八年级上数学综合题精选

合集下载

初二数学(上)经典大题集锦

初二数学(上)经典大题集锦

初二数学(上)经典综合大题集锦(一)1.已知:如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为A (4,0),B (0,-4),P 为y 轴上B 点下方一点,PB=m (m>0),以AP 为边作等腰直角三角形APM ,其中PM=PA ,点M 落在第四象限。

(1)求直线AB 的解析式;(2)用m 的代数式表示点M 的坐标;(3)若直线MB 与x 轴交于点Q ,判断点Q 的坐标是否随m 的变化而变化,写出你的结论并说明理由。

2.如图,已知A (a ,b ),AB ⊥y 轴于B ,且满足a-2 +(b -2)2=0, (1)求A 点坐标;(2)分别以AB ,AO 为边作等边三角形△ABC 和△AOD ,试判定线段AC 和DC 的数量关系和位置关系(3)过A 作AE ⊥x 轴于E ,F ,G 分别为线段OE ,AE 上的两个动点,满足∠FBG=450,试探究OF+AG FG 的值是否发生变化?如果不变,请说明理由并求其值,如果变化,请说明理由y x ODCBAFyxO GEBABGAFDE CH 3.如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以A 为直角顶点且在直线AD 的右侧作等腰Rt △ADF .(1)如果AB=AC ,∠①当点D 在线段BC 上时图乙,线段CF 、BD 系为.②当点D 在线段BC 中的结论是否仍然成立,为什么? (2)如果AB≠AC ,∠BAC≠90º上运动.试探究:当△ABC C 、F 重合除外)?直接写出这个条件(不需说明理由)画出相应图形(画图不写作法).4.如图,△ABC 是等边三角形,F BC 上,连接DF ,以DF 为边在ED 的延长线交AB 于H ,连①∠AHE+∠AFD=180°;②AF=21(不与B ,C BD当D 在线段BC 上(不与B ,C 重合)运动,其他条件不变时DCECBC +21是定值; (1)其中正确的是-------------------; (2)对于(1)中的结论加以说明;5. 如图,一次函数k kx 4y -=交x 轴的正半轴于点A ,交y 轴的正半轴于点C . (1)求点A 的坐标;(2)P 为第一象限内的整点(横坐标、纵坐标都是整数),并且满足△PAC 的面积是△AOC 面积的2倍.当23k -=时,求出所有P 点的坐标. (3)当K 变化时,作直线k kx 4y -=关于x 轴对称的直线AC',过C 点作直线CB 交线段OA 于D 点,交AC'于B 点,且∠OCD=21∠CAO ,结论:①AB+AC 是定值;②AC -AB 是定值.这两个结论中有一个正确,请你选出这个结论,并求出此定值是多少.B C AD F 甲7.如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4) (1)求B 点坐标;AO yxB(2)若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连OD ,求∠AOD 的度数;XYD AC BC'OAODyxBC(3)过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,等式OFFMAM =1是否成立?若成立,请证明:若不成立,说明理由.AOGyxFM H E8.如图,平面直角坐标系中,△AOB 为等腰直角三角形,且OA-AB.(1)如图,在图中画出△AOB 关于BO 的轴对称图形△A1OB ,若A(-3,1),请求出A1点的坐标:(2)当△AOB 绕着原点O 旋转到如图所示的位置时,AB 与y 轴交于点E ,且AE=BE .AF ⊥y 轴交BO 于F ,连结EF ,作AG//EF 交y 轴于G .试判断△AGE 的形状,并说明理由;(3)当△AOB绕着原点O旋转到如图所示的位置时,若A(3,3),c为x轴上一点,且OC=OA,∠BOC=15°,P为y轴上一点,过P做PN⊥AC于N,PM⊥AO于M,当P在y轴正半轴上运动时,试探索下列结论:①PO+PN-PM不变,②PO+PM+PN不变.其中哪一个结论是正确的?请说明理由并求出其值.。

八年级上数学经典综合试题(7套)

八年级上数学经典综合试题(7套)

八年级上数学经典综合试题(-)一、选择题:1、在数轴上与原点的距离小于8的点对应的x 满足( )A 、-8<x <8B 、x <-8或x >8C 、x <8D 、x >-82、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2B 、3C 、4D 、53、计算m n n m n m m 222+--+的结果是( ).A 、 m n n m 2+-B 、m n n m 2++C 、 m n n m 23+-D 、mn n m 23++4、若k<0,则下列不等式中不能成立的是( ).A 、k -5<k -4B 、6k>5kC 、3-k<1-kD 、-5k <-4k 5、给出下面四个命题,其中真命题的个数为( ):(1) 全等三角形是相似三角形 (2) 顶角相等的两个等腰三角形相似 (3) 所有的等边三角形都相似 (4) 所有的直角三角形都相似 A 、1个 B 、2个 C 、3个 D 、4个6、在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是( )A .92B .94C .32D .31 7、函数1y kx =+与函数ky=在同一坐标系中的大致图象是下图中的 ( )8、如图, △ABC 中,P 为AB 上一点,下列四个条件中(1)∠ ACP=∠B (2)∠APC=∠ACB (3)AC 2=AP •AB (4)AB •CP =AP •CB 能满足△APC 和△ACB 相似的条件有( )A 、1个B 、2个C 、3个D 、4个 二、填空题9、当x_____________时,分式21+-x x 有意义。

10、不等式35)1(3-≥+x x 的正整数解是______________第8题图AP BC11、如图,是反比例函数xky -=3与正比例函数y=2kx 的图像,则k 的取值范围是12、若 3a=2b ,则bba +的值为 ; 若234z y x ==,则=+-x z y x 3_ ; 13、已知点A )2(1,y -、B )1(2,y 、C )2(3,y 都在反比例函数)0(<=k xky 的图象上,那么y 1、y 2、y 3的大小关系是: (用“<”连接). 14、袋中有一个红球和两个白球,它们除了颜色外都相同。

八年级上册数学综合题试卷

八年级上册数学综合题试卷

一、选择题(每题4分,共16分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. 3/42. 如果 |x| = 5,那么 x 的值是()A. 5B. -5C. 5 或 -5D. 03. 在直角坐标系中,点 A(-2,3)关于原点的对称点是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)4. 如果 a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a/2 > b/2D. a 2 < b 25. 一个等腰三角形的底边长为 8cm,腰长为 10cm,那么这个三角形的面积是()A. 40cm²B. 80cm²C. 50cm²D. 60cm²二、填空题(每题4分,共16分)6. 已知 a = -3,b = 2,那么 a + b 的值是______。

7. 如果x² = 16,那么 x 的值是______。

8. 在直角坐标系中,点 P(3,-4)到原点的距离是______。

9. 如果一个等边三角形的边长为 6cm,那么它的周长是______cm。

10. 一个长方体的长、宽、高分别是 4cm、3cm、2cm,那么它的体积是______cm³。

三、解答题(每题12分,共36分)11. (12分)已知一元二次方程x² - 5x + 6 = 0,求该方程的解。

12. (12分)在平面直角坐标系中,点 A(2,3)和点 B(-4,-1),求线段 AB 的长度。

13. (12分)已知三角形 ABC 的三边长分别为 5cm、8cm、11cm,判断该三角形是否为直角三角形,并说明理由。

四、应用题(每题12分,共24分)14. (12分)某商店的促销活动:满100元减20元,满200元减50元。

小明想买一件原价300元的衣服,他应该如何购买才能最省钱?15. (12分)一个长方体的底面是正方形,底面边长为 a,高为 b,求该长方体的体积。

精品 八年级数学上册 综合能力复习题

精品 八年级数学上册 综合能力复习题

八年级数学上册 综合复习题一、选择题:1.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个2.如果在△ABC 中,∠A =70°-∠B ,则∠C 等于( )A.35°B.70°C.110°D.140°3.已知ΔABC 的三个内角∠A 、∠B 、∠C 满足关系式∠B+∠C=3∠A ,则此三角( )A.一定有一个内角为45︒B.一定有一个内角为60︒C.一定是直角三角形D.一定是钝角三角形 4.在△ABC 中,∠A=500,∠B 的角平分线和∠C 外角平分线相交所成的锐角的度数是( )A.500B.650C.1150D.2505.装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖有( )A.○1○2○3B.○1○2○4C.○2○3○4D.○1○3○46.若一个三角形的三边长是三个连续的自然数,其周长m 满足2210<<m ,则这样的三角形有( )A.2个B.3个C.4个D.5个7.一个多边形自一个顶点引对角线把它分割为7个三角形,那么它是( )A.六边形B.七边形C.八边形D.九边形8.已知一多边形的每一个内角都等于150°,则这个多边形是正( )A.十二边形B.十边形C.八边形D.六边形9.下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( )A.AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B.AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C.AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D.∠A=∠A ′,∠B=∠B ′,∠C=∠C ′10.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A.18 B.32 C.28 D.24二、填空题:11.三角形的三边长分别为5,1+2x,8,则x的取值范围是_____________12.一个多边形的内角和是540°,那么这个多边形的对角线条数是______13.在三角形已知两边的长分别为3cm和4cm,若第三边的长为偶数则第三边的长是14.如图,∠A=40°,∠B=53°,∠D=67°,则∠E= 度。

八年级上册数学综合试卷狂k重点

八年级上册数学综合试卷狂k重点

八年级上册数学综合试卷狂k重点一、选择题1. 一辆汽车以每小时60千米的速度匀速行驶3小时,它共行驶了()A. 60kmB. 120kmC. 180kmD. 200km2. 质量是36.75千克的物体,其质量的百分之三是多少千克?A. 1.1035kgB. 1.1025kgC. 1.1055kgD. 1.1045kg3. 邻街篮球场每小时消耗20度电,小明去那里打球共消耗1.5小时,共用电量是()A. 70度B. 30度C. 45度D. 65度4. 如果98-12÷(2+3)×5=()A. 33B. 18C. 17D. 12二、填空题1. 计算:10×2-5+5÷5×10=()2. 一个有6位数的一百位数比个位数大3倍,千位数小6倍,百位数为千位数和十位数的和,则该6位数为()3. 10cm=________m4. 87千克=_________克三、解答题1. 计算:2.3 ÷ 0.02 =()2. 汽车以每小时70km的速度行驶,要行驶300km,需要多少时间?3. 计算:0.4+(22-12)×0.5÷2=()四、应用题小明的体重是45千克,小明的妈妈是小明的3倍,那么小明的妈妈的体重是多少千克?五、思维题1. 有一种车,从A地到B地的路程是80km,从B地返回A地的路程是这段路程的一半,从A地开到C地的路程又是80km,两段门之间的路程是80km。

问:C地离A地多远?2. 你用1根长度为a的细杆代表1,10根长度为a的细杆代表10。

请问如何用这种标划表示数字100?以上是八年级上册数学综合试卷的主要内容。

请同学们认真完成试卷,如果有不会做的题目,请先放一放,待后续的学习中逐步解决。

祝各位同学学业进步,取得优异的成绩!。

数学八年级上册 全册全套试卷综合测试卷(word含答案)

数学八年级上册 全册全套试卷综合测试卷(word含答案)

数学八年级上册 全册全套试卷综合测试卷(word 含答案)一、八年级数学三角形填空题(难)1.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,∵∠AA 1B 1=∠A 1B 1B 2+∠C ,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C ;∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;∵最小角为20°,∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m、n为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.2.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.故答案为①②④.点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.3.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.4.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.【答案】360 °【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.5.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.6.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.二、八年级数学三角形选择题(难)7.在多边形内角和公式的探究过程中,主要运用的数学思想是( )A .化归思想B .分类讨论C .方程思想D .数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键. 8.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.A B C.再分9.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.…… 按此规律,倍长2018次后得到的别倍长A1B1,B1C1,C1A1得到222A B C的面积为()201820182018A.20176B.20187D.201886C.2018【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.10.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()A.45°B.45° 或135°C.45°或125°D.135°【答案】B【解析】【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【详解】①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°,在△ABD中,∵∠A=45°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.故选B.【点睛】本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.11.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.12.一个多边形的每个内角都等于120°, 则此多边形是( )A.五边形B.七边形C.六边形D.八边形【答案】C【解析】【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选C.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.三、八年级数学全等三角形填空题(难)13.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】34【解析】【分析】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB =90°,最后利用勾股定理求出BD 的长度即可.【详解】将△CPA 绕点C 逆时针旋转60°得到△CEB ,连接EP ,∴CE =CP ,∠ECB =∠PCA ,∠CEB =∠CPA =150°,BE =AP =6,∵等边△ABC ,∴∠ACP +∠PCB =60°,∴∠ECB +∠PCB =60°,即∠ECP =60°,∴△ECP 为等边三角形,∴∠CPE =∠CEP =60°,PE =6,∴∠DEB =90°,∵∠APC =150°,∠APD =30°,∴∠DPC =120°,∴∠DPE =180°,即D 、P 、E 三点共线,∴ED =3+7=10,∴BD =22DE BE +=234.故答案为234.【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.14.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.【答案】658【解析】【分析】过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338, 在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA ) AB=BM=BG+MG=4+338=658.故答案为:65 8.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.15.AD、BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC=______.【答案】45°或135°【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据等腰直角三角形的性质即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵AD⊥BC,∴∠ABC=45°,②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∵AD⊥BC,∴∠ABD=45°,∴∠ABC=180°-45°=135°.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BD.∴∠ABC=45°,④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD.∴∠ABC=45°.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∴∠ABC=45°.综上所述:∠ABC的度数为45°或135°.故答案为:45°或135°【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.16.如图,AB=BC且AB⊥BC,点P为线段BC上一点,PA⊥PD且PA=PD,若∠A=22°,则∠D的度数为_________.【答案】23°【解析】解:过D作DE⊥PC于E.∵PA⊥PD,∴∠APB+∠DPE=90°.∵AB⊥BC,∴∠A+∠APB=90°,∴∠A=∠DPE=22°.在△ABP和△PED中,∵∠A=∠DPE,∠B=∠E=90°,PA=PD,∴△ABP≌△PED,∴AB=PE,BP=DE.∵AB=BC,∴BC=PE,∴BP=CE.∵BP=DE,∴CE=DE,∴∠DCE=45°,∴∠PDC=∠DCE-∠DPC=45°-22°=2 3°.故答案为:23°.17.如图,已知BD,CD分别是∠ABC和∠ACE的平分线,连接AD,∠DAC=46°, ∠BDC _________【答案】44°【解析】如图,过点D作DF⊥BA,交BA的延长线于点F,过点D作DH⊥AC于点H,过点D作DG⊥BA,交BC的延长线于点G,∵BD,CD分别是∠ABC和∠ACE的平分线,∴DF=DG=DH,∵DH⊥AC,DF⊥BA,∴AD平分∠CAF,∴∠DAC=∠FAD=46°,∴∠BAC=180°-46°-46°=88°;∵BD,CD分别是∠ABC和∠ACE的平分线,∴∠DCE=12ACE∠,∠DBC=12ABC∠,∵∠DCE=∠BDC+∠DBC,∠ACE=∴∠BDC+∠DBC=12(∠BAC+∠ABC),∴∠BDC=12∠BAC=00188442⨯= .18.已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm,则DC=_______【答案】2cm【解析】试题解析:解:连接AD,∵ED是AB的垂直平分线,∴BD=AD=4c m,∴∠BAD=∠B=30°,∵∠C=90°,∴∠BAC=90°-∠B=90°-30°=60°,∴∠DAC=60°-30°=30°,在Rt△ACD中,∴DC=12AD==12× 4=2c m.故答案为2c m.点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.四、八年级数学全等三角形选择题(难)19.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④【答案】C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.20.如图,AD 是ABC 的角平分线,DE AC ⊥;垂足为,//E BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.给出下列三个结论:①DE DF =;②DB DC =;③AD BC ⊥.其中正确的结论共有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 由BF ∥AC ,AD 是ABC 的角平分线,BC 平分ABF ∠得∠ADB=90︒;利用AD 平分∠CAB 证得△ADC ≌△ADB 即可证得DB=DC ;根据DE AC ⊥证明△CDE ≌△BDF 得到DE DF =.【详解】∵DE AC⊥,BF∥AC,∴EF⊥BF,∠CAB+∠ABF=180︒,∴∠CED=∠F=90︒,∵AD是ABC的角平分线,BC平分ABF∠,∴∠DAB+∠DBA=12(∠CAB+∠ABF)=90︒,∴∠ADB=90︒,即AD BC⊥,③正确;∴∠ADC=∠ADB=90︒,∵AD平分∠CAB,∴∠CAD=∠BAD,∵AD=AD,∴△ADC≌△ADB,∴DB=DC,②正确;又∵∠CDE=∠BDF,∠CED=∠F,∴△CDE≌△BDF,∴DE=DF,①正确;故选:D.【点睛】此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.21.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握22.如图,AD是△ABC的外角平分线,下列一定结论正确的是()A.AD+BC=AB+CD,B.AB+AC=DB+DC,C.AD+BC<AB+CD,D.AB+AC<DB+DC【答案】D【解析】【分析】在BA的延长线上取点E,使AE=AC,连接ED,证△ACD≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC<DB+DC.【详解】解: 在BA的延长线上取点E, 使AE=AC,连接ED,∵AD是△ABC的外角平分线,∴∠EAD=∠CAD,在△ACD和△AED中,AD ADEAD CADAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(SAS)∴DE=DC,在△EBD中,BE<BD+DE,∴AB+AC<DB+DC故选:D.【点睛】本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB、AC、DB、DC的长度为边的三角形是解题的关键,也是解本题的难点.23.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.24.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()A.五对B.四对C.三对D.二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.五、八年级数学轴对称三角形填空题(难)的边长为8,E是中线AD上一点,以CE为一边在CE下方25.如图,已知等边ABC作等边CEF∆,连接BF并延长至点,N M为BN上一点,且5CM CN==,则MN的长为_________.【答案】6【解析】【分析】作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出124CG BC==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.【详解】解:如图示:作CG⊥MN于G,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC==,在Rt△CMG中,2222543MG CM CG=-=-,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.26.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).27.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.28.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB ;④12ABC AEPF S S ∆=四边形,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.29.如图,在等腰直角三角形ABC中,90ACB∠=︒,4AC BC==,D为BC中点,E为AC边上一动点,连接DE,以DE为边并在DE的右侧作等边DEF∆,连接BF,则BF的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.30.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长.在△ABC中,利用面积法可求出BQ的长度,此题得解.【详解】 ∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,若△ADC 的周长为14,BC=8,则AC 的长为A .5B .6C .7D .8【答案】A【解析】【分析】根据题意可得MN 是直线AB 的中点,所以可得AD=BD ,BC=BD+CD ,而△ADC 为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC 即可求出AC .【详解】 根据题意可得MN 是直线AB 的中点AD BD ∴=ADC 的周长为14AC CD AD ++=14AC CD BD ++=∴ BC BD CD =+14AC BC =∴+已知8BD =6AC ∴= ,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.32.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为()2,0,30ABO ∠=︒,第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ,第三块三角板的斜边12B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ,第四块三角板斜边23B B 与第三块三角板的斜边12B B 垂直且交x 轴于点3B ,按此规律继续下去,则点2018B 的坐标为( )A .()20182(3),0-⨯ B .()20180,2(3)-⨯ C .()20192(3),0⨯ D .()20190,2(3)-⨯ 【答案】D【解析】【分析】 计算出OB 、OB 1、 OB 2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B 2018的坐标.【详解】解:由题意可得,2242-3OB 1323322(3)⨯,OB 231= 323)⨯,…∵2018÷4=504…2,∴点B 2018在y 轴的负半轴上,∴点B 2018的坐标为()20190,2(3)-⨯.故答案为:D .【点睛】本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.33.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .3【答案】D【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,3∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可.详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,3∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,∵∠OCH=30°,∴OH=123 3OH=32, ∴CD=2CH=3.故选D .点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.34.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】A【解析】【分析】 ①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;②先求出∠APB =∠FPB ,再利用“角边角”证明△ABP 和△FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;③根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明△AHP 与△FDP 全等,根据全等三角形对应边相等可得DF =AH ;④求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后根据即可得到DG GH =+. 【详解】解:①∵∠ABC 的角平分线BE 和∠BAC 的外角平分线,∴∠ABP =12∠ABC , ∠CAP =12(90°+∠ABC )=45°+12∠ABC , 在△ABP 中,∠APB =180°−∠BAP−∠ABP ,=180°−(45°+12∠ABC +90°−∠ABC )−12∠ABC , =180°−45°−12∠ABC−90°+∠ABC−12∠ABC , =45°,故本小题正确;②∵PF ⊥AD ,∠APB =45°(已证),∴∠APB =∠FPB =45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中,APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD=AH+AB,∴BD−AH=AB,故③小题正确;④∵AP=PF,PF⊥AD,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∴FG=GH,AF=2PA故2DG PA GH=+.综上所述①②③④正确.故选:A.【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.35.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】【分析】首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;。

八年级上册数学综合作业1

八年级上册数学综合作业1

八年级上册数学综合作业1一.选择题(共5小题)1.图1所示的是一把木工台锯时使用的六角尺,它能提供常用的几种测量角度.在图2的六角尺示意图中,x的值为()A.135B.120C.112.5D.1122.如图,在四边形ABCD中,∠B=90°,BC=3,连接AC,AC⊥CD,垂足为C,并且∠ACB=∠D,点E是AD边上一动点,则CE的最小值是()A.1.5B.3C.3.5D.43.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连结BP,CP,若∠A=50°,则∠BPC=()A.50°B.100°C.130°D.150°4.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+6),其中a,b均为整数,则a+b等于()A.6B.14C.16D.215.若关于x的分式方程有正数解,且关于x的一元一次不等式组有解,则所有满足条件的整数a的值之和是()A.9B.6C.11D.14二.填空题(共5小题)6.一个多边形的内角和比四边形的内角和多720°,并且这个多形的各内角都相等,则这个多边形的每个外角等于度.7.如图,在△ABC中,∠BAC和∠ABC的平分线AE、BF相交于点O,AE交BC于点E,BF交AC于点F,过点O作OD⊥BC于点D,则下列三个结论:①∠AOB=90°+∠C;②当AB+BC+CA=2b时,AF+BE=AB;③若OD=a,则AB+BC+CA=2b,则AB+BC+CA=2b.其中正确的是.8.如图,在Rt△ABC中,∠ABC=90°,AB=5,BC=12,AD是∠BAC的平分线,若M、N分别是AD和AB上的动点,则BM+MN的最小值是.9.若x+m与x2+2x﹣1的乘积中不含x的二次项,则实数m的值为.10.若关于x的方程﹣=0无解,则m的值是.三.解答题(共2小题)11.A,B两地之间的国道的长度为180千米.(1)甲、乙两人均要从A地前往B地.乙乘公交车先走了20千米,甲才开车从A地出发,甲出发40分钟后刚好追上乙.已知甲开车的速度是乙所乘公交车速度的1.5倍,求乙所乘公交车的速度;(2)高速公路修通后,高速公路的全长比原来国道长减少了40千米,某长途汽车在高速公路上的行驶速度比在国道上提高了35千米/时,从A地到B地的行驶时间缩短了一半,求该长途汽车在原来国道上行驶的速度.12.如图,△ABC为等腰三角形,AB=BC,点F是线段CB上一点,连接AF.(1)如图1,若AF⊥CB,AB=10,BF=8,求线段AC的长;(2)如图2,E为线段AB上一点,连接CE,使∠ACE=∠B,且EA=BF,D为AF的中点,连接CD,求证:∠ACD=∠BCE.。

2024-2025学年人教版八年级上册数学 期末综合能力测评卷

2024-2025学年人教版八年级上册数学 期末综合能力测评卷

八年级上册数学人教版期末综合能力测评卷一、选择题(本大题共10小题,每小题3分,共30分)1.“甲骨文”是中国的一种古老文字,又称“契文”“殷墟文字”.下列甲骨文中,一定不是轴对称图形的是 ( )2.下列运算正确的是 ( )A.(3a²)³=9a⁶B.a³÷a³=aC.(a²)³=a⁵D.a²⋅a³=a⁵3.若点(-3,4)与点(a²,b²)关于y轴对称,则(a+b)(a-b)= ( )A. -1B.1C.7D. -124.平面内,将长分别为1,1,3,x的线段,首尾顺次相接组成凸四边形(如图),x的值可能是 ( )A.1B.3C.5D.75.如图,AD和BC交于点 E,已知AE=CE,则添加下列条件仍不能判定△ABE≌△CDE的是 ( )A. AB=CDB. BE=DEC.∠A=∠CD.∠B=∠D6.下列各式中,正确的是 ( )A.ba+2b =1a+2B.ba=b+2a+2C.−−a+bc =−a+bcD.a+2a−2=a2−4(a−2)27.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2 中,∠EAC的大小是 ( )A.36°B. 54°C. 72°D. 108°8.某工厂要加工 m个零件,甲队单独完成需 n 小时,乙队单独完成比甲队少用3小时,则两队一起加工这批零件需要多少小时? ( )A.n 2−3n3n−3B.n2−3n2n−3C.2n−3n2−3n D.mn+mn−39.在△ABC中,已知∠BAC=90°,AB≠AC,若用无刻度的直尺和圆规在BC 上找一点D,使△ACD 是等腰三角形,则下列作法中,正确的有 ( )A.②③B.①②C.①③D.①②③10.如图,在△ABC中,∠BAD=30°,将△ABD 沿AD 折叠至△ADB',∠ACB =2α,连接B'C,CB' 平分∠ACB, 则∠AB'D的度数是()A.60∘+α2B. 60°+αC.90∘−α2D. 90°-α二、填空题(本大题共5 小题,每小题3分,共15分)11.计算:(π−3.14)⁰+2⁻¹=12. “燕山雪花大如席,片片吹落轩辕台.”这是诗仙李白眼里的雪花. 单个雪花的质量其实很轻,只有0.000 03 kg左右,0.000 03 用科学记数法可表示为 .13.已知a+b=5, ab=3,则ba +ab=¯14.如图,线段AB,AC 的垂直平分线m,n 相交于点 O.连接OB,OC,若∠BOC=86°,则∠1=°.15.如图,∠AOB=45°,点 M,N 分别在射线 OA,OB上,MN=8,△OMN的面积为 12,P 是直线MN上的动点,点P 关于OA 对称的点为P₁,点P 关于OB 对称的点为P₂,当点P 在直线NM 上运动时,△OP₁P₂面积的最小值为 .三、解答题(本大题共8小题,共75 分)16.(6分)解答下列各题:(1)(3分)计算:(x+2)²+x(x−4);(2)(3分)分解因式:x²(m−n)+y²(n−m).17.(6分)先化简,再求值:1−x−y3x+y ÷x2−y29x2+6xy+y2,其中x=−2,y=1.18.(8分)如图,在△ABC中,∠ACB=3∠B,AD 平分∠BAC,CE⊥AD于点E,若∠BAC=60°,求∠DCE的度数.19.(8分)如图,在△ABC中,D是 BC 上一点(不与点B,C 重合),将DA 沿直线 BC 翻折得到 DE,将BD平移得到EF(点 B 与点 E 为对应点),连接DF.(1)求证:△ADB≅△DEF;(2)连接CF,若在点 D 的运动过程中,始终有.AD=CF,写出.△ABC需要满足的条件,并证明.20.(10分)党的二十大报告明确提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A 型和B 型两款汽车,已知每辆A 型汽车进价是每辆 B 型汽车进价的1.5倍,现公司用1 500 万元购进A 型汽车的数量比1 200 万元购进 B 型汽车的数量少20 辆.(1)求每辆 B型汽车进价是多少万元.(2)A型汽车利润率为5%,B型汽车利润率为8% ,那么该公司出售完此批汽车后总利润是多少元?21.(12 分)如图,在平面直角坐标系中,点A( -3,0),点B(-1,5).(1)①画出线段AB关于y轴对称的线段CD;②在y轴上找一点 P 使PA+PB 的值最小(保留作图痕迹);(2)按下列步骤,用不带刻度的直尺在线段 CD 找一点 Q使∠BAQ=45°.①在图中取点 E,使得 BE = BA,且BE⊥BA,则点 E 的坐标为;②连接AE 交 CD 于点 Q,则点 Q 即为所求.22.(12 分)把完全平方公式(a±b)²=a²±2ab+b²适当的变形,如:(a+b)²=(a−b)²+4ab等,这些变形可解决很多数学问题.例如:若a+b=3, ab=1,求a²+b²的值.解:因为 a +b =3, ab =1,所以(a+b)²=9,2ab=2,即a²+b²+2ab=9,2ab=2,所以a²+b²=7.根据上面的解题思路与方法,解决下列问题.(1)①若2m+n=3, mn=1,且2m>n,则2m-n = ;②我们知道(2-m)-(5-m) =-3,若(2-m) (5 - m) = 3,则(2−m)²+(5−m)²=.(2)如图,C 是线段AB 上的一点,以AC,BC 为边向两边作正方形,AB=5,两个正方形的面积和为15,设AC=x,BC=y,求图中阴影部分的面积.23.(13 分)探究等边三角形“手拉手”问题.(1)如图1,已知△ABC,△ADE均为等边三角形,点 D 在线段 BC 上,且不与点 B,C重合,连接CE,试判断 CE 与 BA 的位置关系,并说明理由;(2)如图2,已知△ABC,△ADE均为等边三角形,连接CE,BD,若∠DEC=60°,则∠ADB+∠ADE=度;(3)如图3,已知点E在等边三角形ABC外,点E,B 位于线段 AC 的异侧,连接 BE,CE. 若∠BEC=60°,,猜想线段 BE,AE,CE 三者之间的数量关系,并说明理由.。

八年级数学上册期末综合练习题及答案3(中考题)

八年级数学上册期末综合练习题及答案3(中考题)

八年级上期末综合练习3考号____________姓名____________总分_________________一.选择题(共12小题;每题4分;共48分)00025米;此数据用科学记数法表示为()米.A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣62.代数式中;分式的个数是()A.1 B.2C.3D.43.下列方程中分式方程有()个.(1)x2﹣x+;(2)﹣3=a+4;(3);(4)=1.A.1 B.2C.3D.以上都不对4.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线5.用五根木棒钉成如下四个图形;具有稳定性的有()A.1个B.2个C.3个D.4个6.(2011•宜宾)分式方程的解是()A.3 B.4C.5D.无解7.(2013•贵港)关于x的分式方程的解是负数;则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠08.下列各式由左边到右边的变形中;是分解因式的是()A.m(x+y)=mx+my B.x2﹣4x+4=x(x﹣4)+4C.15x2﹣3x=3x(5x﹣1)D.x2﹣9+3x=(x+3)(x﹣3)+3x9.(2004•聊城)方程的解是()A.﹣2;B.3;C.﹣2;D.1;10.(2006•日照)已知在正方形网格中;每个小方格都是边长为1的正方形;A;B两点在小方格的顶点上;位置如图所示;点C也在小方格的顶点上;且以A;B;C为顶点的三角形面积为1;则点C的个数为()A.3个B.4个C.5个D.6个11.(2010•荆门)给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点;这一点就是三角形的重心(3)平行四边形的重心是它的两条对角线的交点(4)三角形的重心是它的中线的一个三等分点那么以上判断中正确的有()A.一个B.两个C.三个D.四个12.(2007•玉溪)如图;AE⊥AB且AE=AB;BC⊥CD且BC=CD;请按照图中所标注的数据;计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题(共6小题;每题4分;共24分)13.在代数式a;π;ab;a﹣b;;x2+x+1;5;2a;中;整式有_________个;单项式有_________个;次数为2的单项式是_________;系数为1的单项式是_________.14.要使关于x的方程有唯一的解;那么m≠_________.15.如图;在△ABC中;∠ACB=60°;∠BAC=75°;AD⊥BC于D;BE⊥AC于E;AD与BE交于H;则∠CHD= _________.16.(2014•盐都区二模)PM2.5是指大气中直径小于或等于2.5微米的颗粒物;也称为可入肺颗粒物.2.5微米等于0.0000025米;把0.000 002 5用科学记数法表示为_________.17.若关于x的分式方程无解;则m=_________.18.(2014•句容市一模)如图;在等边△ABC中;AC=3;点O在AC上;且AO=1.点P是AB上一点;连接OP;以线段OP为一边作正△OPD;且O、P、D三点依次呈逆时针方向;当点D恰好落在边BC上时;则AP 的长是_________.三.解答题(共8小题;19-20每题7分;21-24每题10分;25-26每题12分。

精品 八年级数学上册 全等三角形综合题

精品 八年级数学上册 全等三角形综合题
A 12 F C D E B
11.已知,E 是 AB 中点,AF=BD,BD=5,AC=7,求 DC.
D C B
F A E
3
12.如图,等腰直角三角形 ABC 中,∠ACB=90°,AD 为腰 CB 上的中线,CE⊥AD 交 AB 于 E. 求证∠CDA=∠EDB.
13.在 Rt△ABC 中,∠A=90°,CE 是角平分线,和高 AD 相交于 F,作 FG∥BC 交 AB 于 G, 求证:AE=BG.
全等三角形综合题 1.如图,CE 平分∠ACB,且 CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD 的周长为 28 cm,则 DB= 。
2.已知,如图,AB=CD,DF⊥AC 于 F,BE⊥AC 于 E,DF=BE。求证:AF=CE。
3.如图,DE⊥AB,DF⊥AC,垂足分别为 E、F,请你从下面三个条件中任选出两个作为已知 条件,另一个为结论,推出一个正确的命题。① AB=AC;②BD=CD;③ BE=CF。
D A F C B
14.如图,在四边形 ABCD 中,AB=BC,BF 是∠ABC 的平分线,AF∥DC,连接 AC、CF,求证: CA 是∠DCF 的平分线。
15.如图,在△ABC 中,AD 是中线,BE 交 AD 于 F,且 AE=EF,说明 AC=BF 的理由.
4
16.如图,在△ABC 中,∠ABC=100º,AM=AN,CN=CP,求∠MNP 的度数。
17.如图,在△ABC 中,AB=BC,M,N 为 BC 边上的两点,并且∠BAM=∠CAN,MN=AN,求∠MAC 的 度数.
18.已知:如图,四边形 ABCD 中,AC 平分角 BAD,CE 垂直 AB 于 E,且∠B+∠D=180 ,求证: AE=AD+BE

八年级上册数学综合测试题及答案

八年级上册数学综合测试题及答案

八年级上册数学综合测试题及答案一、单选题(18分)1.(3分)在代数式枭,,巳$/,亮,攀,--:中,分式共有( )A.2个B.3个C.4个D.5个 2 .(3分)图中有三个正方形,其中构成的三角形中全等三角形的对数有()3 . (3分)下列运算正确的是( )4 . (3分)下列式子变形是因式分解的是(A.2对B.3对C.4对D.5对 A 3o ¥b a+l =T B.2X& 辿 3 3C.Vo 5 =0D./a/ = a(a >0)Ax7 - 5x + 6 = K(X - 5)+ 6 B.x2- 5x + 6 = (x - 2)(x - 3J5 . (3分)对于实数a 、b ,定义一种新运算"® "为:a ® b 二高,这里等式右边是实数运算.例如:1® 3二合=4-则方程x ® (-2)=合1的解是( )6 .(3分)如图,已知,BD 为SBC 的角平分线,且BD=BC , E 为BD 延长线上 的一点,BE=BA .下面结论:①2ABDaEBC ;②AC=2CD ;③AD=AE=EC ; ④N BCE+N BCD=180° .其中正确的是( )A.①②③B.①②④C.①③④D.②③④二.填空题(18分)7 .(3分)在直角坐标平面里,MBC 三个顶点的坐标分别为A (-2,0)、B (0 , 3) 和C (-3 , 2),若以y 轴为对称轴作轴反射ABC 在轴反射下的像是△A'B'C', 则C 点坐标为 .C.(x - 2)(x - 3/ = x 2 - 5K + 6 Dy-5x+6=a + 2J(x+3)A.x=4B.x=5C.x 二 6D.x=78. (3分)若关于x的分式方程看#告二念解,则m= .9. (3分)计算:咛尸“多环/_ .10. (3分)如图所示,MBC的两条外角平分线AP、CP相交于点P, PH±AC 于H .若nABC=60° ,则下面的结论:①N ABP=30°;②N APC=60°;③PB=2PH ;④/APH二N BPC ,其中正确的结论是.11. (3分)关于x的方程:x+:=c+弼解是xi=c , X2W ; X-:=日的解是xi=c , X2 = ~ ,贝U X+2=C+S的解是Xi = C , X2=.12.(3分)我们知道:"两边及其中一边的对角分别相等的两个三角形不一定全等〃.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是一时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三、解答题(84分)13. (6 分)计算:- 2)° +1+4cos30°- |\3 - y[17\ .14. (6分)如图,方格纸中每个小正方形的边长都是1「ABC在平面直角坐标系中的位置如图所示:⑴将占ABC向右平移4个单位后,得到&A1B1C1,请画出^AiBiCi,并直接写出⑵作出5面的关于x轴的对称图形S2B2c2并直接写出点A2的坐标(3)在第二象限5x5的网格中作△ ABC的轴对称图形,要求各顶点都在格点上, 共能作一个.15. (6分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?16 .(6 分)已知AD 为SBC 的内角平分线,AB=7 cm , AC=8 cm , BC=9 cm .7 cm_______ gem __________ 9cm(1)请画出图形,(必须保留作图痕迹).(2)求CD的长.17 . (6分)如图,ABIICD ,以点A为圆心,小于AC长为半径作圆弧,分别交AB , AC于E , F两点,再分别以E , F为圆心,大于狂眠为半径作圆弧,两条圆弧交于点P,作射线AP ,交CD于点M .(1)若/ACD= 114。

精品 八年级数学上册 分式综合题02

精品 八年级数学上册 分式综合题02

分式综合测试题一、选择题:1.下列各式:()xx x x y x x x 2225,1,2,34,151+---π其中分式共有( )个 A .2 B .3 C .4 D .5 2.下列各式中,最简分式是( )A.()()y x y x +-8534B.y x x y +-22C.2222xy y x y x ++ D.()222y x y x +-3.化简ba c cb ac b c b a cb ac b a ---++-+---++-232的结果是( )A .0B .()cb ac b -+-22 C .1 D .以上结论都不对4.化简:3321()222a a b b b a-÷⨯= 322332a bb a a b b aA B C D a b a b----、、、、 5.化简:22()nb n a ⎛⎫- ⎪⎝⎭为正整数的值为( ) 2242142222nn n nnnnn b b b b A B C D aa a a++、、、-、-6.化简:22222222656444bab a b ab a bab a b a ++-+÷++-的结果是( ) A.-1 B.0 C.1 D.27.若311=-yx ,则y xy x y xy x ----2232的值是( )A .21 B .32 C .59 D .48.如果m 为整数,那么使分式172++m m 的值为整数的m 的值有( ) A.2个 B.3个 C.4个 D.5个9.若x<y<0,则xyy x -++11的结果是( ) A. 0 B. 正数 C. 负数 D. 以上情况都有可能10. 汽车从甲地开往乙地,每小时行驶V 1km ,t 小时可以到达,如果每小时多行驶V 2km ,那么可以提前到达的小时数为( )A. 212V V t V + B. 211V V t V + C. 2121V V V V + D. 21V t V -12V t V11.若分式6932---a a a 的值恒为正数,则a 的取值范围为( )A.a <-2B.a ≠3C.a >-2D.a >-2且a ≠3 12. 若4x-3y-6z=0,x+2y-7z=0(xyz ≠0),则222222103225z y x z y x ---+的值等于( )A. 21-B.219- C.-15 D.-13 二、填空题:13.用科学计数法表示:(1)0.00150= ;(2)-0.000004020=14.分式2231--+x x 中字母x 的取值范围是_______ 15.化简:2222()()x y z x y z --+-=_____ 16.计算:(1)32m÷ =8m(2)72a m b n ÷ 8abn -2=17.计算2222yx y x ----的结果是18.若m 等于它的倒数,则分式22444222-+÷-++m mm m m m 的值为______ 19.若方程k x x -=-132的根为正数,则k 的取值范围是20.观察下面一列有规律的数:31,82,153,244,355,486,…… 根据规律可知第n 个数应是 (n 为正整数) 三、计算题:21.化简:(1)221121x x x x x x x+⎛⎫-÷ ⎪--+⎝⎭ (2)()2322x y x x y xy x y ⎛⎫⎛⎫-÷+ ⎪ ⎪-⎝⎭⎝⎭(3)41021248327622222-++--++-++++x x x x x x x x x x 22.解分式方程:x x x x --=-+22223.解分式方程:3124122=---x x x x 24.解分式方程:41)1(31122=+++++x x x x25.解分式方程:1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x26.解下面的方程:1113(3)(3)(6)(6)(9)218x x x x x x x ++=++++++.27.先化简,再计算:)()(2)(22222b a b a abb a b a b a b a -+÷+---+,其中122,122-=+=b a 28.已知xBx A xx x +-=--1322,其中,A 、B 为常数,求A+B 的值。

精品 八年级数学上册 综合复习题

精品 八年级数学上册 综合复习题

八年级数学上册 综合复习题一、选择题:1.实数x 、y 满足23201120101x x x y -+--=,则实数y 的值是( ) A.2010 B. 0 C.1 D.无法计算2.实数-7、-2.5、-3的大小关系是( )A.-7<-2.5<-3B.-3<-2.5<-7C.-3<-7<-2.5D.-2.5<-7<-3 3.如图,∠ACD=90°,∠D=15°,B 点在AD 的垂直平分线上,若AC=4,则BD=( )A.4B.6C.8D.104.如图,O 是△ABC 的两条垂直平分线的交点,∠BAC=70°,则∠BOC=( ) A.120°B.125°C.130°D.140°5.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P ,2P 交OA 于M ,交OB 于N ,若1P 2P =6,则PMN 的周长为( )A.4B.5C.6D.76.如图所示,已知△ABC 中,∠BAC =90°,AB =AC ,∠BAD =30°,AD =AE ,则∠EDC 的度数为( )A.10°B.15°C.20°D.30° 7.如图,∠BAC=120°,AD ⊥AC ,BD=CD ,则下列结论正确的是( ) A.AD=ACB.AB=错误!未找到引用源。

ACC.AB=2ACD.AB=错误!未找到引用源。

AC8.20072-2006×2008的计算结果是( )A .1B .-1C .2D .-29.计算(m +3n)2-(3m +n)2的结果是( )A .8(m -n)2B .8(m +n)2C .8n 2+8m2D .8n 2-8m 210.若x+y=7 xy= -11,则x 2+y 2的值是( )A .49B .27C .38D .7111.若4x 2+axy +25y 2是一个完全平方式,则a= ( ) A .20B .-20C .±20D .±1012.如图,AC ⊥BC ,AD 平分∠BAC ,DE ⊥AB 交AB 于E 。

八年级上数学经典综合试题(7套)

八年级上数学经典综合试题(7套)

八年级上数学经典综合试题(7套)八年级上数学经典综合试题(7套)题一:某商场的打折规则为:原价100元及100元以下商品不打折,原价超过100元但不超过200元的商品打9.5折,原价超过200元的商品打9折。

小明购买了一台原价为210元的电脑,请帮他计算最终实际支付的金额。

解析:根据题目中的打折规则,我们可以将小明购买的电脑所需支付的金额表示为:100元 + (210 - 200) × 0.9 + (200 - 100) × 0.95= 100 + 9 + 9.5= 118.5 元因此,小明最终需要支付的金额为118.5元。

题二:某班级的学生身高情况如下:140cm、145cm、150cm、155cm、160cm。

请计算这五个学生身高的平均值。

解析:要计算这五个学生身高的平均值,我们需要将它们相加,然后除以学生人数即可。

140 + 145 + 150 + 155 + 160 = 750共有5个学生,所以平均值为:750 / 5 = 150cm因此,这五个学生的身高平均值为150cm。

题三:一块正方形的面积是64平方米。

如果将这块正方形的边长减少1米,那么新的正方形的面积是多少?解析:设原正方形的边长为x米,则原正方形的面积为x^2平方米。

根据题意,边长减少1米后,新正方形的边长为(x-1)米。

新正方形的面积为 (x-1)^2 平方米。

根据展开式,(x-1)^2 = x^2 - 2x + 1。

已知原正方形的面积为64平方米,即 x^2 =64,解得 x=8。

代入(x-1)^2 = x^2 - 2x + 1,得到新正方形的面积为(8-1)^2 = 8^2 - 2×8 + 1 = 49 平方米。

因此,新的正方形的面积为49平方米。

题四:小明乘坐公交车去市区旅游,从A地乘车,到达市区后又从B地乘坐同一辆公交车回到A地。

若小明乘车耗时总计3小时,其中在市区逗留1小时,求小明在A地乘公交车的时间。

八年级上数学综合练习题及答案

八年级上数学综合练习题及答案

第10题八年级上数学综合练习题一、填空题(每小题3分,共24分)1. 计算:432)2(a a =.2. 如果分式2202x xx,则x.3. 若一个多边形的内角和是外角和的3倍,则它是_______边形.4. 因式分解:2242x x .5. 分式方程211033xx x的解为.6. 已知63x yxy ,,则22x y xy______________.7. 如图,已知AC FE ,BC DE ,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件,这个条件可以是.8. 若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是.二、单项选择题(每小题3分,共24分)9.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称.则2013)ab (的值为( )A.0B. 1C. -1D.(-3)201310.如图,Rt 90ABC C BAC 在△中,=,的角平分线AD 交BC 于点D ,2CD =,则点D 到AB 的距离是()A .1B .2 C .3D .4八年级数学试卷第1页(共8页)11.下列运算正确的是()A .222()a b abB .235a b abC .632a aaD .523aaa12.下列判定直角三角形全等的方法,不正确...的是()A .斜边和一锐角对应相等B .两锐角对应相等C .两条直角边对应相等D .斜边和一条直角边对应相等13.化简22)11(ba ab b a的结果是()A.ba1 B.b a1 C.baD.ab 14.如图,已知ABC △中,45ABC,4AC,H 是高AD 和BE 的交点,则线段BH 的长度为()A .6B .4C .23D .515.下面有4个汽车标志图案,其中是轴对称图形的是( )①②③④A.①②③B.②③④C.①②④D.①③④16.某厂去年产值是m 万元,今年产值是n 万元(m<n ),则今年产值比去年产值增加的百分比是()A .100nnm % B .1001m n %C .100mm n % D .10010mmn %八年级数学试卷第2页(共8页)三、解答题(17、18每题5分,19、20每题6分,共22分)DACB DCBAE H第14题第7题ACDBEF17.计算:12m2-9+23-m.18.如图,有两个74的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时..满足以下要求:(1)线段的一个端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.19.先化简,再求值:2121(1)1a aa a,其中a=31..八年级数学试卷第3页(共8页)20.(1)因式分解:3231827x x x. (2)计算:22()()a b a ab b.四、解答题(每小题7分,共14分)21.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=31AB,AF=31AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.八年级数学试卷第4页(共8页)图1 图2ADBEFC22.一辆汽车开往距离A 地180千米的B 地,出发后第一小时内按原计划的速度匀速行驶,一小时后加速为原来速度的1.5倍,并比原计划提前40分钟到达B 地.求汽车原计划的行驶速度.五、解答题(每小题8分,共16分)23. 如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB=DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD=6cm ,求AC 的长.八年级数学试卷第5页(共8页)24.观察“探究性学习”小组的甲、乙两名同学进行的因式分解:甲:244xxy x y =2()(44)xxy x y (分成两组)=()4()x x y xy (直接提公因式)=()(4)x y x ;乙:2222abcbc=222(2)a bcbc (分成两组)=22()ab c (直接运用公式)=()()abc abc .请你在他们解法的启发下,完成下面的因式分解:(1)32248m mm ;(2)2229xxy y.八年级数学试卷第6页(共8页)六、解答题(每小题10分,共20分)25.已知:点O 到ABC △的两边AB AC ,所在直线的距离相等,且OB OC .(1)如图1,若点O 在边BC 上,求证:ABAC ;(2)如图2,若点O 在ABC △的内部,求证:AB AC ;(3)若点O 在ABC △的外部,ABAC 成立吗?请画图说明(不需证明).八年级数学试卷第7页(共8页)26.(1)如图(1)所示,已知120,MANAC 平分90,MAN ABCADC 。

沪科版数学八年级上册综合训练50题-含答案

沪科版数学八年级上册综合训练50题-含答案

沪科版数学八年级上册综合训练50题含答案(填空、解答题)一、填空题1.如图,在平面直角坐标系中,点O 为坐标原点,若直线26y x =-与x 轴、y 轴分别交于点A ,B , 则AOB 的面积为________.2.如图,直线22y x =--与x 轴交于点A ,与y 轴交于点B ,把直线AB 沿x 轴的正 半轴向右平移2个单位长度后得到直线CD ,则直线CD 的函数解析式是__________.3.在ABC 中,∠A=∠B=∠C ,则ABC 是_________三角形.4.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线BC 交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为___.5.下列给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息,请你根据表格中的相关数据计算:m +n =____________.6.阅读下面的材料:小芸的作法如下:请回答:小芸的作图依据是____________________________________.7.若函数y kx b=+的图象如图所示,则不等式0+>的解集是___________.kx b8.如图,在ABC中,按以下步骤作图:、于点D、E.∠以点B为圆心,任意长为半径作弧,分别交AB BC∠分别以点D、E为圆心,大于1DE的同样长为半径作弧,两弧交于点F.2∠作射线BF 交AC 于点G . 如果23=AB BC ,求ABG BGC S S ∆∆=________.9.函数y ax b =+的图象如图,不等式2ax b +≤的解集为__________.10.一次函数y =x ﹣5的图象与y 轴的交点坐标为 _________.11.已知点P 的坐标为(a +1,5﹣3a ),且它到两个坐标轴的距离相等,则点P 的坐标为_______________.12.如图,长方形纸片ABCD 中AD ∠BC ,AB ∠CD ,∠A =90°,将纸片沿EF 折叠,使顶点C 、D 分别落在点C '、D '处,C 'E 交AF 于点G .若∠CEF =68°,则么∠GFD '=______°.13.已知点()1,3M -,点N 为x 轴上一动点,则MN 的最小值为______. 14.已知点P (m ,2)在第一象限,那么点B (3,﹣m )在第____象限.15.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点P ⎛ ⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.16.如图,在∠ABC 中,AB =17,AC =12,AD 为中线,则∠ABD 与∠ACD 的周长之差=__.17.某下岗职工购进一批货物到集贸市场零售,已知卖出的货物质量x (千克)与售价y (元)的关系如表所示:写出y 关于x 的函数关系式是____________.18.“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y (千米)与小刚跑步所用时间x (分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了__分钟.19.在ABC 中,AB AC =,点D 是ABC 外一点,连接AD 、BD 、CD ,且BD 交AC 于点O ,在BD 上取一点E ,使得AE AD =,EAD BAC ∠=∠,若70ACB ∠=︒,则BDC ∠的度数为 _____.20.已知1(2, 1)A ,2(1, 0)A -,…,(, )k k k A x y ,…,(k 为正整数),且满足111k k x x -=-,11k k y y -=-,则A 2022的坐标为____.21.已知点P (x ,y )位于第四象限,并且x ≤y +4(x ,y 为整数),写出一个符合上述条件的点P 的坐标_________.22.如图,ABC 中,AB AC =,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .若11AB cm =,BCE 的周长为17cm ,则BC=________cm .23.如图,已知1A (1,0),2A (1,﹣1),3A (﹣1,﹣1),4A (﹣1,1),5A (2,1),…,则点2010A 的坐标是________.24.下表分别给出了一次函数y 1=k 1x +b 1与y 2=k 2x +b 2图像上部分点的横坐标x 和纵坐标y 的对应值.则当x ____时,y 1>y 2.25.如图所示,OC 平分AOB ∠,OD 平分COB ∠,90AOD ∠=︒,则BOD ∠=_______︒.26.如图,在∠ABC 中,∠ACB =90°,AC =BC ,∠ABC 的角平分线BE 和∠BAC 的外角平分线AD 相交于点P ,AP 与BC 的延长线交于点D .过点P 作PF ∠AD 交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 并延长交DH 于点G .下列结论中,正确的是______.(填序号)∠∠APB =45°,∠PF =P A ,∠DG =AP +GH ,∠BD =AH +AB .27.如图,ADC △是45°的直角三角板,ABE 是30°的直角三角板,CD 与BE 交于点F ,则DFB ∠的度数为__________28.如图,在长方形ABCD 中4AB DC ==,5AD BC ==.延长BC 到E ,使2CE =,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→→向终点A 运动,设点P 运动的时间为t 秒,存在这样的t ,使DCP 和DCE △全等,则t 的值为______.29.如图,已知∠AOB=90°, ∠COD=90°,OE 为∠BOD 的角平分线,∠BOE=25°,则∠AOC=_____30.已知点A (3,4),点B (﹣1,1),在x 轴上有两动点E 、F ,且EF=1,线段EF 在x 轴上平移,当四边形ABEF 的周长取得最小值时,点E 的坐标为________.二、解答题 31.(1)解方程:2101x x-=+ (2)已知等腰三角形的两边长为5cm 和4cm ,求它的周长.32.如图,BA =BE ,∠A =∠E ,∠ABE =∠CBD ,ED 交BC 于点F ,且∠FBD =∠D . 求证:AC ∠BD .证明:∠∠ABE =∠CBD (已知), ∠∠ABE +∠EBC =∠CBD +∠EBC ( ) 即∠ABC =∠EBD在∠ABC 和∠EBD 中, ___________ABC EBD A E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EBD ( ), ∠∠C =∠D ( ) ∠∠FBD =∠D ,∠∠C = (等量代换), ∠AC ∠BD ( )33.如图,在四边形ABCD 中,AD BC ∥,点E 为对角线BD 上一点,A BEC ∠=∠ ,且AB EC =.(1)求证:ABD ECB ≌;(2)若65BDC ∠=︒,求DBC ∠的度数.34.如图,已知:DE //BC ,CD 是∠ACB 的平分线,∠B =80°,∠A =50°,求:∠EDC 与∠BDC 的度数.35.点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=65°,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB 重合时,则∠MOC=__________ (2)如图2,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的平分线,求∠BON 和∠CON 的度数.36.如图,射线OB 在钝角AOC ∠的内部,且180,AOB AOC OP ∠+∠=︒分AOB ∠,OQ 平分AOC ∠.(1)当OB 与OQ 重合时,求AOC ∠得度数; (2)若100AOC ∠=︒,求POQ ∠的度数;(3)若AOC n ∠=︒,求POQ ∠的度数(用含n 的代数式表示).37.如图,在等边∠ABC 中,点D ,E 分别在边BC ,AC 上,且AE =CD ,BE 与AD 相交于点P ,BQ 上AD 于点Q .(1)求证:AD =BE ; (2)求∠PBQ 的度数;(3)若PQ =3,PE =1,求AD 的长.38.如图,在平面直角坐标中,∠ABC 各顶点都在小方格的顶点上.(1)画出∠ABC 关于x 轴对称的图形∠A 1B 1C 1;写出∠A 1B 1C 1各顶点坐标A 1 ;B 1 ;C 1(2)在y 轴上找一点P ,使P A +PB 1最短,画出P 点,并写出P 点的坐标 . (3)若网格中的最小正方形边长为1,则∠A 1B 1C 1的面积等于 .39.如图,ABC ∆中,ABC C ∠=∠,BD 是ABC ∠的平分线,48A ∠=,求BDC ∠的度数.40.如图所示,四边形ABCD 中,∠ADC 的角平分线DE 与∠BCD 的角平分线CA 相交于E 点,已知:∠ACB =32°,∠CDE =58°.(1)求∠DEC 的度数; (2)试说明直线AD BC ∥41.如图,已知ABC FED ≅,A ∠和F ∠是对应角,CB 和DE 是对应边,82AF BE =,=.(1)写出其他对应边及对应角;(2)判断AC 与DF 的位置关系,并说明理由. (3)求AB 的长.42.在△ABC 中,∠C>∠B .如图∠,AD∠BC 于点D ,AE 平分∠BAC .(1)如图∠,AD∠BC 于点D ,AE 平分∠BAC ,能猜想出∠DAE 与∠B 、∠C 之间的关系是什么?并说明理由.(2)如图∠,AE 平分∠BAC ,F 为AE 上的一点,且FD∠BC 于点D ,这时∠EFD 与∠B 、∠C 有何数量关系?请说明理由.(3)如图∠,AE 平分∠BAC ,F 为AE 延长线上的一点,FD∠BC 于点D ,请你写出这时∠EFD 与∠B 、∠C 之间的数量关系(只写结论,不必说明理由).43.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .(1)当直线MN 绕点C 旋转到图(1)的位置时,求证:∠ADC △∠CEB ;∠DE AD BE =+.(2)当直线MN 绕点C 旋转到图(2)、图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.44.如图,在ABC 中,BD 、CE 是边AC 、AB 上的中线,BD 与CE 相交于点O ,N 是OC 的中点.(1)求证:2OC OE =;(2)若1CDN S =△,求ABC 的面积.45.贝贝在银行的信用卡中存入2万元,每次取出500元,若卡内余额为y (元),取钱的次数为x .(利息忽略不计)(1)写出y 与x 之间的函数关系式;(2)求自变量x的取值范围;(3)取多少次钱后,余额为原存款的14?46.水池中有水20m3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56m3,王师傅的具体记录如下表.设从12:00时起经过tmin池中有水ym3,右图中折线ABCD表示y关于t的函数图象.(1)每个出水口每分钟出水m3,表格中a=;(2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16m 3?47.如图,△ABC 是等腰直角三角形,∠BAC =90°,△ACD 是等边三角形,E 为△ABC 内一点,AC =CE ,∠BAE =15°,AD 与CE 相交于点F .(1)求∠DFE 的度数;(2)求证:AE =BE .48.已知两个全等的等腰直角∠ABC 、∠DEF ,其中90ACB DFE ∠=∠=︒,E 为AB 中点,∠DEF 可绕顶点E 旋转,线段DE ,EF 分别交线段CA ,CB (或它们所在直线)于M 、N .(1)如图1,当线段EF 经过∠ABC 的顶点C 时,点N 与点C 重合,线段DE 交AC 于M ,求证:AM MC =;(2)如图2,当线段EF 与线段BC 边交于N 点,线段DE 与线段AC 交于M 点,连MN ,EC ,请探究AM ,MN ,CN 之间的等量关系,并说明理由;(3)如图3,当线段EF 与BC 延长线交于N 点,线段DE 与线段AC 交于M 点,连MN ,EC ,请猜想AM ,MN ,CN 之间的等量关系,不必说明理由.49.已知,在平面直角坐标系中,点A ,B 的坐标分别是(),a a --,(),0b 且20b -=.(1)求a ,b 的值;(2)在坐标轴上是否存在点C ,使三角形ABC 的面积是8?若存在,求出点C 的坐标;若不存在,请说明理由.50.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足(a ﹣c +4)20,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)求点B 的坐标及AO 和BC 位置关系;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S △△=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.参考答案:1.9【分析】分别令0x =,0y =,求出A 、B 两点坐标,再利用三角形面积公式即可求出面积.【详解】当0x =时,y =-6,∠B 点坐标为(0,6)-,即6OB =,当0y =时,3x =,∠A 点坐标为(3,0),即3OA =, ∠1136922AOB S OA OB ==⨯⨯=, 故答案为:9.【点睛】本题考查了求一次函数图象与坐标轴形成的三角形的面积,求出一次函数与坐标轴的交点坐标是解题关键.2.22y x =-+【分析】利用“左加右减”的规律解答.【详解】把直线AB :22y x =--沿x 轴的正半轴向右平移2个单位长度后得到直线CD , 则直线CD 的函数解析式是:()22222y x x =---=-+,即22y x =-+.故答案是:22y x =-+.【点睛】本题主要考查了一次函数图象与几何变换,难度不大,掌握平移规律“左加右减,上加下减”即可.3.等边【详解】试题分析:在∠ABC 中,∠A=∠B=∠C ,根据三角形内角和为180°,可得出各角的度数均为60°,即可得到结果.在∠ABC 中,∠A=∠B=∠C ,又∠A+∠B+∠C=180°,所以∠A=∠B=∠C=60°,即∠ABC 为等边三角形.考点:等边三角形的判定,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.1【分析】根据线段垂直平分线的性质得到DA=DB ,得到∠B=∠DAB ,根据角平分线的性质得出∠DAC=∠DAB,从而求出∠B=30°,根据直角三角形的性质计算即可.【详解】解:∠DE是AB的垂直平分线,∠DA=DB,∠∠B=∠DAB,∠AD是∠CAB的平分线,∠∠DAC=∠DAB,∠∠C=90°,∠∠B=30°,∠DE=1BD,2∠AD是∠CAB的平分线,∠C=90°,DE∠AB,∠DE=DC,BD,∠DC=12∠BD=3,∠DC=1,即DE=1,故答案为1.【点睛】本题考查的是线段垂直平分线的性质、角平分线的性质,及直角三角形中30°所对的直角边是斜边的一半,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.6【分析】根据题意设一次函数关系式为y=kx+b,将(−1,m)、(1,3)、(3,n)代入可得相应的等式,求解后即可得出答案.【详解】解:设一次函数关系式为y=kx+b,将(−1,m)、(1,3)、(3,n)代入得:m=−k+b,k+b=3,n=3k+b,∠m+n=−k+b+3k+b=2k+2b=2×3=6.故答案为:6.【点睛】本题考查一次函数图象上点的坐标特征及待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.6.到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.【详解】试题分析:直接利用线段的垂直平分线的性质及直线的性质进而分析得到答案.试题解析:分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,C D 两点的依据是:到线段两个端点距离相等的点在线段的垂直平分线上.连接CD 的依据是:两点确定一条直线.故答案为到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线. 7.x <2##2x >【分析】根据一次函数的性质,结合函数图象,可以写出不等式0kx b +>的解集.【详解】解:由图象可得,函数y =kx +b 与x 轴的交点为(2,0),y 随x 的增大而减小, ∠不等式kx +b >0的解集是x <2.故答案为:x <2.【点睛】本题主要考查一次函数与一元一次不等式,解答本题的关键是明确题意,利用数形结合的思想解答.8.23【分析】由作图步骤可知BG 为ABC ∠的角平分线,过G 作GM AB ⊥于M ,GN BC ⊥于N ,可得GM GN =,最后运用三角形的面积公式解答即可.【详解】解:如图,过点G 作GM AB ⊥于M ,GN BC ⊥于N .由作图可知,BG 平分ABC ∠,∠GM BA GN BC ⊥⊥,,∠GM GN =, ∠ABGBCG S S ∆∆122132AB GM AB BC BC GN ⨯===⨯, 故答案为:23. 【点睛】本题考查角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键.9.0x ≥【分析】观察函数图形得到当0x ≥时,一次函数y ax b =+的函数值小于或等于2,即2ax b +≤.【详解】解:根据题意得当0x ≥时,2ax b +≤,即不等式2ax b +≤的解集为0x ≥.故答案为:0x ≥.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.10.(0,﹣5)【分析】代入x =0求出y 值,进而可得出直线与y 轴的交点坐标.【详解】解:当x =0时,y =0﹣5=﹣5,∠一次函数y =x ﹣5的图像与y 轴的交点坐标是(0,﹣5).故答案为:(0,﹣5).【点睛】本题考查了一次函数图像上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式()0y kx b k =+≠是解题关键.11.(4,-4)或(2,2)【分析】根据点P 到两个坐标轴的距离相等可得a +1+5-3a =0或a +1=5-3a ,解方程可得a 的值,进而可得点P 的坐标.【详解】解:由题意得:a +1+5-3a =0或a +1=5-3a ,解得a =3或a =1.故当a =3时,P (4,-4);当a =1时,P (2,2);故答案为:(4,-4)或(2,2).【点睛】此题主要考查了点的坐标,关键是掌握点P 到两个坐标轴的距离相等时,横纵坐标相等或相反数关系.12.44【分析】根据平行线的性质和翻折不变性解答.【详解】解:∠AD //BC ,∠∠DFE =180°−∠CEF =180°−68°=112°,∠∠D ′FE =112°,∠GFE =180°−112°=68°,∠∠GFD ′=112°−68°=44°.故答案为:44.【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形.13.3【分析】如图,过M 点做x 轴的垂线,交x 轴于点N ,MN 的长度即为所求.【详解】解:如图,当MN x ⊥轴时,MN 的长度最小,最小值为3,故答案为:3.【点睛】本题考查平面直角坐标系中点到坐标轴的距离.掌握点到直线上的所有连线中,垂线段最短是解题的关键.14.四【分析】根据点P 在第一象限,即可得到点m 的符号,从而得到-m 的符号,即可得出点B 所在的位置.【详解】点P (m ,2)在第一象限,得m >0.由不等式的性质,得3>0,﹣m <0 那么点B (3,﹣m )在第四象限.故答案为:四.【点睛】此题主要考查点的坐标与象限的关系,解题的关键是熟记各象限对应的点的坐标符号.15.【分析】依据题意得到三个关系式:c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∠点(1P 在“勾股一次函数”a b y x c c =+的图象上,把(1P 代入得:a b c c=+,即a b +=, ∠,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∠1102ab =,222+=a b c ,故20ab =, ∠22()2a b ab c +-=,∠22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.16.5【分析】分别表示出∠ABD 与∠ACD 的周长,再作差即可得出结果.【详解】解:∠AD 是中线,∠BD=DC ,∠AB=17,AC=12,∠C △ABD - C △ACD =AB+AD+BD-AC-AD-DC=AB-AC=5,故答案为:5【点睛】本题考查的是中线的性质,掌握中线的性质是解题的关键.17.y =2.1x【详解】根据表格,易得规律:y=2x+0.1x=2.1x .故答案: 2.1y x = .18.493【详解】分析: 由图象可以看出,0-1min 内,小刚的速度可由距离减小量除以时间求得,1-3min 内,根据等量关系“距离减小量=小刚跑过的路程+小强跑过的路程”可得出小强的速度;由于小刚的速度始终是180米/分,小强的速度开始是220米/分,则他们的速度之差是40米/分,则10分钟相差400米,设再经过t 分钟两人相遇,利用相遇问题得到180t +120t =400,然后求出t 后加上前面的15分钟可得到小刚从家出发到他们再次相遇的时间总和.详解: 小刚比赛前的速度v 1=(540-440)=100(米/分),设小强比赛前的速度为v 2(米/分),根据题意得2×(v 1+v 2)=440,解得v 2=120米/分,小刚的速度始终是180米/分,小强的速度开始为220米/分,他们的速度之差是40米/分,10分钟相差400米,设再经过t 分钟两人相遇,则180t+120t=400,解得t =43(分) 所以小刚从家出发到他们再次相遇时5+10+43=493(分). 故答案为:493. 点睛: 本题考查了一次函数的应用:会利用一次函数图象解决行程问题的数量关系,相遇问题,追击问题的综合应用;解答时灵活运用行程问题的数量关系解答是关键. 19.40︒##40度【分析】根据SAS 证明ABE ACD ≌,再利用全等三角形的性质ABD ACD ∠=∠,然后由三角形的外角性质BOC ABD BAC ∠=∠+∠,BOC ACD BDC ∠=∠+∠,可说明BAC BDC ∠=∠,再利用等腰三角形的性质可求出70ABC ACB ∠=∠=︒,最后利用三角形的内角和解答即可.【详解】解:∠EAD BAC ∠=∠,∠BAC EAC EAD EAC ∠-∠=∠-∠,即BAE CAD ∠=∠,在ABE 和ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∠()ABE ACD SAS ≌,∠ABD ACD ∠=∠,∠BOC ∠是ABO 和DCO 的外角,∠BOC ABD BAC ∠=∠+∠,BOC ACD BDC ∠=∠+∠,∠ABD BAC ACD BDC ∠+∠=∠+∠,∠BAC BDC ∠=∠,∠AB AC =,70ACB ∠=︒,∠70ABC ACB ∠=∠=︒,∠180180707040BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒,∠40BDC BAC ∠=∠=︒.故答案为:40︒.【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,等腰三角形的性质,三角形的内角和等知识.根据全等三角形的判定和性质是解题的关键,也是本题的难点.20.1,02⎛⎫ ⎪⎝⎭##(0.5,0) 【分析】根据111k k x x -=- ,yk =1﹣yk ﹣1,求出前几个点的坐标会发现规律,这些点每6个为一个循环,根据规律求解即可.【详解】解:∵A 1(2,1),A 2(﹣1,0),…,Ak (xk ,yk ),…,(k 为正整数),且满足111k k x x -=-,yk =1﹣yk ﹣1,∴A 3(12,1),A 4(2,0),A 5(﹣1,1),A 6(12,0),A 7(2,1),A 8(﹣1,0),通过以上几个点的坐标可以发现规律,这些点每6个为一个循环,∵2022=6×337,∴A 2022的坐标为(12,0).故答案为:(12,0).【点睛】本题主要考查规律型:点的坐标,读懂题意,准确找出点的坐标规律是解答此题的关键.21.(1,-2)(答案不唯一).【分析】直接利用第四象限内点的坐标特点得出x ,y 的取值范围,进而得出答案.【详解】解:∠点P (x ,y )位于第四象限,并且x≤y+4(x ,y 为整数),∠x >0,y <0,∠当x=1时,1≤y+4,解得:0>y≥-3,∠y 可以为:-2,故写一个符合上述条件的点P 的坐标可以为:(1,-2)(答案不唯一).故答案为(1,-2)(答案不唯一).【点睛】此题主要考查了点的坐标,正确把握横纵坐标的符号是解题关键.22.6【分析】根据垂直平分线的性质可得AE=BE ,即可得出AC=BE+CE ,根据∠BCE 的周长即可得答案.【详解】∠DE 是AB 的垂直平分线,∠AE=BE ,∠AB=AC ,AC=AE+CE ,AB=11,∠BE+CE=AC=11, ∠BCE 的周长为17cm ,∠BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.23.(503,-503)【分析】根据图象得出点的坐标的规律,依据规律求解即可.【详解】解:根据图象得:2A ,6A ,10A 等在第四象限,每四个点循环一次,∠2010÷4=502⋯2,∠2010A 与2A 都在第四象限,横坐标为:(2010-2)÷4+1=503,纵坐标为-503,故答案为:(503,-503).【点睛】题目主要考查坐标与图形,点坐标规律探索,理解题意,找出点的坐标的规律是解题关键.24.>-2【分析】根据待定系数法求出y 1、y 2的函数表达式,再由y 1>y 2解一元一次不等式即可解答.【详解】解:将x =-1,y 1=0,x =-2,y 1=-3代入y 1=k 1x +b 1中,得:1111032k b k b =-+⎧⎨-=-+⎩,解得:1133k b =⎧⎨=⎩,∠y 1=3x +3,将x =-4,y 2=-1,x =-3,y 2=-2代入y 2=k 2x +b 2中,得:22221423k b k b -=-+⎧⎨-=-+⎩,2215k b =-⎧⎨=-⎩, ∠y 2=-x -5,由y 1>y 2得:3x +3>-x -5,解得:x >-2,即当x >-2时,y 1>y 2,故答案为:>-2.【点睛】本题考查待定系数法求一次函数表达式、解一元一次不等式,熟练掌握待定系数法求函数表达式的解法步骤是解答的关键.25.30【分析】直接利用角平分线的定义得出∠BOC=12∠AOB=12(90BOD ︒+∠)=1452BOD ︒+∠,进而得出方程∠BOD=12∠COB=12(1452BOD ︒+∠),从而求出答案. 【详解】解:∠90AOD ∠=︒,∠OC 平分∠AOB , ∠∠BOC=12∠AOB=12(90BOD ︒+∠)=1452BOD ︒+∠, ∠OD 平分COB ∠, ∠∠BOD=12∠COB=12(1452BOD ︒+∠), ∠∠BOD=30°.故答案为:30.【点睛】此题主要考查了角平分线的定义,正确得出关于∠BOD 的方程是解题关键. 26.∠∠∠【分析】∠根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义可得∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;∠先求出∠APB =∠FPB ,再利用“角边角”证明∠ABP 和∠FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;∠根据PF ∠AD ,∠ACB =90°,可得AG ∠DH ,然后求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后求出DG =GH +AF ,根据AFA 可得结论;∠根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明∠AHP 与∠FDP 全等,根据全等三角形对应边相等可得DF =AH .【详解】解:∠∠∠ABC 的角平分线BE 和∠BAC 的外角平分线相交于点P ,∠∠ABP =12∠ABC ,∠CAP =12(90°+∠ABC )=45°+12∠ABC ,在∠ABP 中,∠APB =180°﹣∠BAP ﹣∠ABP =180°﹣(45°+12∠ABC +90°﹣∠ABC )﹣12∠ABC =180°﹣45°﹣12∠ABC ﹣90°+∠ABC ﹣12∠ABC =45°,故∠正确; ∠∠PF ∠AD ,∠APB =45°(已证),∠∠APB =∠FPB =45°,∠PB 为∠ABC 的角平分线,∠∠ABP =∠FBP ,在∠ABP 和∠FBP 中,APB FPB PB PBABP FBP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABP ∠∠FBP (ASA ),∠AB =BF ,AP =PF ,故∠正确;∠∠PF ∠AD ,∠ACB =90°,由∠知PD =PH ,∠∠DPH 为等腰直角三角形,∠∠PDH =45°,∠∠P AF =45°,∠AG ∠DH ,∠AP =PF ,PF ∠AD ,∠∠P AF =45°,∠∠ADG =∠DAG =45°,∠DG =AG ,∠∠P AF =45°,AG ∠DH ,∠∠ADG 与∠FGH 都是等腰直角三角形,∠DG =AG ,GH =GF ,∠DG =GH +AF ,∠AFP A ,∠DG+GH ,故∠错误;∠∠∠ACB =90°,PF ∠AD ,∠∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∠∠AHP =∠FDP ,∠PF ∠AD ,∠∠APH =∠FPD =90°,在∠AHP 与∠FDP 中,AHP FDP APH FPD AP PF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠AHP ∠∠FDP (AAS ),∠DF =AH ,∠BD =DF +BF ,又∠AB =BF ,∠BD =AH +AB ,故∠正确;故答案为:∠∠∠.【点睛】本题考查外角的性质,角平分线的性质,三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质,解题关键是掌握外角的性质,角平分线的性质,三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质.27.15°【分析】根据三角板的性质和三角形外角的性质求解即可.【详解】∠ADC △是45°的直角三角板,ABE 是30°的直角三角板∠4530ADC ABE =︒=︒∠,∠∠ADC ABE DFB =+∠∠∠∠453015DFB ADC ABE =-=︒-︒=︒∠∠∠故答案为:15°.【点睛】本题考查了三角板的角度问题,掌握三角板的性质和三角形外角的性质是解题的关键.28.32或112 【分析】分两种情况进行讨论,根据题意得出522CP t =-=和922DP t =-=,即可求得.【详解】解:当P 在BC 上时,由题意得2BP t =,∠52CP BC BP t =-=-,∠90DCP DCE ∠=∠=︒,CD 为公共边,∠要使DCP DCE ≌,则需CP CE =,如图1所示:∠2CE =,∠522t -=, ∠32t =, 即当32t =时,DCP DCE ≌;当P 在AD 上时,由题意得2BC CD DP t ++=,∠5BC =,4CD =,∠29DP t =-,∠90CDP DCE ∠=∠=︒,CD 为公共边,∠要使DCP CDE ≌,则需DP CE =,如图2所示:即292t-=,∠112t=,即当112t=时,DCP CDE≌;综上所述:当32t=或112t=时,DCP和CDE全等.故答案为:32或112.【点睛】本题考查了全等三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.29.130°【分析】直接利用角平分线的定义结合度分秒换算方法分析得出答案.【详解】解:∠OE为∠BOD的平分线,∠2∠BOE=∠BOD,∠∠BOE=25°,∠∠BOD=50°,∠∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,∠∠AOC=360°-∠AOB-∠COD-∠BOD,=360°-90°-90°-50°,=130°.【点睛】此题主要考查了角平分线的定义以及度分秒的换算,正确理解相关定义是解题关键.30.(﹣25,0)【详解】如图,过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则此时四边形ABEF的周长最小.∠A(3,4),∠A′(2,4),∠B(-1,1),∠B′(-1,-1).设直线A′B′的解析式为y=kx+b,则241k bk b+=⎧⎨-+=-⎩,解得,k=53,b=23.∠直线A′B′的解析式为y=53x+23,当y=0时,53x+23=0,解得x=-25.故线段EF平移至如图所示位置时,四边形ABEF的周长最小,此时点E的坐标为(-25,0).点睛:本题考查了待定系数法求一次函数的解析式,轴对称-最短路线问题,根据“两点之间,线段最短”确定点E、F的位置是关键,也是难点.31.(1)x=1;(2)三角形的周长为14cm或13cm【分析】(1)先去分母,然后解一元一次方程,最后进行检验即可得;(2)根据题意进行分类讨论:∠当腰长是5cm时,则三角形的三边是5cm,5cm,4cm;∠当腰长是4cm时,三角形的三边是4cm,4cm,5cm;考虑三边能否构成三角形,然后求周长即可得.【详解】(1)解:211x x-=+,方程两边同时乘以:()1x x +得()210x x -+=,210x x --=,1x =检验:1x =时,()10x x +≠,∴1x =是原方程的解;(2)解:等腰三角形的两边长分别为4cm 和5cm ,∠当腰长是5cm 时,则三角形的三边是5cm ,5cm ,4cm ,554+>,满足三角形的三边关系,∴三角形的周长是55414++=(cm );∠当腰长是4cm 时,三角形的三边是4cm ,4cm ,5cm ,445+>,满足三角形的三边关系.∴三角形的周长是54413++=(cm );综上,三角形的周长为14cm 或13cm .【点睛】题目主要考查解分式方程及等腰三角形的定义,三角形三边关系等,理解题意,综合运用这些知识是解题关键.32.答案见解析【分析】结合等式的性质利用ASA 可证∠ABC ∠∠EBD ,由全等三角形对应角相等的性质等量代换可得∠C =∠FBD ,根据内错角相等,两直线平行可得AC ∠BD.【详解】解:∠∠ABE =∠CBD (已知),∠∠ABE +∠EBC =∠CBD +∠EBC (等式的性质),即∠ABC =∠EBD在∠ABC 和∠EBD 中,ABC EBD AB BEA E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EBD (ASA ),∠∠C =∠D ( 全等三角形对应角相等)∠∠FBD =∠D ,∠∠C =∠FBD (等量代换),∠AC ∠BD (内错角相等,两直线平行).故答案为:等式的性质;AB =BE ;ASA ;全等三角形对应角相等;∠FBD ;内错角相等,两直线平行.【点睛】本题主要考查了全等三角形的判定与性质及平行线的判定,熟练的掌握每一步证明的依据是解题的关键.33.(1)见详解(2)50DBC ∠=︒【分析】(1)由“AAS ”可证ABD ECB ≌;(2)由全等三角形的性质可得BD BC =,由等腰三角形的性质可求解.【详解】(1)证明:∠AD BC ∥,∠ADB EBC ∠=∠,在ABD △和ECB 中,A BEC AB ECADB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABD ECB ≌(AAS );(2)解:∠ABD ECB ≌,∠BD BC =,∠65BDC BCD ∠=∠=︒,∠50DBC ∠=︒.【点睛】本题考查了全等三角形的判定和性质,平行线的性质以及等腰三角形的性质,还考查学生运用定理进行推理的能力,题目比较典型,难度适中.34.∠BDC =75°,∠EDC =25°【分析】先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出1===252BCD ACD ACB ∠∠∠,则由三角形内角和定理可求出∠BDC =180°-∠B -∠BCD =75°,再由平行线的性质即可得到∠EDC =∠BCD =25°.【详解】解:∠∠A =50°,∠B =80°,∠∠ACB =180°-∠A -∠B =50°,∠CD 平分∠ACB ,∠1===252BCD ACD ACB∠∠∠,∠∠BDC=180°-∠B-∠BCD=75°,∠DE∥BC,∠∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.35.(1)25°;(2)25°.【详解】试题分析:(1)根据∠MON和∠BOC的度数可以算出∠MOC的度数,(2)根据OC是∠MOB的平分线,可求出∠MOC=65°, ∠BOC=65°,因为∠MON=90°,利用角的和差关系可求出: ∠CON=∠MON∥∠MOC=90°∥65°=25°, ∠BON=∠BOC∥∠CON,即∠BON=65°∥25°=40°.试题解析:(1)因为∠MON=90°,∠BOC=65°,所以∠MOC=∠MON-∠BOC=90°-65°=25°.故答案为25°.(2)因为∠BOC=65°,OC是∠MOB的平分线,所以∠MOB=2∠BOC=130°,所以∠BON=∠MOB-∠MON=130°-90°=40°,所以∠CON=∠COB-∠BON=65°-40°=25°.点睛:本题主要考查角的和差关系以及角平分线的定义进行角度的计算,解决本题的关键要学会分析简单的几何图形,弄清角与角之间的和差关系.36.(1)120°;(2)10°;(3)n°-90°【分析】(1)根据角平分线的定义得到AOB=∠BOC=12∠AOC,再结合∠AOB+∠AOC=180°,可得∠AOC的度数;(2)根据∠AOC得到∠AOB,再根据角平分线的定义得到∠AOP=40°和∠AOQ=50°,从而求出∠POQ;(3)根据(2)中的方法和过程求解即可.【详解】解:(1)如图(1),∠OQ平分∠AOC,且点Q与点B重合,∠∠AOB=∠BOC=12∠AOC,。

数学八年级上册 全册全套试卷综合测试卷(word含答案)

数学八年级上册 全册全套试卷综合测试卷(word含答案)

数学八年级上册全册全套试卷综合测试卷(word含答案)一、八年级数学三角形填空题(难)1.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.2.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.3.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.【答案】7【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数, ∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.4.如图所示,小明从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A 点时,(1)左转了____次;(2)一共走了_____米.【答案】11 120【解析】∵360÷30=12,∴他需要走12−1=11次才会回到原来的起点,即一共走了12×10=120米.故答案为11,120.5.如图,△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作EF ∥BC 交AB 、AC 于E 、F ,若△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,△OBC 的面积_____cm 2.【答案】242cm .【解析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=12×12×4=24cm2.考点:1.三角形的面积;2.三角形三边关系.6.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.【答案】110【解析】已知∠A=50°,∠ABO=28°,∠ACO=32°,根据三角形外角的性质可得∠BDC=∠A+∠ABO=78°,∠BOC=∠BDC+∠ACO=110°.二、八年级数学三角形选择题(难)7.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-12∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】【分析】根据三角形的内角和外角之间的关系计算.解:(1)∵若P 点是∠ABC 和∠ACB 的角平分线的交点,∴∠ABP=∠PBC ,∠ACP=∠PCB∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB )∠P=180°-(∠PBC+∠PCB )∴∠P=90°+12∠A ; 故(1)的结论正确;(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC )∠P=∠PCE-∠PBC∴2∠P=∠A故(2)的结论是错误.(3)∠P=180°-(∠PBC+∠PCB )=180°-12(∠FBC+∠ECB ) =180°-12(∠A+∠ACB+∠A+∠ABC ) =180°-12(∠A+180°) =90°-12∠A . 故(3)的结论正确.正确的为:(1)(3).故选:C【点睛】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.8.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A.4 B.5 C.6 D.7【答案】D【解析】【分析】连接AO,利用等高不等底的三角形面积比等于底长的比,可求出△COD与△BOE的面积.列出关于△AOE与△AOD的面积的方程即可求出四边形AEOD的面积.【详解】连接OA,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.9.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1440°,n﹣2=6,n=8.故这个多边形的边数为8.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.10.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.11.以下列数据为长度的三条线段,能组成三角形的是()A.2 cm、3cm、5cm B.2 cm、3 cm、4 cmC.3 cm、5 cm、9 cm D.8 cm、4 cm、4 cm【答案】B【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】A、2+3=5,故本选项错误.B、2+3>4,故本选项正确.C、3+5<9,故本选项错误.D、4+4=8,故本选项错误.故选B.【点睛】本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.三、八年级数学全等三角形填空题(难)13.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题14.如图,已知△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,若BE交AD于点F,则∠AFE的大小为_____(度).【答案】60【解析】【分析】根据△ABC为等边三角形得到AB=BC,∠ABD=∠BCE=60°,再利用BD=CE证得△ABD≌△BCE,得到∠BAD=∠CBE,再利用内角和外角的关系即可得到∠AFE=60°.【详解】∵△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,∴AB=BC,∠ABD=∠BCE=60°,在△ABD和△BCE中,AB BCABD BCEBD CE=⎧⎪∠∠⎨⎪=⎩=,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABF+∠CBE=∠ABC=60°,∴∠ABF+∠BAD=60°,∵∠AFE=∠ABF+∠BAD,∴∠AFE=60°,故答案为:60.【点睛】此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.15.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④A B+FG=BC,其中正确的结论有________________.(填序号)【答案】①②③④【解析】①正确.∵∠BAC=90°∴∠ABE+∠AEB=90°∴∠ABE=90°-∠AEB∵AD⊥BC∴∠ADB=90°∴∠DBE+∠BFD=90°∴∠DBE=90-∠BFD∵∠BFD=∠AFE∴∠DBE=90°-∠AFE∵BE平分∠ABC∴∠ABE=∠DBE∴90°-∠AEB=90°-∠AFE∴∠AEB=∠AFE∴AE=AF②正确.∵∠BAC=90°∴∠BAF+∠DAC=90°∴∠BAF=90°-∠DAC∵AD⊥BC∴∠ADC=90°∴∠C+∠DAC=90°∴∠C=90°-∠DAC∴∠C=∠BAF∵FH∥AC∴∠C=∠BHF∴∠BAF=∠BHF在△ABF和△HBF中ABE CBEBAF BHFBF BF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△HBF∴AF=FH③正确.∵AE=AF,AF=FH∴AE=FH∵FG∥BC,FH∥AC∴四边形FHCG是平行四边形∴FH=GC∴AE=GC∴AE+EG=GC+EG∴AG=CE④正确.∵四边形FHCG是平行四边形∴FG=HC∵△ABF≌△HBF∴AB=HB∴AB+FG=HB+HC=BC故正确的答案有①②③④.16.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当DF BC⊥时,四边形FBCD周长最小为5+6+5=1617.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,BC=a,CD=b,则AD的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b或b-a或a+b或12a或b【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS 、AAS 、ASA 、SAS 、HL 等,注意:SAS 时,角必须是两边的夹角,SSA 和AAA 不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.18.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC 于E ,且OE =2,CO =3,则两平行线间AB 、CD 的距离等于________.【答案】4【解析】试题解析:如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN ⊥CD ,∵AO 是∠BAC 的平分线,OM ⊥AB ,OE ⊥AC ,OE=2,∴OM=OE=2,∵CO 是∠ACD 的平分线,OE ⊥AC ,ON ⊥CD ,∴ON=OE=2,∴MN=OM+ON=4,即AB 与CD 之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.四、八年级数学全等三角形选择题(难)19.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.20.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ =PQ ,PR =PS ,下面四个结论:①AS =AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS .其中正确结论的序号是( ).A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.如图,连接PS∵△APR≌△APS∴AR=AS,∠RAP=∠PAC∴AP垂直平分RS,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键21.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.22.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③B P=QP;④QP∥AB.其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.23.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A .AC=BDB .AC=BC C .BE=CED .AE=DE【答案】A【解析】 由AB=DC ,BC 是公共边,即可得要证△ABC≌△DCB,可利用SSS ,即再增加AC=DB 即可. 故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS ,SAS ,ASA ,AAS ,HL ,确定条件即可,此题为开放题,只要答案符合判定定理即可.24.在ABC 中,2,72A B ACB ∠=∠∠≠︒,CD 平分ACB ∠,P 为AB 的中点,则下列各式中正确的是( )A .AD BC CD =-B .AD BC AC =- C .AD BC AP =-D .AD BC BD =-【答案】B【解析】【分析】 可在BC 上截取CE=CA ,连接DE ,可得△ACD ≌△ECD ,得DE=AD ,进而再通过线段之间的转化得出线段之间的关系.【详解】解:∵∠A=2∠B,∴∠A﹥∠B∴BC﹥AC∴可在BC上截取CE=CA,连接DE(如图),,∴∠ACD=∠BCD∵CD平分ACB又∵CD=CD,CE=CA∴△ACD≌△ECD,∴AD=ED,∠CED=∠A=2∠B又∠CED=∠B+∠BDE∴∠B=∠BDE∴AD=DE=BE,∴BC=BE+EC=AD+AC所以AD=BC-AC故选:B若A选项成立,则CD=AC,∴∠A=∠CDA=∠CDE=∠CED=2∠B=2∠EDB∴∠CDA+∠CDE+∠EDB=180°即5∠EDB=180°∴∠EDB=36°∴∠A=72°,∠B=36°∴∠ACB=72°与已知∠ACB≠72°矛盾,故选项A不正确;假设C选项成立,则有AP=AC,作∠BAC的平分线,连接FP,∴△CAF≌△PAF≌△PBF,∴∠CFA=∠AFP=∠PFB=60°∠B=30°,∠ACB=90°当∠ACB=90°时,选项C才成立,∴当∠ACB≠72°时,选项C不一定成立;假设D选项成立,则AD=BC-BD由图可知AD=BA-BD∴AB=BC∴∠A=∠ACB=2∠B∴∠A+∠ACB+∠B=180°∴∠B=36°,∠ACB=72这与已知∠ACB≠72°矛盾,故选项D不成立.故选:B【点睛】本题考查的是考查的是利用角的平分线的性质说明线段之间的关系.,,五、八年级数学轴对称三角形填空题(难)25.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.26.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∆为等腰三角形,符合条件的C点有∠=︒,在x轴或y轴上取点C,使得ABCABO36__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.27.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=3,∴A2B1=3,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=6,a3=4a1,a4=8a1,a5=16a1,以此类推:a2019=22018a1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.28.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.29.如图,在ABC中,90,ACB ABD︒∠=是ABC的轴对称图形,点E在AD上,点F在AC的延长线上.若点B恰好在EF的垂直平分线上,并且5AE=,13AF=,则DE=______.【答案】4.【解析】【分析】连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.【详解】解:连接BE ,BF ,∵△ABD 是△ABC 的轴对称图形,∴△ABD ≌△ACB ,∴DB=CB ,AD=AC ,∠D=∠BCA=90°,∴∠BCF=90°,∵点B 恰好在EF 的垂直平分线上,∴BE=BF ,在Rt △DBE 和Rt △CBF 中BD BC EB FB =⎧⎨=⎩,∴Rt △DBE ≌Rt △CBF (HL ),∴DE=CF ,设DE=x ,则CF=x ,∵AE=5,AF=13,∴AC=AD=5+x ,∴AF=5+2x , ∴5+2x=13,∴x=4,∴DE=4,故答案为:4.【点睛】此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.30.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD,再根据角的和差关系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB-∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A .3B .4C .5D .6【答案】B【解析】【分析】 首先判断△BAE 、△CAD 是等腰三角形,从而得出BA =BE ,CA =CD ,由△ABC 的周长为32以及BC =12,可得DE =8,利用中位线定理可求出PQ .【详解】∵BQ 平分∠ABC ,BQ ⊥AE ,∴∠ABQ =∠EBQ ,∵∠ABQ+∠BAQ =90°,∠EBQ+∠BEQ =90°,∴∠BAQ =∠BEQ ,∴AB =BE ,同理:CA =CD ,∴点Q 是AE 中点,点P 是AD 中点(三线合一),∴PQ 是△ADE 的中位线,∵BE+CD =AB+AC =32﹣BC =32﹣12=20,∴DE =BE+CD ﹣BC =8,∴PQ =12DE =4. 故选:B .【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE 、△CAD 是等腰三角形,利用等腰三角形的性质确定PQ 是△ADE 的中位线.32.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12 AD.同理:DF=12AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE DFBD DC⎧⎨⎩==,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.综上所述,①②④正确,故选:C.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.33.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E,若△ABC的周长为24,CE=4,则△ABD的周长为()A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.34.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )A.15°B.40 C.15°或20°D.15°或40°【答案】C【解析】【分析】依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.【详解】如图1,当∠A=120°,AD=AC,DB=DC时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°,所以,∠DBC=15°,∠ACB=30°+15°=45°;故∠ABC=60°,∠C=80°;如图2,当∠BAC=120°,可以以A为顶点作∠BAD=20°,则∠DAC=100°,∵△APB,△APC都是等腰三角形;∴∠ABD=20°,∠ADC=∠ACD=40°,如图3,当∠BAC=120°,以A为顶点作∠BAD=80°,则∠DAC=40°,∵△APB,△APC都是等腰三角形,∴∠ABD=20°,∠ADC=100°,∠ACD=40°.故选C.【点睛】本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.35.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.3C.3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得3∴MA+MD+ME的最小值为3故选B .【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.36.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 把已知的式子化成12[(a-b )2+(a-c )2+(b-c )2]的形式,然后代入求解即可. 【详解】原式=12(2a 2+2b 2+2c 2-2ab-2ac-2bc ) =12[(a 2-2ab+b 2)+(a 2-2ac+c 2)+(b 2-2bc+c 2)] =12[(a-b )2+(a-c )2+(b-c )2] =12×(1+4+1) =3,故选D.【点睛】 本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.38.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 八年级数学大题精选 姓名
1、如图,直线l 1的解析表达式为y =12
x +1,且l 1与x 轴交于点D ,直线l 2经过定点A ,B ,直线l 1与l 2交于点C .(1)求直线l 2的函数关系式;(2)求△ADC 的面积;
(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积
相等,请直接..
写出点P 的坐标.
2、A 、B 两码头相距150千米,甲客船顺流由A 航行到B ,乙客船逆流由B 到A ,若甲、乙两客船在静水中的速度相同,同时出发,它们航行的路程y (千米)与航行时间x (时)的关系如图11所示. ⑴求客船在静水中的速度及水流速度;
⑵一艘货轮由A 码头顺流航行到B 码头,货轮比客船早2小时出发,货轮在静水中的速度为10千米/时,在此坐标系中画出货轮航程y (千米)与时间x (时)的关系图象,并求货轮与客船乙相遇时距A 码头的路程.
3、某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:
现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).
(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:
(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间? (5分)
4、在平面直角坐标系中,直线L 1的函数关系式为y=2x-1,直线
L 2过原点且L 2与直线L 1交于点P(-2,a).
(1)试求a 的值;
(2)试问(-2,a)可以看作是怎样的二元一次方程组的解?
x
2 ·P (3)设直线L 1与直线y=x 交于点A ,你能求出△APO 的面积吗?试试看.
(4)在x 轴上是否存在点Q ,使得△AOQ 是等腰三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.
5、如图,已知函数1y x =+的图象与y 轴交于点A ,一次函数y kx b =+
的图象经过点B (0,-1),并且与x 轴以及1y x =+的图象分别交于点
C 、
D .
(1)若点D 的横坐标为1,求四边形AOCD 的面积(即图中阴影部分的
面积);
(2)在第(1)小题的条件下,在y 轴上是否存在这样的点P ,使得以点
P 、B 、D 为顶点的三角形是等腰三角形.如果存在,求出点P 坐标;如果
不存在,说明理由.
(3)若一次函数y kx b =+的图象与函数1y x =+的图象的交点D 始终
在第一象限,则系数k 的取值范围是 .
6、一艘巡逻艇与一艘货轮同时从甲港驶往乙港,巡逻艇不停
地在甲、乙两港间巡逻,且巡逻艇和货轮的速度保持不变.设
货轮行驶的时间为(h)x ,两船之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象探究: 信息读取
(1)两船首次相遇需要 小时; (2)请解释图中点A 的实际意义;
图象理解
(3)求线段BC 所表示的y 与x 之间的函数关系式;(不必写出自变量x 的取值范围) (4)求巡逻艇和货轮的速度以及甲、乙两港间的距离。

7、在平面直角坐标系中,一动点P (x ,y )从M (1,0)出发,沿由A (-1,1),B (-1,-1),C (1,-1),D (1,1)四点组成的正方形边线(如图1)按一定方向运动。

图2是P 点运动的路程s (个单位)与运动时间t (秒)之间的函数图象,图③是P 点的纵坐标y 与P 点运动的路程s 之间的函数图象的一部分.
图1 图2 图3
(1)s 与t 之间的函数关系式是: ;
(2)与图3相对应的P 点的运动路径是: ;P 点出发 秒首次到达点B ;
(3)写出当3≤s ≤8时,y 与s 之间的函数关系式,并在图3中补全函数图象.。

相关文档
最新文档