项得:2x2﹣3x=2化二次项系数为1,得:x2﹣x=1,配方得:x2﹣x+=1+,即=,∴x ﹣=或x ﹣=﹣,∴x1=2,x2=﹣.23.x(x+2)﹣5=0.x(x+2)﹣5=0,去括号得:x2+2x﹣5=0,移项得:x2+2x=5,左右两边加上1,变形得:(x+1)2=6,开方得:x+1=±,即x=﹣1±,∴x1=﹣1+,x2=﹣1﹣24.x2﹣6x+2=0x2﹣6x+2=0移项,得x2﹣6x=﹣2,即x2﹣6x+9=﹣2+9,∴(x﹣3)2=7,解得x﹣3=±,即x=3±.∴x1=3+,x2=3﹣.25.把方程x2﹣2x ﹣=0的常数项移到等号的右边,得到x2﹣2x=配方得(x﹣1)2=开方得x﹣1=移项得x=+126.2x2+4x﹣1=0原方程变形为2x2+4x=1即x2+2x=∴x2+2x+1=1+即(x+1)2=∴∴,27.x2﹣4x+3=0.∵x2﹣4x+3=0∴x2﹣4x=﹣3∴x2﹣4x+4=﹣3+4∴(x﹣2)2=1∴x=2±1∴x1=3,x2=128.x2﹣6x﹣3=0x2﹣6x=3,(x﹣3)2=12,x﹣3=.∴x1=3+,x2=3﹣29.2x2﹣8x+3=0.原方程变形为∴∴∴x﹣2=.∴x1=2+,x2=2﹣.30.3x2﹣4x+1=0;3(x2﹣x)+1=0(x ﹣)2=∴x1=1,x2=31.x2﹣6x+1=0.x2﹣6x=﹣1.x2﹣6x+9=﹣1+9,(x﹣3)2=8,.,32.2x2﹣4x+1=0原方程化为配方得即开方得∴,33.x2+5x﹣3=0.由原方程移项,得x2+5x=3,等式两边同时加上一次项系数一半的平方,得,∴∴解得,∴,.34.x2+2x﹣4=0移项得x2+2x=4,配方得x2+2x+1=4+1,即(x+1)2=5,开方得x+1=±,∴x1=,x2=﹣35.2x2﹣4x+1=0.由原方程,得x2﹣2x=﹣,等式的两边同时加上一次项系数一半的平方,得配方,得(x﹣1)2=,直接开平方,得x﹣1=±,x1=1+,x2=1﹣.36..∵x2﹣x+=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=0解得x1=x2=.37.5(x2+17)=6(x2+2x)5(x2+17)=6(x2+2x),整理得:5x2+85=6x2+12x,x2+12x﹣85=0,x2+12x=85,x2+12x+36=85+36,(x+6)2=121,x+6=±11,x1=5,x2=﹣1738.4x2﹣8x+1=0方程4x2﹣8x+1=0同除以4,得x2﹣2x+=0,把方程4x2﹣8x+1=0的常数项移到等于号的右边,得x2﹣2x=﹣,方程两边同时加上一次项一半的平方,得到,x2﹣2x+1=,∴x﹣1=±,解得x1=,x2=.39.2x2+1=3x.由原方程,移项得2x2﹣3x=﹣1,化二次项系数为1,得x2﹣x=﹣,等式的两边同时加上一次项系数一半的平方,得配方,得(x ﹣)2=,开平方,得x ﹣=±,解得,x1=1,x2=.40.x2+x﹣2=0.配方,得x2+x ﹣=2+,即=,所以x+=或x+=﹣.解得 x1=1,x2=﹣2.41.x2﹣6x+1=0移项,得x2﹣6x=﹣1,配方,得x2﹣6x+9=﹣1+9,即(x﹣3)2=8,解得x﹣3=±2,∴x1=3+2,x2=3﹣2.42.x2﹣8x+5=0原方程可变为,x2﹣8x=﹣5,方程两边同时加上一次项系数一半的平方得,到x2﹣8x+16=11,配方得,(x﹣4)2=11,直接开平方得,x﹣4=±,解得x=4+或4﹣.43.x2+3x﹣4=0.x2+3x﹣4=0x2+3x=4x2+3x+=4+=∴x+=±所以x1=1,x2=﹣4.44.3x2+8x﹣3=0∵3x2+8x﹣3=0,∴3x2+8x=3,∴x2+x=1,∴x2+x+=1+,∴(x+)2=,解得x1=,x2=﹣345.移项,得x2+8x=2.两边同加上42,得x2+8x+16=2+16,即(x+4)2=18.利用开平方法,得x+4=或x+4=﹣.解得x=﹣4+或x=﹣4﹣3.所以,原方程的根是x1=﹣4+,x2=﹣4﹣.46.x2+3x+1=0∵x2+3x+1=0∴x2+3x=﹣1∴x2+3x+=﹣1+∴(x+)2=∴x=∴x1=,x2=.47. 2x2﹣3x+1=0∵2x2﹣3x+1=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=∴x=∴x1=,x2=48.x2﹣4x﹣6=0x2﹣4x﹣6=0x2﹣4x=6x2﹣4x+4=4+6(x﹣2)2=10x﹣2=±∴49. x2﹣8x+1=0∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得2配方得,x2+4x+22=﹣1+4,(x+2)2=3,,解得,51.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴x2﹣4x+4=4﹣1,⇒(x﹣2)2=3,⇒,∴,解得,.52.x2﹣6x﹣7=0x2﹣6x+9=7+9(x﹣3)2=16开方得x﹣3=±4,∴x1=7,x2=﹣153..由原方程,得x2﹣2x=3,等上的两边同时乘以2,得x2﹣4x=6,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=10,配方得(x﹣2)2=10.∴,∴,54. x2﹣6x﹣5=0.移项得x2﹣6x=5,方程两边都加上9得 x2﹣6x+9=5+9,即(x﹣3)2=14,则x﹣3=±,所以x1=3+,x2=3﹣55.2x2+1=3x移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2,即(x ﹣)2=,开方,得x ﹣=±,∴x1=1,x2=.56. x2+3x+1=0移项,得x2+3x=﹣1,配方得x2+3x+=﹣1+,即(x+)2=,开方,得x+=±,∴x1=﹣+,x2=﹣﹣57.x2﹣8x+1=0.配方得,(x﹣4)2=15,开方得,x﹣4=±,x1=4+,x2=4﹣58. x2﹣8x﹣16=0(x﹣4)2﹣16﹣16=0,(x﹣4)2=32,即或,解得:,.59..移项得:x2﹣x=﹣3,配方得:x2﹣x+()2=﹣3+()2,即(x ﹣)2=,开方得:x ﹣=或x ﹣=﹣,解得:x1=2,x2=.60.6x2﹣7x﹣3=0解:6x2﹣7x﹣3=0,b2﹣4ac=(﹣7)2﹣4×6×(﹣3)=121,∴x=,∴x1=,x2=﹣.61. x2﹣6x=﹣8;配方得x2﹣6x+9=﹣8+9,即(x﹣3)2=1,开方得x﹣3=±1,∴x1=4,x2=262. 2x2﹣5x+1=0.移项得2x2﹣5x=﹣1,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=63.3x2+8x﹣3=0∵3x2+8x﹣3=0∴3x2+8x=3∴x2+x=1∴x2+x+=1+∴(x+)2=∴x=∴x1=,x2=﹣3.64.3x2﹣4x+1=0x2﹣x=﹣,x2﹣x+=﹣,即(x ﹣)2=,x ﹣=±;解得:x1=1,.65.2x2+3x﹣1=0.x2+(1分)x2+(3分)(4分)x+(6分)x1=66.2x2﹣5x﹣1=0(限用配方法);原方程化为2x2﹣5x=1,x2﹣x=,x2﹣x+()2=+()2,(x ﹣)2=,即x ﹣=±,x1=+,x2=﹣67.4x2﹣8x﹣1=0移项得:4x2﹣8x=1,二次项系数化1:x2﹣2x=,x2﹣2x+1=+1,(x﹣1)2=,x﹣1=±,x1=1+,x2=1﹣.68.3x2+4x﹣7=0移项,得3x2+4x=7,把二次项的系数化为1,得x2+x=,等式两边同时加上一次项系数一半的平方,得x2+x+=,∴=,∴x=±,∴x1=1,x2=﹣.69.3移项得3x2﹣10x=﹣6.二次项系数化为1,得x2﹣x=﹣2;配方得x2﹣x+(﹣)2=﹣2+,即(x ﹣)2=,开方得:x ﹣=±,∴x1=,x2=x2﹣10x+6=0 70.3x2﹣10x﹣5=0∵3x2﹣10x﹣5=0,∴3x2﹣10x=5,∴x2﹣x=,∴x2﹣x+=+,∴(x ﹣)2=,∴x=,∴x1=,x2=71.2x2+3=7x移项,得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.72.x2+2x﹣224=0移项,得x2+2x=224,在方程两边分别加上1,得x2+2x+1=225,配方,得(x+1)2=225,∴x+1=±15,∴x1=14,x2=﹣16;73.x2﹣5x﹣14=0x2﹣5x﹣14=0,x2﹣5x=14,x2﹣5x+=14+,(x ﹣)2=,x ﹣=±,∴x1=7,x2=﹣2.74..把二次项系数化为1,得x2﹣x ﹣=0,将常数项﹣移项,得x2﹣x=,两边同时加上一次项系数﹣的一半的平方,得x2﹣x+=+,配方得,(x ﹣)2=,∴x ﹣=∴x1=1,x2=﹣.75.x2+8x﹣20=0∵x2+8x﹣20=0∴x2+x=20∴x2+x+=20+∴(x+)2=∴x+=±,∴x=﹣,即x1=4,x2=﹣5.76.x2﹣x+.配方得(x ﹣)2=0,解得x1=x2=.77.2t2﹣6t+3=0.移项、系数化为1得,t2﹣3t=﹣配方得t2﹣3t+=﹣,即(t ﹣)2=,开方得t ﹣=±,∴x1=,x2=78.3x2﹣6x﹣12=0.3x2﹣6x﹣12=0,移项,得3x2﹣6x=12,把二次项的系数化为1,得x2﹣2x=4,等式两边同时加上一次项系数﹣2一半的平方1,得x2﹣2x+1=5,∴(x﹣1)2=5,∴79.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴(x﹣2)2=﹣1+4,∴(x﹣2)2=3,∴x﹣2=±,∴x1=2+;x2=2﹣;80. 3x2﹣3=2x.移项,得3x2﹣2x=3,二次项系数化为1,得x2﹣x=1,配方,得(x ﹣)2=1+,x ﹣=±,解得x1=;x2=81.2x2﹣5x+1=0.移项,得2x2﹣5x=﹣1,化二次项系数为1,得x2﹣x=﹣,方程的两边同时加上,得(x ﹣)2=,直接开平方,得x ﹣=±,∴x1=,x2=82.2y2+8y﹣1=0方程两边同时除以2得:y2+4y ﹣=0,移项得:y2+4y=,左右两边加上4,变形得:(y+2)2=,开方得:y+2=±,∴y1=﹣2+,y2=﹣2﹣.83.x2﹣6x﹣18=0由原方程移项,得x2﹣6x=18,方程两边同时加上一次项系数一半的平方,得x2﹣6x+9=27,配方,得(x﹣3)2=27,开方,得x﹣3=±3,解得,x1=3+3,x2=3﹣384.x2﹣2x﹣1=0.由原方程,得x2﹣2x=1,等式的两边同时加上一次项系数﹣2的一半的平方,得x2﹣2x+1=2,即(x﹣1)2=2,直接开平方,得x﹣1=±,∴x1=1+,x2=1﹣.85. x2﹣4x﹣1=0;移项,得x2﹣4x=1,等式两边同时加上一次项系数一半的平方4,得x2﹣4x+4=1+4,∴(x﹣2)2=5(1分)∴x﹣2=±(1分)∴x=2±,解得,x1=2+,x2=2﹣86. 2x2+3x+1=0.移项,得2x2+3x=﹣1,把二次项的系数化为1,得x2+x=﹣,等式两边同时加上一次项系数一半的平方,得x2+x+=﹣+∴(x+)2=(1分)∴x+=±(1分)∴x=﹣±解得,x1=﹣,x2=﹣187.2x2﹣6x﹣7=0x2﹣3x ﹣=0,x2﹣3x=,x2﹣3x+=,=,x ﹣=±,x=±,∴x1=,x2=.88.ax2+bx+c=0(a≠0).∵a≠0,∴两边同时除以a得:x2+x+=0,x2+x=﹣,x2+x+=﹣,=,∵a≠0,∴4a2>0,当b2﹣4ac≥0时,两边直接开平方有:x+=±,x=﹣±,∴x1=,x2=89.4x2﹣4ax+a2﹣b2=0.原式可化为:x2﹣ax+=0,整理得,x2﹣ax+()2﹣()2=﹣即:(x ﹣)2=,解得x1=或x2=.90. x2﹣4x﹣2=0,配方,得x2﹣4x+4﹣4﹣2=0,则x2﹣4x+4=6,所以(x﹣2)2=6,即x﹣2=±.所以x1=+2,x2=﹣+2.91. 原方程变形得x2﹣2x=12,配方得x2﹣2x+()2﹣()2=12,即(x﹣1)2=13,所以x﹣1=±.x1=1+,x2=1﹣.(运用配方法解形如x2+bx+c=0的方程的规律是把原方程化为一般式即为x2+bx+c=0形式,再配方得x2+bx+()2﹣()2+c=0,(x+)2=,再两边开平方,得其解.)92. 2x2+7x﹣4=0,两边除以2,得x2+x﹣2=0,配方,得x2+x+()2=2+()2,(x+)2=,则x+=±.所以x1=,x2=﹣4.93. 原方程变形为3x2+2x﹣10=0.两边除以3得x2+x ﹣=0,配方得x2+x+()2=+.即(x+)2=,则x+=±.所以x1=﹣,x2=.94. 方程两边除以3得x2﹣2x=.配方得x2﹣2x+1=+1.⇒(x﹣1)2=.所以x﹣1=±,解得x1=+1,x2=1﹣95. 2x2﹣x﹣30=0,2x2﹣x=30,x2﹣x=15,x2﹣x+=15,(x ﹣)2=;x ﹣=±,x1==3,x2=﹣=﹣;96. x2+2=2x,x2﹣2x=﹣2,x2﹣2x+3=﹣2+3;(x ﹣)2=1,x ﹣=±1,x1=1+,x2=﹣1+;97.x2+px+q=O(p2﹣4q≥O),x2+px=﹣q,x2+px+=﹣q+,(x+)2=,∵p2﹣4q≥O,∴x+=±,∴x1=,x2=;98. m2x2﹣28=3mx(m≠O),(mx)2﹣3mx﹣28=0,(mx﹣7)(mx+4)=0,mx=7或mx=﹣4,∵m≠0,∴x1=,x2=.99. x2﹣6x+7=0;移项得x2﹣6x=﹣7,配方得x2﹣6x+9=﹣7+9,即(x﹣3)2=2,开方得x﹣3=±,∴x1=3+,x2=3﹣.100. 2x2+6=7x;移项得2x2﹣7x=﹣6,二次项系数化为1,得x2﹣x=﹣3.配方,得x2﹣x+()2=﹣3+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=2,x2=.101. ﹣5x2+10x+15=0.移项得﹣5x2+10x=﹣15.二次项系数化为1,得x2﹣2x=3;配方得x2﹣2x+1=3+1,即(x﹣1)2=4,开方得:x﹣1=±2,∴x1=3,x2=﹣1.102. 移项得x2+6x=﹣8,配方得x2+6x+9=﹣8+9,即(x+3)2=1,开方得x+3=±1,∴x1=﹣2,x2=﹣4.103. 移项得x2﹣6x=16,配方得x2﹣6x+9=16+9,即(x﹣3)2=25,开方得x﹣3=±5,∴x1=8,x2=﹣2.104. 移项得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.105. 整理得2x2+5x=7.二次项系数化为1,得x2+x=;配方得x2+x+()2=+()2,即(x+)2=,开方得:x+=±,∴x1=1,x2=﹣.106. x2+4x=﹣3;方程化为:x2+4x+4=﹣3+4,(x+2)2=l,x+2=±1,x=﹣2±1,∴x1=﹣l,x2=﹣3;107. 2x2+x=0.方程化为:x2+x=0,x2+x+=,=,x+=±,x=﹣±,∴x1=0,x2=﹣.108. ∵x2+4x﹣3=0∴x2+4x=3∴x2+4x+4=3+4∴(x+2)2=7∴x1=﹣2,x2=﹣﹣2.109. 移项得x2+3x=2,配方得x2+3x+=2+,即(x+)2=,开方得x+=±,∴x1=,x2=.110. 移项得x2﹣x=﹣,配方得x2﹣x+=﹣+,即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=.111. 移项得,x2+2x=4配方得,x2+2x+2=4+2,即(x+)2=6,开方得x+=,∴x1=,x2=﹣.。

(完整版)解一元二次方程练习题(配方法)(最新整理)

(完整版)解一元二次方程练习题(配方法)(最新整理)

(7) 5x 2 -3x+2 =0
(8) 7x 2 -4x-3 =0
(9) -x 2 -x+12 =0
(10) x 2 -6x+9 =0
韦达定理:对于一元二次方程 ax2 bx c 0(a 0) ,如果方程有两个实数根 x1, x2 ,那么
x1
x2
b a
,
x1x2
c a
说明:(1)定理成立的条件 0
2.已知 x1,x2 是方程 2x2-7x+4=0 的两根,则 x1+x2=
,x1·x2=

(x1-x2)2=
1
3.已知方程 2x2-3x+k=0 的两根之差为 2 ,则 k=
;
2
4.若方程 x2+(a2-2)x-3=0 的两根是 1 和-3,则 a=
;
5.若关于 x 的方程 x2+2(m-1)x+4m2=0 有两个实数根,且这两个根互为倒数,那么 m 的值为
(2)注意公式重
x1
x2
b a
的负号与
b
的符号的区别
根系关系的三大用处
(1)计算对称式的值
例 若 x1, x2 是方程 x2 2x 2007 0 的两个根,试求下列各式的值:
(1) x12 x22 ;
(2) 1 1 ; x1 x2
(3) (x1 5)(x2 5) ;
(4) | x1 x2 | .
25、 5x2 7x 1 0
26、 5x2 8x 1
27、 x2 2mx 3nx 3m2 mn 2n2 0
28、3x2+5(2x+1)=0
29、 (x 1)(x 1) 2 2x
30、 3x2 4x 1

解一元二次方程练习题(配方法)58839

解一元二次方程练习题(配方法)58839

解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-1 7.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( )A .2±B .-2C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数 10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41x 2-x-4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=-3、9642=-x x4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x三、用公式解法解下列方程。

配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。

1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。

32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。

1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。

(完整版)解一元二次方程练习题(配方法)

(完整版)解一元二次方程练习题(配方法)

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=-3、9642=-x x4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x三、用公式解法解下列方程。

1、0822=--x x2、22314y y -= 3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x四、 用因式分解法解下列一元二次方程。

1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x4、22)2(25)3(4-=+x x5、0)21()21(2=--+x x6、0)23()32(2=-+-x x五、用适当的方法解下列一元二次方程。

1、()()513+=-x x x x2、x x 5322=- 3、2260x y -+=4、01072=+-x x5、()()623=+-x x6、()()03342=-+-x x x7、()02152=--x 8、0432=-y y 9、03072=--x x10、()()412=-+y y 11、()()1314-=-x x x 12、()025122=-+x13、22244a b ax x -=- 14、()b a x a b x +-=-232215、022=-+-a a x x16、3631352=+x x 17、()()213=-+y y 18、)0(0)(2≠=++-a b x b a ax19、03)19(32=--+a x a x 20、012=--x x 21、02932=+-x x22、02222=+-+a b ax x 23、 x 2+4x -12=0 24、030222=--x x25、01752=+-x x 26、1852-=-x x 27、02332222=+---+n mn m nx mx x28、3x 2+5(2x+1)=0 29、x x x 22)1)(1(=-+ 30、1432+=x x31、y y 2222=+ 32、x x 542=- 33、04522=--x x34、()1126=+x x . 35、030222=--x x 36、x 2+4x -12=037、032=-+x x 38、12=+x x 39、y y 32132=+40、081222=+-t t 41、1252+=y y 42、7922++x x =0一元二次方程解法练习题六、用直接开平方法解下列一元二次方程。

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。

1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。

1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。

1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。

1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。

1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元二次方程练习题(配方法)
步骤:(1)移项;
(2)化二次项系数为1 ;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m)2=n的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
1 •用适当的数填空:
①X2+6X+__ = (x+ _) 2;② x2—5x+ = (x —_) 2;
③X2+ X+ ___ = ( X+ _) 2;④ X2—9X+ = (X—_) 2
2 .将二次三项式2X2-3X-5进行配方,其结果为

3. 已知4x2-ax+1可变为(2x-b) 2的形式,贝V ab= _______ .
4. 将一元二次方程X2-2X-4=0用配方法化成(x+a) 2=b
的形式为_______ , ?所以方程的根为___________ .
5. 若x2+6x+m2是一个完全平方式,则m的值是()
A . 3
B . -3 C.± 3 D .以上都不对
6. 用配方法将二次三项式a2-4a+5变形,结果是( )
A. (a-2) 2+1
B. (a+2) 2-1
C. (a+2) 2+1 D . ( a-2) 2-1
7. 把方程X+3=4X配方,得()
A . ( X-2 ) 2=7
B . ( X+2)2=21
C. (X-2 ) 2=1 D . ( X+2)2=2
&用配方法解方程X2+4X=10的根为()
A. 2± \10
B. -2 ±14
C. -2+ 10
D. 2- -10
9. 不论X、y为什么实数,代数式x2+y2+2x-4y+7的值()
A.总不小于2
B.总不小于7
C.可为任何实数 D .可能为负数
10. 用配方法解下列方程:
(1) 3X2-5X=2 . (2) X2+8X=9
(5) 6X2-7X+仁0 (6) 4X2-3X=52
11.用配方法求解下列问题
(1)求2X2-7X+2的最小值;(2)求-3X2+5X+1的最大值。

12.将二次三项式
A . ( 2X—2)
2+3
C. (2X+2 ) 2
4X2—4X+1配方后得(
B. (2X— 2) 2—3
D. (X+2)2—3
13 .已知X2—8X+15=0 ,左边化成含有X的完全平方形式, 其中正确的是( )
A . X2—8X+ (—4) 2=31
B . X2—8X+ (—4) 2=1
C . X2+8X+42=1
D . x2—4X+4=—
11
14 .已知一元二次方程X2— 4x+1+m=5请你选取一个适当
的m的值,使方程能用直接开平方法求解,并解这个方程。

(1)你选的m的值是;(2)解这个方程.
15
.
如果X2— 4x+y2+6y+
71 +13=0 ,求(xy) z的值
(3) X2+12X-15=0 (4)X2-X-4=0
4
1
2 -
3 •用公式法解方程 4X 2-12X =3,得到().
5. (m 2-n 2) (m 2-n 2-2) -8=0,贝U m 2-n 2 的值是(). A . 4 B . -2 C . 4 或-2 D . -4 或 2 6 .一元二次方程
ax 2+bx+c=0 ( a 丰0)的求根公式是
________,条件是 _________ .
7.当X = _______ 时,代数式X 2-8X +12的值是-4. 8 .若关于X 的一元二次方程(m-1) x 2+x+m 2+2m-3=0有
一根为0,则m 的值是 ________ .
10、 一元二次方程的根的判别式
关于X 的一元二次方程ax 2 bx c 0(a 0)的根的判
另寸式是: __________________________________________ 11、 性质
(1) ____________________________________________
当 b 2—4ac > 0 时, ________________________________ ;
(2) 当 b 2 — 4ac = 0 时, ___
(3) 当 b 2 — 4ac v 0 时, ________________________
12、
不解方程,判别方程 5X 2 7X 5 0的根的情况。

13、若关于X 的一元二次方程(m 2)2X 2 (2m 1)X 1 0 有两个不相等的实数根,求
m 的取值范围。

解一元二次方程练习题(公式法)
1、用公式法解下列方程.
(1) 2X 2-4X -1=0 (2) 5X +2=3X 2
3 6
X = -------------
2
B . X =3 6 2
C . X =
3 2、 3 2
3 243
D . X =
2
(3)( X -2)( 3X -5)=0
(4) 4X 2-3X +1=0
4 .方程、、2 X 2+4、一 3 x+6 '、2 =0 的根是().
B . X 1=6, X 2= .. 2
X 1=X 2=- .6
(5)2 X 2+ X - 6= 0;
⑹ X 2 2X 4
0 ;
(7)5X 2- 4X — 12= 0;
(8)4X 2 + 4X + 10= 1 — 8X .
9、用公式法解方程:3X (X — 3) = 2(X — 1) (x + 1).
2 2
(9) X 2X 2
0 ; (10) 3X 4X 7
0 ;
2 2
1 (11) 2y
2 8y 1 0; (12) 2X 2 3x - 0
8
2、某数学兴趣小组对关于
X 的方程(m+1)
+ (m-2)
X -1=0提出了下列问题.
(1) 若使方程为一元二次方程,
m 是否存在?若存在,
求出m 并解此方程.
(2) 若使方程为一元二次方程 m 是否存在?若存在,请 求
C . X 1=2 2 ,X 2=
2
3 -
用配方法解一元二次方程练习题答案
1.①9, 3 ②
2.52, 2.5 ③0.52, 0.5
④4.52, 4.5
3、2 49 2
[―
2.2(x- )2
-
3. 4
4.(x-1 )2
=5,1± .5 5. C
4
8
6. A 7 . ?C 8. B 9. A
5 2 10. (1)方程两边同时除以 3,得
x 2
- x=,
3
3
5 5 2
5 配方,得
x 2
- 5
x+ ( 5
) 2=2
+ ( 5
) 2
,
3
6 3 6
5、2 49
5 7 5 丄 7
(X- )
= , x- = ± , x= ±
6
36
6 6 6 6 5
7 5 7 1 x i = + — =2 , X 2= -—=-—. 6 6
6 6 3
1
X 1=2 , X 2=- — .
3
X 1 = 1 , X 2=-9
2
2 7
7、2 33、33 11. (1) •/ 2x 2-7x+2=2 (x 2- —x ) +2=2 (x- ) 2-
> ——,
2 4
8
8
33
•••最小值为 ,
8
(2) -3x 2+5x+1=-3 (x- — ) 2+
w , ?
6 12 12
另外:12. B 13. B
1. 答案不唯一
2. v( x -2) 2+ (y+3) 2+ z 2=0 ,
1
• x=2 , y= — 3, z= — 2, (xy ) z = (- 6) 2= 36

所以 所以 (2) (3) X 1=-6+ 51 , X 2=-6- 51 ;
•••最大值为
37
12。

相关文档
最新文档