温度测量系统设计
嵌入式温度测量系统的设计与实现
嵌入式温度测量系统的设计与实现嵌入式温度测量系统是一种基于嵌入式技术和传感器技术的温度测量系统。
随着科技的发展,嵌入式温度测量系统越来越受到人们的关注。
下面我们就来探讨一下嵌入式温度测量系统的设计与实现。
一、设计嵌入式温度测量系统设计步骤如下:1. 确定系统需求:包括测量温度范围、精度、测量间隔、数据处理方式等参数。
2. 确定选用的传感器类型:根据测量要求,选择相应的温度传感器类型。
如NTC热敏电阻、热电偶、热电阻等。
3. 建立硬件电路:设计合适的硬件电路,将传感器与处理器连接。
准确采集温度数据。
4. 编写软件程序:编写合适的软件程序,将采集到的温度数据处理,并作为输出。
5. 实现数据通信:根据系统的需求,设计合适的通信方式,将数据及时的传输给其他设备。
二、实现嵌入式温度测量系统实现步骤如下:1. 选用适当的芯片:根据自己的需求,选用适当的芯片,比如常用的stm32、arduino、MCU等。
2. 选用合适的传感器:根据需求,选择合适的温度传感器,如DS18B20, TLM9941ISHJ, Thermocouple Type-K等传感器。
3. 搭建硬件电路:利用电路设计软件,设计出嵌入式温度测量系统的硬件电路,并制造出PCB板。
4. 编写相应软件:利用相应的开发工具,编写出嵌入式温度测量系统的软件程序。
5. 调试和测试:将硬件连接好后,通过调试和测试程序,确保嵌入式温度测量系统的功能达到预期。
三、总结嵌入式温度测量系统是一种实用性强且功能高的温度测量系统。
不同的系统设计有不同的实现方法,本文只是简单的介绍了嵌入式温度测量系统的设计与实现步骤。
对于嵌入式技术爱好者来说,希望能够通过学习本文获得一些有价值的内容。
数字式温度测量系统的设计与实现
2024/8/3
5
2.温度检测系统的数字化实现
首先,调试ADC0804的测试程序,并用数码管进行实时显示。 显示要求为0.0~100.0。然后利用标定温度传感器所得的数据 进行变换系数的求取。注意为了减小CPU的计算量,可采用 定点数运算,及为了显示温度的小数点后一位,可将所有的温 度数据都×100,则折算系数计算公式为
➢ (二)设计一个数字式温度检测系统。焊 接PWM单元电路板,搭建系统硬件,下载 程序,实现设计。
➢ (三)问题与思考,任务拓展。
2024/8/3
11
7.1 数字式温度检测系统的组成
➢ 数字式温度测量系统是利用微处理器为核心而构 成的一种温度测量和显示系统,它主要有温度测 量单元,温度变送单元,模数转换单元,数据处 理分析单元以及显示单元等组成。
➢ 为了便于对温度测量系统的准确性进行验证,该 系统还具有可控加温环节,具体实现思路是采用 PWM方式驱动加热丝,完成温度的增加,从而减 小了系统标校和测试的工作量。
6
6.4 温度检测系统的程序设计
➢ 例如:系统有四个按键,我们可以按照如下思想 进行规定:
➢ KEY1:实时温度显示按键,当按下此键系统显示 实时温度。
➢ KEY2:PWM占空比设定键,系统显示当前的占 空比,数据范围1~99。
➢ KEY3:占空比加1键,每按下一次,当前占空比 加1,加到99停止。
2024/8/3
4
6.3 温度检测系统的标校过程
1.传感器变送器的零点和满量程的标定
温度传感器的主要技术指标为:零点、满量程输出、 增益、以及线性度等。进行温度传感器的这几个指标的测 试过程,称为传感器的标定。
首先,准备一个烧杯的冰水混合物,将被标定温度变送器 和校准用热电阻Pt100都埋入到冰水混合物中,直到接Pt100的 标准表显示温度为0℃,再调节温度变送器的调零电阻,使得温 度变送器的输出为0V。然后再用加热装置加热烧杯的水并使其 沸腾,读取标准表所示的实际温度数,然后再调节温度变送器 的满量程调节电阻,使得其输出为5V。 反复进行零点和满量程标定若干次,直到合适为止,并记录此 时满量程所对应的实际输出电压和实际温度值,为下面的温度 测量的数字实现提供依据。
温度测控系统设计
温度测控系统的设计目录一、设计要求,,,,,,,,,,,,2二、设计目的,,,,,,,,,,,,2三、设计的具体实现,,,,,,,,,21、温度控制系统的总体结构,,,,22、系统硬件选择和设计,,,,,,33、系统各部分功能模块介绍,,,,44、系统流程图,,,,,,,,,,75、系统调试,,,,,,,,,,116、程序,,,,,,,,,,,,1―/ J12四、结论与展望,,,,,,,,,,18五、心得体会及建议,,,,,,,,18、°六附录,,,,,,,,,,,,,丨2」J J J J J J J J J J J J J19七、参考文献,,,,,,,,,,,24、设计要求利用ADC080酥用中断式设计一个温度测控系统,在LED数码显示器上显示温度值,并对温度进行测试和控制,当检测温度达到温度上限60 T时开启风扇(即开启电机),低于下限温度30C时关闭风扇,LED 上的显示内容为:XX C (采用十进制显示)。
二、设计目的课程设计是学生理论联系实际,提高实际综合运用能力的一个保障,也是工程师基本训练的重要环节,电子信息工程专业的学生在学完了《微机原理与接口技术》课程后,已经具备了对微机系统进行设计的初步能力。
通过对一个具体微机系统软硬件系统的设计和调试,培养学生运用该课程的理论知识和技术知识解决工程实际问题的能力,学习微机系统的设计方法:学生通过对实验室系统的实验调试,进一步培养和提高科学实验能力,因此,本课程设计为学生提供了一个良好的理论联系实际的机会和场所,有利于为学生树立微机是一个整体系统的概念,同时加强了学生编制和调试程序的能力,进一步培养学生的独立工作能力。
因此,它是教数学计划中必不可少的重要环节。
本课程是电子信息工程专业的必修课。
本设计的目的是以8086微处理器为控制器,将温度传感器输出的小信号经过放大和低通滤波后,送至A/D 转换器;微控制器实时采集、显示温度值(要求以摄氏度显示),同时系统还应可设定、控制温度值,使系统工作在设定温度。
多功能温度测量系统的设计
用 ATME L公 司 的 8 S 9 51
潞
D 1 B 0接 到 单 片机 的 P . 脚 。 S 3 2与单 片机 的连 接仅 S8 2 26管 D 10 需 要 三 条 线 , R T( )S L 7 、 O( ) 别 与 8 S 1的 即 S 5 、 C K( )l 6 分 / 95
电 堑 源珏 绋
,
2 系统 软 件 设 计 2 1 系统 程 序 组 成 . 系统 程 序 主 要 由以下 几 个 模 块 组 成 :初 始 化 模 块 、时 钟模
图 1 系统 的 电 路 组成 框 图
种 实 时 时钟 芯 片 。D 1 0 S 3 2时 钟 芯 片功 能强 、 耗 低 , 以提 供 功 可 年 、 、 时 、 、 及 带 闰年 补 偿 等 信 息 。它 内部 有 一 个 3 月 日、 分 秒 1字 节 R M 的 高 速数 据 暂 存 器 , 作 电 压在 20 55 A 工 .~ .V范 围 内选 择 。
件 实现 以及 软 件 设 计 过程 进 行 了详 细 的论 述 。
关 键词 : 片机 , 单 温度 传感 器 , 串行 通 信 ,a VE L b IW
Ab ta t sr c T empe a u ea a i r t r .s n mpo t t ran ph sca qu ty, s sgnfc n i p t n yi l ani ha a i i a t m ac o on t i ou dai l esc o r l i ,r p grwt an idu til y v o h d n sra
tch ol y. e y t e n og Th s sem h t e un t n f i e nd empert r diply.hi pa as h f ci o t o m a t a ue s a T s per s s e te y t dicu s s h s sem h r S a dwar an e d
多点温度检测系统设计论文
多点温度检测系统设计论文一、引言多点温度检测是一种常见的传感器应用技术,在工业控制、环境监测以及医疗领域都有重要的应用。
传统的温度检测系统通常只能测量一个点的温度,无法满足实际需求。
因此,设计一种多点温度检测系统,能够同时测量多个点的温度,对于提高温度检测的精度和效率具有重要的意义。
二、系统设计思想多点温度检测系统的设计思想是通过多个温度传感器进行温度测量,并将测量结果传输给中央控制单元进行数据分析和处理。
系统的设计需要考虑以下几个方面:传感器的选择和布置、通信方式的选择、数据处理算法以及系统的集成与控制。
1.传感器的选择和布置传感器的选择关系到整个系统的性能,常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。
在选择传感器时需要考虑温度范围、精度要求、响应时间等因素。
传感器的布置也需要考虑被测对象的特点,合理布置传感器可以提高温度测量的准确性。
2.通信方式的选择多点温度检测系统需要将多个传感器的测量结果传输到中央控制单元进行处理和分析。
通信方式的选择需要考虑传输距离、数据传输速率、抗干扰能力等因素。
常见的通信方式包括有线通信和无线通信,根据具体的应用场景选择合适的通信方式。
3.数据处理算法4.系统集成与控制三、系统实施方案在系统实施方案中,需要具体考虑系统的硬件设计和软件开发。
1.硬件设计硬件设计包括传感器的选择和布置、通信模块的选择和接口设计,以及中央控制单元的选取和接口设计。
根据实际需求进行硬件设计,确保系统的稳定性和可靠性。
2.软件开发软件开发包括系统的数据处理算法、通信协议的设计和编程,以及系统的控制逻辑和用户界面的设计。
根据具体的应用需求进行软件开发,确保系统的易用性和性能优化。
四、系统实验和测试在系统实验和测试中,需要对系统的性能进行评估和验证。
可以通过与已有的温度检测系统进行对比实验,评估多点温度检测系统的优劣势。
同时,还需要对系统的稳定性和可靠性进行测试,以确保系统在实际应用中的可用性。
综合课程设计--温度测量系统
基于AT89c51单片机温度测量系统目录一、研究意义 (2)二、系统设计要求、目的 (2)2.1、设计任务与要求 (2)2.2、实验目的 (2)三、系统设计方案 (3)3.1、总系统电路图 (3)3.2、各模块设计思想和电路原理图................................................................3-7四、系统工作基本流程 (7)五、软件设计程序代码.............................................................................................8-9六、实验数据对比与效果分析 (10)6.1、系统输入 (10)6.2、实验效果分析..........................................................................................10-12七、输入—输出结果分析 (12)八、参考资料 (13)一、研究意义在现代化的工农业生产和日常生活中,温度、电流、电压、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、农业生产、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉、锅炉和温室中的温度进行检测,来达到有效的测量、控制和调节作用。
而在变电所、银行、温室等场所,需要一个非常明显的显示装置可以显示出现在的具体时间、安全运行天数、现场的温度、湿度值等。
这样可以给人们的生活生产带来很大的方便。
随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。
单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。
因此,基于单片机的温度测量系统的研究具有重大意义。
基于单片机的温度测量系统毕业设计论文
基于单片机的温度测量系统毕业设计论文摘要:本文设计了一种基于单片机的温度测量系统。
该系统主要由传感器、单片机、显示屏等组成,通过传感器获取环境温度数据,由单片机进行数据处理和显示,并通过显示屏将温度数据以直观的形式展现出来。
通过与市场上现有的温度测量设备对比,本系统具有体积小、功耗低、精确度高、价格便宜等优点。
该系统在工业生产、科研实验等领域具有广泛应用前景。
关键词:单片机;温度测量;传感器;显示屏第一章引言1.1研究背景温度是工业生产和科学研究中的一个重要参数,对于保证生产质量、保障实验准确性具有至关重要的作用。
在现有的温度测量设备中,电子温度计是一种常见的测量方法。
然而,由于传统电子温度计通常体积较大、功耗较高,不便携,而且价格较高,因此有必要设计一种体积小、功耗低、价格便宜的新型温度测量系统。
1.2研究目的本文的研究目的是设计一种基于单片机的温度测量系统,以提供一种便携、实用的温度测量解决方案。
通过传感器采集环境温度数据,通过单片机进行数据处理和显示,并通过显示屏将温度数据以直观的形式展现出来。
第二章原理与方法2.1系统组成在本系统中,主要使用了DS18B20数字温度传感器、STC89C52单片机、液晶显示屏等元件。
其中DS18B20传感器采用了一线总线通信,可直接与STC89C52单片机进行通信。
单片机通过扫描传感器获取温度数据,并通过液晶显示屏进行显示。
2.2系统设计系统的设计主要分为硬件设计和软件设计两部分。
硬件设计包括传感器和单片机的连接电路设计,以及显示屏的驱动电路设计。
软件设计包括单片机程序的编写和液晶显示屏的显示程序设计。
第三章系统实现3.1传感器连接电路设计通过DS18B20传感器的一线总线接口,将其与STC89C52单片机相连。
传感器的数据线连接到单片机的P2口,同时需要上拉电阻器上拉电平。
3.2显示屏驱动电路设计显示屏使用了基于平行接口的1602型液晶显示屏,根据显示屏的规格书,设计了驱动电路。
课程设计(论文)-基于ADC0809温度测量单片机系统设计
课程设计(论文)-基于ADC0809温度测量单片机系统设计武汉纺织大学课程设计目录设计任一.务 (3)二.功能与框图 (4)三.A/D转换电路的制作 (4)四.单片机部分 (11)五.基本人机接口设计 (15)六.附基于ADC0809温度测量单片机系统设计刘建雄录 (15)总程七. 序 (16)八.参考文献 (19)一.设计任务1.设计题目:基于ADC0809温度测量单片机系统设计1.2目的意义:(1)综合运用并巩固所学单片机设计知识;(2)采用编程的方法实现基于ADC0809温度测量单片机系统设计。
1.3设计内容:?A/D转换电路的制作。
? 掌握A/D转换电路的制作。
- 2 -基于ADC0809温度测量单片机系统设计刘建雄? 掌握温度采样电路的原理和制作。
? 掌握将转换的数字信号换算成实际温度值的方法。
? 掌握相应电路的程序编写(2)基本人机接口设计? 完成显示接口设计。
? 完成键盘接口设计。
设计要求:?按题意要求,画出原理图;?单片机接线图;?按照题目要求设计采集电路;?完成单片机控制程序;?完成设计说明书(15页);?设计上交内容:设计说明书(包括1、2、3、4、5项) 1.4设计步骤?理解并确定设计要求?确定整体控制方案?编写程序说明书附录附上电路图一张及汇编控制程序一份,说明书分三章描述,即设计内容的前三点。
二.功能与框图- 3 -基于ADC0809温度测量单片机系统设计刘建雄温度传感器?A/D转换?CPU控制?显示端口如上图,模拟温度传感器采集数据后,经过AD转换,将数据送至8051。
此后8051换算整理数据,将所算得的温度送至显示电路三. A/D转换电路的制作1、A/D转换器?选用芯片目前8路8位逐次逼近型A/D转换CMOS芯片ADC0809无论在工程设计还是教学过程中都是作为首选。
如图,ADC0809由1个8路模拟开关、一个地址锁存及译码器、一个A/D转换器和一个三态输出锁存器组成。
基于光纤传感器的温度测量系统设计与实现
基于光纤传感器的温度测量系统设计与实现近几年,温度传感器技术得到了飞速的发展,其中光纤传感技术逐渐成为了各个领域的关注焦点。
光纤传感技术因其特殊的优势,被广泛应用于环境监测、工业制造、航空航天等领域。
本文将重点探讨基于光纤传感器的温度测量系统的设计和实现。
1. 光纤传感器的工作原理光纤传感器是利用光纤的特性对物理量进行检测的一种传感器。
在温度测量中,光纤传感器测量温度的原理是通过测量光在光纤中的传输速度变化来实现的。
当温度变化时,光纤的材料会发生微小的形变,从而导致光的传输速度发生变化,通过测量这种变化可以计算出温度的变化。
2. 温度传感器的分类按照测量原理,温度传感器可以分为接触式和非接触式两种。
接触式温度传感器需要直接接触被测物体,而非接触式温度传感器则可以在不接触被测物体的情况下进行测量。
其中,光纤传感器属于非接触式温度传感器。
3. 基于光纤传感器的温度测量系统设计基于光纤传感器的温度测量系统主要包括光纤传感器、检测装置、数据采集器和显示屏等部分。
在设计系统时,需要考虑到光纤传感器的安装方式、测量范围、检测精度等因素。
(1)光纤传感器的安装方式在测量温度时,光纤传感器需要与被测物体相连,用于传递物体的温度信息。
由于光纤传感器本身具有较高的灵活性和耐高温、耐酸碱等特点,可以采用多种方式进行安装。
一般来说,光纤传感器的安装方式可以分为直接粘贴法、夹持法、包覆法和附着法等。
(2)检测装置的选择检测装置是光纤传感器温度测量系统的核心部分,其性能的好坏直接影响到测量精度。
在选择检测装置时,需要考虑到测量系统的测量范围和精度等因素。
一般来说,检测装置可以选择光纤光谱仪、白光干涉仪、光时域反射法等。
(3)数据采集器的选择数据采集器主要用于采集光纤传感器所测得的温度信息。
在选择数据采集器时,需要考虑到数据采集精度、采样频率、存储容量等因素。
目前常用的数据采集器有万用表、数据采集卡、微处理器等。
(4)显示屏的设计显示屏主要用于显示所采集的温度信息。
基于K型热电偶的温度测量系统设计-毕业论文
---文档均为word文档,下载后可直接编辑使用亦可打印---英文摘要 (2)1 绪论 (3)1.1研究背景及意义 (3)1.2国内外研究现状 (3)1.3研究主要内容 (4)2 基于K型热电偶的温度测量系统总体设计 (6)2.1设计要求 (6)2.2总体方案 (7)2.3功能介绍 (6)3 基于K型热电偶的温度测量系统硬件设计 (8)3.1核心控制系统设计 (8)3.2温度采集系统设计 (9)3.2.1K型热电偶传感器 (9)3.2.2 ADC转换模块 (11)3.3LCD显示系统设计 (12)3.4电源模块电路设计 (14)4 基于K型热电偶的温度测量系统软件设计 (15)4.1主程序流程 (15)4.2温度采集流程 (16)4.3显示程序流程 (16)4.4软件仿真 (17)4.4.1仿真环境 (17)4.4.2工作流程 (18)4.4.3仿真结果 (19)5 结论 (21)谢辞 (22)参考文献 (23)基于K型热电偶的温度测量系统设计摘要:K型热电偶不接触被测物中,目的是避免热平衡状态的变化,测量的敏感,响应速度快,良好的响应特性,常用于检测1000℃以上运动中的高温物体。
该测温系统结合单片机,设计以K型热电偶为温度传感器的温度测量系统。
其测量系统的测量温度可以分为三个档位,分别是高温档(500℃以上)中温档(100-500℃)低温档(100℃以下),使用前先预估待测物体温度选择合适的档位测量以提升测量精度。
通过温度传感器DS18B20在STM32L476芯片控制下进行实时温度检测并显示,能够实现快速测量环境温度。
关键词:单片机;热电偶;温度测量系统Design of temperature measurement system based on K-type thermocoupleAbstract:Non-contact temperature measurement will not be in contact with the measured object. It avoids changing the thermal equilibrium state of the object. It is sensitive when measuring. The response speed is fast and the response characteristics are good. It is usually used to detect high temperature objects in the movement of 1000°C and above. This text combines the advantage of the one-chip computer, design based on 51 one-chip computer non-contact temperature measurement system. Based on 51 single-chip non-contact temperature measurement system, the measurement temperature is divided into three gears, which are high temperature file (above 500°C), medium temperature file (100-500°C), low temperature file (below 100°C), and the object to be measured is estimated before use. Temperature Select the appropriate gear measurement to improve measurement accuracy. By using the STM32L476 chip to control the temperature sensor DS18B20 for real-time temperature detection and display, it is possible to quickly measure the ambient temperature.Keywords:single chip microcomputer; non-contact; temperature measurement; design基于K型热电偶的温度测量系统设计1 绪论1.1研究背景及意义当今社会,随着科学技术发展迅猛,社会生活水平也快速提高,企业对生产也有了更高的要求:信息化、科学化、自动化。
单片机温度测量和控制系统的设计与实现
单片机温度测量和控制系统的设计与实现一、本文概述随着科技的快速发展,单片机在温度测量和控制领域的应用越来越广泛。
单片机作为一种集成度高、功能强大的微型计算机,具有功耗低、体积小、可靠性高等优点,因此在各种温度测量和控制系统中得到了广泛应用。
本文将详细介绍单片机温度测量和控制系统的设计与实现过程,包括系统的硬件设计、软件编程、温度测量和控制算法等方面。
本文将首先介绍单片机温度测量和控制系统的总体设计方案,包括系统的硬件组成、软件架构以及各个模块的功能。
然后,将详细介绍温度传感器的选择及其与单片机的接口设计,包括温度信号的采集、转换和处理过程。
接着,将阐述单片机的软件编程,包括温度数据的读取、处理以及控制信号的输出等。
还将介绍温度控制算法的设计和实现,包括温度控制策略的选择、算法的优化以及在实际应用中的效果评估。
通过本文的介绍,读者可以深入了解单片机温度测量和控制系统的基本原理和实现方法,掌握相关的硬件设计和软件编程技术,为实际应用提供有益的参考和指导。
本文还将探讨单片机温度测量和控制系统的发展趋势和前景,展望其在未来温度控制领域的应用前景。
二、单片机基础知识单片机,全称为单片微型计算机(Single-Chip Microcomputer),是将中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/O Port)、定时/计数器(Timer/Counter)等计算机的主要功能部件集成在一块集成电路芯片上的微型计算机。
单片机以其体积小、功能全、成本低、可靠性高等特点,广泛应用于智能仪表、工业控制、通信设备、医疗设备、家用电器等领域。
单片机按照数据总线的宽度可以分为4位、8位、16位和32位等几类,其中8位单片机由于其性价比高,应用最为广泛。
常见的8位单片机有Intel公司的8051系列、Atmel公司的AVR系列、STC公司的STC89C系列等。
在单片机温度测量和控制系统中,我们通常会使用带有ADC(模数转换器)功能的单片机,以便将模拟信号(如温度传感器输出的电压或电流)转换为数字信号,从而进行精确的温度测量和控制。
基于PT100传感器的温度测量系统的设计
R=Ro(1+αT)
其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度。因此白金作成的电阻式温度检测器,又称为PT100。
PT100是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。
具体的需求对象可以从以下几个方面进行表述:
1、在人类社会进入知识经济时代、信息技术高速发展的背景下,热电阻及其测量控制技术得到日益广泛应用,给热电阻行业的快速发展提供了良好契机。热电阻是信息产业的源头和组成部分,是信息技术的重要基础。
2、热电阻广泛应用于装备、改造传统产业的工艺流程的测量和控制,是现代化大型重点成套装备的重要组成部分,是信息化带动工业化的重要纽带。
图3.2 信号采集调理电路
根据运放的“虚短”、“虚断”作用,电压信号放大转换为可以输入A/D转换器的合适电压值。
2.3 A/D模数转换模块
2.3.1 ICL7135功能介绍
ICL7135是一种四位半的双积分A/D转换器,可以转换出±20000个数字量选通控BCD码输出,与单片机接口十分方便。它具有精度高(相当于14位A/D转换),价格低的优点。其转换速度与时钟频率相关,每个转换周期均有:自校准(调零),正向积分(被测模拟电压积分),反向积分(基准电压积分)和过零检测四个阶段组成,其中自校准时间为10001个脉冲,正向积分时间为10001个脉冲,反向积分直至电压到零为止(最大不超过20001个脉冲)。故设计者可以采用从正向积分开始计数脉冲个数,到反向积分为零时停止计数。将计数的脉冲个数减10000,即得到对应的模拟量。具体电路如图2.3所示。
多点温度检测系统设计
多点温度检测系统设计一、引言随着科技的不断发展,温度检测技术已经广泛应用于各个领域。
在很多实际应用中,需要对不同位置的温度进行实时监测,以保证系统的正常运行或者提供必要的温控信息。
本文将介绍一种多点温度检测系统的设计,该系统可以同时监测多个温度传感器的温度,并将数据传输到中央控制器进行处理和分析。
二、系统设计1.系统框架该多点温度检测系统由多个温度传感器、信号采集模块、数据传输模块和中央控制器组成。
各个组件之间通过有线或者无线方式连接,将温度数据传输到中央控制器。
2.温度传感器温度传感器是整个系统的核心组件,用于实时监测不同位置的温度。
传感器可以选择常见的热电偶、热敏电阻等类型,根据具体需求选择合适的传感器。
3.信号采集模块信号采集模块负责将温度传感器采集到的模拟信号转换为数字信号,以便于处理和传输。
采集模块应具备多通道输入功能,可以同时采集多个传感器的数据。
4.数据传输模块数据传输模块将信号采集模块采集到的数据传输到中央控制器。
传输方式可以选择有线的方式,如RS485、CAN、以太网等,也可以选择无线方式,如蓝牙、Wi-Fi、LoRa等。
5.中央控制器中央控制器负责接收和处理传输过来的温度数据,并进行分析和判断。
可以通过界面显示温度数据,设置温度报警阈值,并在超过阈值时进行报警。
控制器还可以将温度数据存储到数据库中,以便后续分析和查询。
中央控制器还可以与其他系统进行联动,实现温度控制、远程监控等功能。
三、系统实现1.温度传感器的选择和布置根据具体应用场景和需求选择合适的温度传感器,并合理布置在需要监测的位置。
传感器之间距离适当远离干扰源,以确保准确测量温度。
2.信号采集模块的设计设计适合的信号采集模块,能够满足多个传感器数据的采集和处理需求。
采集模块应具备高精度、低功耗和高稳定性的特点。
3.数据传输模块的选择和配置根据具体需求选择合适的数据传输模块,并进行配置。
有线传输模块的配置需要设置通信参数和地址等信息,无线传输模块需要配置网络参数和安全认证等。
嵌入式温度测量系统的设计与实现
本系统 由测量模块 、 显示模块两大模块组成 , 系统的结构框 图 22图形 点 阵 T 2 6 液 晶模 块 的简介 . G1 8 4 如 图1 所示 。 主要实现功能如下 : ) ( 温度值 采集 : 现对温度参数 的 1 实 点阵式液晶模 块L D, C 可以显示 字符 、 数字 , 还可 以显示各种图 实 时采样 , 测量空间温度 。2温度值显示 : () 将所 测温度数值 在 图形 形、 曲线及汉字 , 其原理是控 制L D C 点阵中的点 的亮暗 , 亮和暗的点 点 阵液 晶显示模 块TG1 84 显示 。 2 6上 阵按一定规律可 以组成汉字 , 组成一幅图形和 曲线等。 对用户来说 , 2 、元器件 特性简 介 LD C 屏幕上的点阵是按字节方式8 个点一组来控制的。 例如 : 一个1 6 点阵的汉字在L D C 上显示是采用1 8 6 个点来表达的 , X 即一个 1点阵 6 2 . 总线数 字 温度 传 感 器 D IB 0 介 1单 SB 2 简 的汉字需要3 个字节的编码数据 , 2 这些数据包含 了1 ×8 6 A阵中亮和 2. . 1 1DS1 B20性 能 特 点 8 这些包含亮和暗控 制信 息的1 A阵 , 6X8 就是字模 。 D 1B 0 性 能 特 点 :1采用 单总 线专 用 技 术 , 可 通 过 串 行 暗的控 制信息 。 S 8 2的 () 既 口线 , 也可通过其它I0口线与微机接 口, / 无须经过其它变换 电路 , 直接输 出被 测温度值 (位二进制数 , 9 含符号位 )() , 测温范 围为一 5 2 5 ℃-+ 2 ℃ , 量 分 辨 率 为 0 0 2 ℃ , ) 6 位 经过 激 光 修 正 的 15 测 .6 5 ( 内含 4 3 只读存 储器ROM, ) ( 适配各种 单片机或系统机 , ) 4 ( 用户可分别 设 5 定 各 路 温 度 的上 、 限 ,6内 含 寄 生 电源 。 下 ()
(完整版)基于单片机的多点温度检测系统毕业设计论文
集成电路课程设计课题:基于AT89C51单片机的多点温度测量系统设计姓名:韩颖班级:测控12-1学号:指导老师:汪玉坤日期:目录一、绪论二、总体方案设计三、硬件系统设计1主控制器2 显示模块3温度采集模块(1)DS18B20的内部结构(2)高速暂存存储器(3)DS18B20的测温功能及原理(4)DS18B20温度传感器与单片机的连接(5)单片机最小系统总体电路图四、系统软件设计五、系统仿真六、设计总结七、参考文献八、附源程序代码一、绪论在现代工业控制中和智能化仪表中,对于温度的控制,恒温等有较高的要求,如对食品的管理,冰箱的恒温控制,而且现在越来越多的地方用到多点温度测量,比如冰箱的保鲜层和冷冻层是不同的温度这就需要多点的测量和显示可以让用户直观的看到温度值,并根据需要调节冰箱的温。
它还在其他领域有着广泛的应用,如:消防电气的非破坏性温度检测,电力、电讯设备之过热故障预知检测,空调系统的温度检测。
温度检测系统应用十分广阔。
本设计采用DALLAS最新单线数字温度传感器DS18B20 简介新的"一线器件"体积更小、适用电压更宽、更经济DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持"一线总线",测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°二、设计过程及工艺要求1、基本功能(1)检测两点温度(2)两秒间隔循环显示温度2、主要技术参数测温范围:-30℃到+99℃测量精度:0.0625℃显示精度:0.1℃显示方法:LCD循环显示3、系统设计系统使用AT89C51单片机对两个DS18B20进行数据采集,并通过1602LCD液晶显示器显示所采集的温度。
DS18B20以单总线协议工作,51单片机首先分别发送复位脉冲,使信号上所有的DS18B20芯片都被复位,程序先跳过ROM,启动DS18B20进行温度变换,再读取存储器的第一位和第二位读取温度,通过IO口传到1602LCD显示。
毕业设计论文 基于单片机的温度测量系统
毕业论文基于单片机的温度测量系统所在系部:电气信息工程系摘要随着社会经济的不断发展,现代农业生产离不开环境控制,本文在对国内外温室智能控制进行深入分析的基础上,针对温室智能化控制存在的诸多因子,将智能传感器监测和单片机控制相结合,提出了基于单片机的温度检测系统设计方案。
本系统采用层次化、模块化设计,整个系统由数据采集系统、单片机控制系统、计算机监控系统组成。
系统以单片机为核心,以多个温度、湿度传感器作为测量元件,通过单片机与智能传感器相连,采集存储智能传感器的测量数据。
在单片机系统中,还要实现程序的扩展存储、数据的实时显示、超限语音报警和数据辅助存储功能。
单片机作为监控计算机与智能传感器连接的中心。
本设计主要做了如下几方面的工作:一是确定系统的总体设计方案,包括其功能设计;设计原则;组成与工作原理;二是进行智能传感器的硬件电路设计;包括硬件电路构成及测量原理;温度传感器的选择;单片机的选择;输入输出通道设计;三是进行了调试和仿真,包括硬件仿真和软件仿真。
关键词:AT89C2051 单片机DS18B20 温度测量AbstractWith the socio-economic development, modern agricultural production can not be separated from environmental control, this article in the greenhouse at home and abroad to conduct in-depth analysis of intelligent control based on the existence of intelligent control for greenhouse many factors, the intelligent sensor monitoring and single-chip control by combining single-chip based on the temperature detection system design.The system uses a hierarchical, modular design, the entire system by the data acquisition system, single-chip control system, computer monitoring system. System to single-chip microcomputer as the core to a number of temperature and humidity sensor as a measurement component, through the single-chip smart sensor and connected to the storage collection of intelligent sensor measurement data. In single-chip system, but also the realization of the extended stored procedures, data, real-time display, alarm and data overrun voice auxiliary storage. Single-chip computer as a monitor connected with the center of intelligent sensors.The design made the following main aspects: First, the overall design of the system, including its functional design; design principles; the composition and working principle; Second, an intelligent sensor hardware circuit design; including hardware and measurement circuit principle; the choice of temperature sensor; SCM choice; input and output channel design; Third, we carried out the testing and simulation, including hardware simulation and software simulation.Keywords:AT89C2051 Single-Chip Microcomputer DS18B20 Temperature Measurement;目录摘要 (ii)Abstract (iii)1 绪论 (1)1.1 单片机温度测量系统的选题背景 (1)1.2 单片机温度测量系统选题的现实意义 (2)1.3 国内外研究现状及其发展 (3)1.3.1 国外温室环境控制 (3)1.3.2 国内温室控制技术 (3)1.3.3 温室环境控制技术的三个发展阶段 (3)1.3.4 温室控制存在的问题 (4)1.4 单片机温度测量系统主要研究的内容 (5)2 单片机温度测量系统总体设计 (6)2.1 单片机温度测量系统的功能设计 (6)2.2 单片机温度测量系统的设计的原则 (6)2.3 单片机温度测量系统的组成与工作原理 (7)3 系统硬件电路的设计 (9)3.1 系统硬件电路构成及测量原理 (9)3.1.1 系统硬件电路构成 (9)3.1.2 系统工作原理 (10)3.1.3 系统主要技术指标 (13)3.2 温度传感器的选择 (13)3.2.1 DS18B20的介绍 (14)3.2.2 DS18B20的性能特点 (14)3.2.3 DS18B20的控制方法 (15)3.2.4 DS18B20的测温原理 (16)3.3 单片机的选择 (16)3.3.1 单片机的概述 (16)3.3.2 AT89C2051芯片的主要性能 (17)3.3.3 AT89C2051芯片的内部结构框图 (17)3.4 输入通道的设计 (18)3.4.1 Pt100温度传感器 (18)3.4.2 A/D转换 (20)3.5 输出通道设计 (22)3.5.1 温控箱的功率调节方式 (22)3.5.2可控硅输出电路 (23)4 系统调试 (25)4.1 TKS仿真器与集成开发环境KEIL (25)4.1.1 TKS仿真器 (25)4.1.2 集成开发环境KEIL (26)4.1.3 利用KEIL开发系统软件流程 (28)4.2 系统硬件调试 (28)4.3 系统软件调试 (29)结论 (31)参考文献 (32)致谢 ............................................................................................................ 错误!未定义书签。
粮仓多点温度监测系统设计
粮仓多点温度监测系统设计一、系统概述:本系统通过安装多个传感器在粮仓内不同位置进行温度检测,将检测到的温度数据采集、传输给中心控制器,经过分析和处理后,将数据显示在人机界面上,并通过声光报警装置提示用户。
本系统具有实时性、准确性、可操作性等特点,能够在第一时间发现粮仓内的温度异常情况并进行及时处理,确保粮食的质量和安全。
二、系统组成:本系统主要由温度传感器、数据采集器、通信模块、中心控制器、电源、人机交互界面、报警装置等组成。
1、温度传感器:本系统所采用的温度传感器为PT1000型号的热敏电阻传感器,可测量室内温度范围为-50~150°C。
传感器精度高、测量范围广,且使用寿命长,是目前较为常用的温度传感器之一。
2、数据采集器:数据采集器主要用来采集传感器所检测到的温度数据,将数据通过模拟信号转换为数字信号,再将数字信号通过通信模块传输至中心控制器。
3、通信模块:本系统所采用的通信模块为GSM/GPRS通讯模块,可通过短信或GPRS网络将数据传输至中心控制器,并可接收中心控制器发送的控制指令,实现远程控制。
4、中心控制器:中心控制器是本系统的核心部件,主要用于数据处理、控制指令下达和人机交互。
数据处理方面,中心控制器能够对传感器采集到的温度数据进行实时分析和处理,并根据设定的阈值进行判断和判定,当温度超过或低于设定的值时,自动触发报警装置。
在控制指令下达方面,中心控制器可以通过短信或GPRS网络向本系统发送远程控制指令,以实现远程控制功能。
5、人机交互界面:人机交互界面是本系统与用户直接交互的界面,主要用来显示温度监测数据、操作控制系统,并展示报警信息。
界面采用易于操作的界面设计,将温度数据以清晰直观的形式呈现给用户,方便用户对仓内温度变化情况进行监控和控制。
6、报警装置:报警装置主要用来提示用户粮仓内温度异常情况,并引起用户的重视和注意。
在温度超过或低于设定的值时,报警装置将立即发出声光报警信号,提醒用户进行处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩评定表课程设计任务书目录1 绪论 (4)1.1 选题的背景与意义 (4)1.2 研究的基本内容与拟解决的主要问题 (4)1.3 51系列单片机的结构和功能 (5)2 系统整体设计 (5)2.1 总体设计方案 (5)2.2 设计原则 (6)第3章硬件部分 (6)3.1 硬件结构框图 (6)3.2 硬件开发工具 (7)3.2.1 Protues简介 (7)3.3 硬件开发工具 (8)3.3.1 Altium Designer简介 (8)3.4 软件开发工具 (8)3.4.1 KeilC51概述 (8)4 硬件电路设计 (9)4.1 CPU选型 (9)4.1.1 ST89C52单片机简介 (9)4.1.2 ST89C52单片机特性 (9)4.1.3 ST89C52单片机介绍 (9)4.2 硬件电路设计 (10)4.2.1 C52单片机控制器模块 (10)4.2.2 DS18B20测温模块 (11)4.2.3 数码管显示模块 (12)4.2.4 蜂鸣器模块 (13)4.2.5 4*4矩阵键盘 (14)4.2.6 其他模块 (14)4.3 总体电路的设计 (15)5 软件设计 (16)5.1 单片机C语言程序设计技术 (16)5.2 各模块程序的设计 (16)5.2.1 18B20定时显示测温模块 (16)5.2.2 数码管显示模块程序设计 (18)5.2.2 流水灯模块 (19)5.2.3 蜂鸣器模块 (20)5.2.5 USB及下载器模块 (20)6 系统的实现 (21)6.1 系统的调试 (22)6.2 调试结果 (22)6.3 系统运行结果 (22)总结 (24)参考文献 (24)1 绪论1.1 选题的背景与意义单片机开发学习板自发展以来已走过了近20多个年头的发展改进之路。
单片机开发学习板的改良和发展是基于超大规模集成电路技术及微处理器(MPU)技术之上的,其被应用在各式各样的领域,跟微处理器相比较它更具有个性化发展的潜力。
小到遥控电子玩具,大到航空航天技术等各行各业的电子应用中都有单片机开发学习板的身影。
针对51单片机开发板在电子行业自动化领域的重要应用,为满足广大学生、爱好者、产品研究者能较快地学会掌握单片机这门技术,于是产生51单片机开发板。
目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
1.2 研究的基本内容与拟解决的主要问题本次课程设计的课题是:便携式单片机学习板硬件系统结构设计。
要求:在Keil和Proteus环境下进行以AT89C52为核心器件的单片机的研究与开发,并完成实际电路的开发;可以在该板上完成LED灯定时亮灭、数码管的动态扫描显示、矩阵键盘的扫描检测、与PC机的串口通信、EEROM芯片的读写、DS1302芯片读写、字符型LCD读写接口、流水灯、AD芯片接口。
等实验。
旨在通过本次设计,实现便携式单片机学习板硬件系统结构设计课题由系统和模块两大部分组成:以AT89C52单片机为中心控制系统和温度传感器DS18B20模块、电源电路、液晶显示器、键盘、LED显示指示灯等模块。
对于单片机学习板首先要研究它的基本原理和关键技术,只有弄清楚原理才好设计制作。
故对单片机学习板有以下要求:(1)合理布局,提高电路工作的可靠性。
(2)考虑系统内外部因素来保证单片机系统可靠安全运行。
(3)研究设计单片机各个外围功能模块的驱动软件。
(4)对开发板的功能进行仿真验证。
(5)研究设计单片的最小系统及外围电路,在ALTIUM DESIGNER。
中进行电路的设计。
针对以上问题采用了以下解决方法:(1)对于那些易产生噪声的器件,应尽量使其远离单片机的逻辑控制电路和存储电路(ROM、RAM),如果可能的话,可以将这些电路另外制成电路板,这样有利于抗干扰。
另外应把相互有关的器件尽量放得靠近些,能获得较好的抗噪声效果。
(2)尽量在关键元件如ROM、RAM等芯片旁安装去耦电容。
尽可能选择典型电路,布线时尽量减少回路的面积。
对于单片机闲置的I/O不要悬空,要接地和电源。
(3)学会使用Keil进行编辑、编译及仿真调试,实现对单片机进行C语言开发。
(4)以Proteus为平台,对单片机外围各个功能模块进行软件仿真验证功能。
1.3 51系列单片机的结构和功能51系列单片机是英特尔公司生产的具有一定结构和功能的单片机产品。
它们的基本组成,基本性能和指令系统都是一样的。
一般情况习惯用8051来代表51系列单片机。
一个单片机的系统是由以下几部分组成:(1)一个8位CPU微处理器。
(2)静态随机存取存储器,能够储存程序运行过程中产生的数据。
(3)程序存储器ROM / EPROM中(4KB/8KB),用来保存程序和一些初始数据。
但是在一些单片机中不使用ROM / EPROM中,如8031,8032,80c系列等。
(4)4个8排的I / O 并行接口P0 ~P3,每个口可以用作输入,也可以用作输出。
(5)2个定时器/计数器,每个定时器/计数器可设置计数用来计数外部事件,可以设置成常用的定时方式,并可以根据计算或结果控制单片机的运行。
(6)五个中断源控制系统。
(7)1个双向串行I / O口的UART(通用异步接收器/发送器UART),用于实现单片机的串行通信。
(8)振荡器和时钟产生电路,需要外部电源的石英晶体微调电路,允许接在12v的振荡频率上。
2 系统整体设计2.1 总体设计方案本开发板共分为十一个模块主要是:串口通信模块C52单片机主控制器模块、DS18B20模块、4*4矩阵键盘、数码管显示模块、流水灯模块、蜂鸣器模块、USB及下载器模块;其次是:键盘模块、DS1302时钟模块、AT24C02模块。
其中以C52单片机作为核心控制器;4*4矩阵键盘模块用来显示数码管数字;数码管模块用来显示简单的数字、字母;LCD1602模块用来显示字母、数字、符号;流水灯模块用来显示单片机I/O口电平的变化;蜂鸣器模块用来发出声音;下载器模块用来实现C52单片机的ISP在线编程;USB模块用来提供电源键盘模块用来向单片机输入特定编码的信息;DS1302时钟模块用来实现实时时钟;测温模块用来测量环境温度;AT24C02模块通过IIC总线接口进行数据的存取。
2.2 设计原则开发板系统的扩展和配置应遵循以下设计原则:(1)尽可能选择典型电路,并符合单片机常规用法。
为硬件系统的标准化、模块化打下良好的基础。
(2)系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行二次开发。
(3)硬件结构应结合应用软件方案一并考虑。
硬件结构布局和软件设计方案两者之间会互相产生影响,所要顾虑的原则性问题是:软件能够实现的功能可由它自身来完成,从而来简化硬件的结构布局。
但有需要注意的事项:硬件功能通过软件来实现的,其一般的回应时间比硬件自身实现更长,与此同时会占用CPU 运行的时间。
(4)当单片机开发板上有许多外围电路时,必须要考虑其驱动能力。
如果驱动能力不足,系统工作会具有不可靠性,可通过多放置线驱动器来增强单片机的驱动能力或减少芯片所需功耗来降低总线负载量。
(5)尽可能地向“单片”方向来设计硬件系统。
系统中的器件越多,各器件之间相互干扰也会越强,功耗也会相应地增大,也不可避免地降低了系统的稳定性第3章硬件部分3.1 硬件结构框图总体硬件结构主要包括:串口通信模块C52单片机主控制器模块、测温模块、4*4矩阵键盘、数码显示模块、流水灯模块、蜂鸣器模块、USB及下载器模块键盘模块、DS1302时钟模块、测温模块、AT24C02模块。
硬件结构框图如1所示:图1 总体硬件结构框图3.2 硬件开发工具3.2.1 Protues简介Proteus软件是来自英国Labcenter electronics公司的EDA工具软件,Proteus 软件有十多年的历史,在全球广泛使用,除了其具有和其它EDA工具一样的原理布图、PCB自动或人工布线及电路仿真的功能外,其革命性的功能是,他的电路仿真是互动的,针对微处理器的应用,还可以直接在基于原理图的虚拟原型上编程,并实现软件源码级的实时调试,如有显示及输出,还能看到运行后输入输出的效果,配合系统配置的虚拟仪器如示波器、逻辑分析仪等,您不需要别的,Proteus为您建立了完备的电子设计开发环境!尤其重要的是Proteus Lite可以完全免费,也可以花微不足道的费用注册达到更好的效果;功能最强的Proteus专业版也非常便宜,人人用得起,对高校还有更多优惠。
3.3 硬件开发工具3.3.1 Altium Designer简介电子产品开发不再是独立的流程。
Altium Designer 统一了整个设计流程,可在单一、集成的设计流环境中管理开发的所有方面。
Altium Designer 提供了唯一一款统一的应用方案,其综合电子产品一体化开发所需的所有必须技术和功能。
Altium Designer 在单一设计环境中集成板级和FPGA系统设计、基于FPGA和分立处理器的嵌入式软件开发以及PCB版图设计、编辑和制造。
并集成了现代设计数据管理功能,使得Altium Designer成为电子产品开发的完整解决方案,一个既满足当前,也满足未来开发需求的解决方案[8]。
3.4 软件开发工具3.4.1 KeilC51概述Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。
用过汇编语言后再使用C来开发,体会更加深刻。
Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。
另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。
在开发大型软件时更能体现高级语言的优势。
4 硬件电路设计4.1 CPU选型4.1.1 ST89C52单片机简介本课题是基于C51单片机。
所以选用Philips公司推出的STC89C52完成。
STC89C52是高性能、低功耗的8 位微处理器。
有先进的RISC结构,由于其先进的指令集以及单时钟周期指令执行时间,可以缓减系统在功耗和处理速度之间的矛盾。
4.1.2 ST89C52单片机特性字节程序存储空间、12字节数据存储空间、带2K字节EEPROM存储空间、直接使用串口下载、T89C52单片机:8K字节程序存储空间、56字节数据存储空间、带2KB的EEPROM存储空间4.1.3 ST89C52单片机介绍ST89C52是一种带8K字节闪烁可编程可檫除只读存储器(FPEROM-Flash Programable and Erasable Read Only Memory )的低电压,高性能COMOS8的微处理器,俗称单片机。