第8章红外光谱分析
红外光谱

AX 2型分子
s δ CH2 ~ 1465+20 cm -1
面外摇摆ω:两个X原子同时向面下或面上的振动
AX 2型分子
ω CH2 ~ 1300 cm -1
注意:
不是所有的振动都能引起红外吸收,只有偶极 矩(μ)发生变化的,才能有红外吸收。
H2、O2、N2 电荷分布均匀,振动不能引起红外 吸收。
2)共轭效应(C)
-共轭使不饱和键振动频率移向低波数区
共轭效应使电子离域, 双键性 , K ,吸收波数 .
问题2 : 下列化合物的C=O 吸收波数为什么有
高低之分?
H3C H3C
O2N
C H O
C H O
N
C H O
A 1708 cm-1
B 1690 cm-1
C 1660 cm-1
p-共轭:
CH2
1775 cm-1 1850 cm-1
CH2 CH2
1650 cm-1
1657 cm-1
1678 cm-1
1781 cm-1
1639 cm-1
1623 cm-1
1566 cm-1
1541 cm-1
4.氢键效应
分子内氢键:
分子内氢键使伸缩频率向低波数移动,谱带变宽
注意:分子内氢键,不受浓度影响
:折合质量
k:力常数,与键长、键能有关:键能↑(大),键 长 ↓(短),k↑。
从基态跃迁到第一激发态,产生的谱带称为基频 峰(fundamental bands),特点是峰较强。
从基态跃迁到第二激发态,产生的谱带称为倍频
峰(overtone bands),特点是峰较弱。 真实分子的化学键并非理想谐振子,其倍频峰频
(完整word版)第8章 红外光谱法作业(新书)

第8章 红外作业1. 已知O-H 键的力常数是7.7N/cm ,O-H 键折合质量μ为0.941,试计算O —H 的伸缩振动频率(以cm -1) 解:1-24510cm371210673.1941.0107.710314.32121=⨯⨯⨯⨯⨯⨯==-μπνkc2. 已知C=O 键的伸缩振动频率为1720cm -1,其μ为6.85,试求C=O 键的力常数k 。
解:μ=6.85×1.673×10-24=1.146×10-23N/cm12.03 dyn/cm 10203.110146.1)1720103(3.144μ)νc 4(k μk c 21ν6232102=⨯=⨯⨯⨯⨯⨯⨯===-ππ3. 指出下列各种振动形式那些是红外活性振动?哪些是非红外活性振动?解:乙烷中C-C 为非红外活性振动。
1,1,1-三氯乙烷中 C-C 为红外活性振动。
SO 2中S=O ,为红外活性振动。
4. 如何用红外光谱区别下列化合物 (1)CH 3COOH和COOCH 3(2)CH 3CH 2C CH 3O和 CH 3CH 2CH 2CHO(3)OH 和O(4)C 2H 5C C CH 3HH和C 2H 5C CHHCH 3解(1)根据3300~2500cm -1是否出现O-H 伸缩振动吸收峰(宽峰)区分酸和酯。
(2)根据2720cm -1是否出现醛基的C-H 费米共振吸收峰区分出醛来。
(3)根据1650-1850cm -1是否出现C=O 吸收峰判断出酮来。
(4)顺式烯烃C-H 弯曲振动在675-725cm -1,反式烯烃C-H 弯曲振动在1000~950cm -1.5.把下列化合物按νC=O 波数增加的顺序进行排列,并说明理由。
解:(1)C H 3C OCH 3C H 3C O OH C H 3C O Cl C H 3C O F <<<(2)C H 3C O CH 3C H 3C O HC H 3C OOC 2H 5C H 3C O Cl <<<C H 3C ONH 2<6.下列基团的νC-H 出现在什么位置?(1)-CH3 (2)-CH=CH2 (3)-C ≡CH (4)C O H解:甲基:2800-3000 cm -1 乙烯基3000~3100 cm -1 乙炔基3200~3300 cm -1 醛基 2720 (2750-2850) cm -17.试从下列红外数据判断其二甲苯的取代位置。
仪器分析知识点复习

第一章绪论1.解释名词:(1)灵敏度(2)检出限(1)灵敏度:被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。
(2)检出限:一定置信水平下检出分析物或组分的最小量或最小浓度。
2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的(C )。
A.1倍B.2倍C.3倍D.4倍3.书上第13页,6题,根据表里给的数据,写出标准曲线方程和相关系数。
y=5.7554x+0.1267 R2=0.9716第二章光学分析法导论1. 名词解释:(1)原子光谱和分子光谱;(2)发射光谱和吸收光谱;(3)线光谱和带光谱;(1)原子光谱:原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。
分子光谱:分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。
(2)吸收光谱:当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。
发射光谱:处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,产生电磁辐射。
(3)带光谱:除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。
线光谱:物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱。
其谱线的宽度约为10-3nm,称为自然宽度。
2. 在AES、AAS、AFS、UV-Vis、IR几种光谱分析法中,属于带状光谱的是UV-Vis、IR,属于线性状光谱的是AES、AAS、AFS。
第三章紫外-可见吸收光谱法1. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?两者之间的关系是什么?2. 有色配合物的摩尔吸收系数与下面因素有关系的是(B)A.吸收池厚度B.入射光波长C.吸收池材料D.有色配合物的浓度3. 物质的紫外-可见吸收光谱的产生是由于(B)A.分子的振动B. 原子核外层电子的跃迁C.分子的转动D. 原子核内层电子的跃迁4. 以下跃迁中那种跃迁所需能量最大(A)A. σ→σ*B. π→π*C. n→σ*D. n→π*5. 何谓生色团和助色团?试举例说明。
第八章 现代物理实验方法在有机化学中的应用练习及答案

第八章现代物理实验方法在有机化学中的应用1.指出下列化合物能量最低的电子跃迁的类型。
答案:⑴. π-π* ⑵.n-σ*⑶.n-π* ⑷. n-σ* ⑸. п-п*2.按紫外吸收波长长短的顺序,排列下列各组化合物。
⑴.⑵.CH3-CH=CH-CH=CH2 CH2=CH-CH=CH2 CH2=CH2(3).CH3I CH3Br CH3Cl⑷.⑸. 反-1,2-二苯乙烯顺-1,2-二苯乙烯答案:⑴以环己酮为基准,添加共轭双键及增加助色基都使UV吸收产生红移。
⑵以乙烯为基准,添加共轭双键及增加助色基都使UV吸收产生红移。
CH3-CH=CH-CH=CH2>CH2=CH-CH=CH2>CH2=CH2⑶杂原子的原子半径增大,化合物的电离能降低,吸收带波长红移。
n ® s*CH3I>CH3Br>CH3Cl⑷以苯环为基准,硝基苯增加p-p共轭,氯苯增加p-p共轭,UV吸收红移。
⑸反式异构体的共轭程度比顺式异构体更大。
反-1,2-二苯乙烯>顺-1,2-二苯乙烯3.指出哪些化合物可在近紫外区产生吸收带.(1) (2)CH3CH2OCH(CH3)2(3) CH3CH2C≡CH(4) (5) CH2=C=O (6).CH2=CH-CH=CH-CH3答案:可在近紫外区产生吸收带的化合物是⑷,⑸,⑹。
4、图8-32和图8-33分别是乙酸乙酯和1-己烯的红外光谱图,试识别各图的主要吸收峰:答案:图8-32己酸乙酯的IR图的主要吸收峰是:①.2870-2960cm-1为-CH3,>CH2的V C-H碳氢键伸缩振动。
②.1730cm-1为V C=O羰基伸缩振动。
③.1380cm-1是-CH3的C-H弯曲振动。
④.1025cm-1,1050CM-1为V C-O-C 伸缩振动。
图8-33,1-己烯的IR图主要吸收峰是①.=C-H伸缩振动。
②.-CH3,>CH2中C-H伸缩振动。
③.伸缩振动,④.C-H不对称弯曲振动。
红外吸收光谱的解析.

红外吸收光谱法第一节概述一、红外光谱测定的优点20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。
到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。
红外光谱测定的优点:1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。
2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。
3、常规红外光谱仪价格低廉,易于购置。
4、样品用量小。
二、红外波段的划分δ=104/λ(λnm δcm -1)红外波段范围又可以进一步分为远红外、中红外、近红外波段波长nm 波数cm -1近红外 0.75~2.5 13300~4000中红外 2.5~15.4 4000~650远红外 15.4~830 650~12三、红外光谱的表示方法红外光谱图多以波长λ(nm )或波数δ(cm -1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收―峰‖,其实是向下的―谷‖。
一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数红外光谱中吸收峰的强度可以用吸光度(A )或透过率T%表示。
峰的强度遵守朗伯-比耳定律。
吸光度与透过率关系为所以在红外光谱中―谷‖越深(T%小),吸光度越大,吸收强度越强。
第二节红外吸收光谱的基本原理一、分子的振动与红外吸收任何物质的分子都是由原子通过化学键联结起来而组成的。
分子中的原子与化学键都处于不断的运动中。
它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。
这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。
红外光谱分析

在特征频率区,不同化合物的同一种官能团 吸收振动总是出现在一个窄的波数范围内,但 不是一个固定波数,具体出现在哪里与基团所 处的环境有关,这就是红外光谱用于有机物结 构分析的依据。
影响基团频率位移的具体因素
电子效应
空间效应 氢键
1)电子效应
a.诱导效应:通过静电诱导作用使分子中电子云分布发生变 化引起K的改变,从而影响振动频率。
振动频率与基团折合质量的关系
基团 C-H C-C C-Cl C-I 折合质量 (m) 0.9 6 7.3 8.9 振动频率 ( /cm-1) 2800~3100 约 1000 约 625 约 500
2.3.2
基团频率区的划分
分区依据:由于有机物数目庞大,而组成有
机物的基团有限;基团的振动频率取决于K 和 m,同种基团的频率相近。
划分方法:
基团特征频率区 氢键区 叁键区和累积双键区 双键区 单键区
指纹区
基团频率区的划分
区域名称 氢键区 频率范围
4000~2500cm-1
基团及振动形式
O-H、C-H、N-H 等的伸缩振动 CC、CN、NN和
叁键和 累积双键区
2500~2000cm-1
C=C=C、N=C=O 等的伸缩振动
的振动频率越大,吸收峰将出现在高波数区(短波长区); 反之,出现在低波数区(高波长区)。 例1 水分子
2)峰数
峰数与分子自由度有关。无瞬间偶基距变化时,
无红外吸收。
分子振动数目 线性分子: 3n-5个 非线性分子: 3n-6个
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相
差越大(极性越大),吸收峰越强; 例2 CO2分子
键类型: 力常数: 峰位:
红外光谱解析

本章重点内容及其课后作业
本章重点内容: 本章重点内容: 1. 分子振动方式与红外光谱产生的条件; 分子振动方式与红外光谱产生的条件; 2. 伸缩振动频率与胡克定律,常见化学键的伸缩振动频 伸缩振动频率与胡克定律, 率的计算; 率的计算; 3. 分子结构与红外光谱的解析,各类有机物的特征红外 分子结构与红外光谱的解析, 吸收. 吸收. 课后作业 1. 阅读教材《有机化合物结构分析》邹建平等编著, 阅读教材《有机化合物结构分析》邹建平等编著, p52~86,熟悉各类有机化合物的特征红外吸收, p52~86,熟悉各类有机化合物的特征红外吸收,对能 说明有机物结构特点的吸收峰进行归属. 说明有机物结构特点的吸收峰进行归属. 2. 教材所附练习1,2,3,4,7,8,10,11,12,13应 教材所附练习1 10,11,12,13应 重点掌握,要求对说明化合物结构的吸收峰进行归属. 重点掌握,要求对说明化合物结构的吸收峰进行归属. 3. 预习核磁共振氢谱的相关内容. 预习核磁共振氢谱的相关内容.
organochem@
有机化合物标准谱图网站
网址:http://riodb01.ibase.aist.go.jp/sdbs/cgi网址:http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
organochem@
organochem@
红外光谱解析示例
2000~ 2000~1600 cm-1以及789,687 cm-1的吸收峰说明苯 以及789, 环间位二取代; 环间位二取代; 所以分子中含有所以分子中含有-C6H5,-CN,与分子式C8H7N相比, CN,与分子式C 相比, 相差的结构,综上所述,该化合物可能间相差-CH3的结构,综上所述,该化合物可能间-甲基 苯腈. 苯腈. 与标准红外谱图对照可证实该化合物. 与标准红外谱图对照可证实该化合物.
第八章有机化合物的波谱分析

1H核的I=1/2,当它围绕自旋轴转动时就产生了磁场,
因质子带正电荷,根据右手定则可确定磁场方向。
氢核在外磁场中的两种取向示意图 ΔE与外磁场感应强度(B0)成正比,如下图及关系式 所示:
图 8-6 质子在外加磁场中两个能级与外磁场的关系
h E B 0 h 2
B 0 (8-4) 2
式中:γ称为磁旋比,是核的特征常数,对1H而言, 其值为2.675×108A·m2·J-1·s-1;h为Plank常量;ν无线电 波的频率。
因为只有吸收频率为ν的电磁波才能产生核磁共振, 故式(8-4)为产生核磁共振的条件。 ⑵核磁共振仪和核磁共振谱
被测样品溶解在CCl4、CDCl3、D2O等不含质子的溶 剂中,样品管在气流的吹拂下悬浮在磁铁之间并不停的旋 转,使样品均匀受到磁场作用。
化学键类型
伸 缩 振 动
-N-H sp C-H sp2 C-H sp3 C-H sp2 C-O sp3 C-O
化学键类型
特征频率/cm-1(化合物类型) 1680~1620(烯烃) 1750~1710(醛、酮) 1725~1700(羧酸) 1850~1800,1790~1740(酸酐) 1815~1770(酰卤) 1750~1730(酯) 1700~1680(酰胺) 1690~1640(亚胺、肟) 1550~1535,1370~1345(硝基化合物) 2200~2100(不对称炔烃) 2280~2240(腈)
低场
高场
外加磁场 B0
因而,质子核磁共振的条件应为:
B实 B 0(1 ) 2 2
(8-6)
对质子化学位移产生主要影响的屏蔽效应有两种: ①核外成键电子的电子云密度对所研究的质子产生的 屏蔽作用,即局部屏蔽效应。 ②分子中其它质子或基团的核外电子对所研究的质子 产生的屏蔽作用,即远程屏蔽效应(磁各向异性效应)。 综上所述,不同化学环境的质子,受到不同程度的屏 蔽效应,因而在核磁共振谱的不同位置出现吸收峰,这种 峰位置上的差异称为化学位移。
红外吸收光谱PPT课件

2. 产生条件
物质吸收红外辐射应满足两个条件:
辐射光具有的能量与发生振动跃迁时所需的能 量相等;
• 当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和外界红外辐射的频率一致
分子振动 方程
m = m1 m2
m1 m2
c —光速 k —键力常数 u —折合质量
=
N1/ 2 A
k
2c M
M = M1 M2 M1 M2
影响基本振动频率的直接因素是相对原子质量 和化学键的力常数
C-C k 4~6 σ 1190
C=C 8~12 1683
C≡C 12~18 N/cm 2062 cm-1
辐射与物质之间有偶合作用。 实质是外界辐射迁移它的能量到分子中去
偶极矩的变化
偶极矩μ
HCl
d
H
Cl
+q
-q
H2O
H +q
-q O
d
H +q
m=qd
由于分子内原子处于在其平衡位置不断地振动的状态, 在振动过程中d 的瞬时值亦不断地发生变化,因此分 子的μ也发生相应的改变,分子也就具有确定的偶极 矩变化频率;
图 亚甲基的伸缩振动
弯曲振动(或变形振动):基团键角发生周期变化 而键长不变的振动称为变形振动,用符号δ表示。 弯曲振动又分为面内和面外弯曲振动。
亚甲基的弯曲振动
基本振动的理论数
基本振动的数目称为振动自由度,每个振动自由度相 应于红外光谱图上一个基频吸收峰。
每个原子在空间都有三个自由度,如果分子由n 个原 子组成,其运动自由度就有3n 个;
第八章红外光谱和核磁共振氢谱IRandHNMR

伸 1 )
(cm-
说 明 羰基有共轭时吸收 波数降低
羧酸
OH C=O C=O C=O C=O NH2 CN
酰卤 酸酐 酯 酰胺 晴
四 、红外光谱 解析实例 四 、红外光谱 解析实例
实例一
C8H7N
红外光谱-全ppt课件

到1930年前后,随着量子理论的提出和发展,红 外光谱的研究得到了全面深入的开展,并且测得大量 物质的红外光谱。
1947年第一台实用的双光束自动记录的红外分光光 度计问世。这是一台以棱镜作为色散元件的第一代红外 分光光度计。
较高频率。
C-H弯曲振动:1475-1300 cm-1 ,甲基的对称变形 振动出现在1375 cm-1处 ,对于异丙基和叔丁基,
吸收峰发生分裂。
亚甲基平面摇摆:800-720cm-1对判断-(CH2)n-的碳
链长度有用, n>4 725,
n=3 729-726,
n=2 743-734, n=1 785-770
H
H
H
υ C=C υ =C H
1645cm-1 3017cm-1
1610cm-1 3040cm-1
1565cm-1 3060cm-1
精选课件
21
氢键效应(X-H):
形成氢键使电子云密度平均化(缔合态),使体系 能量下降,基团伸缩振动频率降低,其强度增加但峰形 变宽。
如: 羧酸 RCOOH (RCOOH)2
(5)所需样品用量少,且可以回收。红外光谱分析一次 用样量约1~5mg,有时甚至可以只用几十微克。
精选课件
5
红外光谱基本原理
化学键的振动与频率:
双原子分子中化学键的振动可按谐振子处理。
m1
m2
用虎克定律来表示振动频率、原子质量和键力常数之间的关系:
υ= 1 2
若用波数取代振动频率,则有下式:
μ为折合原子量
μ=
M1M2 M1 M2
药物分析第(8)章

H2N
COO(C2H5)2 + NaOH
H2N
COONa + CH3CH2OH
CH3CH2OH+ 4I2 + 6NaOH
22
CHI3 + 5NaI + HCOONa + 5H2O
四、 制备衍生物测熔点 1. 三硝基苯酚衍生物的制备: 利多卡因和布比卡因
NHCOCH2N(C2H5)2 O N 2 CH3
醋氨苯砜
CH3 NHCO CH3 C4H9 N
.
HCl
盐酸布比卡因
5
三、主要理化性质
1. 芳伯氨基特性: 显重氮化-偶合反应; 与芳醛缩合 成Schiff碱的反应;易氧化变色 。(盐酸丁卡因, 无) 2. 水解性:因分子结构中有酯键。 3. 弱碱性:能与生物碱沉淀试剂发生沉淀反应;在 非水溶剂中能滴定。
28
注射用盐酸丁卡因
(2)
取含量测定项下的溶液,照紫外-可见分光 A)测定,在227nm与310nm
光度法(附录Ⅳ
的波长处有最大吸收。
29
盐酸普鲁卡因胺注射液
【鉴别】
(1)
取本品适量,加水制成每1ml
中含盐酸普鲁卡因胺5μg的溶液,照紫外-可见 分光光度法(附录Ⅳ 长处有最大吸收。 A)测定,在280nm的波
【鉴别】 (1) 取本品0.2g,加水20ml
溶解后,取溶液2ml,加硫酸铜试液0.2ml与碳 酸钠试液1ml,即显蓝紫色;加三氯甲烷2ml, 振摇后放置,三氯甲烷层显黄色。
15
盐酸利多卡因在酸性溶液中与氯化钴试液作用, 生成亮绿色钴盐沉淀。
CH3 NHCOCH2N(C2H5)2 + CoCl2 CH3
第八章-气体成分分析

热电势/mV 29.13 29.97 30.81 31.64 32.46
差值/mV 19.75 19.92 20.08 20.26 20.44
随温度变化,氧浓度差电势和热电势变化基本相等,二 者之差基本相等,由此可得到一种较为简单的补偿系统
氧化锆氧量计的测量系统
• 氧化锆产生的氧浓差电势和反串的热电势 之差都可以远传到二次仪表
氧化锆氧量计
• 8.1.1 氧化锆测氧原理
• 氧浓差电势:一块氧化锆两侧分别附上一个多孔铂 电极,并使其处于高温下。如果两侧氧含量不同, 那么两个电极间就会出现电动势,此电动势是由于 固体电解质两侧气体的含量浓度不同而产生的,故 称为氧浓差电势,这样的装置叫做氧浓差电池
-
P1
O 2 O 2
φ1
Q 载气流量,单位为mL / s
气相色谱分析仪
• 浓度型-热导池检测器,几乎对所有组分都具有灵 敏度、且简单可靠,故十分广泛
引出线
R1
R2
纯
R3
R1
载
气
参比室 测量室
R3
R4
色谱柱流 出气体
气相色谱分析仪
• 质量型-氢火焰电离检测器,分析碳氢化合物组分, 具有很高灵敏度,对CO、CO2几乎没有灵敏度
点火丝 空气
喷气口
收集电极 放大器 放空
H2 载气
用于定性和定量分析过程
• 定性分析 • 根据色谱峰图确定被分析的混合物中含有何种
物质,为定性分析
• 利用保留时间定性分析:因为在操作条件一定 时,每一种组分的保留时间是一定的。标定好 各组分的保留时间,将测得的保留时间与之比 较来判断某一组分是否存在以及每一色谱峰值 对应的组分
• 局限性:
红外光谱分析及FTIR基础知识

第一章 红外光谱的基本原理l—1 光的性质光是一种电磁波,它在电场和磁场二个正交面内波动前进.二个波峰或波谷之间的距离为波长,以“ λ”表示。
电磁波包括波长短至0.1纳米的x射线到长达106厘米的无线电波.其中波长为0.75微米到200微米,即从可见光区外延到微波区的一段电磁波称红外光.红外光通常以微米为单位(μm).1微米等于10-4厘米(1μm=10-4cm),因此,红外光波长以厘米为单位时,其倒数就是1厘米内的波数(ν),所以波数的单位ν是厘米-1(cm-1).红外光既可以波长(λ),也可以波数(cm-1)表示,二者关系如(1-1)式所示:ν(cm-1)=104/λ(μm) (1-1)由于光的能量与频率有关,因此红外光也可以频率为单位.频率(f)是每秒内振动的次数.频率、波长和波数的关系是,f=c/λ=ν*c (1—2)式中:c为光速,是常数(3×1010厘米秒); λ是波长(微米);f是频率(秒-1);ν是波数(厘米-1).由于波数是频率被一个定值(光速)除的商值,因此红外光谱中常将波数称为频率.光既有波的性质,又有微粒的性质.可将一束光看作高速波动的粒子流,最小单位为光子.根据爱因斯坦—普朗克关系式,一定波长或频率的单色光束中每个光子具有能量E,E=hf=hcν=hc/λ (1—3)式中:h为普朗克常量,等于6.63×10-34焦耳·秒.按(1.3)式可以算出波长2μm(5000厘米-1)的红外光子能量为6.63×10-34 (焦耳·秒)x3x1010/2x10-4厘米=9.95x10-20焦耳.同理波长l0微米(1000厘米-1)的红外光子的能量仅1.99×10-20焦耳.可见波长短,能量大.波长长,能量小.1-2 分子光谱的种类有机分子同其他物质一样始终处于不停的运动之中。
分子在空间自由移动需要的能量为移动能.沿重心轴转动的能量为转动能,约0.1—0.00l千卡/摩.二个以上原子连接在一起,它们之间的键如同弹簧一样振动,所需能量为振动能,约5千卡/摩.此外分子中的电子从各种成键轨跃入反键轨所需能量为电能,约100千卡/摩.分子在未受光照射之前,以上描述的诸能量均处于最低能级,称之为基态.当分子受到红外光的辐射,产生振动能级的跃迁,在振动时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱.若用单色的可见光照射(今采用激光,能量介于紫外光和红外光之间),入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。
分析化学 第八章-分光光度法

∆E = E2 − E1 = hν
不同的物质由于其结构不同而具有不同的量子 化能级,其能量差也不相同,物质对光的吸收 具有选择性。
16
吸收曲线(吸收光谱): 测量溶液对不同波长光的吸收,以波长为横坐
标,吸光度为纵坐标作图,得到吸收曲线。 描述了物质对不同波长光的吸收能力。
吸收曲线
A ~ λ (nm) 最大吸收波长:λmax
17
同一浓度,不同物质 不同浓度,同一物质
18
吸收曲线的讨论:
(1)同一种物质对不同波长光的吸光度不同。 (2)吸收曲线可以提供物质的结构信息,并作为物 质定性分析的依据之一。也是定量分析中选择入射 光波长的重要依据。 (3)不同浓度的同一种物质,其吸收曲线形状相似。 在某一定波长下吸光度有差异,在λmax处吸光度的差 异最大,测定最灵敏,可用于物质定量分析。
3. 双波长型
λ1 λ2
通过波长选择可校正背景吸收:消除吸收光谱重 叠干扰,适合于混浊液和多组分分析。
只使用一个吸收池:参比溶液即被测溶液,避免 单波长法中因两种溶液组成、均匀性差异及吸收 池差异所引入的误差。
41
8.3 显色反应及显色条件的选择
1. 显色反应的选择 2. 显色剂 3. 显色条件的选择
吸光物质在一定波长和溶剂条件下的特征常数;
不随浓度和光程长度的改变而改变。在温度和 波长等条件一定时,ε 仅与吸光物质本身的性质 有关;
可作为定性鉴定的参数;
同一吸光物质在不同波长下的ε不同。在λmax处 的ε常以εmax表示。εmax越大,该物质的吸光能力 越强,用光度法测定该物质的灵敏度越高。
分子内部三种 运动形式
电子相对于原子核的 运动
原子核在其平衡位置 附近的相对振动
红外光谱谱图分析

C H 3080 cm-1
H
C
3030 cm-1
3080-3030 cm-1
C H 变形
振动
H C CH 2
CH
3080 cm-1 3030 cm-1 3300 cm-1
3000 cm-1 2900-2800 cm-1
2023/10/15
bC=C 伸缩振动1680-1630 cm-1
反式烯
R1
H
CC
2023/10/15
第四节 有机化合物红外谱图解析
analysis of infrared spectrograph
1.烷烃
CH3,CH2,CHC—C,C—H 3000cm-1
CH3
CH2 CH2
δas1460 cm-1
重
δs1380 cm-1
叠
δs1465 cm-1
r 720 cm-1面内摇摆
CH2 对称伸缩2853cm-1±10 CH3 对称伸缩2872cm-1±10 CH2不对称伸缩2926cm-1±10 CH3不对称伸缩2962cm-1±10
H 990 cm-1
H 910 cm-1 (强) H 2:1850-1780 cm-1
H 890 cm-1(强)
2:1800-1780 cm-1
R2
2023/10/15
1-己烯谱图
2023/10/15
对比
烯烃顺反异构体
2023/10/15
壬烯
2023/10/15
3.醇—OH
a-OH 伸缩振动 b碳氧伸缩振动
55
50
45
2928
40
35
30
纤维素
25
3406
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章红外光谱分析仪器分析自测题第八章红外光谱分析自测题一、对或错(对号入座,错号入座)1.Cl2和H2O分子的振动可以引起红外吸收,产生吸收带。
()2。
红外光谱中≡C-H的吸收波数大于-CH2-h. (√) 3。
当化合物的不饱和度为2时,该化合物可以含有两个双键,或者一个双键和一个环,或者一个三键。
(√)4.红外光谱可以区分分子的顺反异构,但不能区分手性分子。
(√) 5。
烯烃分子的对称性越强,碳=碳双键的振动吸收越强。
()6。
H2O分子中的氢氧氢对称伸缩振动不产生红外吸收。
()7。
在红外光谱中,醇和酸可以与羰基的特征吸收区分开。
(√)第二,选择题1.下列四种不吸收红外光的气体是(丁)甲、过氧化氢乙、二氧化碳丙、甲烷丁和N22.在有机化合物的红外吸收光谱分析中,出现在4000-1350 cm-1频率范围内的吸收峰可用于识别官能团。
该频率范围被称为(B) A、指纹区域B、组频率区域C、基频区域D和和频率区域3。
不是所有的分子振动形式及其相应的红外波段都能被观察到,因为:(b)分子既有振动又有旋转,这太复杂了。
分子中的一些振动能是简并c,分子中的一些振动能抵消d,因为分子4中除了h,c,h,o之外还有原子,而甲烷分子的振动自由度是(c)5A、5 B、6 C、9 D、105.丁二烯中的C=C伸缩振动如下:具有红外活性的是(B)1仪器分析自测题A.═ch-ch═ch2b═ch-ch═ch2a ab b c a,b有d a,b没有6.如果一种物质能吸收红外光并产生红外吸收光谱,那么分子结构必须是(C)a,具有不饱和键b,具有共轭体系c,具有偶极矩的净变化d,具有对称性7.红外光谱仪使用的光源是(B)空心阴极灯乙、能斯特灯丙、氘灯丁、碘钨灯8.在含有羰基的分子中,增加羰基的极性会使分子中的键的红外吸收带(B)。
A.在高波数方向移动b,在低波数方向移动c,不要移动d,稍微振动9,不要考虑费米共振的影响。
以下伸缩振动吸收峰值最强(B) A、c-hb、n-hc、p-hd、o-h10.羰基化合物中,C=O拉伸振动频率最高的化合物是(D) A、R-CO-RB、R-CO-CL、R-CO-H、R-CO-F11。
在下列化合物中,具有最高C═C拉伸振动吸收强度的化合物是(A) A.R-CH ═ CH2B。
═中华民国═中华民国═中华民国12.某种化合物在红外光谱中有3000-2800厘米-1、1460厘米-1、1375厘米-1、720厘米-1等主要吸收带。
该化合物可以是(甲)甲、烷烃乙、烯烃丙、炔烃丁、芳烃13.氯苯的红外光谱在900厘米-1和690厘米-1之间没有吸收带,其可能的结构为(C)a,对二氯苯b,间三氯苯c,六氯苯d,四取代氯苯2仪器分析自测题14.为了用红外光谱法区分HO(—CH2—CH2—O—)n H (n=1500)和HO(—CH2—CH2—O—)m H (m=2000),下列陈述是正确的:(D) A、b、c、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、H、Hc、使用-CH2-o伸缩振动1150 cm-1 ~ 1070cm-1强度差d,以上说法不正确15.化合物在紫外区没有吸收带,在红外光谱的官能团区的吸收峰如下:约3000 cm-1和1650cm-1。
该化合物可以是(B) A、芳香族化合物B、烯烃c、醇d、酮16,傅里叶变换红外分光光度计的色散元件是(d)玻璃棱镜B、应时棱镜C、卤化盐棱镜D、迈尔森干涉仪17,化合物在紫外区的204nm处具有弱吸收带,并且在红外光谱的官能团区具有以下吸收峰:3300 cm-1至2500 cm-1宽且强吸收,以及1710cm-1。
该化合物可以是(c)a,醛b,酮c,羧酸d,酯18.在红外光谱分析中,KBr被用作样品池,因为(C) A和KBr晶体在4000-400 cm-1范围内不散射红外光B,KBr在4000-400 cm-1范围内具有良好的红外光吸收特性C,KBr在4000-400 cm-1范围内没有红外光吸收D,KBr在4000-400 cm-1范围内没有对红外光的反射19.含氧化合物的红外光谱图在3600~3200cm -1 1处有吸收峰。
下列化合物最有可能是(C)甲、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、丙、20.当用红外吸收光谱法测定有机物的结构时,样品应为(B) A、简单物质B、纯物质C、混合物D和任何样品。
3仪器分析自测题21.如果含氮化合物的红外光谱在3600 ~ 3200厘米-1 1处有吸收峰,则该化合物可能含有(A)a,氨基b,氰基c,羰基d,烷基三、填空1.在分子振动的过程中,化学键或基团不会吸收红外光而不改变它们的偶极矩。
2.对于C=C和C=O的伸缩振动,频带强度为_ _ _ C = O _ _ _ _ _ _ _ _ _ _。
3.在4000-1300厘米-1 _ _ _ _ _ _ _范围内的峰值是由拉伸振动引起的。
基团的特征吸收一般位于这个范围内,称为_ _ _基团频率_ _ _区。
在1,300-600厘米-1的范围内,如果分子结构稍有不同,吸收也稍有不同,这称为_ _ _指纹区。
在2500 cm-1至2000 cm-1的范围内,称为_ _ _ _ _ _ _三键和累积双键的累积区。
4.共轭效应使共轭物共面,并平均电子云密度。
因此,双键的红外吸收频率向更低的波数移动。
氢键效应使-OH拉伸振动向波数较低的方向移动。
5.在化合物R-CO-H和R-CO-F中,前者的C=O伸缩振动产生的吸收峰的波数比后者低_ _ _ _。
在化合物r-co-r和r-co-NH2中,前者的C=O拉伸振动产生的吸收峰的波数比后者高_ _ _ _ _ _。
6.红外光谱是由于分子振动能级的跃迁而产生的。
当分子被红外光照射时,要使分子吸收红外光,必须满足两个条件:(1)分子在振动过程中有偶极矩的变化(2) _ _ _ _ _ _ _辐射频率满足振动转换所需的能量_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _。
四、简短回答问题:1.确定下列分子的碳-碳对称伸缩振动在红外光谱中是活跃的还是不活跃的。
(1)CH3-CH3(2)CH3-三氯化碳(3)HC≡CH4仪器分析自测题HCCHCl(4){ EMBED ChemWindow。
文档| C1(5)1.答:(1)、(3)和(5)碳-碳双键振动没有红外活性,(2)和(4)碳-碳双键振动有红外活性。
2.使用红外光谱来区分以下异构体:(1) (2) (3) (4) (5)2.答:(1)前者在3200 ~ 3600cm-1处有一个强而宽的羟基振动吸收峰,而后者没有,这可以用红外吸收来区分。
(2)前者有一个强而宽的羟基振动吸收峰,而后者没有。
(3)可以区分。
后者的碳氧吸收峰低于前者(共轭效应)。
(4)可以区分。
前者的碳氧吸收峰低于后者。
(5)可以看出,前者的C=C双键峰很弱(分子对称),而后者的双键峰很强(分子不对称)。
3.试着解释为什么羰基碳氧拉伸振动吸收频率的下列各组化合物发生变化。
A.前者相当于由于感应效应增加了碳氧双键上的电子云密度,即双键性质增强,因此碳氧基团的振动频率向高波数区移动。
中间化合物增加了双键的共轭效应,并且C=O基团的振动频率移至低波数。
第三种化合物形成一个大的p-π共轭体系,这导致C=O基团振动频率继续下降。
5仪器分析自测题B.在第二种化合物中,由于感应效应,碳氧双键上的电子云密度增加,即双键性质增强,因此碳氧基团的振动频率向高波数区移动。
第三种化合物是由中介效应控制的。
4.化合物的分子式为C5H8O,具有如下吸收带:3020、2900、1690和1620cm-1;在紫外区,其吸收为227纳米(ε=104)。
请写下化合物的结构。
4.答:化合物的不饱和度是U=2,它可能含有两个双键或一个环和一个双键。
在红外光谱中,3020 cm-1有吸收,表明它含有不饱和的碳氢键,即=C-H,1690 cm-1是C=O的振动吸收,1620 cm-1是C=C双键的振动吸收,表明分子是不对称结构,而2900 cm-1是甲基和亚甲基的吸收。
紫外区在227nm(ε=104)处的吸收表明在该组合中存在共轭体系,该共轭体系应该是碳=碳双键与碳=氧基团的共轭。
所以组合结构是:CH2 =甲烷-一氧化碳-甲烷-甲烷5.在羰基化合物r-co-r’、r-co-cl、r-co-h、r-co-f、f-co-f中,哪种化合物的C═O伸缩振动频率最大?答:C═O伸缩振动频率最大的化合物是F-CO-F。
由于增强的感应效应,它相当于减弱了C═O之间的电子云密度,即双键性质下降了6。
具体的二甲苯通过以下红外数据确定:化合物A:吸收带为767和920厘米-1。
化合物792厘米-1的吸收带。
化合物742厘米-1的吸收带。
化合物A:吸收带为767和920厘米-1。
是间二甲苯。
化合物792厘米-1的吸收带。
对二甲苯。
化合物742厘米-1的吸收带。
邻二甲苯7.化合物C9H10O的红外光谱的主要吸收峰是3080、3040、2980、2920。
6仪器分析自测题1690(s)、1600、1580、1500、1370、750、690cm-1,尝试写出主要吸收峰的归属并推断分子结构。
该化合物的不饱和度为U=5,可以是苯环和双键。
3080,3040厘米-1,含不饱和碳氢键,即=碳氢键,2980,2920厘米-1,含- CH3,- CH21690 cm-1(s),即C=O的振动吸收,移动到低波数区并与苯环共轭。
1600、1580和1500 cm-1是苯环的特征吸收峰。
1370是- CH3,- CH2的变形振动。
750,690 cm-1表明苯环是单取代的。
因此,该化合物是C6H 5-一氧化碳-CH2-CH37。