九年级数学上册旋转培优练习卷(含答案)
九年级培优初中数学 旋转辅导专题训练及答案解析
九年级培优初中数学旋转辅导专题训练及答案解析一、旋转1.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD =∠EAB∴△FAD ≌△EAB∴∠AFD =∠AEB ,DF =BE∵∠AFD+∠AFG =180°,∴∠AEG+∠AFG =180°,∵∠EAF =90°,∴∠EGF =180°﹣90°=90°,∴DF ⊥BE(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE .延长DF 交EB 于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB ∴DF AF k BE AE== ∴DF =kBE ∵△FAD ∽△EAB ,∴∠AFD =∠AEB ,∵∠AFD+∠AFH =180°,∴∠AEH+∠AFH =180°,∵∠EAF =90°,∴∠EHF =180°﹣90°=90°,∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a .延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB ∴DF AF k BE AE== ∴DF =kBE 由△FAD ∽△EAB 得∠AFD =∠AEB∵∠AFD+∠AFH =180°∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°,∴∠EAF+∠EHF =180°∵∠EAF =α,∠EHF =β∴a+β=180°∴β=180°﹣a【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.2.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF ⊥BD 交 BC 于 F ,连接 DF ,G 为 DF 中点,连接 EG ,CG .(1) 求证:EG =CG ;(2) 将图①中△BEF 绕 B 点逆时针旋转 45∘,如图②所示,取 DF 中点 G ,连接 EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
2020-2021初三培优初中数学 旋转辅导专题训练附答案
2020-2021初三培优初中数学旋转辅导专题训练附答案一、旋转1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题2.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD=∠EAB∴△FAD≌△EAB∴∠AFD=∠AEB,DF=BE∵∠AFD+∠AFG =180°,∴∠AEG+∠AFG =180°,∵∠EAF =90°,∴∠EGF =180°﹣90°=90°,∴DF ⊥BE(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE .延长DF 交EB 于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB∴DF AF k BE AE== ∴DF =kBE ∵△FAD ∽△EAB ,∴∠AFD =∠AEB ,∵∠AFD+∠AFH =180°,∴∠AEH+∠AFH =180°,∵∠EAF =90°,∴∠EHF =180°﹣90°=90°,∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a .延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE∴AD k AB =,AF k AE = ∴AD AF AB AE= ∵∠BAD =∠EAF =a∴∠FAD =∠EAB∴△FAD ∽△EAB∴DF AF k BE AE== ∴DF =kBE 由△FAD ∽△EAB 得∠AFD =∠AEB∵∠AFD+∠AFH =180°∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°,∴∠EAF+∠EHF =180°∵∠EAF =α,∠EHF =β∴a+β=180°∴β=180°﹣a【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.3.在平面直角坐标系中,已知点A (0,4),B (4,4),点M ,N 是射线OC 上两动点(OM <ON ),且运动过程中始终保持∠MAN =45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M ,N 均在线段OB 上时(如图1),有OM 2+BN 2=MN 2.他的证明思路如下:第一步:将△ANB 绕点A 顺时针旋转90°得△APO ,连结PM ,则有BN =OP .第二步:证明△APM ≌△ANM ,得MP =MM .第一步:证明∠POM =90°,得OM 2+OP 2=MP 2.最后得到OM 2+BN 2=MN 2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=42,∴OM=42﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x2=(2x)2,解得x=﹣22+26或﹣22﹣26(舍弃)∴MN=﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.4.如图1,在Rt△ABC中,∠ACB=90°,AC=BC.点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD.点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)PM与BE的数量关系是,BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中BE与MN的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB=6.CE=2,在将图1中的△DEC绕点C逆时针旋转一周的过程中,当B、E、D三点在一条直线上时,求MN的长度.【答案】(1)1,22PM BE BE MN==;(2)成立,理由见解析;(3)MN17﹣117【解析】【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可.【详解】(1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB , ∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE ,∴AD =BE ,∴PM =PN ,∵∠ACB =90°,∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC ,∴PM ⊥PN , ∴△PMN 的等腰直角三角形,∴2MN PM =, ∴122MN BE =, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H .∵△ABC 和△CDE 是等腰直角三角形,∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°,∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE ,∴∠ACD =∠ECB ,∴△ECB ≌△DCA ,∴BE =AD ,∠DAC =∠EBC ,∵∠AHB =180°﹣(∠HAB +∠ABH )=180°﹣(45°+∠HAC +∠ABH )=∠180°﹣(45°+∠HBC +∠ABH )=180°﹣90°=90°,∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°, ∴2222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=, ∴342BE BG GE =-=-,∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-= ∴342BE BG GE =+=,∴2171MN BE ==. 综上所述,MN 17﹣117.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°)(1)当OC ∥AB 时,旋转角α= 度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明.应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(3)13+1或131-;(4)PC 的最大值=3,PC 的最小值=3﹣1.【解析】 分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可.(3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值=3﹣1.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OB COA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A 、C 、D 共线时,作OH ⊥AC 于H .在Rt △COH 中,∵OC =1,∠COH =30°,∴CH =HD =12,OH 3Rt △AOH 中,AH=22OA OH-=132,∴BD=AC=CH+AH=1132+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(1)如图1,当旋转角为90°时,求BB′的长;(2)如图2,当旋转角为120°时,求点O′的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)【答案】(1)22)O'(92333)P'(275,635).【解析】【分析】(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.【详解】(1)∵A (3,0),B (0,4),∴OA =3,OB =4,∴AB =5,由旋转知,BA =B 'A ,∠BAB '=90°,∴△ABB '是等腰直角三角形,∴BB '=2AB =52; (2)如图2,过点O '作O 'H ⊥x 轴于H ,由旋转知,O 'A =OA =3,∠OAO '=120°,∴∠HAO '=60°,∴∠HO 'A =30°,∴AH =12AO '=32,OH =3AH =332,∴OH =OA +AH =92,∴O '(9332,); (3)由旋转知,AP =AP ',∴O 'P +AP '=O 'P +AP .如图3,作A 关于y 轴的对称点C ,连接O 'C 交y 轴于P ,∴O 'P +AP =O 'P +CP =O 'C ,此时,O 'P +AP 的值最小.∵点C 与点A 关于y 轴对称,∴C (﹣3,0).∵O '(9332,),∴直线O 'C 的解析式为y =3x +33,令x =0,∴y =33,∴P (0,335),∴O 'P '=OP =335,作P 'D ⊥O 'H 于D . ∵∠B 'O 'A =∠BOA =90°,∠AO 'H =30°,∴∠DP 'O '=30°,∴O 'D =12O 'P '=33,P 'D =3O 'D =910,∴DH =O 'H ﹣O 'D =63,O 'H +P 'D =275,∴P '(27635,).【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.8.已知△ABC 是边长为4的等边三角形,边AB 在射线OM 上,且OA=6,点D 是射线OM 上的动点,当点D 不与点A 重合时,将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,连接DE .(1)如图1,猜想:△CDE 的形状是 三角形.(2)请证明(1)中的猜想(3)设OD=m ,①当6<m <10时,△BDE 的周长是否存在最小值?若存在,求出△BDE 周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE 是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.9.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.10.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.11.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.∴∠CFE=∠A+∠ABD=45°.(2)如图,连接CD、DF.∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF∥BD,EF=BD.∴四边形BDFE是平行四边形,EF= CD.∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.∴△AEF≌△FCD(AAS).∴AE=CF.(3)△CEF是等腰直角三角形,证明如下:如图,过点E作EG⊥CF于G,∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.∵∠A=300,∠AGE=90°,∴.∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=∠FEG=90°.∴△CEF是等腰直角三角形.考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.12.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.13.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.14.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
九年级培优初中数学 旋转辅导专题训练含答案
九年级培优初中数学 旋转辅导专题训练含答案一、旋转1.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证△ADB ≌△AOB ;②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题;(2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A (5,0),B (0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC-=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(34)30334-当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.2.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD cm,∴△BDE的最小周长=CD;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.3.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.4.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC61-.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.5.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.6.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②12-63(3)33<a<43,a>43【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、QJ=3x,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG折叠纸片,使点C落在EF上的点P处∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,QJ=22=3QN NJ -x , ∵IJ=6cm ,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm ). (3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6, 则tan60°3=2ab ,∴3b ,∴0<b≤632=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=63=33,当DE与DA重合时,a=643sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643cos303==︒∴a>3点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.7.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且D F′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.8.如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE 的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.【答案】(1)BE=CD.理由见解析;(2)△CHQ是等腰三角形;(3)2-x.【解析】试题分析:(1)根据等边三角形的性质可得AB=BC,CD=CE,∠ACB=∠ECD=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等证明即可;(2)求出∠ACF=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CHQ=30°,从而得到∠ACF=∠CHQ,判断出△CHQ是等腰三角形;(3)求出∠CGP=90°,然后利用∠ACF的余弦表示出CG,再根据等腰三角形的性质表示出CH,然后根据GH=CG-CH整理即可得解.试题解析:(1)BE=CD.理由如下:∵△ABC与△CDE是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB-∠ACE=∠ECD-∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴BE=AD;(2)∵旋转角为30°,∴∠BCF=30°,∴∠ACF=60°-30°=30°,∴∠CHQ=∠RQP-∠ACF=60°-30°=30°,∴∠ACF=∠CHQ,∴△CHQ是等腰三角形;(3)∠CGP=180°-∠ACF-∠RPQ=180°-30°-60°=90°,∴CG=CP•cos30°=(x+4),∵△CHQ是等腰三角形,∴CH=2•CQcos30°=2x•=x,∴GH=CG-CH=(x+4)-x=2-x.考点:几何变换综合题.9.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理10.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.11.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.【答案】(1)①②详见解析;③3﹣4;(2)13.【解析】试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.考点:三角形综合题.12.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM =BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是________________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.【答案】(1)①BD=CE;②AM=AN,∠MAN=∠BAC 理由如下:∵在图①中,DE//BC,AB=AC∴AD="AE."在△ABD与△ACE中∴△ABD≌△ACE.∴BD=CE,∠ACE=∠ABD.在△DAM与△EAN中,∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.∴AM=AN,∠MAN=∠BAC.(2)AM=kAN,∠MAN=∠BAC.【解析】(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.13.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.14.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.15.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.。
部编数学九年级上册第23章旋转(培优卷)(解析版)含答案
第23章 旋转(培优卷)一.选择题(每小题3分,共24分)1.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史,2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo 进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是( )A .B .C .D .【答案】A【解析】解:A.是中心对称图形,故本选项符合题意;B.不是中心对称图形,故本选项不合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意.故选:A .2.如图将△ABC 绕点C (0,﹣1)旋转180°得到△ABC ,设点A ¢的坐标为(a ,b ),则A 的坐标为( )A .(﹣a ,﹣b )B .(﹣a ,﹣b ﹣1)C .(﹣a ,﹣b +1)D .(﹣a ,﹣b ﹣2)【答案】D 【解析】解:Q 将△ABC 绕点C (0,﹣1)旋180°得到△ABC ,,CA CA ¢\=设(),,A m n 而(),,A a b ¢ 由中点坐标公式可得:0212m a n b ì+=ïïí+ï=-ïî ;解得:2m a n b ì=-ïí=--ïî;∴ A (﹣a ,﹣b ﹣2) 故选D3.如图,将ABC V 绕点A 顺时针旋转得到ADE V ,且点D 恰好在AC 上,136BAE CDE Ð=Ð=°,则C Ð的度数是()A .24°B .26°C .30°D .36°【答案】A 【解析】解:由题意可知:=E C ÐÐ,EAD CABÐ=Ð又∵136BAE Ð=°,∴1(360)1122EAD CAB BAE Ð=Ð=°-Ð=°又∵136E EAD EDC Ð+Ð=Ð=°,∴24E EDC EAD Ð=Ð-Ð=°,∴24а=C 故选:A .4.如图,Rt ABC △中,30B Ð=°,90C Ð=°,2AC =,BC 平行于y 轴,以点()0,5A 为旋转中心,将Rt ABC △逆时针旋转30°,得到Rt AB C ¢¢△,则点C ¢的坐标为( )A .()B .()4C .()D .()4【答案】D 【解析】解:过点C ¢向AO 作垂线,垂足为点D ,如图,∵30B Ð=°,90C Ð=°,∴60BAC Ð=°∵∥BC y 轴,∴30BAO B Ð=Ð=°,∴306090BAO BAC Ð+Ð=°+°=°,将Rt ABC △逆时针旋转30°,得到Rt AB C ¢¢△,∴30CAC C AB BAB ¢¢¢Ð=Ð=Ð=°,∴BC AB ¢∥,∴点B ¢在y 轴上,由旋转的性质得,2,60AC AC C AD CAD ¢¢==Ð=Ð=°,∴30AC D ¢Ð=°,∴1121,22AD AC ¢==´= ∵(0,5)A , ∴5OA =,∴514OD OA AD =-=-=由勾股定理得,C D ¢=∵点C ¢在第二象限,∴点C ¢的坐标为()4故选:D .5.如图,70BA BC ABC =Ð=°,,将BDC V 绕点B 逆时针旋转至BEA △处,点E ,A 分别是点D ,C 旋转后的对应点,连接DE ,则BED Ð为( )A .55°B .60°C .65°D .70°【答案】A 【解析】∵△BDC 绕点B 逆时针旋转至△BEA 处,点E ,A 分别是点D ,C 旋转后的对应点,∴∠CBD =∠ABE ,BD =BE ,∵∠ABC =∠CBD +∠ABD ,∠EBD =∠ABE +∠ABD ,∠ABC =70°,∴∠EBD =∠ABC =70°,∵BD =BE ,∴∠BED =∠BDE =11(180)(18070)5522EBD °-Ð=°-°=°,故选:A .6.如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M æöç÷ç÷èø,()21M -,()31,4M ,4112,2M æöç÷èø四个点中,直线PB 经过的点是( )A .1M B .2M C .3M D .4M 【答案】B 【解析】解:∵点A (4,2),点P (0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC ∴B (2,),设直线PB 的解析式为:y =kx +b ,则222k b b ì+=+ïí=ïî∴2k b ì=ïí=ïî,∴直线PB 的解析式为:y +2,当y =0+2=0,x ∴点M 1(0)不在直线PB 上,当x y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上.故选:B .7.如图,等边三角形ABC 内有一点P ,分别连结AP 、BP 、CP ,若AP =6,BP =8,CP =10.则S △ABP +S △BPC =( ).A .B .C .D .【答案】D 【解析】如图,将BPC △绕点B 逆时针旋转60°后得AB P ¢V ,连接PP ¢,根据旋转的性质可知,旋转角60PBP CAB ¢Ð=Ð=°,BP BP ¢=,∴BPP ¢V 为等边三角形,8BP BP PP ¢¢===,由旋转的性质可知,10AP PC ¢==,在APP ¢V 中,8¢,6,由勾股定理的逆定理得,APP ¢V 是直角三角形,∵1642BPP S BP BP ¢=×==V11682422APP S AP PP ¢¢=××=´´=V ,∴24ABP BPC BPP APP AP BP S S S S S ¢¢¢+==+=V V V V 四边形.故选:D .8.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (3,0),B (0,4),则点B 2022的横坐标为( )A .12120B .12128C .12132D .12125【答案】C【解析】解:∵点A (3,0),B (0,4),∴OA =3,OB =4,∴5AB ==,∴OA +AB 1+B 1C 2=3+5+4=12,∴B 2(12,4),B 4(24,4),B 6(36,4),…,()212,4n B n ∵2022÷2=1011,∴1011×12=12132,故选:C .二.填空题(每小题2分,共16分)9.如果抛物线224y x x m =-+的顶点关于原点对称点的坐标是(-1,-3),那么m 的值是___.【答案】5【解析】∵抛物线y =2x 2−4x +m 的顶点关于原点对称点的坐标是(−1,−3),∴抛物线y =2x 2−4x +m 的顶点坐标是(1,3),∴3=242(4)42m ´--´ ,解得,m =5;故答案为:5.10.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B ¢坐标是______.【答案】()2,3-或()2,3-【解析】解:∵A (-1,2), OC = 4,∴ C (4,0),B (3,2),M (0,2), BM = 3,AB //x 轴,BM = 3.将平行四边形OABC 绕点O 分别顺时针、逆时针旋转90°后,由旋转得:OM =OM 1=OM 2=2,∠AOA 1=∠AOA 2=90°BM =B 1M 1=B 2M 2=3,A 1B 1⊥x 轴,A 2B 2⊥x 轴,∴B 1和B 2的坐标分别为: (-2,3), (2,-3),∴B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).11.如图,△ABC中,∠ABC=64°,将△ABC绕点B逆时针旋转到△A′BC′的位置,使得AA′∥BC,则∠CBC′=_________°.【答案】52【解析】解:∵△ABC绕点A逆时针旋转得到△BA′C′,∴BA′=AB,∴∠BAA′=∠BA′A,∵AA′//BC,∴∠A′AB=∠ABC,∵∠ABC=64°,∴∠A′AB=64°,∴∠ABA′=(180°-2×64°)=52°,∵∠CBC′=∠ABA′,∴∠CBC′=52°.故答案为:52.12.如图,ΔABC的三个顶点都在方格纸的格点上,其中A点的坐标是(-1,0),现将ΔABC绕A点逆时针旋转90°,再向右平移一个单位后点C的对应点C'的坐标是__________.-【答案】(1,3)【解析】ΔABC绕A点逆时针旋转90°后的图像如图:观察图象,可知C对应的点1C坐标为(-2,3),-∴(-2,3)再向右平移一个单位后点C的对应点C'的坐标是(1,3)-.故答案是:(1,3)13.如图,在AOB V 中,90AOB Ð=°,3cm AO =,4cm BO =,将AOB V 绕顶点O ,按顺时针方向旋转到11A OB V 处,此时线段1OB 与AB 的交点D 恰好为AB 的中点,12OD AB =,则线段1B D 的长度为______.【答案】1.5cm【解析】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB 5cm ,∴OD =12AB =2.5cm ,∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4cm ,∴B 1D =OB 1-OD =1.5cm .故答案为:1.5cm .14.如图,在Rt △ABC 中,∠ACB =90º,∠CAB =30º,BC =4.将△ABC 绕点C 逆时针旋转α度(0<α£180),得到△DEC ,A ,B 的对应点分别为D ,E . 边DC ,DE 分别交直线AB 于F ,G ,当△DFG 是直角三角形时,则BD =__________.【答案】4-【解析】解:根据题意得:CD =AC ,∠CDE =∠A =30°,当∠DFG =90°时,如图:∵∠ACB =90º,∠CAB =30º,BC =4.∴28AB BC ==,∴CD AC ===∵1122ABC S AB CF AC BC D =×=×,∴AC BC CF AB×==∴DF CD CF =-=当∠DGF =90°时,如图:∵∠CDE =∠A =30°,∠DGB =90°,∴∠DFG =60°=∠ABC ,∴点B 与点F 重合,∴4BD CD BC =-=-;综上所述,BD 的长为4-.故答案为:415.如图,在平面直角坐标系xOy 中,ABC V 为等腰三角形,5AC AB ==,8BC =,点A 与坐标原点重合,点C 在x 轴正半轴上,将ABC V 绕点C 顺时针旋转一定的角度后得到11A B C V ,使得点B 对应点1B 在x 轴上,记为第一次旋转,再将11A B C V 绕点1B 顺时针旋转一定的角度后得到211A B C V ,使得点1A 对应点2A 在x 轴上,以此规律旋转,则第2023次旋转后钝角顶点坐标为___________.【答案】(12141,3)【解析】过点A 作AD ⊥BC 于点D ,∵AB =AC =5,BC =8,∴BD =CD =12BC =4,∴3AD ==,由题意1(9,3)A ,()218,0A ,3(18,0)A ,4(27,3)A ,5(36,0)A ,6(36,0)A ,()745,3A ,…,每3次是一个循环组,202336741¸=×××,∴2023A 在竖直方向的位置与1A 的位置相同,纵坐标为3,∴第2023次旋转后钝角顶点的横坐标为67418912141´+=,∴第2023次旋转后钝角顶点坐标为(12141,3).故答案为(12141,3)16.如图,在矩形ABCD 中,AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120°得到线段DG ,连接AG ,则线段AG 的最小值为_________.【解析】解:如图所示,将线段DC 绕点D 顺时针旋转120°得到线段DC ¢,作直线GC ¢交AD 于K ,过点A 作AH GC ¢^于点H .120,,,EDC EDC GDC CD C D DE DG ¢¢¢Ð=°-Ð=Ð==Q DCE DC G ¢\≌△△(SAS )90,GC D C KC D ¢¢\Ð=Ð=°=Ð如图所示,当点E 在直线BC 上运动时,G 在直线GC ¢上运动,即点G 的运动轨迹是直线GC ¢.\当点G 运动到H 时,AG 最小,最小值即为AH 的长度.120,90,CDC CDA ¢Ð=°Ð=°Q 30,KDC ¢\Ð=°1,602C K DK C KD AKH ¢¢\=Ð=°=ÐC D CD AB ¢===Q 2,4C K DK ¢\==6AD BC ==Q ,2AK AD DK \=-=在Rt AKH V 中,60AKH Ð=°,11,2KH AK AH \====则线段AG三.解答题(共60分)17.(6分)如图,在ABC V 中,AB =BC ,∠CBA =60°,点E 是BC 上的一点,连接AE ,将EA 绕点E 顺时针旋转90°得到ED ,点D 恰好在AC 的延长线上,若CE =2,求AC 的长.1【解析】解:如图,过点E 作EN ⊥AC 于点N ,∵AB =BC ,∠CBA =60°,∴ABC V 是等边三角形,∴∠BCA =60°,∵EN ⊥AC ,∴∠ENC =90°,9030CEN BCA Ð=°-Ð=°,∵CE =2,∴1CN =,EN ==由题可知EA 绕点E 旋转90°得到ED ,∴ADE V 是等腰直角三角形,∴45AEN EAD Ð=Ð=°,∴AN NE ==∴1AC AN CN =+=.18.(8分)如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,ABC V 的顶点均在格点上,点A ,B ,C 的坐标分别为()3,1A --,()2,4B --,()1,2C --.(1)先将ABC V 沿y 轴正方向平移3个单位长度,再沿x 轴负方向平移1个单位长度得到111A B C △,画出111A B C △,点1C 坐标是______;(2)将111A B C △,绕点1B 逆时针旋转90°,得到212A B C V ,画出212A B C V ,点2C 的坐标是______.(3)我们发现点C ,2C 关于某点成中心对称,对称中心坐标是______.【答案】(1)见解析,()2,1-;(2)见解析,()5,0-;(3)()3,1--【解析】(1)解:如图,111A B C △即为所求,()12,1C -故答案为:()2,1-(2)解:如图,111A B C △即为所求,点2C 坐标为()5,0-故答案为:()5,0-(3)解:∵()1,2C --,2C ()5,0-,∴1532--=-,2012-+=-,∴对称中心坐标是()3,1--,故答案为:()3,1--.19.(8分)如图,在平面直角坐标系中,O 为坐标原点,抛物线y =x 2+2x 与x 轴的另一个交点为A ,把该抛物线在x 轴及其下方的部分记作C 1,将C 1绕着点O 旋转180°,得到C 2,C 2与x 轴交于另一点B .(1)求抛物线C2的顶点E的坐标;(2)将C2绕着点B旋转180°得到C3,连接C1与C3的最低点,则阴影部分图形的面积为______.【答案】(1)(1,1);(2)4【解析】(1)设抛物线y=x2+2x的顶点为G,∵y=x2+2x=(x+1)2﹣1,∴G(﹣1,﹣1),∵将C1绕着点O旋转180°,得到C2,∴点G与点E关于原点O对称,∴E(1,1);(2)设C3的最低点为F,令y=0,则x2+2x=0,解得:x=0或x=﹣2,∴A(﹣2,0),由题意:点A与点B关于原点O对称,∴B(2,0),∵将C2绕着点B旋转180°得到C3,∴点E与点F关于原点O对称,∴F(3,﹣1),过点G作GH⊥OA于点H,过点F作FK⊥BD于点K,过点E作EM⊥OB于点M,如图,∵G(﹣1,﹣1),F(3,﹣1),∴GF∥HK,GH=FK=1,∵GH⊥OA,FK⊥BD,∴四边形GHKF为矩形.∵G(﹣1,﹣1),F(3,﹣1),∴HO=1,OK=3,∴HK=OH+OK=4,根据旋转不变性可得:S阴影部分=S矩形GHKF,∴S阴影部分=HK•HG=4×1=4,故答案为:4.20.(8分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.(1)延长FD到点G使DG=BE,连接AG,得到至△ADG,从而可以证明EF=BE+FD,请你利用图(1)证明上述结论.(2)如图(2),四边形ABCD中,90¹°∠BAD,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF 与∠BAD 满足______数量关系时,仍有EF =BE +FD ,并说明理由.【答案】(1)见解析;(2)2BAD EAF ÐÐ=,理由见解析【解析】(1)延长FD 到点G 使DG =BE ,连接AG .如图(1),在正方形ABCD 中,AB =AD ,90,BAD ADC B Ð=Ð=Ð=°在ABE D 和ADG D 中,AB AD ABE ADGBE DG =ìïÐ=Ðíï=îABE \D ≌ADG D (SAS ),,BAE GAD AE AG \Ð=Ð=,45GAD DAF BAE DAF \Ð+Ð=Ð+Ð=°45EAF GAF \=Ð=а在AEF D 和AGF D 中,GA EA GAF EAFAF AF =ìïÐ=Ðíï=î\AEF D ≌AGF D ,EF GF GD DF BE DF\==+=+(2)2BAD EAFÐÐ=理由如下:如图,延长CB 至M ,使BM =DF ,连接AM ,180,180ABC D ABC ABM Ð+Ð=°Ð+Ð=°Q ,D ABMÐÐ\=在ABM D 和ADF D 中,AB AD ABM DBM DF =ìïÐ=Ðíï=îABM \D ≌ADF D ,,AF AM DAF BAM \=Ð=Ð2BAD EAF ÐÐ=Q ,DAF BAE BAM BAE EAF \Ð+Ð=Ð+Ð=Ð,EAF EAM\Ð=Ð在EAF D 和ΔEAM 中,AF AM EAF EAMAE AE =ìïÐ=Ðíï=î\EAF D ≌ΔEAM ,EF EM BE BM BE DF \==+=+,EF BE DF\=+21.(10分)如图,ABC V 中,AB AC =,90BAC Ð=°,点D 、E 在BC 边上,45DAE Ð=°,将ACE V 绕点A 顺时针旋转90°得ABF V.(1)求证:BF BC ^;(2)连接DF ,求证:ADF ADE ≌V V ;(3)若3BD =,4CE =,则DF =______,四边形AFDE 的面积=______.【答案】(1)证明见解析;(2)证明见解析;(3)5;30【解析】(1)证明:∵将ACE V 绕点A 顺时针旋转90°得ABF V ,∴C ABF Ð=Ð,∵在ABC V 中,AB AC =,90BAC Ð=°,∴45ABC C Ð=Ð=°,∴454590DBF ABC ABF Ð=Ð+Ð=°+°=°,∴BF BC ^.(2)证明:∵将ACE V 绕点A 顺时针旋转90°得ABF V ,∴AF AE =,BAF CAE Ð=Ð,∵45DAE Ð=°,90BAC Ð=°,∴904545BAD CAE Ð+Ð=°-°=°,∴45BAD BAF BAD CAE Ð+Ð=Ð+Ð=°,∴DAF DAE Ð=Ð,在ADF V 和ADE V 中,AF AE DAF DAE AD AD =ìïÐ=Ðíï=î,∴()ADF ADE SAS V V ≌.(3)解:如图,过点A 作AH BC ^于H ,∵将ACE V 绕点A 顺时针旋转90°得ABF V ,3BD =,4CE =,∴4BF CE ==,由(1)得,90DBF Ð=°,在Rt DBF V中,5DF ==,由(2)得,ADF ADE ≌V V ,∴5DE DF ==,ADF ADE S S =△△,∴35412BC BD DE CE =++=++=,∵在ABC V 中,AB AC =,90BAC Ð=°,AH BC ^;∴BH CH =,∴162AH BC ==,∴四边形AFDE 的面积:ADF ADE AFDE S S S =+△△四边形2ADE S =△122DE AH =´´´DE AH =´56=´30=.故答案为:5;30.22.(10分)△ABC 和△DEC 是等腰直角三角形,90ACB DCE Ð=Ð=°,AC BC =,CD CE =.(1)【观察猜想】当△ABC 和△DEC 按如图1所示的位置摆放,连接BD 、AE ,延长BD 交AE 于点F ,猜想线段BD 和AE 有怎样的数量关系和位置关系.(2)【探究证明】如图2,将△DCE 绕着点C 顺时针旋转一定角度()090a a °<<°,线段BD 和线段AE 的数量关系和位置关系是否仍然成立?如果成立,请证明:如果不成立,请说明理由.(3)【拓展应用】如图3,在△ACD 中,45ADC Ð=°,CD =,4=AD ,将AC 绕着点C 逆时针旋转90°至BC ,连接BD ,求BD 的长.【答案】(1)BD AE = ,BD AE ^;(2)成立,理由见解析;(3)【解析】(1)BD AE = ,BD AE ^,证明如下:在BCD △和ACE V 中,90ACB DCE Ð=Ð=°Q ,AC BC =,CD CE =,BCD ACE \@V V ,,BD AE CBD CAE \=Ð=Ð,90ACB Ð=°Q ,90CBD BDC \Ð+Ð=°,BDC ADF Ð=ÐQ ,90CAE ADF \Ð+Ð=°,BD AE \^;(2)成立,理由如下:∵ACB DEC Ð=Ð,∴ACB ACD DCE ACD Ð+Ð=Ð+Ð,即BCD ACE Ð=Ð,在BCD △和ACE V 中,∵AC BC =,BCD ACE Ð=Ð,CD CE =,∴BCD ACE V V ≌,∴BD AE =,CBD CAE Ð=Ð,∵BGC AGF Ð=Ð,∴CBD BGC CAE AGF Ð+Ð=Ð+Ð,∵90ACB Ð=°,∴90CBD BGC Ð+Ð=°,∴90CAE AGF Ð+Ð=°,∴90AFB Ð=°,∴BD AE ^;(3)如图,过点C 作CH CD ^,垂足为C ,交AD 于点H ,由旋转性质可得:90ACB Ð=°,AC BC =,∵CH CD ^,∴90DCH Ð=°,∵90ADC CHD Ð+Ð=°,且45ADC Ð=°,∴45CHD Ð=°,∴CHD ADC Ð=Ð,∴CD CH ==在Rt DCH V中:2DH ===,∵90ACB DCH Ð=Ð=°,∴ACB ACH DCH ACH Ð+Ð=Ð+Ð,即ACD BCH Ð=Ð,在ACD △和BCH V 中,∵AC BC =,ACD BCH Ð=Ð,CD CH =,∴ACD BCH ≌△△,∴4BH AD ==,CBH DAC Ð=Ð,∴12CBH DAC Ð+Ð=Ð+Ð,∵90ACB Ð=°,∴190CBH Ð+Ð=°,∴290DAC Ð+Ð=°,∴90BHA Ð=°, ∴BH AD ^,∴BHD △是直角三角形,在Rt BDH V中,BD ==.23.(10分)如图,正方形ABCD 和正方形CEFG (其中BD >2CE ),直线BG 与DE 交于点H .(1)如图1,当点G 在CD 上时,请直接写出线段BG 与DE 的数量关系和位置关系;(2)将正方形CEFG 绕点C 旋转一周.①如图2,当点E 在直线CD 右侧时,求证:;②当∠DEC =45°时,若AB =3,CE =1,请直接写出线段DH 的长.BH DH -=【答案】(1)BG=DE,BG⊥DE;(2)①见解析;【解析】(1)解:BG=DE,BG⊥DE,理由如下:∵四边形ABCD和四边形CEFG都为正方形,∴BC=CD,∠BCG=∠DCE=90°,CG=CE,∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE.∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHD=90°,即.综上可知BG和DE的关系为BG=DE且.故答案为:BG=DE且;(2)①证明:如图,在线段BG上截取BK=DH,连接CK.∵四边形ABCD和四边形CEFG都为正方形,∴BC=CD,∠BCD=∠GCE=90°,CG=CE,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴∠CBK=∠CDH,∵BK=DH,BC=DC,∴△BCK≌△DCH(SAS),∴CK=CH,∠BCK=∠DCH,∴∠BCK+∠KCD=∠DCH+∠KCD,即∠KCH=∠BCD=90°,∴△KCH是等腰直角三角形,∴,∴;②如图,当D,G,E三点共线时∠DEC=45°,连接BD.由(1)同样的方法可知,BH=DE,∵四边形CEFG为正方形,∴CE=CH=1,∴.∵AB=3,∴设DH=x,则,在Rt△BDH中,,即,解得:(舍)BG DE^BG DE^BG DE^HK=BH DH BH BK KH-=-==EH=BD===BH DE x222=BH DH BD+222(=xx+12x x==故此时如图,当H ,E 重合时,∠DEC =45°,连接BD .设DH =x ,∵BG =DH ,∴在Rt △BDH 中,,即解得:故此时综上所述,满足条件的DHDH ==BH DH HG x -222=BH DH BD +222(x x +=12x x ==DH。
九年级上册数学 旋转几何综合单元培优测试卷
九年级上册数学旋转几何综合单元培优测试卷一、初三数学旋转易错题压轴题(难)1.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,AP=13AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,连接PC,且ABE为等边三角形.(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P在A的左侧时,若△PBC的面积为93,求线段AC的长.【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)7 7【解析】【分析】(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.【详解】解:(1)∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;故答案为:∠ABP=∠EBC,AP=EC;(2)成立,理由如下,∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;(3)过点C作CD⊥m于D,∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,∴3293∴PC=3,设AP=CE=t,则AB=AE=3t,∴AC=2t,∵m∥n,∴∠CAD=∠AEB=60°,∴AD=12AC=t,CD33,∵PD2+CD2=PC2,∴(2t)2+3t2=9,∴t=377(负值舍去),∴AC=2t 67.【点睛】本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.2.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.3.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.4.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为(,);(2)若二次函数的图象经过点C.①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1) ∴点C的坐标为(-3,1) .(2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF =OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C点坐标;(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;③分二种情况进行讨论.5.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.6.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题7.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.8.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
2019-2020人教版九上数学23.1图形的旋转培优专题(含答案)
2019-2020图形的旋转培优专题(含答案)一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点C 按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB 边上,则点B'与点B 之间的距离为( )A .12B .6C .62D .632.如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )A.3B.23C.13D.153.如图,在ABC 中,65CAB ∠=,将ABC 在平面内绕点A 旋转到''AB C 的位置,使'//CC AB ,则旋转角的度数为( )A.35B.40C.50D.654.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是( )A.1B.2C.3D.不能确定5.如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A.(1,-1)B.(-1,-1)C.(2,0)D.(0,-2)6.点P 是正方形ABCD 边AB 上一点(不与A ,B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE 等于( )A .75°B .60°C .45°D .30°7.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一直线上,则三角板ABC旋转的度数是()A.60°B.90°C.120°D.150°8.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A.3B.33C.332D.329.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.B.6 C.D.10.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BDB.AC∥BDC.DF=EFD.∠CBD=∠E11.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.30°B.40°C.50°D.65°12.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°二、填空题13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为_____.15.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.16.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.17.如图,△ABC中,AB=6,DE∥AC,将△BDE绕点B顺时针旋转得到△BD′E′,点D的对应点D′落在边BC上.已知BE′=5,D′C=4,则BC的长为______.18.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为23,则B′E的长为__.19.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=______cm.20.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.21.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.22.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接E ,F .给出下列五个结论:①AP=EF ;②PD=EC ;③∠PFE=∠BAP ;④△APD 一定是等腰三角形;⑤AP ⊥EF .其中正确结论的序号是_____.三、解答题23.已知,点P 是等边三角形△ABC 中一点,线段AP 绕点A 逆时针旋转60°到AQ ,连接PQ 、QC . (1)求证:PB =QC ;(2)若PA =3,PB =4,∠APB =150°,求PC 的长度.24.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点,点D 与A ,B 不重合,连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.()求证:△ACD≌△BCE;1()当AD BF2∠的度数.=时,求BEF25.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=45,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.26.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.27.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;(2)当直线MN 绕点C 旋转到图(2)的位置时,求证:DE=AD ﹣BE ;(3)当直线MN 绕点C 旋转到图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系;(2)把图1中的正方形DEFG 绕点D 顺时针旋转45°,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG 绕点D 顺时针旋转90°,此时点E 、G 恰好分别落在线段AD 、CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.29.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将BCE 绕点C 顺时针方向旋转90得到DCF ,连结EF ,若30EBC ∠=,求EFD ∠的度数.30.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.31.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°.将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON=;∠CON=.(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=5°,求∠AOM.32.四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE =BF ,连接AE 、AF 、EF .(1)求证:△ADE ≌△ABF ;(2)若BC =12,DE =5,求△AEF 的面积.33.已知正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、(DC 或它们的延长线于点M 、N ,当MAN ∠绕点A 旋转到BM DN =时如图1),则()1线段BM 、DN 和MN 之间的数量关系是______;()2当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;()3当MAN∠绕点A旋转到(如图3)的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.34.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.35.如图,正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且,将△绕点D逆时针旋转,得到△.求证:.当时,求EF的长.参考答案1.D【解析】【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【详解】连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°-60°-60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°-60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°-60°-30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB-AA'=AB-AC=6,∴B'B=63,故选D.【点睛】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.2.C【解析】分析:连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可. 详解:连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴BM=22223213+=+=BC CM∴FE=13.故选C.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.3.C【解析】分析:根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.详解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×65°=50°,∴∠CAC′=∠BAB′=50°故选C.点睛:本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键. 4.A 【解析】【分析】如图作辅助线,利用旋转和三角形全等证明△DCG 与△DEF 全等,再根据全等三角形对应边相等可得EF 的长,即△ADE 的高,然后得出三角形的面积. 【详解】如图所示,作EF ⊥AD 交AD 延长线于F ,作DG ⊥BC ,∵CD 以D 为中心逆时针旋转90°至ED , ∴∠EDF+∠CDF=90°,DE=CD , 又∵∠CDF+∠CDG=90°, ∴∠CDG=∠EDF ,在△DCG 与△DEF 中,90CDG EDFEFD CGD DE CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△DCG ≌△DEF (AAS ), ∴EF=CG , ∵AD=2,BC=3, ∴CG=BC ﹣AD=3﹣2=1, ∴EF=1,∴△ADE 的面积是:12×AD×EF=12×2×1=1, 故选A .【点睛】本题考查梯形的性质和旋转的性质,熟知旋转变换前后,对应点到旋转中心的距离相等、每一对对应点与旋转中心连线所构成的旋转角相等是解题的关键.同时要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.5.B【解析】试题分析:根据已知条件O(0,0),B(2,2),可求得D(1,1),OB与x轴、y轴的交角为45°,当菱形绕点O逆时针旋转,每秒旋转45°,时,8秒可旋转到原来的位置,因60÷8=7....4,所以第60秒时是第8循环的地上个位置,这时点D的坐标原来位置点D的坐标关于原点对称,所以为(-1,-1),故答案选B.考点:规律探究题.6.C【解析】【分析】过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,先利用AAS证明△ADP≌△PEF,根据全等三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中∠ADP=∠FPE∠A=∠F=90°PD=EP,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=91°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选C.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.7.D【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选:D.考点:旋转的性质.8.B【解析】分析:设CD、B′C′相交于点M,连结AM,根据旋转角的定义易得:∠BAB′=30°,根据HL易得△AB′M≌△ADM,所以公共部分面积等于△ADM面积的2倍;设DM=x,在△AMD中利用勾股定理求得DM,进而解答即可.详解:设CD、B′C′相交于点M,连结AM,设DM=x,根据旋转的性质以及正方形的性质可得AB′=AD,AM=AM,∠BAB′=30°,∠B′=∠D=90°.∵AB′=AD,AM=AM,∴△AB′M≌△ADM.∵∠BAB′=30°,∴∠MAD=30°,AM=2x.∵x2+1=4x2,∴x=33,∴S ADM′=1331236⨯⨯=,∴重叠部分的面积S ADMB′=326⨯=33.故选B.点睛:本题考查了正方形的性质,旋转的性质,含30°三角形的性质,勾股定理,全等三角形的判定与性质,证明△AB′M≌△ADM是解答本题的关键;9.A【解析】试题分析:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=,∴∠CAB′=90°,∴B′C==,故选A.考点:勾股定理.10.C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.11.C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,∴∠CAC′=∠BAB′=30°故选A.考点:旋转的性质.12.D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.13.32【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE=22AD DE+=32,∴AB=32,故答案为:32.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.2 3π【解析】【分析】先根据勾股定理得到AB=22,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=2,∴AB=22,∴S扇形ABD =()2302223603ππ⨯=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=23π,故答案为:23π.【点睛】本题考查了旋转的性质、扇形面积的计算,得到S阴影部分=S扇形ABD是解题的关键. 15.(-23,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=23,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,AB=OC-23,则tan∠BOA=33 ABOA=,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AOB ≌△HB 1O ,∴B 1H=OA=6,OH=AB=23,∴点B 1的坐标为(-23,6),故答案为:(-23,6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.16.23 【解析】 【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE 的长. 【详解】 由题意可得,DE=DB=CD=12AB , ∴∠DEC=∠DCE=∠DCB ,∵DE ∥AC ,∠DCE=∠DCB ,∠ACB=90°, ∴∠DEC=∠ACE ,∴∠DCE=∠ACE=∠DCB=30°, ∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=23,∴AE=23.故答案为23.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.234+.【解析】解:由旋转可得,BE=BE'=5,BD=BD',∵D'C=4,∴BD'=BC﹣4,即BD=BC﹣4,∵DE∥AC,∴BD BEBA BC=,即456BCBC-=,解得BC=234+(负值已舍去),即BC的长为234+.故答案为:234+.点睛:本题主要考查了旋转的性质,解一元二次方程以及平行线分线段成比例定理的运用,解题时注意:对应点到旋转中心的距离相等.解决问题的关键是依据平行线分线段成比例定理,列方程求解.18.23﹣2【解析】【分析】求出∠C′AE=30°,推出AE=2C′E,AC′=3C′E,根据阴影部分面积为23得出12×C′E×3C′E=23,求出C′E=2,即可求出C′B′,即可求出答案.【详解】解:∵将Rt△ACB绕点A逆时针旋转15°得到Rt△AB′C′,∴△ACB≌△AC′B′,∴AC=AC′,CB=C′B′,∠CAB=∠C′AB′,∵在Rt△ABC中,∠C=90°,AC=BC,∴∠CAB=45°,∵∠CAC′=15°,∴∠C′AE=30°,∴AE=2C′E,AC′=3C′E,∵阴影部分面积为23,∴12×C′E×3C′E=23,C′E=2,∴AC=BC=C′B′=3C′E=23,∴B′E=23-2,故答案为:23-2.【点睛】本题考查了旋转的性质,含30度角的直角三角形性质,勾股定理,等腰三角形的性质的应用,主要考查学生的推理和计算能力.19.【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE 上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2cm.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.20.【解析】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为:.点睛:本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.21.1.5【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为:1.5.22.①③⑤【解析】【分析】可以作PG⊥AB,证明△APG≌△FEP即可. 【详解】如图,作PG⊥AB,易知PG=PE,且AG=EC=FP,则△APG≌△FEP,所以AP=EF,∠PFE=∠BAP,运用旋转的知识易知AP⊥EF,所以正确结论的序号是①③⑤.【点睛】做辅助线证明全等是解题的关键.23.(1)证明见解析;(2)5.【解析】【分析】(1)直接利用旋转的性质可得AP=AQ,∠P AQ=60°,然后根据“SAS”证明△BAP≌△CAQ,结合全等三角形的性质得出答案;(2)由△APQ是等边三角形可得AP=PQ=3,∠AQP=60°,由全等的性质可得∠AQC =∠APB=150°,从而可求∠PQC=90°,然后根据勾股定理求PC的长即可.直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ , 在△BAP 和△CAQ 中,∴△BAP ≌△CAQ (SAS ), ∴PB=QC ;(2)解:∵由(1)得△APQ 是等边三角形, ∴AP=PQ=3,∠AQP=60°, ∵∠APB=150°,∴∠PQC=150°﹣60°=90°, ∵PB=QC , ∴QC=4,∴△PQC 是直角三角形,∴PC===5.【点睛】本题考查了旋转的性质,等边三角形的性质与判定,全等三角形的判定与性质,勾股定理.证明△BAP ≌△CAQ 是解(1)的关键,证明∠PQC =90°是解(2)的关键. 24.()1证明见解析;()2BEF 67.5∠=. 【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ;()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BCACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =, BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.25.(1) 150°;(2)43+16【解析】试题分析:(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.试题解析:(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+82=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×32=23,∴四边形ABCD的面积为:12AD•EB+12DB•CD=12×4×23+12×4×8=43+16.26.(1)45°;(2)12.5.【解析】【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【详解】(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴AD AE AC AB,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB是解本题的关键.27.(1)详见解析;(2)详见解析;(3)DE=BE﹣AD.【解析】【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE ,然后根据“AAS”可判断△ADC ≌△CEB ,所以CD=BE ,AD=CE ,再利用等量代换得到DE=AD+BE ;(2)与(1)一样可证明△ADC ≌△CEB ,则CD=BE ,AD=CE ,于是有DE=CE ﹣CD=AD ﹣BE ;(3)与(1)一样可证明△ADC ≌△CEB ,则CD=BE ,AD=CE ,于是有DE=CD ﹣CE=BE ﹣AD . 【详解】(1)∵AD ⊥MN ,BE ⊥MN , ∴∠ADC=∠CEB=90°, ∴∠DAC+∠ACD=90°, ∵∠ACB=90°, ∴∠BCE+∠ACD=90°, ∴∠DAC=∠BCE , 在△ADC 和△CEB ,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△CEB (AAS ), ∴CD=BE ,AD=CE , ∴DE=CE+CD=AD+BE ;(2)与(1)一样可证明△ADC ≌△CEB , ∴CD=BE ,AD=CE , ∴DE=CE ﹣CD=AD ﹣BE ;(3)DE=BE﹣AD.【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,根据实际情况选择合适的方法证明△ADC≌△CEB是解决问题的关键.28.(1)CM=EM,CM⊥EM,理由见解析;(2)(1)中的结论成立,理由见解析;(3)(1)中的结论成立,理由见解析.【解析】分析:(1)延长EM交AD于H,证明△FME≌△AMH,得到HM=EM,根据等腰直角三角形的性质可得结论;(2)根据正方形的性质得到点A、E、C在同一条直线上,根据直角三角形斜边上的中线是斜边的一半证明即可;(3)根据题意画出完整的图形,根据平行线分线段成比例定理、等腰三角形的性质证明即可.详解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,EFM MBH FM BMFME BMH ∠∠⎧⎪⎨⎪∠∠⎩===,, ∴△FME ≌△BMH , ∴HM=EM ,EF=BH , ∵CD=BC ,∴CE=CH ,∵∠HCE=90°,HM=EM , ∴CM=ME ,CM ⊥EM . (2)如图2,连接AE ,∵四边形ABCD 和四边形EDGF 是正方形, ∴∠FDE=45°,∠CBD=45°, ∴点B 、E 、D 在同一条直线上,∵∠BCF=90°,∠BEF=90°,M 为AF 的中点,∴CM=12AF ,EM=12AF , ∴CM=ME , ∵∠EFD=45°, ∴∠EFC=135°,∵CM=FM=ME ,∴∠MCF=∠MFC ,∠MFE=∠MEF , ∴∠MCF+∠MEF=135°, ∴∠CME=360°-135°-135°=90°, ∴CM ⊥ME .(3)如图3,连接CF ,MG ,作MN ⊥CD 于N ,在△EDM 和△GDM 中,DE DG MDE MDG DM DM ⎧⎪∠∠⎨⎪⎩===, ∴△EDM ≌△GDM ,∴ME=MG ,∠MED=∠MGD , ∵M 为BF 的中点,FG ∥MN ∥BC , ∴GN=NC ,又MN ⊥CD , ∴MC=MG ,∴MD=ME ,∠MCG=∠MGC , ∵∠MGC+∠MGD=180°, ∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°, ∵∠CDE=90°, ∴∠CME=90°, ∴(1)中的结论成立.点睛:本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 29.15° 【解析】 【分析】根据旋转性质可得:BEC DFC ∠=∠,90ECF BCE ∠=∠=,CF CE =,由等腰直角三角形三角形性质可得45CFE FEC ∠=∠=,所以EFD DFC EFC ∠=∠-∠. 【详解】 解:DCF 是BCE 旋转得到的图形,903060BEC DFC ∴∠=∠=-=,90ECF BCE ∠=∠=,CF CE =, 45CFE FEC ∴∠=∠=.604515EFD DFC EFC ∴∠=∠-∠=-=.【点睛】本题考核知识点:旋转性质,等腰直角三角形. 解题关键点:熟记旋转性质,等腰直角三角形性质.30.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形;(3). 【解析】 【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【详解】(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,,∴MN最大=2+5=7∴S△PMN最大=PM2=×MN2=×(7)2= .【点睛】解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大31.25°40°25°【解析】【分析】(1)根据∠MON和∠BOC的度数可以得到∠MOC的度数;(2)根据OC平分∠MOB,∠BOC=65°可以求得∠BOM的度数,由∠MON=90°,可得∠BON的度数,继而可得∠CON的度数;(3)由∠NOC=5°,∠BOC=65°,∠MON=90°结合平角的定义即可求得.【详解】(1)∠MOC=∠MON﹣∠BOC=90°﹣65°=25°,故答案为:25°;(2)∵OC是∠MOB的角平分线,∴∠MOB=2∠BOC=2×65°=130°,∴旋转角∠BON=∠MOB﹣∠MON=130°﹣90°=40°,∠CON=∠BOC﹣∠BON=65°﹣40°=25°,故答案为:40°,25°;(3)∵∠NOC=5°,∠BOC=65°,∴∠BON=∠NOC+∠BOC=70°,∵点O为直线AB上一点,∴∠AOB=180°,∵∠MON=90°,∴∠AOM=∠AOB﹣∠MON﹣∠BON=180°﹣90°﹣70°=20°.【点睛】本题考查了旋转的性质,角平分线的定义,平角的定义等,熟练掌握相关的定义和性质是解题的关键.32.(1)见解析;(2)84.5.【解析】【分析】(1)由正方形的性质得出AD=AB,∠D=∠ABC=∠ABF=90°,依据“SAS”即可证得;(2)根据勾股定理求得AE=13,再由旋转的性质得出AE=AF ,∠EAF=90°,从而由面积公式得出答案. 【详解】解:(1)∵四边形ABCD 是正方形, ∴AD=AB ,∠D=∠ABC=90°, 而F 是CB 的延长线上的点, ∴∠ABF=90°, 在△ADE 和△ABF 中,∵AB AD ABF ADE BF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△ABF (SAS ); (2)∵BC=12,∴AD=12, 在Rt △ADE 中,DE=5,AD=12, ∴AE==13,(勾股定理)∵△ABF 可以由△ADE 绕旋转中心 A 点,按顺时针方向旋转90°得到, ∴AE=AF ,∠EAF=90°,∴△AEF 的面积=12AE 2=12×169=84.5. 【点睛】本题主要考查正方形的性质和全等三角形的判定与性质及旋转的性质,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.33.(1)BM DN MN +=;(2)猜想:BM DN MN +=,详见解析;(3)DN BM MN -=,详见解析.【解析】【分析】(1)连接AC,交MN于点G,则可知AC垂直平分MN,结合∠MAN=45°,可证明△ABM≌△AGM,可得到BM=MG,同理可得到NG=DN,可得出结论;(2)在MB的延长线上,截取BE=DN,连接AE,则可证明△ABE≌△ADN,可得到AE=AN,进一步可证明△AEM≌△ANM,可得结论BM+DN=MN;(3)在DC上截取DF=BM,连接AF,可先证明△ABM≌△ADF,进一步可证明△MAN≌△FAN,可得到MN=NF,从而可得到DN﹣BM=MN.【详解】(1)如图1,连接AC,交MN于点G.∵四边形ABCD为正方形,∴BC=CD,且BM=DN,∴CM=CN,且AC平分∠BCD,∴AC⊥MN,且MG=GN,∴AM=AN.∵AG⊥MN,∴∠MAG=∠NAG.∵∠BAC=∠MAN=45°,即∠BAM+∠GAM=∠GAM+∠GAN,∴∠BAM=∠GAN=∠GAM.在△ABM和△AGM中,∵90B AGMBAM GAMAM AM∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△AGM(AAS),∴BM=MG,同理可得GN=DN,∴BM+DN=MG+GN=MN.故答案为:BM+DN=MN;(2)猜想:BM+DN=MN,证明如下:如图2,在MB的延长线上,截取BE=DN,连接AE.在△ABE和△ADN中,∵AB ADABE DBE DN=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD.∵∠BAD=90°,∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠EAB+∠BAM=45°,∴∠EAM=∠NAM.在△AEM和△ANM中,∵AE ANEAM NAMAM AM=⎧⎪∠=∠⎨⎪=⎩,∴△AEM≌△ANM(SAS),∴ME=MN,又ME=BE+BM=BM+DN,∴BM+DN=MN;(3)DN﹣BM=MN.证明如下:如图3,在DC上截取DF=BM,连接AF.△ABM和△ADF中,∵AB ADABM DBM DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=90°,即∠MAF=∠BAD=90°.∵∠MAN=45°,∴∠MAN=∠F AN=45°.在△MAN和△F AN中,∵AM AFMAN FANAN AN=⎧⎪∠=∠⎨⎪=⎩,∴△MAN≌△F AN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.【点睛】本题为四边形的综合应用,涉及知识点有正方形的性质、全等三角形的判定和性质、垂直平分线的判定和性质等.在(1)中证得AM=AN是解题的关键,在(2)、(3)中构造三角形全等是解题的关键.本题考查了知识点不多,但三角形全等的构造难度较大.34.(1)证明见解析;(2)∠BED=45°.【解析】试题分析:(1)由等边三角形的性质知∠BAC=60°,AB=AC,由旋转的性质知∠DAE=60°,AE=AD,从而得∠EAB=∠DAC,再证△EAB≌△DAC可得答案;(2)由∠DAE=60°,AE=AD知△EAD为等边三角形,即∠AED=60°,继而由∠AEB=∠ADC=105°可得.试题解析:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,==,=∴△EAB≌△DAC.∴∠AEB=∠ADC.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.35.(1)证明见解析;(2)FC=3.【解析】试题分析:(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=2,正方形的边长为6,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=8-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,∴△DEF≌△DMF(SAS),∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=2,且BC=6,∴BM=BC+CM=6+2=8,∴BF=BM﹣MF=BM﹣EF=8﹣x,∵EB=AB﹣AE=6﹣2=4,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即42+(8﹣x)2=x2,解得:x=5,则EF=5.点睛:熟练掌握旋转的性质,正方形的四个角都是直角,四条边相等,勾股定理,全等三角形的判定(SAS),全等三角形的性质是解答本题的关键.。
部编数学九年级上册23.1图形的旋转(解析版)2023实验培优含答案
2022-2023学年九年级数学上册章节同步实验班培优题型变式训练(人教版)23.1 图形的旋转【题型1】找旋转中心、旋转角、对应点1.(2022·江苏·无锡市侨谊实验中学八年级期中)如图,将ABC V 绕点C 逆时针旋转50°得到A B C ¢¢V ,则B CB ¢Ð的大小为_________.【答案】50°##50度【解析】【分析】根据旋转的性质可得出∠B 'CB =50°,此题得解.【详解】解:根据B CB ¢Ð等于旋转角的大小,∴50B CB ¢Ð=°.故答案为:50°【点睛】本题考查了旋转的性质,牢记对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.【变式1-1】2.(2022·湖南·通道侗族自治县教育科学研究室七年级期末)如图,三角形乙是三角形甲经过旋转变换得到的,则其旋转中心是点____ ,逆时针方向旋转了____度.【答案】 N 90【解析】【分析】根据对应点到旋转中心的距离相等可确定旋转中心,对应点与旋转中心的连线所形成的角为旋转角进行解答即可.【详解】解:如图,连接N 与两个三角形的对应点,发现两个三角形的对应点到点N 的距离相等,且对应点与N 的连线所成的角是直角,故旋转中心是点N ,逆时针方向旋转了90°,故答案为:N ,90.【点睛】本题考查旋转的性质,熟练掌握旋转的性质是解答的关键.【题型2】根据旋转的性质求解1.(2022·四川·成都市树德实验中学八年级期中)如图,在Rt△ABC中,∠ACB=90º,∠CAB=30º,BC=4.将△ABC绕点C逆时针旋转α度(0<α£180),得到△DEC,A,B的对应点分别为D,E.边DC,DE分别交直线AB于F,G,当△DFG是直角三角形时,则BD=__________.【答案】4-【解析】【分析】分两种情况:当∠DFG=90°时,当∠DGF=90°时,分别求出BD便可.【详解】解:根据题意得:CD=AC,∠CDE=∠A=30°,当∠DFG=90°时,如图:∵∠ACB =90º,∠CAB =30º,BC =4.∴28AB BC ==,∴CD AC ===∵1122ABC S AB CF AC BC D =×=×,∴AC BC CF AB×==∴DF CD CF =-=当∠DGF =90°时,如图:∵∠CDE =∠A =30°,∠DGB =90°,∴∠DFG =60°=∠ABC ,∴点B 与点F 重合,∴4BD CD BC =-=-;综上所述,BD 的长为4.故答案为:4【点睛】本题考查了旋转的性质,直角三角形的性质,勾股定理,分情况讨论,解题的关键在于分情况讨论.【变式2-1】2.(2022·福建泉州·七年级期末)如图,在直角三角形ABC 中,90,3,4,5ACB AC BC AB Ð=°===,点P 是边AB 上的一动点.A B C ABC ¢¢V V ≌,将A B C ¢¢V 绕点C 按顺时针方向旋转,点E 是边A C ¢的中点.下列4个结论:①点C 到AB 的距离为65;②A CA B CB ¢¢Ð=Ð;③PE 长度的最小值为0.9,④PE 长度的最大值为5.5,其中正确的是________.(写出所有正确结论的序号)【答案】②③④【解析】【分析】利用等面积法即可求出点C 到AB 的距离;根据A B C ABC ¢¢V V ≌以及¢¢¢¢Ð+Ð=Ð+ÐA CA ACB ACB B CB ,即可证明A CA B CB ¢¢Ð=Ð;当A C ¢与ABC V 在AB 边上的高重合时,PE 长度最短为:2.4 1.5=0.9-;当A C ¢与ABC V 的BC 边重合但取反方向时,PE 长度最长为:5 1.5=5.5+.【详解】解:在直角三角形ABC 中,利用等面积法可求出点C 到AB 的距离为12345=5´¸,故①错误;∵A B C ABC ¢¢V V ≌,∴90A CB ¢¢Ð=°,∴¢¢¢¢Ð+Ð=Ð+ÐA CA ACB ACB B CB ,∴A CA B CB ¢¢Ð=Ð,故②正确;∵点E 是边A C ¢的中点,3AC A C ¢==,∴ 1.5CE =,当A C ¢与ABC V 在AB 边上的高重合时,PE 长度最短为:2.4 1.5=0.9-,故③正确;当A C ¢与ABC V 的BC 边重合但取反方向时,PE 长度最长为:5 1.5=5.5+,故④正确;综上所述:正确结论有②③④.故答案为:②③④【点睛】本题考查旋转的性质,角之间的关系,动点问题,解题的关键是掌握旋转性质,理清角之间的关系,理解当A C ¢与ABC V 在AB 边上的高重合时,PE 长度最短;当A C ¢与ABC V 的BC 边重合但取反方向时,PE 长度最长.【题型3】画旋转图形1.(2022·山东青岛·一模)如图,ΔABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是(-1,0),现将ΔABC 绕A 点逆时针旋转90°,再向右平移一个单位后点C 的对应点C '的坐标是__________.-【答案】(1,3)【解析】【分析】利用旋转变换的性质画出图形,观察图形即可得结论.【详解】ΔABC绕A点逆时针旋转90°后的图像如图:观察图象,可知C对应的点1C坐标为(-2,3),-∴(-2,3)再向右平移一个单位后点C的对应点C'的坐标是(1,3)-.故答案是:(1,3)【点睛】本题考查坐标与图形变化-旋转、平移,解题的关键是画出旋转后的图形,属于中考常考题型.【变式3-1】2.(2022·江西·南昌二中八年级期中)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,−1),B(1,−2),C(3,−3).(1)将△ABC先向上平移4个单位长度再沿y轴翻折得到△A1B1C1,请画出△A1B1C1;(2)请画出把△ABC绕原点O逆时针旋转90°得到△A2B2C2.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据平移的性质以及轴对称的性质分别作出A,B,C的对应点A1,B1,C1再连接即可;(2)根据旋转的性质分别作出A,B,C的对应点A2,B2,C2再连接即可.(1)解:△A1B1C1如图所示.;(2)解:△A2B2C2如图所示.【点睛】本题考查作图-旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识.【题型4】旋转中的规律性问题1.(2021·广东佛山·八年级期末)如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2021次闪烁呈现出来的图形是( )A.B.C.D.【答案】A【解析】【分析】观察图形的变化易得每旋转一次的度数,根据阴影所处的位置可得相应选项.【详解】解:观察图形的变化可知:每旋转一次,旋转角为90°,即每4次旋转一周,∵2021÷4=505...1,即第2021次与第1次的图案相同.故选:A.【点睛】此题考查了图形的变换规律问题,解题的关键是找到图形旋转的规律周期.【变式4-1】2.(2021·重庆南川·九年级期中)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第2021次旋转后得到的图形与图①﹣④中相同的是()A.图①B.图②C.图③D.图④【答案】A【解析】【分析】观察图形不难发现,四次旋转后矩形又回到初始水平位置,用2021除以4,根据商和余数的情况确定即可.【详解】解:由图可知,四次旋转后矩形又回到初始水平位置,∵2021÷4=505余1,∴第2021次旋转后得到的图形为第505个循环组的第一个图,是图①.故选:A .【点睛】本题考查了旋转的性质,图形变化规律,观察出四次旋转后矩形又回到初始水平位置是解题的关键.【题型5】求旋转中坐标的变化1.(2022·湖北省直辖县级单位·九年级阶段练习)如图,在坐标系中放置一菱形OABC ,已知60ABC Ð=°,点B 在y 轴上,1OA =,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转12次,点B 的落点依次为1B ,2B ,3B ,¼,则12B 的横坐标为______.【答案】【解析】【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4,由于1226=´,因此点B 向右平移8即可到达点12B ,根据点B 的坐标就可求出点12B 的坐标.【详解】连接AC ,如图所示,∵四边形OABC 是菱形,∴OA AB BC OC ===,∵60ABC Ð=°,∴ABC V 是等边三角形,∴AC AB =,∴AC OA =,∵1OA =,∴1AC =,画出第5次、第6次、第7次翻转后的图形,如图所示,由图可知:每翻转6次,图形向右平移4,∵1226=´,∴点B 向右平移2×4=8个单位到点12B ,∵B 点的坐标为(,∴12B 的坐标为(8,故答案为:.【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.【变式5-1】2.(2022·广东河源·八年级期中)如图,平面直角坐标系中,11OA B D 是边长为2的等边三角形,作221B A B D 与11OA B D 关于点1B 成中心对称,再作233B A B D 与221B A B D 于点2B 成中心对称,如此作下去,则202120222022B A B DA的坐标是________.的顶点2022【答案】(4043,【解析】【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出An的坐标的规律,求出A2n的坐标,即可求出答案.【详解】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2-1=3,2×0,∴点A2的坐标是(3,∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4-3=5,2×0-(∴点A3的坐标是(5∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6-5=7,2×0,∴点A4的坐标是(7,…,∵1=2×1-1,3=2×2-1,5=2×3-1,7=2×4-1,……,∴An 的横坐标是2n -1,A 2n 的横坐标是2×2n -1=4n -1,∵当n 为奇数时,An n 为偶数时,An 的纵坐标是∴顶点A 2n 的纵坐标是∴顶点A 2n 的坐标是(41n -,∴点2022A 的坐标是(4043,;故答案为:(4043,.【点睛】此题主要考查了坐标与图形变化——旋转问题,要熟练掌握,解答此题的关键是分别判断出An 的横坐标、纵坐标各是多少.一.选择题1.(2021·江苏苏州·中考真题)如图,在方格纸中,将Rt AOB △绕点B 按顺时针方向旋转90°后得到Rt A O B ¢¢△,则下列四个图形中正确的是( )A .B .B .C .D .【答案】B【解析】【分析】根据绕点B 按顺时针方向旋转90°逐项分析即可.【详解】A 、Rt A OB ¢¢△是由Rt AOB △关于过B 点与OB 垂直的直线对称得到,故A 选项不符合题意;B 、Rt A O B ¢¢△是由Rt AOB △绕点B 按顺时针方向旋转90°后得到,故B 选项符合题意;C 、Rt A O B ¢¢△与Rt AOB △对应点发生了变化,故C 选项不符合题意;D 、Rt AOB △是由Rt AOB △绕点B 按逆时针方向旋转90°后得到,故D 选项不符合题意.故选:B .【点睛】本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.2.(2022·全国·九年级课时练习)如图,矩形ABCD 中,AD =2,AB AC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .【答案】A【解析】【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠FAD=60°,AF=AD=2,又由四边形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,AF=1,由勾股定理得AH=,得到BH=AH+AB,再由勾股定理得BF=FH=12==【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+ ∠BAD=150°∴∠FAH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF==故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.3.(2021·河南驻马店·七年级期末)如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是( )A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE【答案】C【解析】【分析】利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.【详解】解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD =180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4.(2022·全国·九年级)如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为( )A.12°B.16°C.20°D.24°【答案】A【解析】【分析】根据点E旋转的角度和点C旋转的角度相等,所以求出点E旋转的角度即可.【详解】解: 如图设圆心为O,连接OA, OB,点E落在圆上的点E'处.Q AB=OA=OB,\∠OAB=60o,同理∠OAE'=60o,Q∠EAB=108o,\∠EAO=∠EAB-∠OAB=48o,\∠EAE'=∠OAE'-∠EAO=60o-48o=12oQ点E旋转的角度和点C旋转的角度相等,\点C旋转的角度为12o,故选A.【点睛】本题主要考查旋转的性质,注意与圆的性质的综合.5.(2022·山东·青岛三十九中八年级期中)如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,旋转得到△A'B'C',则旋转中心的坐标是()A .(1,1)B .(1,﹣1)C .(0,0)D .(1,﹣2)【答案】A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可.【详解】解:如图点O′即为旋转中心,坐标为O′(1,1) .故选:A【点睛】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键.6.(2022·江苏·八年级专题练习)如图,在方格纸上建立的平面直角坐标系中,将ABO V 绕点O 按顺时针方向旋转90°,得到A B O ¢¢△,则点B ¢的坐标为( ).A.(2,1)B.(1,2)-D.(2,0)C.(2,1)【答案】A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B′的坐标即可.【详解】△A′B′O如图所示,点B′(2,1).故选A.【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.二、填空题7.(2021·全国·九年级专题练习)如图,在菱形OBCD中,OB=1,相邻两内角之比为1:2,将菱形OBCD 绕顶点O顺时针旋转90°,得到菱形OB′C′D′视为一次旋转,则菱形旋转45次后点C的坐标为_____.﹣32)【解析】【分析】先求出菱形的内角度数,过C ¢作C H y ¢^轴于H 点,在Rt △C B H ¢¢中,利用特殊角度数及边长求解C H ¢和B H ¢长,则C ¢点坐标可求,由360904°¸°=,得出菱形4次旋转一周,4次一个循环,由454111¸=¼¼,得出菱形旋转45次后点C 与点C ¢重合,即可得出答案.【详解】解:∵四边形OBCD 是菱形,相邻两内角之比为1:2,∴∠C =∠BOD =60°,∠D =∠OBC =120°.根据旋转性质可得∠OB ′C ′=120°,∴∠C ′B ′H =60°.过C ′作C ′H ⊥y 轴于点H ,如图所示:在Rt △C ′B ′H 中,B ′C ′=1,1122B H B C ¢\¢==,C H H ¢¢=13122OH \=+=.C \¢坐标为3)2-,∵360°÷90°=4,∴菱形4次旋转一周,4次一个循环,∵45÷4=11……1,\菱形旋转45次后点C 与点C ¢重合,坐标为3)2-;故答案为:32-.【点睛】本题主要考查了菱形的性质,旋转的性质,以及坐标与图形变化,解决此类问题要熟知旋转后的不变量,得出规律是解题的关键.8.(2022·全国·九年级专题练习)如图,在ABC V 中,90ACB Ð=°,AC =BC =ABC V 绕点C 按逆时针方向旋转得到DEC V ,连接AD ,BE ,直线AD ,BE 相交于点F ,连接CF ,在旋转过程中,线段CF 的最大值为__________.【解析】【分析】取AB 的中点H ,连接CH 、FH ,设EC ,DF 交于点G ,在△ABC 中,由勾股定理得到AB 知:△DCE ≌△ACB ,从而∠DCA =∠BCE ,∠ADC =∠BEC ,由∠DGC =∠EGF ,可得∠AFB =90º,由直角三角形斜边上的中线等于斜边的一半,可得FH =CH =12AB △FCH 中,当F 、C 、H 在一条直线上时,CF.【详解】解:取AB 的中点H ,连接CH 、FH ,设EC ,DF 交于点G ,在△ABC 中,∠ACB =90º,∵AC BC∴AB=由旋转可知:△DCE≌△ACB,∴∠DCE=∠ACB,DC=AC,CE=CB,∴∠DCA=∠BCE,∵∠ADC=12(180º-∠ACD) ,∠BEC=12(180º-∠BCE),∴∠ADC=∠BEC,∵∠DGC=∠EGF,∴∠DCG=∠EFG=90º,∴∠AFB=90º,∵H是AB的中点,∴FH=12AB,∵∠ACB=90º,∴CH=12AB,∴FH=CH=12AB在△FCH中,FH+CH>CF,当F、C、H在一条直线上时,CF=∴线段CF.【点睛】本题考查了旋转的性质、勾股定理,解决本题的关键是掌握全等的性质.9.(2021·广东汕头·九年级期中)如图,将等边ABCV绕顶点A顺时针方向旋转,使边AB与AC重合得ACD△,BC的中点E的对应点为F,则EAFÐ的度数是_______.【答案】60°【解析】【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF 的度数.【详解】∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,∴旋转角为60°,E ,F 是对应点,则∠EAF 的度数为:60°.故答案为:60°.【点睛】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.10.(2022·辽宁·阜新市第一中学一模)如图,在四边形ABCD 中,30ABC Ð=°,将DCB V 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到ACE V ,5AB =,9BC =,则BD =______.【解析】【分析】连接BE ,如图,根据旋转的性质得∠BCE =60°,CB =CE ,BD =AE ,再判断△BCE 为等边三角形得到BE =BC =9,∠CBE =60°,从而有∠ABE =90°,然后利用勾股定理计算出AE 即可.【详解】解:连接BE ,如图,∵△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,∴∠BCE =60°,CB =CE ,BD =AE ,∴△BCE 为等边三角形,∴BE =BC =9,∠CBE =60°,∵∠ABC =30°,∴∠ABE =90°,在Rt △ABE 中,AE =【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.(2022·上海·八年级专题练习)在平面直角坐标系xOy 中,直线2y x =+分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45°,得到射线AN .点D 为AM 上的动点,点B 为AN 上的动点,点C 在MAN Ð的内部.(1)BCD △周长的最小值是____________________;(2)当BCD △的周长取得最小值,且BD =BCD △的面积为__________.【答案】 43【解析】【分析】(1)可作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.连接C 1C 2.利用两点之间线段最短,可得到当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.(2)根据(1)的作图可知四边形AC 1CC 2的对角互补,结合轴对称可得∠BCD =90°.利用勾股定理得到CB 2+CD 2=BD 22,因为CB +CD =CB •CD 的值,进而求出三角形的面积.【详解】(1)∵直线y =2x +与x 轴、y 轴分别交于C 、A 两点,把y =0代入,解得x x =0代入,解得y =2,∴点C 的坐标为(0),点A 的坐标为(0,2).∴AC =4.作点C关于射线AM的对称点C1,点C关于射线AN的对称点C2.由轴对称的性质,可知CD=C1D,CB=C2B.∴CB+BD+CD=C2B+BD+C1D=C1C2连接AC1、AC2,可得∠C1AD=∠CAD,∠C2AB=∠CAB,AC1=AC2=AC=4.∵∠DAB=45°,∴∠C1AC2=90°.连接C1C2.12C C==∵两点之间线段最短,∴当B、D两点与C1、C2在同一条直线上时,△BCD的周长最小,最小值为线段C1C2的长.∴△BCD的周长的最小值为.故答案为:.(2)根据(1)的作图可知四边形AECF的对角互补,其中∠DAB=45°,因此,∠C2CC1=135°.即∠BCC2+∠DCC1+∠BCD=135°,∴2∠BCC2+2∠DCC1+2∠BCD=270°①,∵∠BC2C=∠BCC2,∠DCC1=∠DC1C,∠BC2C+∠DC1C+∠BCC2+∠DCC1+∠BCD=180°,∴2∠BCC2+2∠DCC1+∠BCD=180°②,①-②得,∠BCD∴CB2+CD2=BD2509,∵CB+CD=(CB+CD)2=CB2+CD2+2CB•CD,∴2CB•CD=(CB+CD)2-(CB2+CD2)= 25016 93 -=∴1423S CB CD=××=.故答案为:4 3【点睛】本题考查了最短路径和勾股定理及一次函数的性质,解题关键利用轴对称确定最短路径,结合勾股定理来解决问题.12.(2022·江苏南京·模拟预测)如图,正比例函数y=kx(k≠0)的图像经过点A(2,4),AB⊥x 轴于点B,将△ABO 绕点A逆时针旋转90°得到△ADC,则直线AC 的函数表达式为_____.【答案】y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【详解】解:∵正比例函数y=kx(k≠0)经过点A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:24 62a ba b+ìí+î==,解得:0.55ab-ìíî==,所以解析式为:y=-0.5x+5【点睛】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题13.(2022·全国·八年级课时练习)如图,已知:正方形ABCD,点E,F分别是BC,DC上的点,连接AE,AF,EF,且45EAFÐ=°,求证:BE DF EF+=.【答案】见解析.【解析】【分析】将△ABE绕点A逆时针旋转90°得到△ADG,根据旋转的性质可得GD=BE,AG=AE,∠DAG=∠BAE,然后求出∠FAG=∠EAF,再利用“边角边”证明△AEF和△AGF全等,根据全等三角形对应边相等可得EF=FG,即可得出结论.【详解】如解图,将ABE△绕点A逆时针旋转90°至ADGV的位置,使AB与AD重合.∴AG AE =,,DAG BAE DG BE Ð=Ð=.∵45EAF Ð=°.∴904545GAF DAG DAF BAE DAF BAD EAF Ð=Ð+Ð=Ð+Ð=Ð-Ð=°-°=°,∴EAF GAF Ð=Ð.在AGF V 和AEF V 中,,AG AE GAF EAF AF AF =ìïÐ=Ðíï=î,∴()AGF AEF SAS △≌△.∴EF GF =.∵GF DG DF BE DF =+=+,∴BE DF EF +=.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,难点在于利用旋转变换作出全等三角形.14.(2022·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到111A B C △,请画出111A B C △﹔(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到222A B C △,请画出222A B C △.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据平移的方式确定出点A 1,B 1,C 1的位置,再顺次连接即可得到111A B C △;(2)根据旋转可得出确定出点A 2,B 2,C 2的位置,再顺次连接即可得到222A B C △.(1)如图,111A B C △即为所作;(2)如图,222A B C △即为所作;【点睛】本题考查作图-旋转变换与平移变换,解题的关键是理解题意,灵活运用所学知识解决问题.15.(2021·湖南郴州·中考真题)如图1,在等腰直角三角形ABC 中,90BAC Ð=°.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)证明:AHB AGC V V ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG Ð=°;②若4AB AC ==,当EH 的长度为多少时,AQG V 为等腰三角形?【答案】(1)见详解;(2)①见详解;②当EH 的长度为2AQG V 为等腰三角形【解析】【分析】(1)由旋转的性质得AH =AG ,∠HAG =90°,从而得∠BAH =∠CAG ,进而即可得到结论;(2)①由AHB AGC V V ≌,得AH =AG ,再证明AEH AFG V V ≌,进而即可得到结论;②AQG V 为等腰三角形,分3种情况:(a )当∠QAG =∠QGA =45°时,(b )当∠GAQ =∠GQA =67.5°时,(c )当∠AQG =∠AGQ =45°时,分别画出图形求解,即可.【详解】解:(1)∵线段AH 绕点A 逆时针方向旋转90°得到AG ,∴AH =AG ,∠HAG =90°,∵在等腰直角三角形ABC 中,90BAC Ð=°,AB =AC ,∴∠BAH =90°-∠CAH =∠CAG ,∴AHB AGC V V ≌;(2)①∵在等腰直角三角形ABC 中,AB =AC ,点E ,F 分别为AB ,AC 的中点,∴AE =AF ,AEF V 是等腰直角三角形,∵AH =AG ,∠BAH =∠CAG ,∴AEH AFG V V ≌,∴∠AEH =∠AFG =45°,∴∠HFG =∠AFG +∠AFE =45°+45°=90°,即:90HFG Ð=°;②∵4AB AC ==,点E ,F 分别为AB ,AC 的中点,∴AE =AF =2,∵∠AGH =45°,AQG V 为等腰三角形,分3种情况:(a )当∠QAG =∠QGA =45°时,如图,则∠HAF =90°-45°=45°,∴AH 平分∠EAF ,∴点H 是EF 的中点,∴EH 12==(b)当∠GAQ=∠GQA=(180°-45°)÷2=67.5°时,如图,则∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)当∠AQG=∠AGQ=45°时,点H与点F重合,不符合题意,舍去,V为等腰三角形.综上所述:当EH的长度为2AQG【点睛】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.16.(2022·河南南阳·一模)在Rt△ABC中,∠BAC=90°,AB=AC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90°得到AE,连接DE,F,G分别是DE,CD的中点,连接FG.【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是 ,FG与直线BC的位置关系是 ;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?①请在图2中补全图形;②若成立,请给出证明;若不成立,请说明理由.【拓展应用】(3)若AB=AC,其他条件不变,连接BF、CF.当△ACF是等边三角形时,请直接写出△BDF的面积.【答案】(1)FG=12BD,FG⊥BC;(2)①补全图形见解析;②结论仍然成立,理由见解析;(3)△BDF的面积为1或【解析】【分析】(1)根据等腰直角三角形的性质以及中位线定理可得结果;(2)①根据题意画出图形即可;②根据旋转的性质证明△ABD≌△ACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答.【详解】(1)∵∠BAC=90°,AB=AC,点D是BC的中点,∴AD⊥BC,AD=BD=CD,∠ABC=∠ACB=45°,∵F,G分别是DE,CD的中点,∴FG12=AD,FG∥AD,∴FG12=BD,FG⊥BC,故答案为:FG12=BD,FG⊥BC;(2)①补全图形如图所示;②结论仍然成立,理由如下:如图2,连接CE,∵把AD绕点A逆时针旋转90°得到AE,∴∠BAC=∠DAE=90°,AD=AE,∴∠BAD=∠CAE,又∵AB=AC,∴△ABD≌△ACE(SAS),∴CE=BD,∠ACE=∠B=∠ACB=45°,∴∠DCE=90°,∵F,G分别是DE,CD的中点,∴FG12=CE12=BD,FG∥CE,∴FG⊥BC;(3)当点D在点B的左侧时,如图3﹣1中,作AM⊥BC于M,连接FG,∵∠BAC=90°,AB=AC=AM⊥BC,∴BC=2,BM=CM=AM12=BC=1,∠BAM=∠CAM=45°,∵AD=AE,∠DAE=90°,点F是DE中点,∴∠EAF=∠CAM=45°,AF=FD=EF,∵△AFC是等边三角形,∴AF=AC=FC=∠FAC=∠AFC=∠ACF=60°,∴∠CAE=15°=∠BAD,∴∠ADM =∠ABC ﹣∠BAD =30°,∴DM ==∴BD =DM ﹣BM 1=,由(2)的结论可得:FG ⊥BC ,FG 12=BD =,∴△BDF 的面积11)12=´=当点D 在点C 的右侧时,如图3﹣2中,作AM ⊥BC 于M ,连接FG ,∵∠BAC =90°,AB =AC =AM ⊥BC ,∴BC =2,BM =CM =AM 12=BC =1,∠BAM =∠CAM =45°,∵AD =AE ,∠DAE =90°,点F 是DE 中点,∴∠EAF =∠CAM =45°,AF =FD =EF ,∠DAF =45°,∵△AFC 是等边三角形,∴AF =AC =FC =∠FAC =∠AFC =∠ACF =60°,∴∠CAD =∠CAF ﹣∠DAF =15°,∴∠ADM =∠ACB ﹣∠CAD =30°,∴DM ==∴BD =DM +BM =1,由(2)的结论可得:FG ⊥BC ,FG 12=BD =∴△BDF 的面积11)12=´=综上所述:△BDF 的面积为11【点睛】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关键.。
九年级培优初中数学 旋转辅导专题训练附答案
九年级培优初中数学旋转辅导专题训练附答案一、旋转1.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.2.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF ,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题3.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________;(理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由;(拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】(1)证明:∵ABC ∆是等边三角形,∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,∴60CAE =︒,AC AE =.∴ACE ∆是等边三角形.∴AC AE CE ==.∴AB BC CE AE ===.∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=.(3)四边形ADGF 是正方形.理由如下:∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴AF AD =,90DAF ∠=︒.∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒.∴四边形ADGF 是矩形.∵AF AD =,∴四边形ADGF 是正方形.(4)如图,连接DE .∵四边形ADGF 是正方形,∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=.∵将AFE ∆沿AE 折叠得到AME ∆,∴MAE FAE ∠=∠,AF AM =.∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠.∵AF AD =,∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.5.如图①,在等腰△ABC 和△ADE 中,AB=AC ,AD=AE ,且∠BAC=∠DAE=120°. (1)求证:△ABD ≌△ACE ; (2)把△ADE 绕点A 逆时针方向旋转到图②的位置,连接CD ,点M 、P 、N 分别为DE 、DC 、BC 的中点,连接MN 、PN 、PM ,判断△PMN 的形状,并说明理由;(3)在(2)中,把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN 周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN 是等边三角形.理由见解析;(3)△PMN 周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE ,再由AB=AC ,AD=AE ,利用SAS 即可判定△ABD ≌△ADE ;(2)△PMN 是等边三角形,利用三角形的中位线定理可得PM=12CE ,PM ∥CE ,PN=12BD ,PN ∥BD ,同(1)的方法可得BD=CE ,即可得PM=PN ,所以△PMN 是等腰三角形;再由PM ∥CE ,PN ∥BD ,根据平行线的性质可得∠DPM=∠DCE ,∠PNC=∠DBC ,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC , 所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC ,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN 是等边三角形;(3)由(2)知,△PMN 是等边三角形,PM=PN=12BD ,所以当PM 最大时,△PMN 周长最大,当点D 在AB 上时,BD 最小,PM 最小,求得此时BD 的长,即可得△PMN 周长的最小值;当点D 在BA 延长线上时,BD 最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.6.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA 在旋转过程中所扫过的面积; (2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM 的度数; (3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,∴OA 旋转了45°.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=. (2)∵MN ∥AC ,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM .∴BM=BN .又∵BA=BC ,∴AM=CN .又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .∴∠AOM=∠CON=12(∠AOC-∠MON )=12(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.7.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.8.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.9.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.10.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.【答案】(1)①BE=AD,BE⊥AD;②见解析;(2)125.【解析】试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.试题解析:(1)①解:BE=AD,BE⊥AD②BE=AD,BE⊥AD仍然成立证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD∽△BCE∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD ∴∠AGE=∠BGD=90°∴,.∴.∵,,∴考点:三角形全等与相似、勾股定理.11.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM =BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是________________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.【答案】(1)①BD=CE;②AM=AN,∠MAN=∠BAC 理由如下:∵在图①中,DE//BC,AB=AC∴AD="AE."在△ABD与△ACE中∴△ABD≌△ACE.∴BD=CE,∠ACE=∠ABD.在△DAM与△EAN中,∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.∴AM=AN,∠MAN=∠BAC.(2)AM=kAN,∠MAN=∠BAC.【解析】(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.12.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.-.【答案】(1)BQ=CP;(2)成立:PC=BQ;(3)434【解析】试题分析:(1)结论:BQ=CP.如图1中,作PH∥AB交CO于H,可得△PCH是等边三角形,只要证明△POH≌△QPB即可;(2)成立:PC=BQ.作PH∥AB交CO的延长线于H.证明方法类似(1);(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.设CE=CO=a,则FC=FP=2a,EF3,在Rt△PCE中,表示出PC,根据PC+CB=4,可得方程a a+=,求出a即可解决问题;62)24试题解析:解:(1)结论:BQ=CP.理由:如图1中,作PH∥AB交CO于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,∵∠OPQ=∠OCP=60°,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF . ∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++ =(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.14.正方形ABCD 和正方形AEFG 的边长分别为2和22,点B 在边AG 上,点D 在线段EA 的延长线上,连接BE . (1)如图1,求证:DG ⊥BE ;(2)如图2,将正方形ABCD 绕点A 按逆时针方向旋转,当点B 恰好落在线段DG 上时,求线段BE 的长.【答案】(1)答案见解析;(226+ 【解析】 【分析】(1)由题意可证△ADG ≌△ABE ,可得∠AGD =∠AEB ,由∠ADG +∠AGD =90°,可得∠ADG+∠AEB=90°,即DG⊥BE;(2)过点A作AM⊥BD,垂足为M,根据勾股定理可求MG的长度,即可求DG的长度,由题意可证△DAG≌△BAE,可得BE=DG.【详解】(1)如图,延长EB交GD于H∵四边形ABCD和四边形AEFG是正方形∴AD=AB,AG=AE,∠DAG=∠BAE=90°∴△ADG≌△ABE(SAS)∴∠AGD=∠AEB∵∠ADG+∠AGD=90°∴∠ADG+∠AEB=90°∴DG⊥BE(2)如图,过点A作AM⊥BD,垂足为M∵正方形ABCD和正方形AEFG的边长分别为2和2,∴AM=DM2,∠DAB=∠GAE=90°∴MG22AG MA-6,∠DAG=∠BAE∴DG=DM+MG26,由旋转可得:AD=AB,AG=AE,且∠DAG=∠BAE∴△DAG≌△BAE(SAS)∴BE=DG26【点睛】考查了旋转的性质,正方形的性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.15.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。
部编数学九年级上册第二十三章旋转单元培优训练(解析版)2023实验培优含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2022-2023学年九年级数学上册章节同步实验班培优题型变式训练(人教版)第二十三章 旋转单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第23章 旋转,共23题; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2022·广东河源·八年级期中)下列运动形式属于旋转的是( )A .在空中上升的氢气球B .飞驰的火车C .时钟上钟摆的摆动D .运动员掷出的标枪【答案】C【解析】【分析】根据旋转的定义逐一进行判断即可得到正确的结论.【详解】解:在空气中上升的氢气球,飞驰的火车,运动员掷出标枪属于平移现象,时钟上钟摆的摆动属于旋转现象.故选:C.【点睛】本题主要考查关于旋转的知识,题目比较简单,属于基础题目,大部分学生能够正确完成,熟练掌握旋转的定义是解决本题的关键.2.(2021·全国·九年级单元测试)已知点()2,3A -与点B 关于原点对称,则点B 的坐标( )A .()3,2-B .()2,3-C .()3,2D .()2,3--【答案】B【解析】【分析】根据关于原点对称点的坐标变化特征直接判断即可.【详解】解:点()2,3A -与点B 关于原点对称,则点B 的坐标为()2,3-,故选:B .【点睛】本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数.3.(2019·天津·中考真题)如图,将ABC D 绕点C 顺时针旋转得到DEC D ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD=B .AB EB ^C .BC DE =D .A EBCÐ=Ð【答案】D【解析】【分析】利用旋转的性质得AC=CD ,BC=EC ,∠ACD=∠BCE ,所以选项A 、C 不一定正确再根据等腰三角形的性质即可得出A EBC Ð=Ð,所以选项D 正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可.【详解】解:∵ABC D 绕点C 顺时针旋转得到DEC D ,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2а-;∠EBC=∠BEC=180BCE 2а-,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090,∴选项B 不一定正确;故选D .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.4.(2021·江苏苏州·中考真题)如图,在方格纸中,将Rt AOB △绕点B 按顺时针方向旋转90°后得到Rt A O B ¢¢△,则下列四个图形中正确的是( )A .B .C .D .【答案】B【解析】【分析】根据绕点B 按顺时针方向旋转90°逐项分析即可.【详解】A 、Rt A OB ¢¢△是由Rt AOB △关于过B 点与OB 垂直的直线对称得到,故A 选项不符合题意;B 、Rt A O B ¢¢△是由Rt AOB △绕点B 按顺时针方向旋转90°后得到,故B 选项符合题意;C 、Rt A O B ¢¢△与Rt AOB △对应点发生了变化,故C 选项不符合题意;D 、Rt AOB △是由Rt AOB △绕点B 按逆时针方向旋转90°后得到,故D 选项不符合题意.故选:B .【点睛】本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.5.(2019·湖南张家界·中考真题)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .B .(1,0)C .æççèD .(0,1)-【答案】A【解析】【分析】根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.【详解】Q 四边形OABC 是正方形,且OA 1=,()A 0,1\,Q 将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,∴点A 1的横坐标为1sin 45´°A 1的纵坐标为1cos 45´°=,1A \,继续旋转则()2A 1,0,3A ,A 4(0,-1),A 5æççè,A 6(-1,0),A 7æççè,A 8(0,1),A 9,……,发现是8次一循环,所以20198252¸= (3)\点2019A 的坐标为,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.6.(2022·重庆第二外国语学校八年级期中)如图在Rt AOB V 中,90AOB Ð=°,将AOB V 绕点O 沿逆时针方向旋转a °后与COD △重合,若132BOC Ð=°,则a 的值为( )A .32B .48C .42D .58【答案】C【解析】【分析】只需要求出∠BOD 的度数即可得到答案.【详解】解:由旋转的性质可得∠COD =∠AOB =90°,∵∠BOC =132°,∴∠BOD =∠BOC -∠COD =42°,∴42a =,故选:C .【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(2021·云南昆明·八年级期末)将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,若点E 的坐标为()3,2,则点G 的坐标为_____.【答案】()2,3-或()2,3-【解析】【分析】先利用正方形的性质,利用旋转画出正方形OEFG ,从而得到G 点的坐标.【详解】把EO 绕E 点顺时针(或逆时针)旋转90°得到对应点为G (或G´),如图,则G 点的坐标为(2,-3)或G ′的坐标为(﹣2,3),【点睛】本题考查坐标与图形的变换,涉及旋转、正方形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.(2020·广西·中考真题)以原点为中心,把()3,4M 逆时针旋转90°得到点N ,则点N 的坐标为______.【答案】()4,3-【解析】【分析】建立平面直角坐标系,根据旋转的性质得出N 点坐标,由此即可得出答案.【详解】解:如图:由旋转的性质可得:M 点横坐标等于N 点纵坐标的值,M 点纵坐标的值等于N 点横坐标的绝对值,又∵M (3,4),∴N (-4,3),故答案为:(-4,3).【点睛】此题考查有关点的坐标旋转的性质 ,结合坐标轴和旋转的特点确定坐标即可.9.(2021·全国·八年级课时练习)如图,将ABC V 绕点O 旋转得到A B C ¢¢¢V ,若,1,50,3060AC AOA A OB BAC C =Ð=°Ð=¢Ð+Ð=¢°°,则A C ¢¢=__________,A OB Т¢=__________,A B C Т¢¢=__________.【答案】 1 20° 120°【解析】【分析】根据旋转的性质,旋转前、后的两个图形全等,旋转角相等,可得出答案.【详解】∵∠BAC +∠C =60° ∴∠ABC =180°-60°=120°∵△ABC 绕点O 旋转得到△A ′B ′C ′∴△ABC ≌△A′B′C′∴AC =A′C ′,∠ABC =∠A ′B ′C ′∵AC =1,∠ABC =120°∴A′C′=1,∠A ′B ′C ′=120°∵△ABC 绕点O 旋转得到△A ′B ′C ′,∠AOA ′=50°,∴∠AOA′=∠BOB ′=50°′∵∠A′OB=30°∴∠A′OB′=50°-30°=20°故答案为:1 ,20°,120°【点睛】本题考察了旋转的性质.做题的关键是明白旋转前、后的两个图形全等,找到对应边和对应角;旋转角相等,找到旋转角即可.10.(2019·湖北武汉·中考真题)问题背景:如图,将ABC D 绕点A 逆时针旋转60°得到ADE D ,DE 与BC 交于点P ,可推出结论:PA PC PE+=问题解决:如图,在MNG D 中,6MN =,75M Ð=°,MG =点O 是MNG D 内一点,则点O 到MNG D 三个顶点的距离和的最小值是___________【答案】【解析】【分析】如图,将△MOG 绕点M 逆时针旋转60°,得到△MPQ ,易知△MOP 为等边三角形,继而得到点O 到三顶点的距离为:ON +OM +OG =ON +OP +PQ ,由此可以发现当点N 、O 、P 、Q 在同一条直线上时,有ON +OM +OG 最小,此时,∠NMQ =75°+60°=135°,过Q 作QA ⊥NM 交NM 的延长线于A ,利用勾股定理进行求解即可得.【详解】如图,将△MOG 绕点M 逆时针旋转60°,得到△MPQ ,显然△MOP 为等边三角形,∴,OM +OG =OP +PQ ,∴点O 到三顶点的距离为:ON +OM +OG =ON +OP +PQ ,∴当点N 、O 、P 、Q 在同一条直线上时,有ON +OM +OG 最小,此时,∠NMQ =75°+60°=135°,过Q 作QA ⊥NM 交NM 的延长线于A ,则∠MAQ=90°,∴∠AMQ =180°-∠NMQ=45°,∵MQ =MG =∴AQ =AM =MQ•cos45°=4,∴NQ ==,故答案为【点睛】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.11.(2019·辽宁营口·中考真题)如图,ABC V 是等边三角形,点D 为BC 边上一点,122BD DC ==,以点D 为顶点作正方形DEFG ,且DE BC =,连接AE ,AG .若将正方形DEFG 绕点D 旋转一周,当AE 取最小值时,AG 的长为________.【答案】8【解析】【分析】过点A 作AM BC ^于M ,由已知得出4DC =,得出6BC BD DC =+=,由等边三角形的性质得出6AB AC BC ===,116322BM BC ==´=,得出1DM BM BD =-=,在Rt ABM V 中,由勾股定理得出AM ==DEFG 绕点D 旋转到点E 、A 、D 在同一条直线上时,AD AE DE +=,即此时AE 取最小值,在Rt ADM V 中,由勾股定理得出AD ==Rt ADG V 中,由勾股定理即可得出8AG ==.【详解】过点A 作AM BC ^于M ,∵122BD DC ==,∴4DC =,∴246BC BD DC =+=+=,∵ABC V 是等边三角形,∴6AB AC BC ===,∵AM BC ^,∴116322BM BC ==´=,∴321DM BM BD =-=-=,在Rt ABM V 中,AM ===,当正方形DEFG 绕点D 旋转到点E 、A 、D 在同一条直线上时,AD AE DE +=,即此时AE 取最小值,在Rt ADM V 中,AD ===∴在Rt ADG V 中,8AG ===;故答案为8.【点睛】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键.12.(2022·全国·九年级课时练习)如图,在平面直角坐标系中,等腰直角三角形OAB ,∠A =90°,点O 为坐标原点,点B 在x 轴上,点A 的坐标是(1,1).若将△OAB 绕点O 顺时针方向依次旋转45°后得到△OA 1B 1,△OA 2B 2,△OA 3B 3,…,可得A 1,0),A 2(1,﹣1),A 3(0,…则A 2021的坐标是______.【答案】()【解析】【分析】根据题意得:A 10),A 2(1,﹣1),A 3(0,),()()()(()456781,1,,1,1,,1,1A A A A A --- ,…,由此发现,旋转8次一个循环,再由202182525¸=LL ,即可求解.【详解】解:根据题意得:A 1,0),A 2(1,﹣1),A 3(0,()()()(()456781,1,,1,1,,1,1A A A A A --- ,…,由此发现,旋转8次一个循环,∵202182525¸=LL ,∴A 2021的坐标是() .故答案为:()【点睛】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键.三、(本大题共5小题,每小题6分,共30分)13.(2022·广东广州·九年级期末)如图,在△ABC 中,∠CAB =70°,在同一平面内,将△ABC 绕点A 旋转到△AB 'C ′的位置,使得CC ′∥AB ,求∠CC 'A 的度数.【答案】∠CC 'A =70°【解析】【分析】先根据平行线的性质,由CC AB ¢∥得∠AC ′C =∠CAB =70°,再根据旋转的性质得AC =AC ′,∠BAB ′=∠CAC ′,于是根据等腰三角形的性质有∠ACC ′=∠AC ′C =70°.【详解】∵CC AB ¢∥,∴∠ACC ′=∠CAB =70°,∵△ABC 绕点A 旋转到△AB ′C ′的位置,∴AC =AC ′,∠BAB ′=∠CAC ′,在△ACC ′中,∵AC =AC ′∴∠ACC ′=∠CC 'A =70°,【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.(2021·湖南衡阳·中考真题)如图,点E 为正方形ABCD 外一点,90AEB =°∠,将Rt ABE △绕A 点逆时针方向旋转90°得到,ADF DF V 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由;(2)已知7,13BH BC ==,求DH 的长.【答案】(1)正方形,理由见解析;(2)17【解析】【分析】(1)由旋转的性质可得∠AEB =∠AFD =90°,AE =AF ,∠DAF =∠EAB ,由正方形的判定可证四边形BE 'FE是正方形;(2)连接BD ,利用勾股定理可求BD ==,再利用勾股定理可求DH 的长.【详解】解:(1)四边形AFHE 是正方形,理由如下:根据旋转:90AEB AFD AE AF DAF EAB ÐаÐÐ==,=,=,∵四边形ABCD 是正方形∴∠DAB=90°∴∠FAE =∠DAB=90°∴90AEB AFH FAE ÐÐÐ=°==∴四边形AFHE 是矩形,又∵AE AF=∴矩形AFHE 是正方形.(2)连接BD∵13BC CD ==,在Rt BCD V 中,BD ==∵四边形AFHE 是正方形∴90EHD Ð=°在Rt DHB △中,DH =7BH =,∴17DH =.故答案是17.【点睛】本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.15.(2022·黑龙江鸡西·九年级期末)如图,在等腰三角形ABC 中,AB =BC .将ABC V 绕顶点B 逆时针旋转a °到11A BC V 的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F .(1)求证:△BCF ≌△BA 1D ;(2)当C a Ð=°时,判定四边形A 1BCE 的形状并说明理由.【答案】(1)见解析(2)菱形,理由见详解【解析】【分析】(1)根据等腰三角形的性质得到AB AC =,A C Ð=Ð,由旋转的性质得到1A B AB BC ==,1A A C Ð=Ð=Ð,11A BD CBC Ð=Ð,根据全等三角的判定定理得到1BCF BA D V V ≌;(2)由旋转的定义得11C BC C a Ð=Ð=°,因此1A E BC P ,根据三角形的内角和定理得11(1802)A BC BFC a Ð=Ð=-°,因此,1A B CE P ,证得四边形A 1BCE 为平行四边形,由于1A B BC =,证得四边形A 1BCE 为菱形.(1)证明:∵ABC V 是等腰三角形,∴AB BC =,A C Ð=Ð,∵将ABC V 绕顶点B 逆时针旋转a °到11A BC V 的位置,∴11ABC A BC @V V ,∴1A B AB BC ==,1A A C Ð=Ð=Ð,11A BD CBC a Ð=Ð=°,在BCF △与1BA D V 中,111A C AB BCA BD CBF Ð=Ðìï=íïÐ=Ðî ,∴1BCF BA D V V ≌(ASA ) ;(2)解:四边形1A BCE 是菱形,理由如下:∵将ABC V 绕顶点B 逆时针旋转a °到11A BC V 的位置,∴11ABC A BC @V V ,1C BC a Ð=°,∴1A A Ð=Ð,1C C Ð=Ð,∵AB AC =,C a Ð=°,∴11A A C C a Ð=Ð=Ð=Ð=°,∴11C BC C a Ð=Ð=°,∴1A E BC P ,∵1111180A BC A C Ð=°-Ð-Ð,∴11(1802)A BC a Ð=-° ,∵1180BFC C C BC Ð=°-Ð-Ð,∴(1802)BFC a Ð=-°,∴11A BC BFC Ð=Ð,∴1A B CE P ,∵1A E BC P ,1A B CE P ,∴四边形1A BCE 是平行四边形,∵1A B BC =,∴四边形1A BCE 是菱形.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,菱形的判定定理等,熟悉掌握旋转的性质,全等三角形的判定定理,菱形的判定方法是本题的解题关键.16.(2022·江苏南京·八年级期中)已知:如图,在△ABC 中,∠BAC =120°,以BC 为边向形外作等边三角形BCD ,把△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,且A 、C 、E 三点共线,若AB =3,AC =2,求∠BAD 的度数与AD 的长.【答案】∠BAD=60°,AD的长为5.【解析】【分析】由旋转的性质可得出∠ADE=60°、DA=DE,进而可得出△ADE为等边三角形以及∠DAE=60°,由点A、C、E 在一条直线上可得出∠BAD=∠BAC-∠DAE=60°;由点A、C、E在一条直线上可得出AE=AC+CE,根据旋转的性质可得出CE=AB,结合AB=3、AC=2可得出AE的长度,再根据等边三角形的性质即可得出AD的长度.【详解】解:∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°.∵点A、C、E在一条直线上,∴∠BAD=∠BAC-∠DAE=120°-60°=60°.∵点A、C、E在一条直线上,∴AE=AC+CE.∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5.∵△ADE为等边三角形,∴AD=AE=5.【点睛】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE为等边三角形是解题的关键.17.(2022·全国·九年级课时练习)在Rt ABC V 中,90ABC Ð=°,30ACB Ð=°,将ABC V 绕点C 顺时针旋转一定的角度a 得到DEC V ,点A 、B 的对应点分别是D 、E .(1)当点E 恰好在AC 上时,如图1,求ADE Ð的大小;(2)若60a =°时,点F 是边AC 中点,如图2,求证:四边形BEDF 是平行四边形(请用两组对边分别相等的四边形是平行四边形)【答案】(1)15ADE Ð=°(2)见解析【解析】【分析】(1)根据旋转的性质可得CA =CD ,∠ECD =∠BCA =30°,∠DEC =∠ABC =90°,根据等边对等角即可求出∠CAD =∠CDA =75°,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF =12AC ,然后根据30°所对的直角边是斜边的一半即可求出AB =12AC ,从而得出 BF =AB ,然后证出△ACD 和△BCE 为等边三角形,再利用HL 证出△CFD ≌△ABC ,证出DF =BE ,即可证出结论.(1)解:∵△ABC 绕点C 顺时针旋转α得到△DEC ,点E 恰好在AC 上,∴CA =CD ,∠ECD =∠BCA =30°,∠DEC =∠ABC =90°,∴∠CAD =∠CDA =12(180°﹣30°)=75°,∴∠ADE =90°﹣∠CAD =15°.(2)证明:如图2,连接AD ,∵点F是边AC中点,∴BF=AF=CF=12AC,∵∠ACB=30°,∴AB=12AC,∴BF=CF=AB,∵△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,DC=AC,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,在Rt△CFD和Rt△ABC中DC CA CF AB=ìíî=,∴Rt△CFD≌Rt△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题主要考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键.数的增减性来解答.四、(本大题共3小题,每小题8分,共24分)18.(2021·四川达州·中考真题)如图,在平面直角坐标中,ABC D 的顶点坐标分别是()0,4A ,()0,2B ,()3,2C .(1)将ABC D 以О为旋转中心旋转180°,画出旋转后对应的111A B C D ;(2)将ABC D 平移后得到222A B C D ,若点A 的对应点2A 的坐标为()2,2,求112A C C D 的面积【答案】(1)见解析;(2)11【解析】【分析】(1)延长AO 至1A ,使得1AO A O =;延长BO 至1B ,使得1BO B O =;延长CO 至1C ,使得1CO C O =;再连接111,,A B C 即得旋转后对应的111A B C D ;(2)根据平移的规律求出22(2,0),(5,0)B C ,再连接点112,,A C C ,得112A C C D ,将三角形分割乘两个三角形的面积之和,求出公共边1A D 的长即可求解.【详解】解:(1)延长AO 至1A ,使得1AO A O =;延长BO 至1B ,使得1BO B O =;延长CO 至1C ,使得1CO C O =;再连接111,,A B C 即得旋转后对应的111A B C D ,如下图所示:(2)由题意()0,4A ,()0,2B ,()3,2C ,平移后得到222A B C D ,其中2(2,2)A ,根据平移的规律知,平移过程是向下和向右分别移动两个单位可得:22(2,0),(5,0)B C ,再连接点112,,A C C ,得112A C C D ,其中12C C 交y 轴于点D ,如上图所示:1121112A C C A C D A DC S S S =+V V V 由12(3,2),(5,0)C C --得出直线12C C 的方程如下:直线12C C :1544y x =-当0x =时,54y =-,5(0,4D \-,1114A D \=,1121112A C C A C D A DC S S S =+V V V Q 111121122A D CB A D OC =´×+´×11111135112424=´´+´´=故11211A C C S =V .【点睛】本题考查了图象的旋转和平移,求三角形面积,解题的关键是:掌握图象旋转和平移的性质,求不规则三角形面积可以分割为两个规则的三角形面积之和.19.(2021·四川绵阳·中考真题)如图,点M 是ABC Ð的边BA 上的动点,6BC =,连接MC ,并将线段MC绕点M 逆时针旋转90°得到线段MN .(1)如图1,作MH BC ^,垂足H 在线段BC 上,当CMH B Ð=Ð时,判断点N 是否在直线AB 上,并说明理由;(2)如图2,若30ABC Ð=°,//NC AB ,求以MC 、MN 为邻边的正方形的面积S .【答案】(1)点N 在直线AB 上,见解析;(2)18【解析】【分析】(1)根据CMH B Ð=Ð,90CMH C Ð+Ð=°,得到90B C Ð+Ð=°,可得线段CM 逆时针旋转90°落在直线BA 上,即可得解;(2)作CD AB ^于D ,得出45MCN Ð=°,再根据平行线的性质得到45BMC Ð=°,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点N 在直线AB 上;∵CMH B Ð=Ð,90CMH C Ð+Ð=°,∴90B C Ð+Ð=°,∴90BMC Ð=°,即CM AB ^.∴线段CM 逆时针旋转90°落在直线BA 上,即点N 在直线AB 上.(2)作CD AB ^于D ,∵MC MN =,90CMN Ð=°,∴45MCN Ð=°,∵//NC AB ,∴45BMC Ð=°,∵6BC =,30B Ð=°,∴3CD =,MC ==∴218S MC ==,即以MC 、MN 为邻边的正方形面积18S =.【点睛】本题主要考查了旋转综合题,结合平行线的性质计算是解题的关键.20.(2021·全国·八年级专题练习)如图,D 是 ABC V 的边 BC 延长线上一点,连接 AD ,把 ACD △ 绕点 A 顺时针旋转 60°恰好得到 ABE △,其中D ,E 是对应点,若 18CAD Ð=°,求 EAC Ð的度数.【答案】42°【解析】【分析】根据旋转的性质得到60DAE Ð=°,再根据EAC EAD CAD Ð=Ð-Ð计算解题即可.【详解】解:∵把ACD △绕点A 顺时针旋转60°恰好得到ABE △,∴60DAE Ð=°,∴42EAC EAD CAD Ð=Ð-Ð=°.故答案为:42°【点睛】本题考查旋转、角的和差等知识,是基础考点,掌握相关知识是解题关键.五、(本大题共2小题,每小题9分,共18分)21.(2021·广西桂林·中考真题)如图,在平面直角坐标系中,线段AB 的两个端点的坐标分别是A (﹣1,4),B (﹣3,1).(1)画出线段AB 向右平移4个单位后的线段A 1B 1;(2)画出线段AB 绕原点O 旋转180°后的线段A 2B 2.【答案】(1)画图见解析,(2)画图见解析【解析】【分析】(1)分别确定,A B 向右平移4个单位后的对应点11,A B ,再连接11A B 即可;(2)分别确定,A B 绕原点O 旋转180°后的对应点22,A B ,再连接22A B 即可.【详解】解:(1)如图,线段11A B 即为所求作的线段,(2)如图,线段22A B 即为所求作的线段,【点睛】本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 22.(2021·全国·八年级课时练习)如图,等腰Rt△ABC中,∠A=45°,∠ABC=90°,点D在AC上,将△ABD 绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.【答案】(1)90°;(2)【解析】【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE的度数;(2)根据勾股定理求出AC的长,根据CD=3AD,可得CD和AD的长,根据旋转的性质可得AD=EC,再根据勾股定理即可得DE的长.【详解】解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°,由旋转的性质可知∠BAD=∠BCE=45°,∴∠DCE=∠BCE+∠BCA=45°+45°=90°;(2)∵BA=BC,∠ABC=90°,∴AC==∵CD=3AD,∴AD=,DC=由旋转的性质可知:AD=EC,∴DE==【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质.六、(本大题共12分)23.(2020·全国·九年级专题练习)问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题:(1)如图1,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当△DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由.【答案】(1)证明见解析;(2)正确,理由见解析【解析】【分析】(1)如图1中,根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行进行解答;(2)如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.【详解】解:(1)如图1中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)结论正确,理由如下:如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,ACN DCMCMD N90 AC CD °Ð=ÐìïÐ=Ð=íï=î,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.【点睛】本题属于几何变换综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,旋转的性质的综合应用,添加恰当辅助线构造全等三角形是解题的关键.。
九年级数学初中数学 旋转的专项培优易错试卷练习题(含答案)及答案
九年级数学初中数学旋转的专项培优易错试卷练习题(含答案)及答案一、旋转1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC , ∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC , ∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM , ∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF , ∴∠MCD=∠ACF , ∴∠FCM=∠ACB=∠ABC , ∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF , ∵CF=CF ,CG=CM , ∴△CFG ≌△CFM , ∴FG=FM ,∵ED=DM ,DF ⊥EM , ∴FE=FM=FG , ∵AE=AG ,AF=AF , ∴△AFE ≌△AFG , ∴∠EAF=∠FAG=12m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由.()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD V 的面积为212a ,理由详见解析;(3)BCD V 的面积为214a .【解析】 【分析】()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==o ,由旋转知,AB AD =,ABD 90∠=o ,ABC DBE 90∠∠∴+=o , A ABC 90∠∠+=o Q ,A DBE ∠∠∴=, 在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴V ≌()BDE AAS V BC DE a ∴==,BCD 1S BC DE 2=⋅V Q ,2BCD 1S a 2∴=V ;()2BCD V 的面积为21a 2,理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==o ,Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,AB BD ∴=,ABD 90∠=o , ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=, 在ABC V 和BDE V 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴V ≌()BDE AAS V , BC DE a ∴==,BCD 1S BC DE 2=⋅V Q ,2BCD 1S a 2∴=V ;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==o ,11BF BC a 22==, FAB ABF 90∠∠∴+=o , ABD 90∠=o Q , ABF DBE 90∠∠∴+=o ,FAB EBD ∠∠∴=,Q 线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB V 和BED V 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFB ∴V ≌()BED AAS V , 1BF DE a 2∴==,2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.3.如图所示,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC 的延长线交BD 于点P .(1)把△ABC 绕点A 旋转到图1,BD ,CE 的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC 绕点A 旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD 的最小值为 ,最大值为 .【答案】(1)BD ,CE 的关系是相等;(2534172034173)1,7 【解析】分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ; (2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到PD AE =CD CE ,进而得到53417;依据∠ABD=∠PBE ,∠BAD=∠BPE=90°,可得△BAD ∽△BPE ,即可得到PB BE AB BD =,进而得出63434,203417(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.详解:(1)BD,CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=2234+=,AC AE∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴PD CD=,AE CE∴PD=534;17若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,2234AD AB+=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即334PB =, 解得PB=63434, ∴PD=BD+PB=34+63434=203417, 故答案为53417或203417; (3)如图3所示,以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大. 如图3所示,分两种情况讨论:在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小. ①当小三角形旋转到图中△ACB 的位置时, 在Rt △ACE 中,2253-, 在Rt △DAE 中,225552+= ∵四边形ACPB 是正方形, ∴PC=AB=3, ∴PE=3+4=7,在Rt △PDE 中,2250491DE PE -=-=, 即旋转过程中线段PD 的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值, 此时,DP'=4+3=7,即旋转过程中线段PD 的最大值为7. 故答案为1,7.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.4.(12分)如图1,在等边△ABC 中,点D ,E 分别在边AB ,AC 上,AD=AE ,连接BE ,CD ,点M 、N 、P 分别是BE 、CD 、BC 的中点.(1)观察猜想:图1中,△PMN 的形状是 ;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.5.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,∵AB ACBAE CADAE AD=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△BAE,∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴AEAB =ADAC=2,∴△ABE∽△ACD;②∵△ABE∽△ACD,∴∠AEB=∠CDA.∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.6.如图1.在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,AB+BP=9,CE=33,求AB的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=4,AB=8时,根据此图求PA+PB+PC的最小值.【答案】⑴①见解析,②AB=6;⑵47.【解析】分析:(1)①根据题意补全图形即可;②连接BD、CD.根据平移的性质和∠ACB=90°,得到四边形BCAD是矩形,从而有CD=,由勾股定理求解即可;AB,设CD=AB=x,则PB=DE=9x(2)当C、P、M、N四点共线时,PA+PB+PC最小.由旋转的性质和勾股定理求解即可.详解:(1)①补全图形如图所示;②如图:连接BD 、CD .∵△BCP 沿射线CA 方向平移,得到△DAE ,∴BC ∥AD 且BC =AD ,PB =DE .∵∠ACB =90°,∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -,DE =BP =9x -,∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE ,∴222CE DE CD +=,∴()()222339x x +-=, ∴6x =,即AB =6;(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转可得:△AMN ≌△APB ,∴PB =MN .易得△APM 、△ABN 都是等边三角形,∴PA =PM ,∴PA +PB +PC =PM +MN +PC =CN ,∴BN =AB =8,∠BNA =60°,∠PAM =60°,∴∠CAN =∠CAB +∠BAN =60°+60°=120°,∴∠CBN =90°.在Rt △ABC 中,易得:22228443BC AB AC --=∴在Rt △BCN 中,22486447CN BC BN =+=+=点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.7.如图,点A 是x 轴非负半轴上的动点,点B 坐标为(0,4),M 是线段AB 的中点,将点M 绕点A 顺时针方向旋转90°得到点C ,过点C 作x 轴的垂线,垂足为F ,过点B 作y 轴的垂线与直线CF 相交于点E ,连接AC ,BC ,设点A 的横坐标为t .(Ⅰ)当t=2时,求点M 的坐标;(Ⅱ)设ABCE 的面积为S ,当点C 在线段EF 上时,求S 与t 之间的函数关系式,并写出自变量t 的取值范围;(Ⅲ)当t 为何值时,BC+CA 取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG=12OB=12×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=12t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=12t,AF=MG=2,∴EC=4﹣12t,BE=OF=t+2,∴S△BCE=12EC•BE=12(4﹣12t)(t+2)=﹣14t2+32t+4;S△ABC=12•AB•AC=12216t+21162t+14t2+4,∴S=S△BEC+S△ABC=32t+8.当A与O重合,C与F重合,如图2,此时t=0,当C与E重合时,如图3,AG=EF,即1 2t=4,t=8,∴S与t之间的函数关系式为:S=32t+8(0≤t≤8);(III)如图1,易得△ABO∽△CAF,∴ABAC=OBAF=OAFC=2,∴AF=2,CF=12t,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.8.正方形ABCD 的边长为1,对角线AC 与BD 相交于点O ,点E 是AB 边上的一个动点(点E 不与点A 、B 重合),CE 与BD 相交于点F ,设线段BE 的长度为x .(1)如图1,当AD=2OF 时,求出x 的值;(2)如图2,把线段CE 绕点E 顺时针旋转90°,使点C 落在点P 处,连接AP ,设△APE的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题9.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.10.如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE 的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.【答案】(1)BE=CD.理由见解析;(2)△CHQ是等腰三角形;(3)2-x.【解析】试题分析:(1)根据等边三角形的性质可得AB=BC,CD=CE,∠ACB=∠ECD=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等证明即可;(2)求出∠ACF=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CHQ=30°,从而得到∠ACF=∠CHQ,判断出△CHQ是等腰三角形;(3)求出∠CGP=90°,然后利用∠ACF的余弦表示出CG,再根据等腰三角形的性质表示出CH,然后根据GH=CG-CH整理即可得解.试题解析:(1)BE=CD.理由如下:∵△ABC与△CDE是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB-∠ACE=∠ECD-∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴BE=AD;(2)∵旋转角为30°,∴∠BCF=30°,∴∠ACF=60°-30°=30°,∴∠CHQ=∠RQP-∠ACF=60°-30°=30°,∴∠ACF=∠CHQ,∴△CHQ是等腰三角形;(3)∠CGP=180°-∠ACF-∠RPQ=180°-30°-60°=90°,∴CG=CP•cos30°=(x+4),∵△CHQ是等腰三角形,∴CH=2•CQcos30°=2x•=x,∴GH=CG-CH=(x+4)-x=2-x.考点:几何变换综合题.11.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理12.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.四边形OANM②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S=S△OCT-S△MN T,进而得出答案.四边形OCMN试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,可以得出当P是MN的中点时S四边形MOFG=S△MON.∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.∴当点P是MN的中点时S△MON最小.(2)分两种情况:①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.延长OC、AB交于点D,易知AD = 6,S△OAD=18 .由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.∴.② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .则T点的坐标为(9,0).∴S△OCT=×9×=.由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.从而 NP1=P1M1,MM1=2PP1=4.∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.综上所述:截得四边形面积的最大值为10.考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.13.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.14.如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.【答案】(15;(2)旋转中心P的坐标为(3,3)或(6,6).【解析】【分析】(1)依据旋转的方向、旋转角和旋转中心即可得到点A运动的路径为弧线,再运用弧长计算公式即可解答;(2)连接两对对应点,分别作出它们连线的垂直平分线,其交点即为所求.【详解】解:(1)点A运动的路径如图所示,出点A运动的路径长为229024180π⨯⨯+=5π;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换及其作图,掌握旋转的性质、旋转角以及确定旋转中心的方法是解答本题的关键.15.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=13∠BOE时,求∠AOE的度数:(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.。
初三培优初中数学 旋转辅导专题训练附答案
初三培优初中数学 旋转辅导专题训练附答案一、旋转1.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α= 度;发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.【答案】(1)60或240;(2) AC=BD ,理由见解析;(313+1131-4)PC 的最大值=3,PC 的最小值31. 【解析】分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;(2)结论:AC =BD ,理由如下:如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,OA OBCOA DOB CO OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC =BD ;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH=32.在Rt△AOH中,AH=22OA OH-=132,∴BD=AC=CH+AH=1132+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为1312+或1312-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.2.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD ≌△BCE ∴AD=BE ,由(1)知:FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.3.在平面直角坐标系中,O 为原点,点A (3,0),点B (0,4),把△ABO 绕点A 顺时针旋转,得△AB ′O ′,点B ,O 旋转后的对应点为B ′,O . (1)如图1,当旋转角为90°时,求BB ′的长; (2)如图2,当旋转角为120°时,求点O ′的坐标;(3)在(2)的条件下,边OB 上的一点P 旋转后的对应点为P ′,当O ′P +AP ′取得最小值时,求点P ′的坐标.(直接写出结果即可)【答案】(1)22)O'(92333)P'(27563).【解析】 【分析】(1)先求出AB .利用旋转判断出△ABB '是等腰直角三角形,即可得出结论;(2)先判断出∠HAO '=60°,利用含30度角的直角三角形的性质求出AH ,OH ,即可得出结论;(3)先确定出直线O 'C 的解析式,进而确定出点P 的坐标,再利用含30度角的直角三角形的性质即可得出结论. 【详解】(1)∵A (3,0),B (0,4),∴OA =3,OB =4,∴AB =5,由旋转知,BA =B 'A ,∠BAB '=90°,∴△ABB '是等腰直角三角形,∴BB 2AB 2;(2)如图2,过点O '作O 'H ⊥x 轴于H ,由旋转知,O 'A =OA =3,∠OAO '=120°,∴∠HAO '=60°,∴∠HO 'A =30°,∴AH =12AO '=32,OH 333,∴OH =OA +AH =92,∴O '(9332,(3)由旋转知,AP =AP ',∴O 'P +AP '=O 'P +AP .如图3,作A 关于y 轴的对称点C ,连接O 'C 交y 轴于P ,∴O 'P +AP =O 'P +CP =O 'C ,此时,O 'P +AP 的值最小. ∵点C 与点A 关于y 轴对称,∴C (﹣3,0). ∵O '(93322,),∴直线O 'C 的解析式为y =35x +335,令x =0,∴y =335,∴P (0,33),∴O 'P '=OP 33,作P 'D ⊥O 'H 于D .∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=12O'P'=3310,P'D=3O'D=910,∴DH=O'H﹣O'D=63,O'H+P'D=275,∴P'(27635,).【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.4.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD +∠BCE =90°﹣45°=45°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =AD +AF =DF =DE ,即AD +BE =DE ;(2)解:如图②,在AD 上截取DF =DE .∵CD ⊥AE ,∴CE =CF ,∴∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =∠DCE +∠DCF =90°,∴∠BCE +∠BCF =∠ECF =90°.又∵∠ACB =90°,∴∠ACF +∠BCF =90°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD =AF +DF =BE +DE ,即AD =BE +DE ;故答案为:AD =BE +DE .(3)∵∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =45°+45°=90°,∴△ECF 是等腰直角三角形,∴CD =DF =DE =6.∵S △BCE =2S △ACD ,∴AF =2AD ,∴AD=112+×6=2,∴AE =AD +DE =2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.5.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.6.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.7.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC =k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33时,CPE V 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP MC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,∴△DAF ≌△EAF (AAS ),∴AD=AE ,在△DAP 和△EAP 中,∵AD=AE ,∠DAP=∠EAP ,AP=AP ,∴△DAP ≌△EAP (SAS ),∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,∴FD ∥BC ∥PM , ∴DM FP MC PB=, ∵点P 是BF 的中点,∴DM=MC ,又∵PM ⊥AC ,∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC =,AC BC=tan30°, ∴k=tan30°=3 ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.9.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB 的中点,∴G 是AO 的中点,∴OG =12OA =1,MG 是△AOB 的中位线,∴MG =12OB =12×4=2,∴M (1,2); (II )如图1,同理得:OG =AG =12t .∵∠BAC =90°,∴∠BAO +∠CAF =90°.∵∠CAF +∠ACF =90°,∴∠BAO =∠ACF .∵∠MGA =∠AFC =90°,MA =AC ,∴△AMG ≌△CAF ,∴AG =CF =12t ,AF =MG =2,∴EC =4﹣12t ,BE =OF =t +2,∴S △BCE =12EC •BE =12(4﹣12t )(t +2)=﹣14t 2+32t +4; S △ABC =12•AB •AC =12•216t +•21162t +=14t 2+4,∴S =S △BEC +S △ABC =32t +8. 当A 与O 重合,C 与F 重合,如图2,此时t =0,当C 与E 重合时,如图3,AG =EF ,即 12t =4,t =8,∴S 与t 之间的函数关系式为:S =32t +8(0≤t ≤8); (III )如图1,易得△ABO ∽△CAF ,∴AB AC =OB AF =OA FC =2,∴AF =2,CF =12t ,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.10.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.11.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.【答案】(1)①②详见解析;③3﹣4;(2)13.【解析】试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.考点:三角形综合题.12.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD的关系式为∵图象过点B(0,4),D(4,)∴,解得∴直线BD的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长..【答案】(1)BQ=CP;(2)成立:PC=BQ;(3)434【解析】试题分析:(1)结论:BQ =CP .如图1中,作PH ∥AB 交CO 于H ,可得△PCH 是等边三角形,只要证明△POH ≌△QPB 即可;(2)成立:PC =BQ .作PH ∥AB 交CO 的延长线于H .证明方法类似(1);(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,表示出PC ,根据PC +CB =4,可得方程(62)24a a ++=,求出a 即可解决问题;试题解析:解:(1)结论:BQ =CP .理由:如图1中,作PH ∥AB 交CO 于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++=(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.14.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标;(2)当OG=4时,求AG的长;(3)求证:GA平分∠OGE;(4)连结BD并延长交轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【答案】(1)(8,4);(2);(3)().【解析】试题分析:(1)如图1,过点B作BH⊥x轴于点H,由已知可得∠BAH=∠COA,在Rt△ABH中,tan∠BAH=tan∠AOC=,AB=5,可求得BH=4,AH=3,所以OH=8,即可得点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在Rt△AOM中,tan∠AOC=,OA=5,可求得AM=4,OA=3,所以GM=1,再由勾股定理即可求得AG=;(3)如图1,过点A 作AN⊥EF轴于点N,易证△AOM≌△AFN,根据全等三角形的性质可得AM=AN,再由角平分线的判定可得GA平分∠OGE;(4)如图2,过点G作GQ⊥x轴于点Q,先证△GOA∽△BAP,根据相似三角形的性质求得GQ=,再由锐角三角函数求得OQ=,即可得点G的坐标为().试题解析:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=3AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG-OM=4-3=1,∴AG=;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,∠AOM=∠F,OA=FA,∠AMO=∠ANF=90°,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=1,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).考点:三角形、四边形、锐角三角函数的综合题.15.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.【答案】40°.【解析】【分析】先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.【详解】∵CC′∥AB,∴∠A CC′=∠CAB=70°,∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°-70°-70°=40°,∴∠BAB′=40°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.。
人教版数学九年级上册 旋转几何综合(培优篇)(Word版 含解析)
人教版数学九年级上册旋转几何综合(培优篇)(Word版含解析)一、初三数学旋转易错题压轴题(难)1.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.【答案】(1)∠B+∠D=180°(或互补);(2)∴【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED 得到DE=EG,由勾股定理即可求得DE的长.(1)∠B+∠D=180°(或互补).(2)∵ AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.则∠B=∠ACG,BD=CG,AD=AG.∵在△ABC中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.∴ EC2+CG2=EG2.在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.又∵AD=AG,AE=AE,∴△AEG≌△AED .∴DE=EG.又∵CG=BD,∴ BD2+EC2=DE2.∴.考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.2.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.3.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,AC=kAF,上一问的结论还成立吗?并证明你的结论.(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且∠IHJ=∠AGB=θ=60°,k=2;求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.【解析】试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.试题解析:(1)特例发现,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,∴FQ=AG,∴PE=FQ;(2)延伸拓展,如图:∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(3)深入探究,如图2,在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;(4)应用推广,如图3,在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为△AEF的中位线,∴MN min=EF=×2=1.考点:1.几何变换综合题;2.三角形全等及相似的判定性质.4.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.5.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC DA DC和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB绕着C点按顺时针方向旋转90︒,如图②,试判断DF和EF的数量关系和位置关系,并说明理由;类比探索(3)①将GEB绕着点C任意方向旋转,如图③或图④,请问DF和EF的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB绕着点C旋转的过程中,猜想DF与EF的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DF EF ;(2)3EF DF =,DF EF ,理由见解析;(3)①3EF DF =,DF EF ;②旋转过程中3EF DF =,DFEF 始终成立.【解析】 【分析】(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析; (3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DF EF 始终成立.【详解】解:(1)3EF DF =,DFEF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =. 又点F 为AB 的中点, AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴.MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===. tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,333DM FN a ==, 333MF NE b==, 又90DMF FNE ∠=∠=︒, DMF FNE ∴∽.MDF NFE ∴∠=∠,3DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒. 90DFE ∴∠=︒.3EF DF ∴=且DFEF .(2)3EF DF =,DFEF .理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=. 又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC , ∴四边形LCMF 为矩形, 90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒. GEB 为等边三角形, 60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘ ∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在RtDEF △中,3tan 33DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明: 如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒,OCP OBE ∴∠=∠.DCE NBE ∴∠=∠.又GEB 是等边三角形,GE BE ∴=, 又AD BN CD ==,()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠+∠=∠+∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF 并延长到点N ,使得FN DF =,连接NB ,DE ,NE ,NB 与CD 交于点O ,EB 与CD 相交于点J , 在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.120NOC ADC ∴∠=∠=︒.60BOJ ∴∠=︒,60JEC ∠=︒.又OJB EJC ∠=∠,OBE ECJ ∴∠=∠.AD CD =,AD NB =,CD NB ∴=. 又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒. DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.6.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m3+3m,在Rt△EBH中,sin∠EBH=3+36226mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,7.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.8.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE.∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.9.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B 的位置的变化,直接写出PC 的范围.【答案】(1) AD=BE ,AD⊥BE.(2) AD=BE ,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.10.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.。
中考数学 初中数学 旋转 培优练习(含答案)含答案解析
中考数学 初中数学 旋转 培优练习(含答案)含答案解析一、旋转1.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BD AE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长; (4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=101143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CE CB CA =即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可.试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m .故答案为n m. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC n CE AC m==,∴△ACE ∽△BCD ,∴BD BC n AE AC m ==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BC AE AC =,∴35=810,∴BD =125.故答案为125. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =21143. 故答案为210或21143.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.2.在平面直角坐标系中,O 为原点,点A (0,4),点B (﹣2,0),把△ABO 绕点A 逆时针旋转,得△AB′O′,点B 、O 旋转后的对应点为B′、O′.(1)如图①,若旋转角为60°时,求BB′的长;(2)如图②,若AB′∥x 轴,求点O′的坐标;(3)如图③,若旋转角为240°时,边OB 上的一点P 旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)252)点O′8545);(3)点P′的坐标为(﹣83,365. 【解析】分析:(1)由点A 、B 的坐标可得出AB 的长度,连接BB ′,由旋转可知:AB =AB ′,∠BAB ′=60°,进而可得出△ABB ′为等边三角形,根据等边三角形的性质可求出BB ′的长; (2)过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E ,则△AO ′E ∽△ABO ,根据旋转的性质结合相似三角形的性质可求出AE 、O ′E 的长,进而可得出点O ′的坐标;(3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,根据旋转的性质结合解直角三角形可求出点O ′的坐标,由A 、A ′关于x 轴对称可得出点A ′的坐标,利用待定系数法即可求出直线A ′O ′的解析式,由一次函数图象上点的坐标特征可得出点P 的坐标,进而可得出OP 的长度,再在Rt △O ′P ′M 中,通过解直角三角形可求出O ′M 、P ′M 的长,进而可得出此时点P ′的坐标.详解:(1)∵点A (0,4),点B (﹣2,0),∴OA =4,OB =2,∴AB 22OA OB 5.在图①中,连接BB ′.由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB 5 (2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E .∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,AE AO ='O E BO ='AO AB ,即4AE ='2O E 25∴AE =855,O ′E =55,∴O ′D =55+4,∴点O ′的坐标为(85555,+4).(3)作点A关于x轴对称的点A′,连接A′O′交x轴于点P,此时O′P+AP′取最小值,过点O′作O′F⊥y轴,垂足为点F,过点P′作PM⊥O′F,垂足为点M,如图3所示.由旋转可知:AO′=AO=4,∠O′AF=240°﹣180°=60°,∴AF=12AO′=2,O′F=32AO′=23,∴点O′(﹣23,6).∵点A(0,4),∴点A′(0,﹣4).设直线A′O′的解析式为y=kx+b,将A′(0,﹣4)、O′(﹣23,6)代入y=kx+b,得:4236bk b=-⎧⎪⎨-+=⎪⎩,解得:534kb⎧=-⎪⎨⎪=-⎩,∴直线A′O′的解析式为y=﹣53x﹣4.当y=0时,有﹣53x﹣4=0,解得:x=﹣43,∴点P(﹣43,0),∴OP=O′P′=43.在Rt△O′P′M中,∠MO′P′=60°,∠O′MP′=90°,∴O′M=12O′P′=23,P′M=32O′P′=65,∴点P′的坐标为(﹣23+235,6+65),即(﹣833655,).点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.3.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕点A顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE V 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP MC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,∴△DAF ≌△EAF (AAS ),∴AD=AE ,在△DAP 和△EAP 中,∵AD=AE ,∠DAP=∠EAP ,AP=AP ,∴△DAP ≌△EAP (SAS ),∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,∴FD ∥BC ∥PM , ∴DM FP MC PB=, ∵点P 是BF 的中点,∴DM=MC ,又∵PM ⊥AC ,∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,∵AC k BC =,AC BC=tan30°,∴k=tan30°=3,3∴当k为3时,△CPE总是等边三角形.3【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.4.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=42,∠CBE=30°,求DE的长.【答案】(1)答案见解析;(226【解析】试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,即可得到结论;(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF=2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB=42,∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE=3CE=23,∴EF=CE+BE=2+23,∴DE=2=2232+=2+6.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.5.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.6.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=236x=(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.7.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.8.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP 的距离.【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3).【解析】试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.(3)运用勾股定理,可得出点A到BP的距离.试题解析:解:(1)①依题意补全图形(如图);②∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°.∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上.∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.∴AE=BE+2CM.(3)点A到BP的距离为.考点:作图—旋转变换.9.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理10.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD的关系式为∵图象过点B(0,4),D(4,)∴,解得∴直线BD的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.12.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
人教版 九年级数学上册 第23章 旋转 培优训练(含答案)
人教版九年级数学第23章旋转培优训练一、选择题(本大题共10道小题)1. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()2. 如图,将△OAB绕点O逆时针旋转得到△OA′B′,使点B恰好落在边A′B′上.已知AB=4 cm,OB=1 cm,∠B′=60°,那么A′B的长是()A.4 cm B.3 cmC.2 3 cm D.(4-3)cm3. 由图中的三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是图中的()4. 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.2 5C.6 D.2 65. 如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为()A.A2P的中点B.A1B2的中点C.A1O的中点D.PO的中点6. 把△ABC各点的横坐标都乘-1,纵坐标都乘-1,符合上述要求的图是()7. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1对称,再作△B2A3B3与△B2A2B1关于点B2对称……如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n-1,3) B.(2n-1,3)C.(4n+1,3) D.(2n+1,3)8. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α9. 2020·河北模拟如图所示,A1(1,3),A2(32,32),A3(2,3),A4(3,0).作折线OA1A2A3A4关于点A4中心对称的图形,得折线A8A7A6A5A4,再作折线A8A7A6A5A4关于点A8中心对称的图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t秒.当t=2020时,点P的坐标为()A.(1010,3) B.(2020,3 2)C.(2016,0) D.(1010,3 2)10. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠A=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1二、填空题(本大题共6道小题)11. 如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=________°.12. 如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A 在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位长度,则变化后点A的对应点的坐标为________.13. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.14. 如图所示,在Rt△ABC中,∠B=90°,AB=2 5,BC= 5.将△ABC绕点A 逆时针旋转90°得到△AB′C′,连接B′C,则B′C=________.15. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为________.16. 如图,AB⊥y轴,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-33x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-33x上,依次进行下去……若点B的坐标是(0,1),则点O12的纵坐标为________.三、解答题(本大题共4道小题)17. 如图,将一个钝角三角形ABC(其中∠ABC=120°)绕点B顺时针旋转得到△A1BC1,使得点C落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.18. 2018·眉山在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.19. 如图,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D 分别在OE和OF上,现将△OEF绕点O逆时针旋转角α(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=________;(用含α的式子表示)(2)猜想图②中AF与DE的数量关系,并证明你的结论.20. 如图,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1.求∠BPC 的度数和等边三角形ABC的边长.人教版九年级数学第23章旋转培优训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B[解析] ∵旋转前、后的两个图形是全等图形,AB=4 cm,OB=1 cm,∴A′B′=AB=4 cm,OB′=OB=1 cm.在△OB′B中,∵∠B′=60°,OB′=OB,∴△OB′B是等边三角形,∴BB′=OB=1 cm,∴A′B=A′B′-BB′=4-1=3(cm).3. 【答案】B[解析] A可以通过平移得到,B无法通过三种变换中的任何一种得到,C可以通过轴对称得到,D可以通过旋转得到.4. 【答案】D[解析] 由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,∴AD=25.∵DE=2,∴在Rt△ADE中,AE=AD2+DE2=2 6.故选D.5. 【答案】D[解析] 因为P,O是对称点,所以PO的中点是对称中心.6. 【答案】C7. 【答案】C[解析] A1(1,3),A2(3,-3),A3(5,3),A4(7,-3),…,∴点A n 的坐标为⎩⎨⎧(2n -1,3)(n 为奇数),(2n -1,-3)(n 为偶数).∵2n +1是奇数,∴点A 2n +1的坐标是(4n +1,3).故选C.8. 【答案】C[解析] 由题意可得∠CBD =α,∠C =∠EDB.∵∠EDB +∠ADB =180°, ∴∠C +∠ADB =180°.由四边形的内角和定理,得∠CAD +∠CBD =180°. ∴∠CAD =180°-∠CBD =180°-α.故选C.9. 【答案】A10. 【答案】B[解析] 连接PC.在Rt △ABC 中,∵∠A =30°,BC =2, ∴AB =4.根据旋转的性质可知,∠A′CB′=90°,A′B′=AB =4. ∵P 是A′B′的中点,∴PC =12A′B′=2. ∵M 是BC 的中点,∴CM =12BC =1. 又∵PM≤PC +CM , 即PM≤3,∴PM 的最大值为3(此时点P ,C ,M 共线). 故选B.二、填空题(本大题共6道小题)11. 【答案】90 [解析] 连接AA 1,CC 1,分别作AA 1和CC 1的垂直平分线,两直线相交于点D ,则点D 即为旋转中心,连接AD ,A 1D ,则∠ADA 1=α=90°.12. 【答案】(-2,2)[解析] △ABC 绕点C 逆时针旋转90°后,点A 的对应点的坐标为(1,2),再向左平移3个单位长度,点A 的对应点的坐标为(-2,2).13. 【答案】20[解析] ∵AB =AB′,∠BAB′=40°,∴∠ABB′=70°.∵B′C′⊥AB ,∴∠BB′C′=20°.14. 【答案】5[解析] 由勾股定理,得AC =AB 2+BC 2=5.过点C 作CE ⊥AB′于点E ,则四边形ABCE 是矩形,∴AE =BC = 5.又AB′=AB =2 5,∴AE =EB′=5,∴CE 垂直平分AB′,∴B′C =AC =5.15. 【答案】15°[解析] 由旋转的性质可知AB =AD ,∠BAD =150°,∴∠B =∠ADB =12×(180°-150°)=15°.16. 【答案】9+33 [解析] 将y =1代入y =-33x ,解得x =- 3.∴AB =3,OA =2,且直线y =-33x 与x 轴所夹的锐角是30°.由图可知,在旋转过程中每3次一循环,其中OO 2=O 2O 4=O 4O 6=O 6O 8=O 8O 10=O 10O 12=2+3+1=3+ 3. ∴OO 12=6×(3+3)=18+6 3. ∴点O 12的纵坐标=12OO 12=9+3 3.三、解答题(本大题共4道小题)17. 【答案】解:(1)旋转角的度数为60°.(2)证明:由旋转的性质知∠ABC =∠A 1BC 1=120°,∠C =∠C 1,AB =A 1B.∵点A ,B ,C 1在同一直线上,∴∠ABC 1=180°,∴∠ABA 1=∠CBC 1=60°,∴∠A 1BC =60°,∵AB =A 1B ,∴△ABA 1是等边三角形, ∴∠AA 1B =∠A 1BC =60°, ∴AA 1∥BC ,∴∠A 1AC =∠C. 又∵∠C =∠C 1,∴∠A 1AC =∠C 1.18. 【答案】解:(1)如图,△A 1B 1C 1为所作,C 1(-1,2). (2)如图,△A 2B 2C 2为所作,C 2(-3,-2).(3)因为点A 的坐标为(2,4),点A 3的坐标为(-4,-2), 所以直线l 的函数解析式为y =-x .19. 【答案】解:(1)∵△OEF 绕点O 逆时针旋转角α, ∴∠DOF =∠COE =α. ∵四边形ABCD 为正方形, ∴∠AOD =90°, ∴∠AOF =90°-α. 故答案为90°-α. (2)猜想:AF =DE.证明:∵四边形ABCD 为正方形, ∴∠AOD =∠COD =90°,OA =OD. ∵∠DOF =∠COE =α, ∴∠AOF =∠DOE.∵△OEF 为等腰直角三角形, ∴OF =OE.在△AOF 和△DOE 中,⎩⎨⎧OA =OD ,∠AOF =∠DOE ,OF =OE ,∴△AOF ≌△DOE(SAS), ∴AF =DE.20. 【答案】解:将△BPC 绕点B 逆时针旋转60°得到△BP′A(如图).连接PP′,由旋转的性质知△BPP′为等边三角形,AP′=PC=1,∴PP′=PB=3,∠BPP′=∠BP′P=60°.在△APP′中,∵AP′2+PP′2=12+(3)2=22=PA2,∴△APP′是直角三角形,且∠AP′P=90°,∴∠BP′A=∠BP′P+∠AP′P=60°+90°=150°,∴∠BPC=∠BP′A=150°.在Rt△APP′中,∵PA=2,AP′=1,∴∠APP′=30°.又∵∠BPP′=60°,∴∠APB=90°,∴在Rt△ABP中,AB=PA2+PB2=22+(3)2=7,即等边三角形ABC的边长为7.。
九年级上册数学 旋转几何综合(培优篇)(Word版 含解析)
九年级上册数学旋转几何综合(培优篇)(Word版含解析)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+, 解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;(2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B''△成为等腰三角形的x的值有:0秒、32秒、695.【解析】【分析】(1)先用勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm''==,2CD B D BC cm'=''-=,利用B D A∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm=,8AD cm=,10BD cm∴=,根据旋转的性质可知10B D BD cm''==,2CD B D BC cm'=''-=,tanA B CEB D AA D CD'''''∠==''',682CE∴=,32CE cm∴=,()28634522222A B CE A B D CEDS S S cm''''''⨯∴==-⨯÷=-;(2)①当165x≤<时,22CD x'=+,32CE x=,233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭, 解得:669x -=秒,(669x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭ 解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.3.小明研究了这样一道几何题:如图1,在△ABC 中,把AB 点A 顺时针旋转α (0°<α<180°)得到AB ′,把AC 绕点A 逆时针旋转β得到AC ′,连接B ′C ′.当α+β=180°时,请问△AB ′C ′边B ′C ′上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CMDM在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12 BMDE=EM﹣DM﹣由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM∵DA∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD=6,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC与△PAB之间满足小明探究的问题中的边角关系;在Rt△PDQ中,∵∠PDQ=90°,PD=DADN=12CD=3,∴PQ.【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.4.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,5.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.6.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为2 22 +315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,90OA ODAOG DOEOG OE=⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠AG′O=OAOG'=12,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=2OD,∴2,∴O F′=2,∴AF′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.7.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC ,又∵BG=ED ,DE=DA ,∴BG=AD ,又∵BC=AC , ∴△BCG ≌△ACD (SAS ),∴GC=DC ,∠BCG=∠ACD , ∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG 是等腰直角三角形,又∵F 是DG 的中点,∴CF ⊥DF 且CF=DF .点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.8.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB =42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <223)m =6或m 17﹣3.【解析】 【分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m<∴满足条件的m 的取值范围为2<m< (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m 17﹣3时,四边形PMP ′N 是正方形.9.(操作发现)(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB 交于点D ,在三角板斜边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=30°,连接AF ,EF .①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2,理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°﹣45°=45°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF .在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.10.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;(3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+【解析】【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形;(2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,ABC ∆是等边三角形60AB AC BC BAC ∴∠︒==,=,60BAC DAE ∴∠∠︒==,BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE SAS ∴∆∆≌()BD CE ∴=,CE BD CB CD CA CD ∴++===;(3)①BD 为2或8时,30DEC ∠=,当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,90AEC ∴∠︒=,ABD ACE ∆∆≌,9060ADB AEC B ∴∠∠︒∠︒==,又=,30BAD ∴∠︒=,122BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,30AEC ∴∠︒=,ABD ACE ∆∆≌,3060ADB AEC B ∴∠∠︒∠︒==,又=,90BAD ∴∠︒=,28BD AB ∴==,BD ∴为2或8时,30DEC ∠︒=;②点D 在运动过程中,DEC ∆的周长存在最小值,最小值为4+理由如下:ABD ACE ∆∆≌,CE BD ∴=,则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,当CE 最小时,DEC ∆的周长最小,ADE ∆为等边三角形,DE AD ∴=, AD的最小值为DEC ∴∆的周长的最小值为4+【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。
九年级数学初中数学 旋转的专项培优练习题附详细答案
九年级数学初中数学 旋转的专项培优练习题附详细答案一、旋转1.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V ()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD V 的面积为212a ,理由详见解析;(3)BCD V 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==o ,由旋转知,AB AD =,ABD 90∠=o ,ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=,在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴V ≌()BDE AAS VBC DE a ∴==,BCD 1S BCDE 2=⋅V Q , 2BCD 1S a 2∴=V ; ()2BCD V 的面积为21a 2, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==o ,Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,AB BD ∴=,ABD 90∠=o ,ABC DBE 90∠∠∴+=o ,A ABC 90∠∠+=o Q ,A DBE ∠∠∴=,在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC ∴V ≌()BDE AAS V ,BC DE a ∴==,BCD 1SBC DE 2=⋅V Q , 2BCD 1S a 2∴=V ; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==o ,11BF BC a 22==, FAB ABF 90∠∠∴+=o ,ABD 90∠=o Q ,ABF DBE 90∠∠∴+=o ,FAB EBD ∠∠∴=,Q 线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB V 和BED V 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB ∴V ≌()BED AAS V ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.2.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m =8,∵a <0,5≤m≤7,∴m =7时,S 取到最大值;②如图2,过点P 作PF ⊥x 轴于F ,过点D 作DG ⊥FP 交FP 的延长线于G ,∴∠DGP =∠PFE =90°,∴∠DPG+∠PDG =90°,由旋转知,PD =PE ,∠DPE =90°,∴∠DPG+∠EPF =90°,∴∠PDG =∠EPF ,∴△PDG ≌△EPF (AAS ),∴DG =PF ,∵DG =AF =m ﹣4,∴P (m ,m ﹣4),∵点P 在反比例函数y =16x , ∴m (m ﹣4)=16,∴m =2+25或m =2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.3.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________;(理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由;(拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】(1)证明:∵ABC ∆是等边三角形,∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,∴60CAE =︒,AC AE =.∴ACE ∆是等边三角形.∴AC AE CE ==.∴AB BC CE AE ===.∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=.(3)四边形ADGF 是正方形.理由如下:∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴AF AD =,90DAF ∠=︒.∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒.∴四边形ADGF 是矩形.∵AF AD =,∴四边形ADGF 是正方形.(4)如图,连接DE .∵四边形ADGF 是正方形,∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=.∵将AFE ∆沿AE 折叠得到AME ∆,∴MAE FAE ∠=∠,AF AM =.∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠.∵AF AD =,∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.4.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.(1) 求证:EG=CG;(2) 将图①中△BEF 绕B 点逆时针旋转 45∘,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
2020-2021九年级培优初中数学 旋转辅导专题训练含答案解析
2020-2021九年级培优初中数学旋转辅导专题训练含答案解析一、旋转1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP =90°,∴PM 2=OM 2+OP 2,∴OM 2+BN 2=MN 2;(3)如图3中,若点B 是MN 的中点,求MN 的长.设MN =2x ,则BM =BN =x ,∵OA =AB =4,∠OAB =90°,∴OB =42, ∴OM =42﹣x ,∵OM 2+BN 2=MN 2.∴(42﹣x)2+x 2=(2x)2,解得x =﹣22+26或﹣22﹣26(舍弃)∴MN =﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.3.(探索发现)如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________;(理解运用)如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .(3)判断四边形ADGF 的形状,并说明理由;(拓展迁移)(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若6AD =,2BD =,求MB 的长.【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)13【解析】【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】(1)证明:∵ABC ∆是等边三角形,∴AB BC AC ==.∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,∴60CAE =︒,AC AE =.∴ACE ∆是等边三角形.∴AC AE CE ==.∴AB BC CE AE ===.∴四边形ABCE 是菱形.(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=.(3)四边形ADGF 是正方形.理由如下:∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴AF AD =,90DAF ∠=︒.∵AD BC ⊥,∴90ADC DAF F ∠=∠=∠=︒.∴四边形ADGF 是矩形.∵AF AD =,∴四边形ADGF 是正方形.(4)如图,连接DE .∵四边形ADGF 是正方形,∴6DG FG AD AF ====.∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=.∵将AFE ∆沿AE 折叠得到AME ∆,∴MAE FAE ∠=∠,AF AM =.∴BAD EAM ∠=∠.∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠.∵AF AD =,∴AM AD =.在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.4.如图l ,在AABC 中,∠ACB=90°,点P 为ΔABC 内一点.(1)连接PB ,PC ,将ABCP 沿射线CA 方向平移,得到ΔDAE ,点B ,C ,P 的对应点分别为点D 、A 、E ,连接CE.①依题意,请在图2中补全图形; ②如果BP ⊥CE ,BP=3,AB=6,求CE 的长(2)如图3,以点A 为旋转中心,将ΔABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC=3,AB=6时,根据此图求PA+PB+PC 的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD cm,∴△BDE的最小周长=CD;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC 为等边三角形,∴AB =AC ,∠ABC =∠ACB =60°.∵AD =AE ,∴BD =CE .∵点M 、N 、P 分别是BE 、CD 、BC 的中点,∴PM ∥CE ,PM =12CE ,PN ∥AD ,PN =12BD , ∴PM =PN ,∠BPM =∠BCA =60°,∠CPN =∠CBA =60°,∴∠MPN =60°,∴△PMN 为等边三角形;故答案为等边三角形;(2)△PMN 的形状不发生改变,仍然为等边三角形.理由如下:连接CE 、BD ,如图2.∵AB =AC ,AE =AD ,∠BAC =∠DAE =60°,∴把△ABD 绕点A 逆时针旋转60°可得到△CAE ,∴BD =CE ,∠ABD =∠ACE ,与(1)一样可得PM ∥CE ,PM =12CE ,PN ∥AD ,PN =12BD , ∴PM =PN ,∠BPM =∠BCE ,∠CPN =∠CBD , ∴∠BPM +∠CPN =∠CBD +∠CBD =∠ABC ﹣∠ABD +∠ACB +∠ACE =60°+60°=120°,∴∠MPN =60°,∴△PMN 为等边三角形.(3)∵PN =12BD ,∴当BD 的值最大时,PN 的值最大. ∵AB ﹣AD ≤BD ≤AB +AD (当且仅当点B 、A 、D 共线时取等号)∴BD 的最大值为1+3=4,∴PN 的最大值为2,∴△PMN 的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O , ()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD 重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=;②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3②【解析】【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论;(2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论;(3)借助①的结论即可得出结论.【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O ,∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=, ()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°,∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°,∴△OEE′≌△OBF ,∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S △OEE′=S △OBF ,∴S 四边形OE′BF =OEB S 3=V .【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.8.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33时,CPE V 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】 解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP MC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,∴△DAF ≌△EAF (AAS ),∴AD=AE ,在△DAP 和△EAP 中,∵AD=AE ,∠DAP=∠EAP ,AP=AP ,∴△DAP ≌△EAP (SAS ),∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,∴FD ∥BC ∥PM ,∴DM FP MC PB=, ∵点P 是BF 的中点,∴DM=MC ,又∵PM ⊥AC ,∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC ,AC BC=tan30°, ∴k=tan30°=3, ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.9.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是________________;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想;(2)若AB =k·AC(k >1),按上述操作方法,得到图④,请继续探究:AM 与AN 的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.【答案】(1)①BD=CE;②AM=AN,∠MAN=∠BAC 理由如下:∵在图①中,DE//BC,AB=AC∴AD="AE."在△ABD与△ACE中∴△ABD≌△ACE.∴BD=CE,∠ACE=∠ABD.在△DAM与△EAN中,∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.∴AM=AN,∠MAN=∠BAC.(2)AM=kAN,∠MAN=∠BAC.【解析】(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.10.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
九年级培优初中数学 旋转辅导专题训练附答案解析
九年级培优初中数学旋转辅导专题训练附答案解析一、旋转1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)42;(2)b =8;(3)ab =32. 【解析】试题分析:(1)由正方形ABCD 的边长为4,可得AC =42 ,∠ACB =45°. 再CE =a =42,可得∠CAE =∠AEC ,从而可得∠CAF 的度数,既而可得 b=AC ; (2)通过证明△ACF ∽△ECA ,即可得; (3)通过证明△ACF ∽△ECA ,即可得.试题解析:(1)∵正方形ABCD 的边长为4,∴AC =42 ,∠ACB =45°. ∵CE =a =42,∴∠CAE =∠AEC =452︒=22.5°,∴∠CAF =∠EAF -∠CAE =22.5°,∴∠AFC =∠ACD -∠CAF =22.5°,∴∠CAF =∠AFC ,∴b=AC =CF =42;(2)∵∠FAE =45°,∠ACB =45°,∴∠FAC +∠CAE =45°,∠CAE +∠AEC =45°,∴∠FAC =∠AEC .又∵∠ACF =∠ECA =135°,∴△ACF ∽△ECA ,∴AC CF EC CA =,∴4242=,∴CF =8,即b =8. (3)ab =32.提示:由(2)知可证△ACF ∽△ECA ,∴∴AC CF EC CA =,∴4242a =,∴ab =32.3.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3)55;(4)BD=101143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE 22AB BE +2263+52)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD 125125. (4)∵m =6,n =2∴CE =3,CD 2,AB 22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD 22BC CD +224222+()()10. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =21143. 故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.4.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN 17﹣117 【解析】 【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴2222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =-=∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =+=+, ∴21712MN BE ==+. 综上所述,MN =17﹣1或17+1. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.如图①,在等腰△ABC 和△ADE 中,AB=AC ,AD=AE ,且∠BAC=∠DAE=120°. (1)求证:△ABD ≌△ACE ;(2)把△ADE 绕点A 逆时针方向旋转到图②的位置,连接CD ,点M 、P 、N 分别为DE 、DC 、BC 的中点,连接MN 、PN 、PM ,判断△PMN 的形状,并说明理由; (3)在(2)中,把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN 周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN 是等边三角形.理由见解析;(3)△PMN 周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.6.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.7.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.8.如图1,Y ABCD和Y AEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将Y ABCD固定不动,Y AEFG绕点A逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a;并发现:如图2,当Y AEFG旋转到点E落在AD上时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当Y AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积a2.最大的情形,S△BCF =2【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°=32a,AF=AG×sin60°3 a.∴点F到BC3333∴S△BCF=123333a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题10.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.【答案】(1)①BE=AD,BE⊥AD;②见解析;(2)125.【解析】试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.试题解析:(1)①解:BE=AD,BE⊥AD②BE=AD,BE⊥AD仍然成立证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD∽△BCE∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD ∴∠AGE=∠BGD=90°∴,.∴.∵,,∴考点:三角形全等与相似、勾股定理.11.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD的关系式为∵图象过点B(0,4),D(4,)∴,解得∴直线BD的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.12.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)证明见解析(2)BF+EQ=BP(3)BF+BP=EQ【解析】试题分析:(1)EF与FG关系为垂直且相等(EF=FG且EF⊥FG).证明如下:∵点E、F、G分别是正方形边AD、AB、BC的中点,∴△AEF和△BGD是两个全等的等腰直角三角形.∴EF=FG,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF⊥FG.(2)取BC的中点G,连接FG,则由SAS易证△FQE≌△FPG,从而EQ=GP,因此()=-.EF2BP EQ(3)同(2)可证△FQE≌△FPG(SAS),得EQ=GP,因此,()()===-=-.EF GF2BG2GP BP2EQ BP13.在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD m·BP时,请直接写出PE与PF的数量关系.【答案】(1)PE=PF;(2)①成立,理由参见解析;②;③PE=2PF,理由参见解析;PE=(m-1)·PF.【解析】试题分析:(1)可利用角平分线性质定理得到PE=PF;(2)①成立,可用角边角定理判定△AOF≌△DOE,从而得到PE=PF;②要想求出EF的长,关键要求出OE的长,由∠DOM15°可得∠AEO=45+15=60º,作OH⊥AD于H,若正方形的边长为2,则OH=1,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF即可求出;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,△PHB和△PKD都是等腰直角三角形,是相似的,∵BD3BP,∴可算出HP:PK的值,然后通过△FHP∽△PKE得到PE与PF的关系.由前面的思路可得出当BD=m·BP时,BD:PD=(m-1):1,∴PE:PF=(m-1):1,从而确定PE与PF的数量关系.试题解析:(1)∵四边形ABCD是正方形,∴∠OAF=∠OAE=45º,又∵PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,PE仍等于PF,∵四边形ABCD是正方形,∴∠OAF=∠ODE=45º,OA=OD,又∵∠AOF和∠DOE都是∠AOE的余角,∴∠AOF=∠DOE,∴△AOF≌△DOE(ASA),∴OE=OF,即PE=PF;②作OH⊥AD于H,由∠DOM15°可得∠AEO=45+15=60º,∠HOE=30°,若正方形的边长为2,则OH=1,在Rt△HEO中,可算出EH==,∴OE=,∵△EOF是等腰直角三角形,∴EF=OE=×=;③构建相似三角形,过P点作PH⊥AB,PK⊥AD ,垂足为H、K,则四边形AHPK为矩形,∵∠PHB=∠PKD=90°∠PBH=∠PDK=45°,∴△PHB∽△PKD,∴,∵BD=3BP,∴=,∵∠HPF+∠FPK=90°∠KPE+∠FPK=90°,∴∠HPF=∠KPE,又∵∠PHF=∠PKE=90°,∴△PHF∽△PKE,∴=,即PE="2PF" ;当BD=m·BP时,BD:PD=(m-1):1,△PHF∽△PKE,PE:PF=BD:PD=(m-1):1,∴PE=(m-1)·PF.考点:1.正方形性质;2.三角形相似的判定;3.旋转性质;4.探索线段的数量关系规律.14.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.【答案】40°.【解析】【分析】先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.【详解】∵CC′∥AB,∴∠A CC′=∠CAB=70°,∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°-70°-70°=40°,∴∠BAB′=40°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=1∠BOE时,求∠AOE的度数:3(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.【解析】【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【详解】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点睛】本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 九级数学上册旋转培优练习卷一、选择题:1、观察下列图形,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个2、在直角坐标系中,点(﹣2,1)关于原点的对称点是()A.(﹣1,2)B.(1,2)C.(﹣2,﹣1)D.(2,﹣1)3、将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是()A.120°B.60°C.45°D.30°4、在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )A.(3,-3)B.(-3,3)C.(3,3)或(-3,-3)D.(3,-3)或(-3,3)5、从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°6、如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°.若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转()A.20°B.30°C.50°D.70°7、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C 的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°8、如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°9、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A. B. C. D.10、如图,已知在□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )A.130°B.150°C.160°D.170°11、如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:① AE=CF;②△EFP是等腰直角三角形;③ S四边形AEPF=S△ABC;④当∠EPF 在△ABC内绕顶点P旋转时(点E不与A、B重合),BE+CF=EF,上述结论中始终正确的有()A.1个B.2个C.3个D.4个12、如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.1二、填空题:13、已知点P(a-3,2b+4)与点Q(b+5,3a-7)关于原点对称,则a+b= .14、若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015= .15、如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C,且点A 在边A′B′上,则旋转角的度数为.16、如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .17、△ABC中,∠ABC=∠ACB,将△ABC绕点C顺时针旋转到△EDC,使点B的对应点D落在AC边上,若∠DEB=30°,∠BEC=18°,则∠ABE= 度.18、如图,Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD 绕着点D逆时针旋转α(0<α<180)度后,如果点B恰好落在Rt△ABC的边上,那么α= .三、作图题:19、△ABC在方格中的位置如图所示.(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,﹣1)、B(1,﹣4).并求出C点的坐标;(2)作出△ABC关于横轴对称的△,再作出△ABC以坐标原点为旋转中心、旋转180°后的△A2B2C2,并写出C1,C2两点的坐标.四、解答题:20、如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为;旋转角度为;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.21、如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE. (1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.22、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)试判断△AEF的形状,并说明理由;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,则四边形AECF的面积为.(直接写结果)23、如图①,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.(1)求证:△ADE是等边三角形;(2)如图②,将△ADE绕着点A逆时针旋转适当的角度,使点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.24、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.25、已知,在等边△ABC中,AB=2,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.(1)判断△BDE的形状;(2)在图2中补全图形,①猜想在旋转过程中,线段CE1与AD1的数量关系并证明;②求∠APC的度数;(3)点P到BC所在直线的距离的最大值为.(直接填写结果)参考答案1、C2、D3、B.4、A5、C6、A7、B8、B9、B10、C11、C12、B13、-214、答案为:﹣1.15、50°16、答案为:(3,1).17、答案为:36°.18、答案为:70°或120°.19、解:(1)坐标系如图所示,C(3,﹣3);(2)△A1B1C1,△A2B2C2如图所示,C1(3,3),C2(﹣3,3).20、解:(1)旋转中心为点A,旋转角为∠BAD=90°;(2)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(3)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.21、解:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,∵,∴△EAB≌△DAC.∴∠AEB=∠ADC.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.22、解:(1)△AEF是等腰直角三角形,理由是:∵四边形ABCD是正方形,F是BC延长线上一点,∴AB=AD,∠DAB=∠ABF=∠D=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS)∴AE=AF,∠DAE=∠FAB,∵∠DAB=∠DAE+∠BAE=90°,∴∠FAE=∠DAB=90°,即△AEF是等腰直角三角形.(2)△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,故答案为:A,90.(3)∵△ADE≌△ABF,∴S ADE=S△ABF,∴四边形AECF的面积S=S四边形ABCE+S△ABF=S四边形ABCE+S△ADE=S正方形ABCD=8×8=64,故答案为:64.23、(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.∵△ABC是等边三角形;(2)解:AE+CE=BE;理由如下:∵AB=AC,AD=AE,∠BAD=60°﹣∠DAC=∠CAE,由旋转的性质得:△ABD≌△ACE,∴AD=AE,∵∠DAE=∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=60°,∴△ADE是等边三角形,∴AE=DE,∴AE+CE=DE+BD=BE.24、(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°. 综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=,∵∠COE′=45°,∴此时α=315°.25、解:(1)∵D,E分别是AB,BC的中点,∴DE=BC,BD=BA,∵△ABC为等边三角形,∴∠B=60°,BA=BC,∴BD=BE,∴△BDE为等边三角形;(2)①CE1=AD1.理由如下:∵△BDE绕点B逆时针旋转,得到△BD1E1,∴△BD1E1为等边三角形,∴BD1=BE1,∠D1BE1=60°,而∠ABC=60°,∴∠ABD1=∠CBE1,∴△ABD1可由△CBE1绕点B逆时针旋转得到,∴CE1=AD1;②∵△ABD1可由△CBE1绕点B逆时针旋转得到,∴∠BAD1=∠BCE1,∴∠APC=∠ABC=60°;(3)∵∠APC=∠D1BE1=60°,∴点P、D1、B、E1共圆,∴当BP⊥BC时,点P到BC所在直线的距离的最大值,此时点E1在AB上,在Rt△PBC中,PB=AB=×2=2,∴点P到BC所在直线的距离的最大值为2.故答案为2.第11页共11页。