智能小车控制系统电路设计与开发
《2024年自循迹智能小车控制系统的设计与实现》范文
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能与自动控制技术的快速发展,智能小车已经广泛应用于各种领域,如物流配送、环境监测、智能家居等。
本文将详细介绍一种自循迹智能小车控制系统的设计与实现过程,该系统能够根据预设路径实现自主循迹、避障及精确控制。
二、系统设计(一)系统概述自循迹智能小车控制系统主要由控制系统硬件、传感器模块、电机驱动模块等组成。
其中,控制系统硬件采用高性能单片机或微处理器作为主控芯片,实现对小车的控制。
传感器模块包括超声波测距传感器、红外线测距传感器等,用于感知周围环境并实时传输数据给主控芯片。
电机驱动模块负责驱动小车行驶。
(二)硬件设计1. 主控芯片:采用高性能单片机或微处理器,具备高精度计算能力、实时响应和良好的可扩展性。
2. 传感器模块:包括超声波测距传感器和红外线测距传感器。
超声波测距传感器用于测量小车与障碍物之间的距离,红外线测距传感器用于检测小车行驶路径上的标志线。
3. 电机驱动模块:采用直流电机和电机驱动器,实现对小车的精确控制。
4. 电源模块:为整个系统提供稳定的电源供应。
(三)软件设计1. 控制系统软件采用模块化设计,包括主控程序、传感器数据处理程序、电机控制程序等。
2. 主控程序负责整个系统的协调与控制,根据传感器数据实时调整小车的行驶状态。
3. 传感器数据处理程序负责对传感器数据进行处理和分析,包括距离测量、方向判断等。
4. 电机控制程序根据主控程序的指令,控制电机的运转,实现小车的精确控制。
(四)系统实现根据设计需求,通过电路设计与焊接、传感器模块的安装与调试、电机驱动模块的安装与调试等步骤,完成自循迹智能小车控制系统的硬件实现。
在软件方面,编写各模块的程序代码,并进行调试与优化,确保系统能够正常运行并实现预期功能。
三、系统功能实现及测试(一)自循迹功能实现自循迹功能通过红外线测距传感器实现。
当小车行驶时,红外线测距传感器不断检测地面上的标志线,并根据检测结果调整小车的行驶方向,使小车始终沿着预设路径行驶。
基于MSP430单片机的智能小车控制系统设计
设计与分析◆Sheji yu Fenxi
电三极管,且将发射管和接收管集为一体,使探测器结构紧凑体,
易于单片机接口;RPR220 内置可见光过滤器可以减少散射光的影
响,不但检测可靠,而且无需另作遮光处理。
2.3 驱动模块
驱动模块主要功能:控制舵机输出转角,驱动小车加减速行
驶。此模块包括舵机驱动模块和电机驱动模块。
日以及小车行驶的速度和ຫໍສະໝຸດ 声波测距的结果。[9] 谭浩强.C 语言程序设计[M].第 2 版.清华大学出版社,2000
3 软件设计
智能小车系统软件设计核心部分包括:自主寻迹控制、超声波 测距和电机转速测量。系统软件设计采用 C 语言,程序是在 ADS1.2 集成开发环境下开发的。
收稿日期:2011-05-28 作者简介:魏声云(1989—),男,江西九江人,研究方向:电子信息 工程。
先根据被测物体的距离范围设定反射脉冲时间间隔,调整振荡器 触发时间。定时器提供触发电路和门电路的控制信号。图 5 为超声 波测距集成模块电路组成框图。
[参考文献] [1] 胡大可.MSP430 系列超低功耗 16 位单片机原理与应用[M].航空
航天大学出版社,2000
功放
40 kHz
定时器
被
[2] 唐磊,邱羽.基于 MSP430 步进电机控制器的设计[J].煤炭技术, 2011(30):50~51
GND
2
LM2596
+
D2
L2 C4
B2
R6
1
2
自主寻迹控制:通过 RPR220 读取道路信息,分析小车所处的 位置和方向,通过增量式 PID 控制算法调节小车的速度及转角,同 时通过电机的差速控制小车行进的转弯。使小车能够准确地寻迹 行驶。程序流程图如图 6 所示。
基于51单片机智能小车(电路+程序+论文)
基于单片机的多功能智能小车设计论文(摘要(关键词:智能车单片机金属感应器霍尔元件 1602LCD)智能作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。
智能电动车就是其中的一个体现。
本次设计的简易智能电动车,采用AT89S52单片机作为小车的检测和控制核心;采用金属感应器TL-Q5MC来检测路上感应到的铁片,从而把反馈到的信号送单片机,使单片机按照预定的工作模式控制小车在各区域按预定的速度行驶,并且单片机选择的工作模式不同也可控制小车顺着S形铁片行驶;采用霍尔元件A44E检测小车行驶速度;采用1602LCD实时显示小车行驶的时间,小车停止行驶后,轮流显示小车行驶时间、行驶距离、平均速度以及各速度区行驶的时间。
本设计结构简单,较容易实现,但具有高度的智能化、人性化,一定程度体现了智能。
目录1 设计任务 (3)1.1 要求 (3)2 方案比较与选择 (4)2.1路面检测模块 (4)2.2 LCD显示模块 (5)2.3测速模块 (5)2.4控速模块 (6)2.5模式选择模块 (7)3 程序框图 (7)4 系统的具体设计与实现 (9)4.1路面检测模块 (9)4.2 LCD显示模块 (9)4.3测速模块 (9)4.4控速模块 (9)4.5复位电路模块 (9)4.6模式选择模块 (9)5 最小系统图 (10)6 最终PCB板图 (12)7 系统程序 (13)8 致谢 (46)9 参考文献 (47)10 附录 (48)1. 设计任务:设计并制作了一个智能电动车,其行驶路线满足所需的要求。
1.1 要求:1.1.1 基本要求:(1)分区控制:如(图1)所示:(图1)车辆从起跑线出发(出发前,车体不得超出起跑线)。
在第一个路程C~D区(3~6米)以低速行驶,通过时间不低于10s;第二个路程D~E区(2米)以高速行驶,通过时间不得多于4秒;第三个路程E~F区(3~6米)以低速行驶,通过时间不低于10s。
《2024年基于STM32智能小车的设计与实现》范文
《基于STM32智能小车的设计与实现》篇一一、引言随着科技的不断发展,智能小车在物流、安防、救援等领域的应用越来越广泛。
本文将详细介绍基于STM32的智能小车的设计与实现过程,包括硬件设计、软件设计、系统调试及性能测试等方面。
二、硬件设计1. 微控制器选择本设计选用STM32系列微控制器,其具有高性能、低功耗、丰富的外设接口等特点,适用于智能小车的控制需求。
2. 电机驱动模块电机驱动模块采用H桥电路,可以控制电机的正反转和调速。
本设计选用DRV8825驱动芯片,其具有低功耗、高效率等特点,满足智能小车的驱动需求。
3. 传感器模块传感器模块包括超声波测距传感器、红外避障传感器等。
这些传感器可以实时获取小车周围环境信息,为智能小车的路径规划和避障功能提供支持。
4. 电源模块电源模块为整个系统提供稳定的电源供应。
本设计采用锂电池作为电源,通过DC-DC转换器将电压稳定在合适的范围内,以保证系统的正常运行。
三、软件设计1. 操作系统与开发环境本设计采用基于HAL库的嵌入式操作系统,通过STM32CubeMX工具进行配置并生成初始化代码。
开发环境为Keil uVision,方便程序的编写和调试。
2. 系统程序设计系统程序设计包括初始化程序、电机控制程序、传感器数据处理程序等。
初始化程序主要用于配置系统时钟、GPIO口等;电机控制程序通过PWM信号控制电机的转速和方向;传感器数据处理程序用于读取传感器数据并进行处理,为路径规划和避障功能提供支持。
四、系统调试与性能测试1. 系统调试系统调试主要包括硬件电路的调试和软件程序的调试。
硬件电路的调试主要检查电路连接是否正确,电源电压是否稳定等;软件程序的调试主要检查程序是否能够正常运行,各功能模块是否能够协同工作。
2. 性能测试性能测试主要包括速度测试、路径规划测试、避障功能测试等。
速度测试用于检验电机的转速和转向控制是否准确;路径规划测试用于检验传感器数据处理的准确性和路径规划算法的可行性;避障功能测试用于检验智能小车在遇到障碍物时能否及时避障并继续前进。
智能小车控制系统设计实现
关键词:智能小车;控制系统;设计和实现1智能小车控制系统概述智能小车控制系统是一个综合、复杂的系统,其既有多种技术,也含有嵌入式的软件设备和硬件设备、图像识别、自动控制和电力传动、机械结构等技术知识,智能小车的控制系统主要是围绕嵌入式控制系统进行的,将其作为操控的中心,并借助计算机系统,最终完成自动造作和控制的过程[1]。
智能小车的控制系统流程图见图1所示。
2智能小车的设计和实现2.1智能小车的硬件设计硬件设计是保证智能小车平稳运行的必要条件,它关系着控制系统的精度和稳定性,因此在设计时需要用在模块化设计思想,该研究是通过采取硬件系统K60芯片作为核心控制器,并通过图像采集模块和电机、舵机驱动模块、测速模块、电源模块等组成硬件设计系统图,见图2。
首先,电源电路设计,该设计时智能小车的动力来源,为小车运行提供不断的电力,一般采取7.3V、容量为2000mAh的可充电型的镍铬电池作为电源,但是其不能直接为控制器传输电力,需要在转变电路后才可以进行传输。
转变电路可以保证控制器直接对电池内的电压进行调节,保证不同模块可以正常工作和运行,智能小车主要是依靠控制电力和电机驱动进行转变的。
其次是K60最小系统板,在设计时需要将K60的管脚部分做成最小系统的单独电路板,这样可以简化电路板的设计,促使调试更加顺利,K60系统板主要由K60芯片、复位电路、时钟电路、JTAG下载电路、电源滤波电路组成。
再其次是电机驱动电路,该电路是在集成芯片的驱动下进行的,可以为控制器更其他模块提供较大的电流最终集成电机驱动芯片,但是要特别注意这部分因为在电机驱动过程中有较大的分功率,会导致小车在进行调试时因为过大的电流导致小车电路发生堵塞现象,而使小车电路被烧毁,因此需要设计者避免这种现象,可以将驱动电路做成驱动板[2]。
最后是舵机接口电路。
在智能小车设计中,舵机主要保证小车可以顺利转向,因此舵机的运行电压、转向动作、转向速度都是需要考虑的因素,一般选择舵机时主要选择Futaba3010,选择供电电压为6V。
智能小车系统设计与制作
智能小车系统设计与制作摘要:智能小车采用STM32F103RBT6为主芯片,电机驱动采用高压、大电流双全式驱动器L298芯片,八路循迹反射式光电TCRT5000进行循迹,通过LM358比较电路比较,再进行波形整形,通过触摸屏上的按钮来任意的控制智能小车的方向,用DSl8B20温度传感器采集小车所处环境的温度,小车与上位机之间的通讯采用NRF24L01通讯,电源部分则用双电源供电,运行更可靠。
小车可按照预先设定好的轨道进行循迹,遇到障碍物自行躲避,达到无线遥控、自动循迹的功能。
关键词:STM32F103RBT6;循迹;NRF24L01无线通信;DS18B20温度传感器; 触摸屏智能作为现代社会的新产物,是以后的发展方向,它可以按照预先设定的模式在一定的运行环境中自行的运作,无需人为的操作,便可以完成预期达到的或更高的要求。
随着人们物质生活水平的提高,汽车也越来越普及,而交通事故也相应的增加,在人身财产、生命安全方面造成了一定的负面影响。
目前,智能车领域的研究已经能够在具有一定标记的道路上为司机提供辅助驾驶系统甚至实现无人驾驶,这些智能车的设计通常依靠特定的道路标记完成识别,通过推理判断模仿人工驾驶进行操作,大大降低了事故的发生率。
碰到障碍物,小车会自动的躲避障碍物,就不会有那么多得交通事故。
智能小车是机器人的一个分支,现如今机器人已经不是人类它体现了人类长期以来的一种愿望。
目前已在工业领域得到广泛的应用,而且正以惊人的速度不断向军事、医疗、服务、娱乐等非工业领域扩展。
智能小车的设计结合了最基本的计算机控制技术、单片机技术、传感器技术、智能控制技术、机电一体化技术、无线通信技术及机器人技术,能有效的把大学所学知识进行综合应用。
一、系统总体设计本课题要求:设计一款小车,它具备按规定轨迹自主寻迹运行能力、接收无线遥控信号命令并进行遥控运行的能力、躲避障碍物的能力、能够采集环境的温度或湿度数据并发送至主机的功能。
基于树莓派的智能小车控制系统设计
基于树莓派的智能小车控制系统设计智能小车控制系统已经成为现代科技的研究热点之一。
它使得机器人具有更好的自主感知和行为决策能力,为人类生产和生活提供了更多便利和选择。
在这篇文章中,我们将探讨基于树莓派的智能小车控制系统的设计原理、实现方法以及其在实际应用方面的优势。
一、设计原理基于树莓派的智能小车控制系统的设计原理主要包括三个方面:感知模块、控制模块和决策模块。
1.感知模块感知模块主要是通过多种传感器来感知环境,包括红外线传感器、超声波传感器、摄像头和麦克风等。
通过收集和处理感知模块所得到的数据信息,可以实现对其所处环境的自主感知。
2.控制模块控制模块主要是根据感知模块所提供的数据信息,通过控制电机、舵机和灯光等组成的执行器来实现小车的运动控制、转向控制和灯光控制。
3.决策模块决策模块主要是通过分析感知模块所提供的数据信息,从而得出连续动作序列,完成运动控制、转向控制和灯光控制等行为决策。
二、实现方法基于树莓派的智能小车控制系统的实现方法主要包括硬件实现和软件实现两个方面。
1.硬件实现硬件实现主要包括小车的机械结构设计和电路设计。
机械结构设计需要满足小车运动的必要条件,保证小车在各种情况下的稳定性和安全性。
而电路设计则包括了电源管理、传感器接口设计、执行器控制和通信接口等电路部分。
树莓派板载GPIO(General Purpose Input Output)口提供了以电平信号为基础的输入输出接口,使用树莓派适配板将这些口映射到通用接口上,即可完成与各种硬件的连接。
2.软件实现软件实现主要包括操作系统安装、驱动程序编写和应用程序开发等方面。
在树莓派上,可以安装常用的操作系统,如Raspbian 等,针对赛车所用的传感器与执行器设备编写驱动程序,并根据实际需求使用Python等编程语言进行应用程序开发。
三、实际应用基于树莓派的智能小车控制系统在现实中已经有了广泛的应用。
例如,可以用于智能家居场景中的清洁机器人、智能物流配送中的 AGV 等。
基于80C51控制的智能电动小车系统的设计与实现
基于80C51控制的智能电动小车系统的设计与实现摘要:根据智能电动小车的设计要求,提出了基于单片机控制的智能电动小车的设计方案。
在现有玩具电动车的基础上以80C51单片机、光电、红外线、超声波传感器及金属探测器为主要器件,从硬件和软件两方面实现了对电路的设计。
经过实际测试,电路达到了最初的设计要求。
关键词:智能电动小车;80C51;传感器近年来,随着汽车行业的迅猛发展,对智能小车的研究也越来越广泛。
在现实生活中智能小车具有非常重要的意义,它可以代替人类完成一些工作。
由此希望开发一种具有由单片机控制的智能功能的系统[1]。
1 设计要求及方案设计智能电动小车的主要技术要求有:显示时间、速度、里程;具有自动寻迹、寻光、避障功能;可程控行驶速度、准确定位停车。
基于以上要求,在设计思路上考虑以80C51单片机为核心,以现有玩具电动车为基础,加装光电、红外线、超声波传感器及金属探测器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制,从而实现智能化控制的目的。
2 硬件电路设计 2.1 单片机及其外围电路80C51单片机由微处理器、数据存储器、程序存储器、并行I/O口、串行口、定时器/计数器、中断系统及特殊功能寄存器等部分组成[2]。
将它们通过片内单一总线连接,其基本结构与传统结构模式相同,不同之处在于对各种功能部件采用特殊功能寄存器集中控制方式。
由于80C51是片内有ROM/EPROM的单片机,因此,由它构成的最小系统简单﹑可靠。
2.2 检测电路2.2.1 障碍检测电路识别障碍的首要问题是传感器的选择[3],本设计采用T/R-40-12小型超声波传感器作为探测前方障碍物体的检测元件,它通过向目标发射超声波脉冲,计算其往返时间来判定距离。
检测电路图。
2.2.2 行车状态和距离检测电路本系统采用反射式红外线光电传感器用于检测路面的起始、终点,玩具车底盘上沿起始终点线放置一套,以适应起始的记数开始和终点的停车需要。
基于单片机的智能小车速度控制设计
3.速度控制简介速度控制主要是指对智能小车的行驶速度进行控制,使其能 够按照预定的速度行驶,或者根据外界环境变化做出相应的速度调整。速度控制 的好坏直接影响到智能小车的性能和安全性。
二、设计思路
1.关键问题基于单片机的智能小车速度控制设计主要面临两个关键问题:一 是如何获取小车的实时速度;二是如何根据获取的速度信息来调整小车的行驶速 度。
在硬件设计方面,本次演示选用了一种常见的单片机,即STM32F103C8T6。 该单片机具有处理速度快、集成度高、外设接口丰富等特点,能够满足智能物料 搬运小车的控制需求。同时,为了实现小车的自动识别、定位和抓取功能,还选 用了以下硬件设备:
1、传感器部分:采用红外传感器和光电编码器相结合的方式,实现小车对 物料和位置的识别与检测。
analogWrite(motorPin2, 60);
上述代码中,我们通过编码器读取小车的实时速度,并根据速度阈值来判断 小车的速度状态。根据不同的速度状态,我们通过调节PWM信号的占空比来控制 电机的转速,从而实现对小车速度的控制。
三、实验结果
我们在实验中使用了基于Arduino单片机的智能小车速度控制设计,并对其 进行了多项测试。实验结果表明,该设计能够有效地控制小车的行驶速度,并具 有较高的稳定性。下表为实验数据记录:表1实验数据记录表在实验过程中,我 们发现该设计的最大优点在于其简单易行且稳定性高。
四、系统测试与结论
在完成硬件和软件的设计后,对整个系统进行了测试。测试结果显示,基于 单片机控制的智能循迹小车系统能够有效地实现自主循迹和避障功能,具有较高 的稳定性和可靠性。通过本设计的实践,可以得出单片机在自动化控制中具有广 泛的应用前景和发展潜力。
引言
随着科技的快速发展,智能化成为当今社会的关键词。智能小车作为一种智 能化的代表,具有广泛的应用前景。本次演示旨在研究基于STM32单片机的智能 小车控制,通过软硬件结合的方式实现小车的速度、循迹和刹车等控制功能,提 高小车的稳定性和灵活性。
智能循迹小车设计方案
智能循迹小车设计方案摘要本文介绍了智能循迹小车的设计方案。
智能循迹小车是一种能够根据预设的路径自动行驶的小车。
它可以通过传感器感知周围环境,并根据预设的路径进行行驶。
在本文中,我们将讨论智能循迹小车的系统设计、硬件实现以及软件算法。
1. 引言智能循迹小车是近年来智能交通领域的一个热门研究方向。
它可以应用于无人驾驶、物流配送等领域,具有广阔的应用前景。
本文将介绍智能循迹小车的设计方案,以供相关研究人员参考。
2. 系统设计智能循迹小车的系统设计由硬件和软件两部分组成。
2.1 硬件设计智能循迹小车的硬件设计主要包括以下几个方面:•电机驱动:智能循迹小车需要有强大的驱动力来行驶。
通常采用直流电机作为驱动装置,并配备电机驱动器。
•路径感知:智能循迹小车需要能够感知预设的路径。
通常使用红外线传感器或摄像头进行路径感知。
•避障功能:智能循迹小车还需要具备避障功能,以避免与障碍物发生碰撞。
通常使用超声波传感器或红外线传感器进行障碍物的检测。
•控制系统:智能循迹小车的控制系统通常采用微控制器或单片机进行控制。
它可以根据传感器的反馈信息,控制电机驱动器的转动。
2.2 软件设计智能循迹小车的软件设计主要包括以下几个方面:•路径规划算法:智能循迹小车需要能够根据预设的路径进行行驶。
路径规划算法会根据传感器感知到的环境信息,计算出最优的行驶路径。
•控制算法:智能循迹小车的控制算法会根据路径规划算法的结果,控制电机驱动器的转动。
它可以实现小车沿着路径稳定行驶,并及时调整行驶方向。
•避障算法:智能循迹小车的避障算法会根据传感器感知到的障碍物信息,判断是否需要进行避障操作。
它可以实时监测障碍物,并及时采取措施进行避让。
3. 硬件实现智能循迹小车的硬件实现通常需要进行电路设计和机械结构设计。
电路设计主要包括电机驱动电路、传感器接口电路以及控制系统电路的设计。
可以使用电路设计软件进行模拟和调试,确保电路的性能和稳定性。
机械结构设计主要包括车身设计、电机安装以及传感器安装等。
《2024年基于STM32智能小车的设计与实现》范文
《基于STM32智能小车的设计与实现》篇一一、引言随着科技的不断进步,智能小车作为一种集成了计算机、传感器和执行器等技术的产品,已经在各个领域得到了广泛的应用。
本文旨在设计并实现一款基于STM32微控制器的智能小车,通过对小车的硬件设计和软件编程进行详细的阐述,以期为相关领域的科研和实践提供一定的参考。
二、硬件设计1. 微控制器选择本设计选用STM32F4系列微控制器,该系列具有高性能、低功耗等特点,能够满足智能小车在复杂环境下的实时控制需求。
2. 传感器模块传感器模块包括红外避障传感器、超声波测距传感器、光电编码器等。
这些传感器能够实时获取小车的环境信息,为小车的智能控制提供数据支持。
3. 电机驱动模块电机驱动模块采用H桥电路,通过PWM信号控制电机的转速和方向。
同时,为了保护电机和电路,还设置了过流、过压等保护措施。
4. 电源模块电源模块采用锂电池供电,通过DC-DC转换器为小车各部分提供稳定的电源。
同时,为了方便充电,还设置了USB接口。
三、软件实现1. 开发环境搭建本设计采用Keil uVision5作为开发环境,通过JTAG或SWD 接口进行程序的烧录和调试。
2. 程序设计程序设计包括主程序、传感器数据处理程序、电机控制程序等。
主程序负责协调各部分的工作,传感器数据处理程序负责获取并处理传感器的数据,电机控制程序则根据数据处理结果控制电机的转速和方向。
3. 算法实现本设计采用PID算法进行电机控制,通过调整PID参数,使小车在各种环境下的运动更加稳定。
此外,还实现了路径规划算法和避障算法,使小车能够根据环境信息自主规划路径和避障。
四、系统测试与实现效果1. 系统测试在完成硬件设计和软件编程后,对智能小车进行了系统测试。
测试内容包括小车的运动性能、传感器数据的准确性、电机控制的稳定性等。
测试结果表明,本设计的智能小车具有良好的性能和稳定性。
2. 实现效果在实际应用中,本设计的智能小车能够根据环境信息自主规划路径、避障和执行其他任务。
基于STC89C52单片机智能小车设计
五、分析与总结
通过本次设计,我们成功地基于STC89C52单片机实现了一款智能避障小车。 实验结果表明,小车具有较稳定的避障功能和较高的准确性。小车具有较快的反 应速度和响应能力,能够在短时间内对障碍物做出判断和反应。这些优点使得基 于STC89C52单片机的智能避障小车具有广泛的应用前景,例如在无人驾驶车辆、 智能机器人等领域中都具有潜在的应用价值。
二、智能避障小车设计
智能避障小车的设计主要包括以下几个方面:
1、传感器设计:传感器是实现避障功能的关键部件,主要包括红外线传感 器、超声波传感器等。本次设计采用红外线传感器,具有对色彩和材质不敏感、 反应速度快等优点。
2、电路设计:电路部分主要包括电源电路、驱动电路和传感器接口电路等。 其中,驱动电路采用L298N芯片,可以同时驱动两个电机,实现小车的前进、后 退和转向。
总之,本次设计不仅提高了我们对STC89C52单片机和智能避障技术的理解与 应用能力;而且拓宽了我们的知识视野,增强了对领域的认识和理解。希望通过 后续的研究和实践,能够使基于STC89C52单片机的智能避障小车更加完善,并得 到更广泛的应用。
感谢观看
输入输出处理程序:根据传感器的输入信号,控制小车的运动状态,同时将 小车的运动状态和障碍物距离等信息输出到LCD显示屏上。
三、智能控制
1、实现小车的智能控制,我们采用了模糊控制算法。该算法可以根据小车 的运动状态和障碍物距离等信息,自动调整小车的运动轨迹和速度,使其能够更 加灵活地避开障碍物。
3、程序设计:程序部分是实现避障功能的核心,主要包括传感器数据采集、 数据处理和电机控制等。
三、算法实现
智能避障小车的算法实现主要包括以下步骤:
1、传感器数据采集:通过红外线传感器采集小车前方的障碍物信息,并将 采集到的数据进行处理。
智能小车控制系统的设计分析
摘要随着自动控制技术的迅速发展,自动化技术已广泛应用于国计民生的各行各业。
智能汽车就是自动化技术发展的重要成果之一。
本文介绍了智能小车的研究设计背景与现状及其各个工作模块的工作原理、硬件及软件设计。
本设计中的自动循迹模块采用光电传感器循迹方法,选用RPR220型红外一体式发射接收管作为光电传感器,通过三组光电传感器识别小车的运行姿态。
避障模块利用超声波测距传感器,超声波发射部分的换能器选用TCT40-16T,接收部分选用TCT40-16R,在小车的左前右分别安装一组测距传感器实现避障功能。
设计遥控模块对小车进行启停及加减速控制,通过光电编码实现对小车的测速功能。
设计显示模块从而实时了解小车的运行状态。
选用包含H桥的L298N模块,利用PWM驱动小车行驶。
关键字:循迹,避障,遥控,显示,测速,PWM驱动ABSTRACTWith the rapid development of automatic control technology, automation technology has been widely used in various industries of the national economy and the people’s livelihood. Smart car is one of the important results of the development of automation technology. This article describes the design background and current situation of the intelligent car and the working principle, hardware and software design of the car’s modules.The automatic tracking of this design uses photoelectric sensor tracking method, and we choose RPR220 as the photoelectric sensor, which integrate the infrared transmitting and receiving tubes, three sets of photoelectric sensor distinguish the car’s running posture. Obstacle avoidance module utilizes ultrasonic distance sensor. We choose TCT40-16T as the emitting portion of the ultrasonic transducer and TCT40-16R as the receiving portion. Three distance measuring sensors are respectively fixed on the front, left and right of the car to achieve the obstacle avoidance function. Design remote control to control the start,stop,acceleration and deceleration of the car, and we utilize the optical-electricity encoder to realize the car’s speed measuring function. Design the display module to know the real-time of the car. Choose the L298N module which contains the H-bridge and utilize the PWM to drive the intelligent car running.KEYWORDS:tracking, obstacle avoidance, remote control, display, speed measurement, PWM driving目录摘要(中文) (1)摘要(外文) (2)1 绪论 (1)1.1 设计背景与意义 (1)1.2 当前国内外的研究设计现状及成果 (2)1.2.1 国外研究现状及成果 (2)1.2.2 我国研究现状及成果 (3)1.3 本设计的内容及结构 (4)1.3.1 设计内容 (4)1.3.2 本文结构 (5)2 智能小车控制系统的设计原理 (7)2.1、智能小车自动循迹原理 (7)2.1.1 小车循迹原理 (7)2.1.2 光电传感器工作原理 (8)2.1.3 光电传感器的常用类型 (9)2.2 超声波测距避障原理 (9)2.3 智能小车测速原理 (12)2.3.1直流电机测速 (12)2.3.2 光电码盘测速 (14)2.4 智能小车遥控原理 (15)2.4.1 红外遥控的实现模块 (15)2.4.2 红外遥控的工作原理 (15)2.5 智能小车的电机驱动电路工作原理 (16)3 智能小车控制系统的硬件电路图设计 (17)3.1 智能小车的电源模块设计 (17)3.2 智能小车自动循迹的硬件电路设计 (18)3.2.1 循迹传感器选择 (18)3.2.2 循迹电路图设计 (19)3.3 智能小车超声波测距的硬件电路设计 (20)3.3.1 超声波发射部分的硬件电路设计 (20)3.3.2 超声波接收部分的硬件电路设计 (20)3.4 智能小车数码显示的硬件电路设计 (21)3.4.1 LED数码显示器的结构与显示段码 (21)3.4.2 LED数码显示器的显示方法 (23)3.4.3 数码显示的硬件设计 (23)3.5 智能小车遥控的硬件电路设计 (24)3.5.1 智能小车的遥控发射模块硬件设计 (24)3.5.2 智能小车的遥控接收模块硬件设计 (25)3.6 智能小车电机驱动的硬件电路设计 (26)3.6.1 智能小车的电机驱动芯片选择 (26)3.6.2 智能小车的电机驱动电路的设计 (27)3.7 智能小车整体的硬件电路设计 (27)4 智能小车控制系统的软件设计 (29)4.1 主程序设计 (29)4.2 自动循迹模块程序设计 (30)4.3 测距避障模块程序设计 (2)4.4 数码显示模块程序设计 (3)4.5 编码测速模块程序设计 (4)4.6 红外遥控模块程序设计 (5)总结............................................... 错误!未定义书签。
51单片机智能小车电路
51单片机智能小车顶顶电子设计的这款简易智能小车,采用STC89C51/52单片机作为小车的检测和控制核心;采用光电开关、声控传感器、光敏传感器、温度传感器、红外接收器等来检测和感应各种外界情况,从而把反馈到的信号送单片机,使单片机按照预定的工作模式控制小车在各区域按预定的速度行驶;智能小车既可以采用LED数码管来显示有关信息,也可以采用1602LCD实时显示小车行驶的距离。
机器小车主要由底盘(含2个带电机的驱动轮、2个从动轮,底板)、电路板和6节5号电池盒三部分组成,其正面和底面外形如图所示:下图是51单片机智能小车的电路组成框图:`下图是智能小车中主要元件在小车中的位置实物图:二、产品配置智能小车产品配置如下:1.小车底板1块、车轴插片4片2.车轮4只3.车轴2根,垫片2只,铜螺帽2只》4.带齿轮箱的电机及104电容各2只5.智能小车开发板1块(除DS18B20外,板上集成电路配备完整)6.避障光电传感器1只(TCR T5000)、循迹光电传感器2只(RPR220)、速度光电传感器1只(RPR220)7.双向插头排线4根8.串口线1根)9.红外遥控器1只10.固定电路板与底板的长螺丝、橡皮垫圈各2只节5号电池盒(因电池属易燃易爆物品,故不配送,请自行购买)12.丰富的源程序、电路原理图和操作使用手册(用户购买后,只需要再另外购502胶水(1元左右)、双面胶(1元左右)和6节5号电池(采用普通的华太电池即可,6节约元)即可进行组装与实验了。
需要说明的是,小车的组装非常简单,有关详细的组装方法,我们将在智能小车操作使用手册上,采用图解的形式进行说明。
三、选配件用户购买产品后,可进行小车的基本实验,如果用户想进行一些特殊的实验,需要购买以下产品,说明如下:1.温度传感器DS18B20,价格6元。
链接:配置DS18B20后,可进行温度显示的实验。
液晶显示器,价格16元。
\链接:配置1602液晶显示器后,可进行液晶显示方面的实验。
基于STM32智能小车的设计与实现
基于STM32智能小车的设计与实现基于STM32智能小车的设计与实现近年来,随着人工智能和物联网技术的迅猛发展,智能小车成为了人们关注的焦点。
本文将介绍一款基于STM32芯片的智能小车的设计与实现。
首先,让我们来了解一下STM32芯片。
STM32是意法半导体公司推出的一款微控制器,具有低功耗、高性能、高可靠性的特点。
它内置了丰富的外设,包括多个串口、定时器、ADC和CAN等。
因此,我们选择STM32作为智能小车的主控芯片。
智能小车的设计主要包括硬件设计和软件设计两个方面。
在硬件设计方面,我们需要选用合适的电机、轮子、传感器等组件。
电机作为小车的动力驱动器,我们选择了直流电机来驱动轮子的转动。
传感器则用于获取环境信息,以便智能小车能够做出相应的行动。
在本设计中,我们使用了红外避障传感器、超声波测距传感器和巡线传感器。
接下来,我们进行电路的设计。
主控板上集成了STM32芯片、电机驱动芯片、传感器接口电路等。
我们将这些电路连接在一起,并通过适当的连接线与电机、传感器等组件相连。
通过这样的设计,我们可以实现智能小车的各项功能。
在软件设计方面,我们使用Keil C编译器进行开发。
首先,我们需要对STM32芯片进行初始化,包括设置GPIO引脚的输入输出状态、串口通信参数的配置等。
然后,我们通过编写驱动程序来实现对电机的控制。
在驱动程序中,我们可以设置电机的运动方向、速度等参数。
此外,我们还需要编写传感器的数据读取程序。
通过读取传感器的数据,我们可以实时地了解到周围环境的情况。
最后,我们可以根据不同的传感器数据,编写控制算法,使智能小车能够根据环境情况作出合理的决策。
通过以上的设计与实现,我们成功地搭建了一台基于STM32芯片的智能小车。
该小车可以根据传感器获取到的数据,对周围环境做出相应的反应。
比如在检测到障碍物时,小车能够自动避开;在巡线传感器检测到黑线时,小车能够沿着黑线行驶。
这样的智能小车不仅能够增加乐趣,还可以具备实际应用价值。
基于单片机的智能小车的设计与制作
基于单片机的智能小车的设计与制作一、引言:智能小车的概念和应用背景(100字)近年来,随着科技的快速发展,智能小车成为了智能化领域一个备受关注的研究方向。
智能小车作为一种能够自主感知环境、进行智能决策和灵活运动的机器人平台,广泛应用于诸多场景,如仓储物流、智能家居、无人驾驶等。
本文主要介绍了一种,以期能够提供一种参考和借鉴。
二、硬件设计与制作过程(600字)在硬件设计与制作过程中,首先需要明确小车的核心模块,包括电路板、传感器模块和执行器模块等。
其中,单片机是智能小车的“大脑”,其选择和连接是关键一步。
根据实际需求,本文选用了广泛应用的Arduino单片机,并将其与各类传感器(如红外线传感器、超声波传感器等)和执行器(如电机、舵机等)进行连接。
接下来,需要组装小车的机械部分。
通过设计和制作合适的底盘结构,进行电动机的安装和连线,以及舵机和轮子的连接。
这一步需要充分考虑小车的稳定性和灵活性,以确保小车能够平稳运行和方便操作。
为了实现小车的智能化控制,还需要进行编程。
以Arduino作为平台,通过编写相应的代码,实现小车的功能,如环境感知、路径规划、动作执行等。
在编程过程中,需要结合传感器的输入和执行器的输出,使得小车能够根据不同的场景而做出相应的反应和决策。
最后,完成电路板和机械部分的组装后,还需要对整体进行调试和测试。
通过连接电源和运行程序,可以对小车进行上电测试和功能测试,以确保各模块能够正常工作,并进行适当的调整和优化。
三、软件设计与功能实现(200字)在软件设计方面,本文使用Arduino IDE进行编程,采用C/C++语言。
通过对传感器的数据采集和处理,结合运动控制算法,使得小车能够在不同场景下做出智能决策。
例如,在遇到障碍物时,利用超声波传感器测距,通过程序控制小车避开障碍物;在追踪线路时,利用红外线传感器进行线路识别和导航等。
根据实际需求,还可以加入其他功能。
例如,通过无线模块实现与远程设备的通信,利用摄像头实现图像识别和物体跟踪等。
多功能智能小车的设计与制作毕业论文
多功能智能小车的设计与制作毕业论文业论文目录1引言(1)2总体设计(2)2.1各模块分析选择(2)2.1.1主控单元方案比较与选择(2)2.1.2避障单元方案比较与选择(3)2.1.3寻迹单元方案比较与选择(3)2.1.4遥控单元方案比较与选择(3)2.1.5语音控制单元方案比较与选择(4)2.2总体设计框图(4)3硬件设计(6)3.1单片机控制模块(6)3.1.1时钟电路(7)3.1.2复位电路(7)3.1.3烧写接口电路(8)3.2无线遥控模块(8)3.2.1无线遥控工作原理(9)3.2.2PT2262/2272芯片(10).WORD版本.3.3红外对管寻迹模块(11)3.3.1模块系统分析(11)3.3.2LM393芯片介绍(13)3.4红外避障模块(14)3.4.1红外避障电路介绍(14)3.4.2555芯片工作原理(15)3.5电机驱动模块(15)3.6语音控制模块(16)4软件设计(18)4.1模糊控制算法(18)4.1.1模糊理论的发展(18)4.1.2模糊控制算法原理(18)4.1.3智能小车中的模糊控制算法(19) 4.2软件设计框图(19)4.3软件程序设计部分源程序(20)5制作和调试(24)5.1使用的仪器仪表及软件(24)5.2系统制作(24)5.3系统调试(24)5.3.1硬件调试(25)5.3.2软件调试(27).WORD版本.5.3.3联合调试(27)6结论与展望(28)致谢(29)参考文献(30)附录1系统实物图(31)附录2实验原理图(32)附录3毕业设计作品说明书(33).WORD版本.1引言智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。
中国自1978年把“智能模拟”作为国家科学技术发展规划的主要研究课题,开始着力研究智能化。
从概念的引进到实验室研究的实现,再到现在高端领域(航天航空、军事、勘探等)的应用,这一过程为智能化的全面发展奠定基石。
《2024年自循迹智能小车控制系统的设计与实现》范文
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能技术的发展和广泛应用,智能小车系统已经逐渐成为了现代自动化和智能化领域的重要分支。
本文旨在介绍一款自循迹智能小车控制系统的设计与实现过程,从系统需求分析、硬件设计、软件设计、实现与测试等方面详细阐述其设计思路和实现方法。
二、系统需求分析自循迹智能小车控制系统主要应用于自动导航、避障等场景,因此其需求主要包括以下几个方面:1. 能够在各种复杂环境中实现自动导航和避障功能;2. 具备较高的稳定性和可靠性,能够适应不同路面条件;3. 控制系统应具有较高的智能化程度,便于用户操作和维护;4. 系统的硬件和软件设计应具有良好的可扩展性,方便后续升级和维护。
三、硬件设计自循迹智能小车控制系统的硬件设计主要包括电机驱动模块、传感器模块、主控模块等部分。
1. 电机驱动模块:采用直流电机和电机驱动器,通过PWM 信号控制电机的转速和方向,实现小车的运动控制。
2. 传感器模块:包括红外传感器、超声波传感器等,用于检测小车周围的环境信息,实现自动导航和避障功能。
3. 主控模块:采用单片机或微控制器作为主控芯片,负责控制小车的运动和传感器数据的处理。
在硬件设计过程中,需要充分考虑电路的稳定性和抗干扰能力,以及各个模块之间的接口兼容性和通信协议。
四、软件设计自循迹智能小车控制系统的软件设计主要包括操作系统、算法设计、程序设计等部分。
1. 操作系统:采用嵌入式操作系统或实时操作系统,以保证系统的稳定性和实时性。
2. 算法设计:包括导航算法、避障算法等,用于处理传感器数据和控制小车的运动。
其中,导航算法可采用基于路径规划的算法或基于视觉识别的算法;避障算法可采用基于距离阈值的算法或基于机器学习的算法。
3. 程序设计:包括主程序、中断程序、通信程序等,负责控制系统的整体运行和各个模块之间的协调。
在程序设计过程中,需要充分考虑代码的可读性、可维护性和可扩展性。
五、实现与测试在完成硬件和软件设计后,需要进行系统的实现与测试。
多功能智能小车的控制系统设计
感Байду номын сангаас观看
2、2传感器数据处理
传感器可以感知周围环境并传递给控制器处理。本设计采用中断处理的方式 读取传感器的数据,并通过算法实现障碍物的检测和避障。
2、3电机控制
电机驱动电路需要实现电机的正反转和速度控制。本设计通过STM32单片机 的PWM信号输出控制电机的速度,并通过控制信号的逻辑组合实现电机的正反转。
1、4电源系统
电源系统是智能小车的能量来源,它需要提供稳定的电压以保障系统的正常 运行。本设计采用锂电池作为电源,并通过稳压芯片实现电源的稳定输出。
二、软件设计
2、1控制逻辑
智能小车的控制逻辑是软件设计的核心,它包括前进、后退、左转、右转、 停止等操作。本设计采用STM32单片机的C语言开发环境进行编程,实现各种操作 的控制逻辑。
1、传感器技术:传感器是智能小车的“眼睛”,它能够感知周围环境,为 小车提供准确的导航和障碍物信息。激光雷达、摄像头、超声波传感器等是常用 的传感器类型。
2、芯片技术:芯片作为智能小车的“大脑”,负责处理传感器采集的数据, 并发出控制指令,实现小车的自动驾驶。高性能的芯片能够提高数据处理速度和 准确性。
智能小车可以分为多种类型,包括无人驾驶小车、搬运型小车和巡检型小车 等。这些智能小车都具有以下功能:
1、自动驾驶:智能小车采用传感器、算法和导航系统等技术实现自动驾驶, 根据设定路径自动行驶,无需人工干预。
2、货物运输:智能小车可用于货物运输,将货物从一个地方自动运输到另 一个地方,提高物流效率。
三、控制系统软件设计
1、导航与定位:通过GPS和IMU(惯性测量单元)进行定位,通过路径规划 算法确定小车的行驶路径。
2、障碍物识别与避障:通过摄像头和图像处理算法识别障碍物,通过控制 算法(如PID控制器)控制小车避开障碍物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能小车控制系统电路设计与开发目录毕业设计(论文)............................................................................................... 错误!未定义书签。
摘要.. (3)第1章前言 (4)第2章智能小车的概述 (5)2.1研究的目的和意义 (5)2.2智能小车的现状 (6)第3章智能循迹小车总体设计方案 (7)3.1系统方案设计 (7)3.2主要元件的选择 (7)3.2.1 主控器 (7)3.2.2供电单元 (8)3.2.3驱动电机选择 (8)3.2.5传感器 (10)第4章硬件电路 (11)4.1主控设置(AT89C51) (11)4.2复位电路 (13)4.3时钟电路 (13)4.4循迹模块 (14)4.5避障模块 (15)4.6电源模块 (15)4.7系统整体电路 (16)第5章系统软件部分设计 (17)5.1软件调试平台 (17)5.2软件程序流程设计 (17)5.3系统仿真实现 (18)五结论................................................................................................................... 错误!未定义书签。
致谢....................................................................................................................... 错误!未定义书签。
参考文献................................................................................................................... 错误!未定义书签。
摘要随着我国社学技术的发展,智能化越来越作为现代社会的新产物开始越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,是智能机器人越来越多样化。
智能小车是一个多种高薪科技的集成体,它融入了机器、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,可以设计到当今许多前沿领域的技术。
整个小车平台主要以514单片机为控制核心,通过无线遥控实现前进后退和转向行驶,通过红外线传感器,实现小车的自适应巡航、避障等功能。
设计采用对比选择,模块独立,综合处理的研究方法。
通过翻阅大量的相关文献资料,分析整理出相关信息,在此基础上列出不同的解决方案,结合实际情况对比方案优劣选出最优方案进行设计。
从电机车体,最小系统到无线控制,红外线对管的自动寻迹再到红外线自动避障和语音控制,完成各模块设计。
通过调试检测各模块,得到正确的信号输出,实现调试检测各模块,得到正确的信号输出,实现其应有的功能。
最后将各个模块有效整合在一起,达到所预期的目标,完成最终设计与制作,能使小车在一定的环境中智能化运转。
关键词:智能化;高薪科技;无线控制第1章前言进入二十一世纪,随着计算机技术和科学技术的不断进步,机器人技术较以往已经有了突飞猛进的提高,智能循迹小车即有视觉的触觉的小车就是其中的典型代表。
第2章智能小车的概述智能小车作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。
智能小车能够实时显示时间、速度、里程,具有自动寻迹、寻光、避障功能,可程控行驶速度、准确定位停车,远程传输图像等功能。
智能小车可以分为三部分--传感器部分、控制器部分、执行器部分。
控制器部分:接收传感器部分传递过来的信号,并根据事前写入的决策系统(软件程序),来决定机器人对外部信号的反应,将控制信号发给执行器部分。
好比人的大脑。
执行器部分:驱动机器人做出各种行为,包括发出各种信号(点亮发光二极管、发出声音)的部分,并且可以根据控制器部分的信号调整自己的状态。
对机器人小车来说,最基本的就是轮子。
这部分就好比人的四肢一样。
传感器部分:机器人用来读取各种外部信号的传感器,以及控制机器人行动的各种开关。
好比人的眼睛、耳朵等感觉器官。
2.1研究的目的和意义随着电子技术、计算机技术和制造技术的飞速发展,数码相机、DVD、洗衣机、汽车等消费类产品越来越呈现机电一体化、智能化、小型化趋势。
各类智能化小车在市场玩具中也占一个很大的比重。
根据美国玩具协会的调查统计,近几年来全球玩具销售增幅与全球平均GDP增幅大致相当。
而全球玩具市场的内在结构比重却发生了重大改变:传统玩具的市场比重正在逐步缩水,高科技含量的电子玩具则蒸蒸日上。
美国玩具市场的高科技电子玩具的年销售额2004年较2003年增加52%,而全统玩具的年销售额仅增长3%。
英国玩具零售商协会选出的2001圣诞节最受欢迎的十大玩具中,有7款玩具配有电子元件。
从这些数字可以看出,高科技含量的电子互动式玩具已经成为玩家行业发展的主流。
如今只是工程、计算机科学、机电一体化和工业一体化等许多领域在讨论智能系统,人们要求系统变得越来越智能化。
显然传统的控制观念是无法满足人们的需求,而智能控制与这些传统的控制有机的结合起来取长补短,提供整体的优势更好的满足人们的需求。
随着人工智能技术、计算机技术、自动控制技术的迅速发展,智能控制必将迎来它的发展新时代。
计算机控制与电子技术融合为电子设备智能化开辟了广阔前景。
因此遥控加智能的技术研究、应用都是非常有意义而且有很高的市场价值的。
人类的研究活动已经摆脱了地球生活圈的束缚而广泛地进入外层空间和海洋深处。
对月球和太阳系其他行星的探测,对太阳系以外的宇宙进行考察。
对数千米以下的海底的研究,都是目前单靠人力所不能及的。
自动控制系统设计正在代替人们完成这些工作。
在战场上的军事活动中,在恶劣环境条件下的生产劳动中,凡不宜由人直接承担的任务,均可由自动控制系统代替,如智能小车可以适应不同环境、不同温、湿度等条件的影响,完成危险地段、人类无法介入等特殊情况下的任务。
高科技自动控制系统及装置已日益成为现代社会活动中离不开的自动智能设备。
2.2智能小车的现状随着汽车工业的迅速发展,关于汽车的研究也越来越受人关注,全国电子科技大赛和省内电子科技大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。
可见其研究意义重大。
本设计就是在这样的背景下提出的。
本设计采用了比较先进的C51为控制核心,C51采用CHOMS工艺,功耗很低。
该设计具有实际意义,可以应用于考古、机器人、医疗机械等许多方面。
尤其是在足球机器人研究方面具有很好的发展前景;在考古方面也应用到了超声波传感器进行检测。
所以本设计与实际想结合,显示意义很强。
第3章智能循迹小车总体设计方案3.1系统方案设计为此以AT89C51为主控芯片,主要包括避障模块、电源模块、声控模块、电机驱动模块等,系统框图如图2.0所示。
通过寻迹及避障传感器来采集周围环境信息来反馈给CPU,通过主控的处理,来控制电机的运转,从而实现循迹与避障,达到智能行驶。
且本设计添加了声控效果,通过声音传感器来对小车发出指令,让其行驶与停止。
为了能够更好的完成本次设计任务,我们采用三轮车,其前轮驱动,前轮左右两边各用一个电机驱动,调制前面两个轮子的转速起停从而达到控制转向的目的,后轮是万象轮,起支撑的作用,并通过软件程序控制,与硬件架构相结合,从而实现自动循迹、避障的功能。
系统总体图如图3.1所示图3.1 系统总体图3.2主要元件的选择3.2.1 主控器按照题目要求,控制器主要用于控制电机,通过相关传感器对路面的轨迹信息进行处理,并将处理信号传感给控制器,然后控制器做出相应的处理,实现电机的前进和后退,保证在允许范围内实践循迹避障。
方案一:可以采用ARM为系统的控制器,优点是该系统功能性强大,片上外设集成度密度高,提高了稳定性,系统的处理速度也提高,适合作为大规模实现系统的控制核心。
而小车的行进速度不可能太高,那么对系统处理信息的要求也就不会太高,若采用该方案,必将在控制上遇到许许多多不必可增加的难题。
方案二:使用51单片机作为整个智能车系统的核心。
用其控制智能小车,既可以实现预期的性能指标,又能很好的操作改善小车的运行环境,且简单易上手。
对于我们的控制系统,核心主要在于如何实现小车的自动控制,对于这点,单片机就拥有很强的优势—控制简单、方便、快捷、单片机足以应对我们设计需求。
51单片机算术运算功能强,软件编程灵活、自由度大,功耗低、体积小、技术成熟,且价格低廉。
综合考虑,本设计选择选用AT89C51单片机做控制器。
3.2.2供电单元方案一:采用单电源供电,通过单电源同时对单片机和直流电机进行供电,此方案的优点是,减少机身的重量,操作简单,其缺点是,这样会使单片机的波动变大,影响单片机的性能,稳定性比较弱。
方案二;采用双电源供电,通过两个独立的电源分别对单片机和直流电机进行供电,此方案的优点是,减少波动,稳定性比较好,可以让小车更好的运作起。
3.2.3驱动电机选择方案一:采用直流电机,优点在于硬件电路设计简单。
当外加额外直流电压时,转速几乎相等,调速性能较好,且性价比高,对于小车的行驶,能够很好的控制。
方案二:采用步进电机,步进电机可以实现精确的转角输出,只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向连续的转动,便于控速,但是软件程序的编写较直流电机稍显复杂。
电机性能对比如表3.1所示表3.1总结考虑,本智能车设计决定采用直流电机作为智能车的动力电机3.2.4电机驱动器方案一:如果电机的开启和关闭控制通过继电器的来控制,该方案的优点是电锯较简单,但响应速度很慢,且易损坏,使用寿命短,可靠性不是很高。
方案二:采用电阻网络或数字电位器调节电动机的分压,从而达到分压的目的。
但数字电阻元件比较昂贵,且电阻网络实现的调速很有限。
更主要的问题在于一般的电动机电阻很小,但电流很大,分压不仅回降低效率,而且实现很困难。
方案三:采用功率三极管作为功率放大器的输出控制直流电机。
线性型驱动的电路结构和原理简单,加速能力强,采用由达林顿管组成的H型桥式电路(如图2.2)。
用单片机控制达林顿管使之工作在占空比可调的开关状态下,精确调整电动机转速,这是一种普通使用的PWM技术,该电路由于在饱和截止模式下工作,效率很高,H桥电路保证速度和方向的简单控制。
H桥电路如图3.2所示图3.2 H型桥式电路H桥电路的调速特性好,且调速范围宽,过载能力好,且能承受频繁的负载冲击,还可以实现频繁的武技快速启动、制动和反转。