固体物理 第5章

合集下载

固体物理 第五章 固体电子论基础1

固体物理 第五章  固体电子论基础1
5
5.一些金属元素的自由电子密度 一些金属元素的自由电子密度
元 素 Li Na K Cu Ag Mg Ca Zn Al In Sn Bi z 1 1 1 1 1 2 2 2 3 3 4 5 n/1028m-3 4.70 2.65 1.4 8.47 5.86 8.61 4.61 13.2 18.1 11.5 14.8 14.1 rs/10-10m 1.72 2.08 2.57 1.41 1.60 1.41 1.73 1.22 1.10 1.27 1.17 1.19 rs/a0 3.25 3.93 4.86 2.67 3.02 2.66 3.27 2.30 2.07 2.41 2.22 2.25
n= z
ρNA
M
ne2E j = nev = τ 2m
设电子平均自由程为l, 设电子平均自由程为 ,则 τ
2
zρNAe2E j= τ 2mM
(A m )
2
=l v
电流密度可写成
zρNAe E l j= × 2mM v
6.电导率σ 电导率
(A m )
2
j zρNAe l σ= = × 2mM v E
2
1.必须用薛定谔方程来描述电子的运动。 必须用薛定谔方程来描述电子的运动。 必须用薛定谔方程来描述电子的运动 电子的运动不同于气体分子的运动, 电子的运动不同于气体分子的运动,不能用经典 理论来描述。 理论来描述。 2.电子的分布服从量子统计 即费米 狄拉克分布。 电子的分布服从量子统计, 即费米-狄拉克分布 狄拉克分布。 电子的分布服从量子统计 电子的分布不再服从经典的统计分布规律。 电子的分布不再服从经典的统计分布规律。 3.电子的运动是在一个周期性势场中进行的。 电子的运动是在一个周期性势场中进行的。 电子的运动是在一个周期性势场中进行的 4.电子的能级是由一些能带组成。 电子的能级是由一些能带组成。 电子的能级是由一些能带组成

中山大学固体物理第五章参考答案

中山大学固体物理第五章参考答案

定态薛定谔方 程为:
d 2 d2x
2m 2
E
U ( x)
0
U(x)
U0
1区 2区3区
b x
0 ca
1( x) Aeix Beix , 2( x) Aei'x Bei'x , 3( x) eika ( Aeix Beix ), 这里 2mE / , ' 2m(E U0) /
进行一些推导和必要简化,最后可 以得出下式
maU0b
2
sin
a
a
cos(
a)
cos(ka)
式中
2mE
而 k 2
是电子波的波矢。
上式就是电子的能量 E 应满足的方程,也是电子能量 E 与波矢 k 之间的关系式。
f( E)
E
图 5 f(E)函数图
由图看出,在允许取的 E值之间,有一些不允许取 的 E值,称为能隙。
– (2)试讨论分别同A、B两种材料组成的一维 超晶格量子阱的能带变化。*(如下图)
AB
ECA
EVA
8
a
a
ECB
克朗尼格-朋奈模型
EVB (基泰尔,固体物理导论,P119)
克朗尼格-朋奈模型
U(x)
周期性方势阱
U0
2区
1区 3区
b
x
0 ca
在 0 < x < a 一个周期的区域中,电子的势能为
0 (0 x c) U(x) U0 (c x a)
b=0, U0=∞, P=β2ba/2
见 Kittel 8版 p121Biblioteka 于本题,每个能带里有8条 小分能带
AB
8
a
a

固体物理-第5章-晶体中电子能带理论-5.6

固体物理-第5章-晶体中电子能带理论-5.6

C
D
kz
B
O ky
kx
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
B
a (1,1,0) C
2
a (1,0,1) D a (0,1,1)
2
2
a (1,1,0) 2
a (1,0,1) 2
a (0,1,1) 2
结果Es
E Emax Emin 12J1
能带宽度由两因素决定:
(1)重叠积分J1的大小;
2)J1 前数字,即最近邻格点数目 (晶体的配位数)
因此,波函数重叠程度越大,配位数越大,能带越宽,反之.
5.6 紧束缚方法 第五章 晶体中电子能带理论
四、原子能级与能带的对应
EkiJ0RsJ最近邻
k
s
J
0
4J
cos
kxa 2
cos
kya 2
cos kxa cos kza
2
2
cos
kya 2
cos
kza 2
5.6 紧束缚方法 第五章 晶体中电子能带理论
适用性
1.前面讨论的是最简单的情况,只适用于s态电子,一个原子能级 i
5.6 紧束缚方法 第五章 晶体中电子能带理论
解:设 J1 J Rs
简立方结构的最近邻格点数为6,位置矢量的坐标: (a,0,0),(0,a,0),(0,0,a) (其中a为晶格常量)
Ek
i
J0
Rs

J
近邻
Rs
e ikRs
vvvv
k kxi ky j kzk

固体物理第五章5.5 霍尔系数和磁致电阻效应

固体物理第五章5.5 霍尔系数和磁致电阻效应
* * * 1 m m m E (B E) (B E) B (B E) 2 2 2 2 2 2 2 2 1 c 1 c 1 c 1 c * 1 m 2 E ( B E ) 2 2 2 2 1 c 1 c
这与前面得到的结果相同。
e 对于 E D * ( B D) 这一关于D的矢量方程来说, m
霍尔角 H 的正切函数定义为霍尔电场 EH 与沿电流方向电场 E// 之比,即: e e EH * 0 BJ / 0 J * B tan H m m E//
可以证明它的解为:
* 1 m E (B E) (6.4.14) 2 2 2 2 1 c 1 c e * e 1 m 将 D E ( B E ) 代入 E D * ( B D) 中得: 2 2 2 2 m 1 c 1 c
* * 10 20 10e1 / m1 20e 2 / m2 J E (B E) 2 2 2 2 2 2 2 2 1 c 2 2 1 c11 1 c 2 2 1 c11
假定磁场沿 z 轴方向,电场在x-y平面内.
将 Di mi* 1 E ( B E ) J J1 J 2 1D1 2 D2
J1 10 D1
* 10 10e1 / m1 E (B E) 2 2 2 2 1 c11 1 c11
* 10 10 e 1 / m1* 20e 2 / m2 20 Jy E BEx 2 2 2 2 y 2 2 2 2 1 c 2 2 1 c1 1 1 c 2 2 1 c1 1 10c1 1 20c 2 2 10 20 E E 2 2 2 2 x 2 2 2 2 y 1 c1 1 1 c 2 2 1 c1 1 1 c 2 2

固体物理第五章习题及答案

固体物理第五章习题及答案

.
从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量 m* 变 为 . 此时电子的加速度
a= 1 F =0
m*
,
即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反. 11. 万尼尔函数可用孤立原子波函数来近似的根据是什么?
[解答] 由本教科书的(5.53)式可知, 万尼尔函数可表示为
m* = 1 m 1 + 2Tn
Vn <1.
10. 电子的有效质量 m* 变为 的物理意义是什么?
[解答] 仍然从能量的角度讨论之. 电子能量的变化
(dE)外场力对电子作的功 = (dE)外场力对电子作的功 + (dE)晶格对电子作的功
m*
m
m
=
1 m
(dE ) 外场力对电子作的功
− (dE)电子对晶格作的功
i 2 nx
V (x) = Vne a
n
中, 指数函数的形式是由什么条件决定的?
[解答] 周期势函数 V(x) 付里叶级数的通式为
上式必须满足势场的周期性, 即
V (x) = Vneinx
n
显然
V (x + a) = Vnein (x+a) = Vneinx (eina ) = V (x) = Vneinx
Es (k)
=
E
at s
− Cs

Js
e ik Rn
n
即是例证. 其中孤立原子中电子的能量 Esat 是主项, 是一负值, − Cs和 − J s 是小量, 也是负 值. 13. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?

《固体物理·黄昆》第五章(1)

《固体物理·黄昆》第五章(1)
每个代表点的体积
1 1 1 b1 ( b2 b3 ) N1 N2 N3
l1 l3 l2 k b1 b2 b3 N1 N2 N3
( 2 ) Vc
3
状态密度
Vc 3 ( 2 )
3
( 2 ) N N 简约布里渊区的波矢数目 3 ( 2 )
§5.2 周期势场下电子波函数的一般特性:布洛赫定理
布洛赫定理:当势场 V ( r ) 具有晶格周期性时,波动
方程的解具有以下性质
ik Rn (r Rn ) e (r )
了位相因子 e
k 为一矢量。当平移晶格矢量为 Rn ,波函数只增加
ik R n
H i ( r i ) E i ( r i )
能带理论的基本近似和假设:
3)周期性势场假设: 所有离子势场和其它电子的平均场是周期性势场
V ( r ) ( r ) u( r )
V ( r ) V ( r Rn )
在以上单电子近似核晶格周期性势场假定下,多 电子体系问题简化为在晶格周期性势场的单电子 问题:
1 2 3
布洛赫定理
ik Rm (r Rm ) e (r )
平移算符本征值的物理意义
(1) 1
e
ik a1
, 2 e
ik a 2
, 3 e
ik a 3
表征原胞之间电子波函数位相的变化 (2)平移算符本征值量子数
T和 H存在对易关系,则 H的本征函数同时也是各平移 算符T的本征函数 H E T1 1 , T2 2 , T3 3
平移算符的本征值 周期性边界条件
三个方向 a1 , a 2 , a 3 上的原胞数目

固体物理第5章_能带理论_习题参考答案

固体物理第5章_能带理论_习题参考答案

第六章 能带理论 (习题参考答案)1. 一矩形晶格,原胞长10a 210m-=⨯,10b410m-=⨯(1)画出倒格子图(2)以广延图和简约图两种形式,画出第一布里渊区和第二布里渊区(3)画出自由电子的费米面(设每个原胞有2个电子)解:(1)因为a =a i=20A i b =b j=40A j倒格子基矢为12a iA*=, 014bj A*=以a *b *为基矢构成的倒格子如图。

由图可见,矩形晶格的倒格子也是矩形格子。

(2)取任一倒格子点O作为原点,由原点以及最近邻点A i,次近邻点B i的连线的中垂线可以围成第一,第二布里渊区,上图这就是布里渊区的广延图。

如采用简约形式,将第二区移入第一区,我们得到下图。

(3) 设晶体中共有N个原胞,计及自旋后,在简约布里渊区中便有2N个状态。

简约布里渊区的面积21()8A a bA ***-=⨯=而状态密度22()16()N g K N A A*==当每个原胞中有2个电子时,晶体电子总数为 22()216Fk FN g k kdk N k ππ=⨯=⎰所以1/211111()0.2()210()8F k A m π---=≈=⨯这就是费米圆的半径。

费米圆如下图所示2. 已知一维晶体的电子能带可写成()2271cos cos 2,88E k ka ka m a ⎛⎫=-+⎪⎝⎭式中a 是晶格常数。

试求: (i )能带的宽度;(ii )电子在波矢k 状态时的速度; (iii )能带底部和顶部电子的有效质量。

()()()()()()()()22222m in 2m ax 22m ax m in 22222m in 71cos cos 2,8811cos 24400,2;221sin 24sin 404k i E k ka ka m a ka m a k E k E am a E E E m am aii v E kv ka ka m aiii E k kk E E mπ⎛⎫=-+⎪⎝⎭⎡⎤=--⎢⎥⎣⎦====∆=-=∴=∇∴=--==+解:当时,当时,能带的宽度为:在能带底部,将在附近用泰勒级数展开,可得:()()()22m in 22m ax 22m ax 220342203k E mm m E k k E E k mk E mm m ππδδδ****=+∴===-=+∴=-在能带顶部,将在附近用泰勒级数展开,令k=+k 可得:aa3. 试证明:如果只计及最近邻的相互作用,用紧束缚方法导出的简单立方晶体中S 态电子的能带为()2cos 2cos 2cos 2s x y z E k E A J ak ak ak πππ⎡⎤=--++⎣⎦并求能带的宽度。

固体物理第五章5.2 金属的电导率

固体物理第五章5.2 金属的电导率
k k 即: ; 号分别相应于吸收或放出一个声子。 k k
由于声子的能量和费米面上的电子的能量相比很小, 所以,上述散射过程可以看成是弹性散射.
声子能量在D 300 K时, 1/ 40eV
2 2 2 wk ,k [ k s k ( k k ) k s k ( k k )]

这样上述积分简化为在费米面SF上的面积分。
e2 J 3 4π
dS F SF v (E v ) k
1 e2 J 3 4π
又:k vk

vk vk vk dS F E

SF
vk vk 1 e2 所以电导率为: 3 dS F s 4π F vk
2 2 2 wk ,k [ k s k ( k k ) k s k ( k k )]
( k k )和 ( k k )是能量守恒所要求的。
2 纯金属的电阻率
1).实验规律: 实验发现,纯净金属的电阻率满足如下经验公式:
AT 5 (T ) M 6 D

D / T
0
x5dx (e x 1)(1 e x )
其中,A为金属的特性常数,M为金属原子的质量, ΘD是金属的德拜温度。此经验公式称为布洛赫—格律 乃森定律(Bloch- Grü neisen T5 law)。 显然,由布洛赫—格律乃森定律,高温下T > 0.5 ΘD 时,上式可化为: AT (T ) 4M 2 D 即高温下T > 0.5 ΘD时,满足ρ T
所以: s k k
1 i ( k k q ) Rn A e k e VL (r ) k 2 Rn

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理学1~6章习题解答

固体物理学1~6章习题解答

《固体物理学》习题解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么晶面族是(123)的离原点最近的晶面在三个基矢坐标轴上的截距分别是a1、(1/2)a2、(1/3)a3。

固体物理学中基矢的长度等于相邻两个格点的距离,所以只要“OA,OB 和OC 分别与基矢a1,a2,a3重合”,而O 又是格点,则A 、B 、C 一定是格点。

OA 、OB 、OC 间无格点,(234)情况一样。

结晶学以晶包基矢为坐标轴表示晶面指数,但称为米勒指数。

1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。

分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

固体物理:第五章 晶体中电子能带理论

固体物理:第五章 晶体中电子能带理论

电子在一个具有晶格周期性的势场中运动
V r V
r
Rn
其中 Rn 为任意格点的位矢。
2 2 2m
V r
E
2. 布洛赫定理
当势场具有晶格周期性时,波动方程的解具有如下性质:
(
r
Rn
)
eikRn
(
r
),
其中 k
为电子波矢,Rn
n1 a1 n2 a2 n3 a3
是格矢。
个能级分裂成N个相距很近的能级, 形成一个准连续的能带。 N个原子继续靠近,次外壳层电子也开始相互反应,能级 分裂成能带。
能带理论
能带论是目前研究固体中的电子状态,说明固体性质最重 要的理论基础。
能带理论是用量子力学的方法研究固体内部电子运动的理 论。它曾经定性地阐明了晶体运动的普遍特点,并进而说 明了绝缘体与半导体、导体的区别所在,解释了晶体中电 子的平均自由程问题。
原子中的电子处在不同的能级上,形成电子壳层
原子逐渐靠近,外层轨道发生电子的共有化运动——能级分裂
原子外壳层交叠的程度最大,共有化运动显著,能级分裂的很厉害, 能带很宽;
原子内壳层交叠的程度小,共有化运动很弱,能级分裂的很小,能 带很窄。
N个原子相距很远时,相互作用忽略不计。 N个原子逐渐靠近,最外层电子首先发生共有化运动,每
第五章 晶体中电子 能带理论
表征、计算和实验观测电子结构是固体物理学的核心问题; 这是因为原则上研究电子结构往往是进一步解释或预言许 多其他物理性质的必要步骤。
晶体电子结构的内涵是电子的能级以及它们在实空间和动 量空间中的分布。
玻尔的原子理论给出这样的原子图像:电子在一些特定的可能轨道 上绕核作圆周运动,离核愈远能量愈高,当电子在这些可能的轨道 上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到 另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单 频的。

《固体物理学》房晓勇主编教材-习题解答参考pdf05第五章_金属电子论基础

《固体物理学》房晓勇主编教材-习题解答参考pdf05第五章_金属电子论基础

8.45
×1022
⎤1/ ⎦
3
=
5.2 限制在边长为 L 的正方形的 N 个电子,单电子能量为
( ) ( ) E kx, ky
=
2
k
2 x
+
k
2 y
2m
(1)求能量 E 到 E+dE 之间的状态数; (2) 求绝对零度时的费米能量。 解:(参考中南大学 4.6,王矜奉 6.2.2,林鸿生 1.1.83,徐至中 5-2) (1)如《固体物理学》图 5-1 所示,每个状态点占据的面积为
G′(E) = 2 dZ ⋅ dk = 2 L2 k • dk dE 2π
m = L2m 2k π 2
得二维金属晶体中自由电子的状态密度为:
…………………………(4)
g(E)
=
G′(E) S
=
1 L2
L2m π2
=
m π2
………………………(5)
(2)根据《固体物理学》式 金属的电子浓度
3
∫ ∫ n =
2π i 2π = (2π )2
Lx Ly
L2
所以每个单位
k
空间面积中应含的状态数为
L2
(2π )2

d k 面积元中应含有的状态数为
dZ
=
L2
(2π )2
d
k
而单电子能量为
( ) ( ) E kx, ky
=
2
k
2 x
+
k
2 y
2m
= 2k2 2m
E+dE E
可见在 k 空间中等能曲线为一圆,如图所示,在 E——E+dE 两个等能圆之间的
2

固体物理1-6章总结

固体物理1-6章总结

CV
3NkB
θE 2 θE / T ) e T
爱因斯坦特征温度
CV 3NkB (
Debye模型 认为晶体可以看成是连续介质中的弹性波,但晶体中的格波的频率应 该有一个分布,频率与波矢的关系近似为线性关系 CV 3Nk 在高温下:T >> D
12 Nk B T 3 D 在低温下:T << D CV T 德拜温度 D 5 D kB 在高温下多用爱因斯坦模型,低温下则应用德拜模型。
熔点和沸点介于离子晶体和分子晶体 之间,密度小,有许多分子聚合的趋 势,介电系数大。
冰 H2F H2N

~ 0.1ev/ 键
习题
P35- 1.1; ▲ 1.5; ▲ 1.6; ▲ 1.7;1.8;1.10 ▲ 1.设一格子基矢分别为a1=3i,a2=3j,a3=1.5(i+j+2k),试 求该晶体的倒格子基矢。 ▲ 2.半导体GaAs具有闪锌矿结构, Ga、As两原子最近 距离为d=2.45A,求晶格常数,原胞基矢和倒格子基矢。 ▲ P58- 2.8
ni 0,1,2,3....
1 E i (ni )i 2 i 1 i 1 1 ni ▲频率为ωi的格波的平均声子数
i
平均能量
i i i i 2 e k BT 1
e k BT 1
绝缘体中声子热导率与温度的关系
1 CV v l 3
离子晶体导电的机制 离子晶体的导电率 位错的定义、分类,刃型位错的滑移
半导体物理
作业
▲ P101- 4.3;4.4;4.7
第五章 金属电子论
1. ▲自由电子气的概念及模型:特鲁德模型与索末菲模型(定性)

声子比热容

声子比热容

1
KD
D
v
6π2 V
N
3
11
固体物理导论 第 5 章 声子(II):热学性质
5.1 声子比热容
对每一种偏振类型,声子能量为
U p
dD
p
(
)
e /t
1
D 0
d
V 2
2π2v3
e /t 1
为简单起见,假定波速 v 与偏振态无关,因此
U
3
D 0
d
V 2
2T )4 2π 2v 33
隔内的模式数目,此函数亦称为模式密度,但
常称为态密度
5
固体物理导论 第 5 章 声子(II):热学性质
5.1 声子比热容
5.1. 3 一维情况下的态密度 考虑玻恩-卡曼环状原子链,波矢 K 的取值
K l 2π l 2π (l为整数且l ( N , N ])
Na L
22
L=Na 为原子链的长度,所以在区间 π/a K π/a
p
假定在 ~+d 范围内晶体具有给定极化模为 p 的振动模式数 Dp()d,用积分代替求和,
U p
dDp
(
)
e
/t
1
4
固体物理导论 第 5 章 声子(II):热学性质
5.1 声子比热容
晶格比热容为
U
Clat T kB p
dDp
(
)
( /t )2 e /t
(e /t 1)2
所以问题就转化为求 Dp() ,即求单位频率间
xD 0
dx
e
x3 x 1
其中定义 x /t / kBT,以及 xD D / kBT / T 称为德拜温度

固体物理答案第五章1

固体物理答案第五章1
l = ∞
∑ f ( x la )

为某一确定的函数) ( f 为某一确定的函数)
试求电子在这些状态的波矢。 试求电子在这些状态的波矢。
r r r r r ir Rn 解: 由式 ψk r + Rn = e ψk (r )
(
)
可知, 可知,在一维周期势场中运动的电子波函数满足
ψ k ( x + a ) = e ikna ψ k ( x )
v* a =
1 v i o 2A v* 1 v b = j o 4A
v* v* 以 a ,b
为基矢构成的倒格子
B3
ky
B2
A2
b
B1
A1
如图6-11所示 图中“。” 所示,图中 如图 所示 图中“
A3
o
代表倒格点。由图可见, 代表倒格点。由图可见, 矩形晶格的倒格子也是 矩形格子。 矩形格子。 第一区
(s = 0,1,2...
n = ±1,±2...)
5.2 电子在周期场中得势能
1 2 2 2 mω b ( x na ) V (x) = 2 0
[
]
当na b ≤ x ≤ na + b
当(n - 1)a + b ≤ x ≤ na b
是常数。 试画出此势能曲线,并求此势能的平均值。 且 a = 4b, ω 是常数。 试画出此势能曲线,并求此势能的平均值。 V(x) 解:
r k ya kza k xa at E k = E s A 8J cos cos cos 2 2 2
并求能带宽度。 并求能带宽度。 用紧束缚方法处理晶格的s态电子,当只计及最近邻格点 用紧束缚方法处理晶格的 态电子, 解: 态电子 的相互作用时,其能带的表示式为 的相互作用时,

(完整版)黄昆版固体物理学课后答案解析答案

(完整版)黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

上海师大固体物理 第五章(7)能带信息

上海师大固体物理 第五章(7)能带信息

2. 自由电子费米面的构造:二维正方空晶格模型为例
(1)费米半径:由价电子数N决定 设二维晶格的晶格常数为a,晶体的原胞数为N,晶体中平均每个原 子有η个价电子。 在简约布里渊区内,电子的波矢数目等于晶体的原胞数目,而每个 波矢状态可以容纳自旋相反的2个电子,则在k 空间单位面积中的 (价)电子状态数是:
(2) 二维简单格子Brillouin区和近自由电子近似下费米面的构造
简单立方倒格子
对最近邻倒格点 作垂直平分线
1st BZ
2nd BZ、3rd BZ
1st ~4th BZ
自由电子近似下FS 为球面(二维时为圆)
第一能带
第二能带
第三能带 近自由电子近似下FS在BZ边 界发生变化
第四能带
(3) 二维简单格子自由电子和近自由电子费米面的比较
kF
电子浓度η 1 2
k1

3
2

4 5 6
kF/k1
0.798
1.128
1.382
1.596
1.784
1.954
=1
kF
2π a 2
b1
=3
b1 b2 6 π b1 kF , kF a 2 2
=5
10 π b1 b2 kF , k F b1 a 2
1 E k // , k //


1 E k k

既然在布里渊区边界上恒有 E / k 0, 所以可推知,对于 波矢k落在布里渊区边界上的电子,其垂直于界面的速度分 量为零, 0 。这一结论是布拉格反射的必然结果。因
为在垂直于布里渊区边界的方向上,入射分波和反射分波

《固体物理学》房晓勇主编教材-思考题解答参考05第五章_金属电子论基础

《固体物理学》房晓勇主编教材-思考题解答参考05第五章_金属电子论基础
G 黄昆教材: k 空间占有电子与不占有电子区域的分界面称为费米面。
金属电子气模型的费米面是球形。
5.4 说明为什么只有费米面附近的电子才对比热、电导和热导有贡献? 解答:本质是,对比热、电导和热导有贡献的电子是其能态能够发生变化的电子,只有费米面附近的电子 才能从外界获得能量发生能态跃迁。 如对比热有贡献的电子是其能态可以变化的电子,能态能够发生变化的电子仅是费米面附近的电子,因为, 在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费 米面附近或以外的空状态上。只有费米面附近的电子吸收声子后能跃迁到费米面附近或以外的空状态上。 对电导,考虑到泡利不相容原理的限制,只有费米面附近的电子才有可能在外电场作用下,进入较高能级, 因而才会对金属电导率有贡献。而对于能量比费米能级低得多的电子,由于它附近的能态已经被占据,没 有可以接受它设为空态,所以这些电子不可能从外场获得能量而改变其状态,因而它们并不参与导电。 热导与电导相似,
解答:在 T = 0 时,所有电子能量不超过费米能量 EF ,因此没有电子脱离金属;但是,当金属被加
热到很高温度时,将有一部分电子获得的能量大于逸出功,从而脱离金属表面形成热电子发射电流,这种 现象称为热电子效应。
5.10 产生接触电势差的原因是什么?
解答:当两块不同的金属 1 和 2 相接触,或用导线连接时,两块金属将彼此带电并产生不同的电势U1
5.5 自由电子气的许多性质与费米波矢有关,试列举或导出下列参数与费米波矢的关系: (1)绝对零度时时的费米能量; (2)电子数密度: (3)金属电子气的总能量; (4)与费米能级对应的能态密度; (5)电子比热。
解答:(1)根据《固体物理学》式
5-19,绝对零度时时的费米能量 EF0

吴代鸣固体物理第五、六章课后答案

吴代鸣固体物理第五、六章课后答案
2
ne m
2
1 1 1 2 EF 2 热导率 K Cel Ce Ce 3 3 3 m
k BT 2 EF 1π π nk nk B E m 3 m T 3 2 F
2 2 2 B
π nk T K 3 m 2 ne mΒιβλιοθήκη (1)求 :'
( n ,n )
V ( x) Aδ( x na ) Aδ( x)
n
( x)V ( x) ( x)dx
' *
dx e
2 x
[ Aδ( x na ) Aδ( x)]
n
A d x e
0

E d k T Nmk BT B Nmk BT ( E ) / k BT 2 2 nπ e 1 nπ 0
Nmk BT 2 nπ

Nm / nπ f ( E ) g ( E )dE ( E ) / k BT dE e 1 0
j ne 1 i ne ( ) 2 2 E E 1 m
2
6 1设有单价原子组成的一 维晶格,晶格常数为 a,晶体中的单电子势 V ( x)由原子势叠加而成,即
n
V ( x) Aδ( x na )
式中 A为常量,是 δ函数势的强度, n为整数,自由
' E0 E ( k ) 1 '2 ' k ; dk 2 2 a 2a
π π ' 令: E0 Es 6;k k x ;k y k y a a π ' kz kz a
' x
' ' dE ( k ) E0 E ( k ) a 2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



ikna f x l a ψk x e ψk x
由上知
可知
e
ikna
1
kna 2s π
2s 所以 k π na
s 0,1,2...
n 1,2...
5.2
电子在周期场中得势能
1 2 2 2 mω b x na V x 2 0
于是
e
ikna
1
n
因此得
所以
kna 2s 1nπ
2s 1 k π a
s 0,1,2...
(2)
x π π ikna icos x a icos x π e cos a a a

e

ikna
i
将上述8组坐标代入能带的表示式,得
ik Rn at E k Es A J e n

a i ia 2 2 e k x k y k z e k x k y k z a a i i e 2 k k k e 2 k k k x y z x y z at Es A J a ia i e 2 k x k y k z e 2 k x k y k z a a e i 2 k k k e i 2 k k k x y z x y z
E g 2 Vn
i nx 1 a2 Vn V x e a dx a a 2 2π
其中 Vn 是周期势场V(x)付里叶级数的系数,该系数可由式
求得。第一禁带宽度为
1 E g1 2 V1 2 V x e a a 2
a 2
i
2π x a
dx
i x 1 b mω 2 2 2 2 b x e a dx 4b b 2
第五章 能带理论
5.1 一维周期场,电子的波函数 ψk x 应当满足布洛赫定理。
若晶格常数为 a ,电子的波函数为
x (1) ψ k x sin π; a x (2) ψ k x icos π; a
(3) ψ k x
l
f x la
原胞也如图中画出。
每个原胞中包含有两个原子。
a2
a1
a
o
x
基矢 a1 , a2 可由下式给出
在二维晶格下,取 a3 k ,可得到倒格基矢
3 3 ai aj 2 2 3 3 a2 ai aj 2 2 a1
1 b 1 2 2 2 m ω b x dx 4b b 2


mω 2 1 3 b x x 8b 3 b
1 mω 2 b 2 6
2
b
5.3 用近自由电子模型求解上题,确定晶体的第一及第二个禁带
宽度。 解: 在布里渊区边界上,电子的能量出现禁带,禁带宽度的表示 式为
a kx k y i k x k y ia k a kz a z 2 2 cos e cos e 2 2 E sat A 2J a k x k y i k x k y ia k a kz a z 2 2 cos e cos e 2 2
o 2N g ( k ) * 16 N ( A) 2 A
当每个原胞有两个电子时,晶体电子的总数为
2N
kF
0
2 g k 2kdk 16NkF
所以
1 kF 8
这就是费米圆的
半径,据此做出
1/ 2
0.2 A
1 ik Rl at at ψ k, r e α k Rl N Rl



一维晶体情况下,晶格常数 a ,Rl na
所以
1 ikna at ψ k, x e α x na N n
1 α x x e α at



2 2 1 b mω 2 2 π 8m ω b 2 2 b x cos x dx 3 4b b 2 2b π


第二禁带宽度为
i x 1 a2 E g2 2 V2 2 V x e a dx a a 2 4π
1 mω 2 2 b x2 e 4b b 2
o
1
2 1011 m 1
ky
费米圆如图所示。
o
kF
kx
5.7 有一平面正六角形晶格,六角形两个平行对边的间距为 a (见图),试画出此晶体的第一、第二、第三布里渊区。若 每个原胞有2个电子试画出其费米圆周。 解: 如图所示,平面六角晶格 是一个复式格子。 取六角形的中心为坐标原点,
y


当na b x na b 当n - 1a b x na b
且 a 4b, ω 是常数。 试画出此势能曲线,并求此势能的平均值。 V(x) 解:
x O a 2a 3a 如图所示,由于势能具有周期性,因此只在一个周期内求平均
即可,于是得
1 a2 1 2b V V x dx V x dx a a 2 4b 2b
并求能带宽度。 用紧束缚方法处理晶格的s态电子,当只计及最近邻格点 解: 的相互作用时,其能带的表示式为
ik Rn at E k Es A J e , Rn 是最近邻格矢 n


对体心立方晶格,取参考格点的坐标为(0,0,0), 则8个
最近邻格点的坐标为
a a a , , 2 2 2
所以
2π 3 1 b1 i j a 3 3 2π 3 1 b2 i j a 3 3
x na α x na ik α x na 1 1 ikx ikna e e dx e e e Na α Na a n
10 b 4 1010 m 5.6 一矩形晶格,原胞边长 a 2 10 m ,
(1)画出倒格子图; (2)以广延图和简约图两种形式,画出第一布里渊区和 第二布里渊区; (3)画出自由电子的费密面。(设每个原胞有两个电子。) 0 a ai 2 A i 解:(1) 因为 0 b bj 4 A j
x
此处
1 α x x e α at
μij δk ,k k
i
1 α x na e e aα a
2π n i k x na a
dx
Φ jk
若只取一项,则
x 0
1 α x na e ikna e Nα n
2π 2π 3 3 a2 a3 b1 a i a j Ω Ω 2 2 2π 2π 3 3 a3 a1 b2 a i a j Ω Ω 2 2
3 3 2 给出。 由 Ω Ω a1 a2 a3 a 其中 2
Bi 的连线的中垂线可围成第一、第二布里渊区(如上图),这
是布里渊区的广延图。如采用简约形式,将第二区移入第一区,
其结果如图所示。
ky
kx
(3) 设晶体共有N个原胞,计入自旋后,在简约布里渊区中
便有2N个状态。简约布里渊区的面积
* * 1 o 2 A a b ( A) 8
*
而状态密度
能带中的能量取最小值
Emin E0 A 8J
当 k x 1 a , k y 1 a , kz 1 a 时, 能量取最大值
Emax E0 A 8J
因而能带的宽度为
ΔE Emax Emin 16J
5.5由N格原子组成的三维晶体(简单晶格),其孤立原子中的
1 α x e , α为正的常数。 电子基态波函数为 x α at
(1)试写出该晶体的紧束缚近似波函数;
(2)证明上面写出的紧束缚近似波函数具有布洛赫波函数
的性质;
(3)对比说明孤立原子的电子和晶体中的电子的波函数及
能量的特征。 解: (1)按紧束缚近似,三维晶体电子的波函数为
x


1 ik Rl at Φ jk e j r Rl N l


,Ω
对于一维晶体情况下,晶格常数
a ,Rl na
a
M 1 i k k i x x e μijΦ j,k ki j 1 Na 1 i k k i x na at μij δk ,k k x na e dx j i a a
b
2


π i x b
dx
1 b mω 2 2 π 2 2 b x cos 4b b 2 b


mω 2 b 2 x dx 2 π
5.4 用紧束缚方法导出体心立方晶体s态电子的能带
k ya kz a kxa at E k E s A 8J cos 2 cos 2 cos 2
n
3 kna 2s nπ 2
所以
3 2s 2π k a
s 0,1,2...
(3)
ψk x a

l
f x a la f x l 1a
l


l l 1
l
得 ψk x a
倒格子基矢为
1 * a o i 2A * 1 b o j 4A
相关文档
最新文档