燃烧与爆炸
燃烧和爆炸理论重点
第三章 物质的燃烧
预混气中火焰的传播理论:火焰(即燃烧波)在预混气中传播,从气体动力学理论可以证明存在两种传播方式:正常火焰传播和爆轰。
(Ⅰ)区是爆轰区。特点:①燃烧后气体压力要增加 ②燃烧后气体密度要增加 ③ 燃烧波以超音速进行传播
(Ⅲ)区是正常火焰传播区。 特点:① 燃烧后气体压力要减少或接近不变;② 燃烧后气体密度要减少; ③ 燃烧波以亚音速(即小于音速)进行传播。
火焰前沿的特点:(1)火焰前沿可以分成两部分:预热区和化学反应区。 (2)火焰前沿存在强烈的导热和物质扩散。
火焰传播机理:(1)火焰传播的热理论:火焰能在混气中传播是由于火焰中化学反应放出的热量传播到新鲜冷混气中,使冷混气温度升高,化学反应加速的结果。
(2)火焰传播的扩散理论:凡是燃烧都属于链式反应。火焰能在新鲜混气中传播是由于火焰中的自由基向新鲜冷混气中扩散,使新鲜冷混气发生链锁反应的结果。
可燃物质在空气充足的条件下,达到一定温度与火源接触即行着火,移去火源后仍能持续燃烧达5min以上,这种现象称为点燃。
在无外界火源的条件下,物质自行引发的燃烧称为自燃。
物质自燃有受热自燃和自热燃烧两种形式。
受热自燃的两个条件:外部热源、有热量积蓄的条件
自热自燃的三个条件:必须是比较容易产生反应热的物质; 此类物质要具有较大的比表面积或是呈多孔隙状的,有良好的绝热和保温性能;热量产生的速度必须大于向环境散发的速度。
爆燃是一种燃烧过程,反应阵面移动速度低于未反应气体中的声速,反应阵面主要通过传导和扩散进入未反应气体中。爆燃是一种带有压力波的燃烧,爆燃发生时,反应阵面的传播速度低于声速。
爆轰的反应阵面移动速度比未反应气体中的声速高。对爆轰来说,主要通过压缩反应阵面前面的未反应气体使其受热,从而使反应阵面向前传播。
燃烧和爆炸特性、机理和速度
2.2 燃烧机理
• 2.2.1 燃气燃烧的连锁反应 • 在燃烧反应中,气体分子间互相作用,往往不是
两个分子直接反应生成 最后产物,而是活性分子 自由基与分子间的作用。 • 活性分子自由基与另一个分子作用产生新的自由 基,新自由基又迅速参加反应,如此延续下去形 成一系列连锁反应。 • 连锁反应通常分为直链反应和支链反应两种类型。
剧烈的氧化还原反应 放出大量的热 发出光
• 以上三个要点同时成立的才为燃烧。如,氢在氯 中燃烧。金属和酸反应非燃烧,灯泡中的灯丝非 燃烧。
2.1.2 燃烧条件
• 燃烧三要素:
有可燃物的存在; 有助燃物的存在; 有能导致着火的能源。
• 需要说明的是,具备以上三要素并不一定引起燃 烧,如可燃物与助燃物的比例(浓度)、点火源 的强度(温度)等。
• 测定闪点的影响因素: P23 • 点火源大小与离液面的距离、加热速度、试样的
均匀程度、试样纯度、测试容器、大气压力等。
• (3)自燃和自燃点 • 在无外界火源的条件下,物质自行引发的燃烧称为自燃。自燃
的最低温 度称为自燃点。
• 物质自燃有受热自燃和自热自燃两种类型。
• ①受热自燃。可燃物质在外部热源作用下温度升高,达到其自 燃点而自行燃烧称之为受热自燃。受热自燃的两个条件为:有 外部热源和有热量蓄积的条件。
• 燃烧理论用连锁反应解释物质燃烧的本质, 认为燃 烧是一种自由基的连锁反应,提出燃烧四面体学说。
• 连锁反应不爱限制,自由基反应才能继续。这是 燃烧的第四要素,是某些灭火技术理论的基础。
2.1.3 燃烧过程和燃烧形式
• 可燃物质和助燃物质存在的相态、混合程度和燃 烧过程不尽相同,燃烧形式多种多样。
2.3 燃烧速度
• 2.3.1 可燃气体的燃烧速度
燃烧与爆炸
1.燃烧:可燃物与氧化剂发生的放热反应,通常伴有火焰、发光和发烟的现象。
火灾:在时间或空间上失去控制的燃烧所造成的灾害。
爆炸:物质由一种状态迅速地转变为另一种状态,并瞬间以机械功的形式放出大量气体和能量的现象。
2.火灾和爆炸事故的特点:严重性、复杂性、突发性3燃烧的必要条件:可燃物、氧化剂、点火源燃烧的充分条件:一定浓度的可燃物;一定的着火能量;一定的含氧量;相互作用燃烧的持续条件:反应释放足够能量维持燃烧燃烧形成要素:可燃物、氧化剂、着火源→外加热、合理配比、混合作用4.燃烧本质是一种特殊的氧化还原反应。
特征:放热、火焰、发光、发烟5.点火源种类:化学能;电能;机械能;光能;核能;高温表面;地热、火山爆发6.燃烧爆炸的形式:①按照燃烧反应进行程度:完全燃烧、不完全燃烧②按照产生燃烧反应相:均相燃烧、非均相燃烧③按照可燃性气体的燃烧过程:预混燃烧(层流预混燃烧、湍流预混燃烧)、扩散燃烧④蒸发燃烧⑤、分解燃烧⑥、表面燃烧⑦、延迟燃烧⑧、阴燃⑨、粉尘爆炸⑩、单纯物质的分解爆炸○11炸药燃烧○12气体泄漏燃烧○13绝热燃烧○14喷雾燃烧7.燃烧类型:闪燃、点燃、自燃8.闪燃:可燃液体挥发的蒸汽与空气混合达到一定浓度,或可燃固体受热到一定温度后,遇明火发生的一闪即灭的燃烧现象。
闪点:液体在空气中或在液面附近产生蒸气,其浓度足够被点燃时的最低温度。
9.闪燃与闪点的重要性:闪燃是可燃液体着火的前奏,是危险的警告;闪点是衡量可燃液体火灾危险性的重要依据。
10.点燃:也叫强制着火,引燃。
是指可燃物的局部在点火源的作用下起火,移去火源后仍能保持继续燃烧的现象。
燃点:又叫着火点。
可燃物在空气充足条件下,达到某一温度时与火源接触即行着火(出现火焰或灼热发光),并在火源移去后仍能继续燃烧的最低温度。
11. 重要性:燃点对评价可燃固体和闪点较高的可燃液体的火灾危险性具有实际意义,燃点越低,越易着火,火灾危险性越大;控制这类可燃物的温度在燃点以下是预防火灾发生的有效措施之一。
燃烧和爆炸的基本原理
燃烧和爆炸的基本原理要有效防止火灾和爆炸的发生,正确掌握防火防爆技术,必须要了解形成燃烧和爆炸的基本原理。
〔一〕燃烧。
燃烧是可燃物质与空气或氧化剂发生化学反应而产生放热、发光的现象。
在生产和生活中,凡是产生超出有效范围的背离人们意志的燃烧,即为火灾。
燃烧必须同时具备以下三个基本条件。
1.凡是与空气中氧或其他氧化剂发生剧烈反应的物质,都称为可燃物。
如木材、纸张、金属镁、金属钠、汽油、酒精、氢气、乙炔和液化石油等。
2.助燃物。
凡是能帮助和支持燃烧的物质,都称为助燃物。
如氧化氯酸钾、高锰酸钾、过氧化钠等氧化剂。
由于空气中含有21%左右的氧,所以可燃物质燃烧能够在空气中继续进行。
3.火源。
凡能引起可燃物质燃烧的热能源,都称为火源。
如明火、电火花、聚焦的日光、高温灼热体,以及化学能和机械冲击能等。
防止以上三个条件同时存在,避免其互相作用,是防火技术的基本要求。
〔二〕爆炸。
物质由一种状态迅速转变成为另一种状态,并在极短的时间内以机械功的形式放出庞大的能量,或者是气体在极短的时间内发生剧烈膨胀,压力迅速下降到常温的现象,都称为爆炸。
爆炸可分为化学性爆炸和物理性爆炸两种。
1.化学性爆炸。
物质由于发生化学反应,产生出大量气体和热量而形成的爆炸。
这种爆炸能够直接造成火灾。
依据其化学反应又可以分为以下三种类型:〔1〕简单爆炸。
例如爆炸物乙炔铜和乙炔银等受到稍微振动发生的爆炸。
〔2〕复杂分解爆炸。
属于这类爆炸物有炸药、苦味酸、硝化棉和硝化甘油等。
〔3〕爆炸性混合性爆炸。
这里指可燃气体、蒸气或粉尘与空气〔或氧气〕按一定比例均匀混合,达到一定的浓度,形成爆炸性混合物时碰到火源而发生的爆炸。
2.物理性爆炸。
通常指锅炉、压力容器或气瓶内的物质由于受热、碰撞等因素,使气体膨胀,压力急剧升高,超过了设备所能承受的机械强度而发生的爆炸。
〔三〕爆炸极限。
可燃气体、蒸气和粉尘与空气〔或氧气〕的混合物,在一定的浓度范围内能发生爆炸。
燃烧与爆炸基础知识
第一部分:燃烧与爆炸
爆炸极限及影响因素
可燃气体、可燃液体蒸气或可燃粉尘与空气混合并达到一定浓 度时,遇火源就会燃烧或爆炸。这个遇火源能够发生燃烧或爆炸的 浓度范围,称为爆炸极限。爆炸极限通常用可燃气体在空气中的体 积百分比(V%)表示。对可燃粉尘,我们通常用单位体积内可燃 粉尘的质量g/cm3来表示其爆炸上、下限值。
实际燃烧温度不是固定的值,它受可燃物浓度和一系列 外界因素的影响。
第一部分:燃烧与爆炸
燃烧特性(3)
燃烧速度: 1 气体燃烧速度:火焰在可燃介质中的传播速度也称燃烧速度。 气体燃烧速度的影响因素: • 气体的组成和结构 • 可燃气体含量 • 初温 • 燃烧形式 • 管道 • 压力和流动状态
第一部分:燃烧与爆炸
燃烧的条件
第一部分:燃烧与爆炸
燃烧必须同时具备下述三个 条件:可燃性物质、助燃性物质、 点火源。每一个条件要有一定的 量,相互作用,燃烧方可产生。
(1)可燃物 (2)助燃物 (3)点火源
燃烧的条件:
燃烧三要素
第一部分:燃烧与爆炸
第一部分:燃烧与爆炸
常见的火源种类
在生产中,常见的引起火灾爆炸的点火源有以下8种: (1) 明火 (2) 高热物及高温表面 (3) 电火花 (4) 静电、雷电 (5) 摩擦与撞击 (6) 易燃物自行发热 (7) 绝热压缩 (8) 化学反应热及光线和射线
可燃物质在没有火焰、电火花等明火源的作用下, 由于本身受空气氧化而放出热量,或受外界温度、湿 度影响使其温度升高而引起燃烧的最低温度称为自燃 点(或引燃温度)。
第一部分:燃烧与爆炸
自燃有以下两种情况。 (1)受热自燃:可燃物质在外部热源作用下温度升高,
达到自燃点而自行燃烧。 (2)自热自燃:可燃物在无外部热源影响下,其内部
燃烧与爆炸的基础知识
燃烧与爆炸的基础知识一、燃烧的基础知识1、什么是燃烧?燃烧是一种复杂的物理化学过程。
同时伴有发光、发热激烈的氧化反应。
其特征是发光、发热、生成新物质。
铜与稀硝酸反应,虽然属于氧化反应.有新物质生成,但没有产生光和热,不能称它为燃烧;灯泡中灯丝通电后虽发光、发热,但不是氧化反应,也不能称它为燃烧。
如金属钠、赤热的铁在氯气中反应等,才能称为燃烧。
2、燃烧的条件燃烧必须具备以下三个条件:(1)可燃物质什么叫可燃物质?所有物质分为可燃物质、难燃物质和不可燃物质二类。
可燃物质是指在火源作用下能被点燃,并且当点火源移开后能继续燃烧直至燃尽的物质;难燃物质为在火源作用下能被点燃,当点火源移开后不能维持继续燃烧的物质;不可燃物质是指在正常情况下不能被点燃的物质。
可燃物质是防火防爆的主要研究对象。
凡能与空气、氧气或其他氧化剂发生剧烈氧化反应的物质,都可称为可燃物质。
可燃物质种类繁多,按物理状态可分为气态、液态和固态三类。
化工生产中使用的原料、生产中的中间体和产品很多都是可燃物质。
处于蒸气或其他微小分散状态的可燃物质和氧之间极易引发燃烧。
多数固体研磨成粉状或加热蒸发极易起火。
液体则显现出很大的不同。
有些液体在远低于室温时就有较高的蒸气压,就能释放出危险量的易燃蒸气。
另外一些液体在略高于室温时才有较高的蒸气压,还有一些液体在相当高的温度才有较高的蒸气压。
很显然,液体释放出蒸气与空气形成易燃混合物的温度是其潜在危险的量度,这可以用闪点来表示,闪点愈低,愈危险。
排除潜在火险对于防火安全是重要的。
为此必须用密封的有排气管的罐盛装易燃液体,把易燃物料置于耐火建筑中。
应用或贮存中度或高度易燃液体时进行通风。
用爆炸或易燃蒸气指示器连续检测蒸气浓度。
(2)助燃物质什么叫助燃物质?凡是具有较强的氧化能力,能与可燃物质发生化学反应并引起燃烧的物质均称为助燃物。
化学危险物品分类中的氧化剂类物质均为助燃物。
除此之外,助燃物还包括一些未列入化学危险物品的氧化剂如正常状态下的空气等,为了明确助燃物的种类,应首先了解列入危险物品的氧化剂的种类,在此基础上,再了解未列入危险物品氧化剂类的助燃物有哪些种类。
爆炸和燃烧的区别和联系
爆炸和燃烧的区别和联系爆炸和燃烧是我们生活中常见的现象。
许多人往往把爆炸和燃烧看作是同一种现象,但实际上两者是有本质区别的。
爆炸是指物质在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
本文将分析爆炸和燃烧的区别和联系。
首先让我们来看看爆炸的特征。
爆炸产生的能量很大,并且能在短时间内迅速放出。
这些能量往往来自于物质内部的化学能、核能或机械能等。
爆炸瞬间产生的高温高压燃烧物质,使其发生体积迅速膨胀,大量的气体和热能释放,形成强烈的冲击波和压力波。
爆炸所产生的冲击波和压力波有很强的杀伤力,可以摧毁物体,造成重大损失。
如炸药在爆炸时,释放出巨大的热和压力,瞬间将周围的物体炸成碎片。
与之相对应的是燃烧的特征。
燃烧是指物质与氧气反应释放出热能的一种过程。
燃烧需要热源来激发反应,但反应一旦开始,会自我维持并释放出大量热能,从而促使更多的反应发生。
燃烧的反应产生的热能大多数以光和烟的形式释放出来。
燃烧会产生一定量的废气,但压力和温度并不会像爆炸那样迅速升高。
例如,木材燃烧时,会发出明亮的火光和黑烟。
虽然燃烧也可以造成一定程度的破坏,但燃烧的杀伤力远远不及爆炸。
尽管爆炸和燃烧有着本质区别,但两者也有一定的联系。
事实上,爆炸通常是一种非常强烈的燃烧过程。
当可燃物质与氧气充分接触并点燃时,燃烧会释放出大量的热能。
如果这些能量无法及时释放,可能会导致可燃物质瞬间迅速膨胀、燃烧区域内的温度和压力急剧升高形成爆炸。
理解爆炸和燃烧的区别和联系对我们生活中的许多情况都有很大的帮助。
比如,在正确地处理易燃易爆物品时,需要知道两者的区别,在进行燃烧处理时,应该采取安全防护措施,避免意外的爆炸发生。
总的来说,爆炸是指在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
虽然两种现象有着本质区别,但在某些情况下,爆炸是由剧烈的燃烧过程引起的。
《燃烧与爆炸》课件
爆炸的危害和防范措施
1 安全生产的重要性
爆炸可能导致严重的伤害和财产损失,因此保证安全生产至关重要。
2 爆炸的危害
爆炸会释放大量能量,产生冲击波、喷射物和火灾等危害。
3 防范措施
采取正确的防范措施,如合理存放、正确操作和应急预案的制定。
烟燃烧
烟燃烧是指可燃物在 缺乏氧气的情况下燃 烧,产生大量烟雾。
爆炸
爆炸是指可燃物与氧 气迅速反应产生巨大 能量释放的过程。
爆炸的定义和分类
1 爆炸的定义
爆炸是指物质在短时间内 迅速放出大量能量,产生 剧烈的声光效应。
2 理性质爆炸
理性质爆炸是指物质的体 积迅速扩大,没有产生明 亮火焰。
3 化学性质爆炸
燃烧的条件
可燃物
燃烧需要有可燃物,如木材、 燃油和天然气等。
氧气
氧气是燃烧必需的气体,它 与可燃物发生氧化反应。
引燃源
引燃源能够提供足够的能量, 使可燃物与氧气发生反应并 点燃。
燃烧的类型
明火燃烧
明火燃烧是指可燃物 表面燃烧产生明亮的 火焰。
雾燃烧
雾燃烧是指可燃液体 或固体在空气中形成 细小液滴或悬浮颗粒 后燃烧。
结语
1 总结
燃烧与爆炸是我们生活和工作中不可避免的现象,了解它们的原理和应用对我们很重要。
2 展望燃烧与爆炸的未来
随着科技的发展,燃烧和爆炸技术将不断创新和改进,为我们带来更多的机遇和挑战。
燃烧与爆炸的应用
燃烧和发电
燃烧可用于发电,如燃煤、燃 油和天然气等。
燃烧和冶金
燃烧在冶金过程中用于矿石熔 炼和金属提取。
爆炸和科学研究
燃烧和爆炸的基本原理
燃烧和爆炸的基本原理首先,燃烧和爆炸都涉及化学反应。
在燃烧和爆炸中,燃料与氧气发生氧化反应。
燃烧通常是缓慢、可控的氧化反应,而爆炸则是快速、非常强烈的氧化反应。
在氧气参与下,燃料物质的原子或分子与氧气结合形成氧化产物,释放能量。
燃料在燃烧和爆炸过程中的能量释放与其化学键的断裂和形成有关。
燃料分子中的化学键在与氧气反应时被断裂,形成更稳定的氧化产物分子。
这个过程涉及到能量的释放,其中一部分被用于产生热量和光线,另一部分被储存于氧化产物中的化学键中。
燃烧和爆炸需要一定的燃烧条件。
首先,它们需要有足够的燃料和氧气供应。
当燃料和氧气的比例接近最佳比例时,燃料的完全燃烧效果最好。
如果燃料过多,氧气可能不足以与所有燃料分子反应,产生不完全燃烧的产物,导致燃烧不完全。
其次,燃烧和爆炸需要适当的温度。
燃料需要达到其点火温度才能开始燃烧。
点火温度是指燃料在与氧气接触时产生足够的热量以维持自身燃烧的最低温度。
当燃料达到点火温度时,它会产生可燃气体,这是一个自持续反应过程,即即使外部加热源被移除,燃料仍然可以自行维持燃烧。
最后,燃烧和爆炸需要有效的反应速率。
在燃烧和爆炸中,燃料和氧气之间的反应速率应足够高以维持能量的释放。
这需要一定的能量起点,即激活能。
在燃料达到点火温度并产生可燃气体后,激活能使得反应速率迅速增加,从而形成火焰或爆炸。
在爆炸中,燃料和氧气之间的反应速率非常高,产生了剧烈的热能和气体的释放。
这些气体的体积迅速膨胀,产生巨大的压力波,形成爆炸冲击波。
爆炸波的速度通常很快,可以迅速在周围区域传播,造成巨大的破坏。
总结起来,燃烧和爆炸是物质在氧气参与下发生的氧化反应,释放出大量的能量。
燃烧是缓慢、可控的氧化过程,而爆炸是快速、强烈的氧化过程。
这些过程需要适当的燃烧条件,包括适量的燃料和氧气、合适的温度和足够的反应速率。
燃烧和爆炸产生的能量释放对我们日常生活具有重要意义,但也需要谨慎使用,以防止意外事故的发生。
燃烧与爆炸理论及分析
燃烧与爆炸理论及分析燃烧和爆炸是化学反应中常见的现象。
燃烧是指物质与氧气发生化学反应,产生能量的过程。
爆炸是指燃烧过程中产生的能量迅速释放,并产生强大的冲击波和光亮现象。
燃烧和爆炸都是由氧气与可燃物质发生化学反应引起的,但爆炸的反应速度更快,产生的能量更大。
燃烧和爆炸的理论基础是燃烧化学和爆炸动力学。
燃烧化学研究燃烧过程中的物质转化和能量释放。
可燃物质一般是有机物,其化学反应可以分为三个阶段:引燃、燃烧和燃尽。
引燃是指可燃物质与氧气接触后产生点火源,并开始发生反应。
燃烧是指可燃物质与氧气发生反应,产生热和光。
燃尽是指可燃物质完全被氧气消耗,停止燃烧。
燃烧化学研究的重点是物质的热值、燃烧温度、燃烧产物和燃烧速率等参数。
爆炸动力学研究爆炸过程中的能量释放和冲击波的产生。
爆炸反应一般分为四个阶段:点火、反应、扩展和耗减。
点火是指爆炸剂与点火源接触后开始发生燃烧。
反应是指燃烧的爆炸产物放热,产生高温和高压。
扩展是指高温高压的爆炸产物迅速膨胀,产生冲击波和冲击力。
耗减是指爆炸产物消耗完毕,爆炸结束。
爆炸动力学研究的重点是爆炸的速度、压力和能量等参数。
燃烧和爆炸的分析是为了预防和控制火灾和爆炸事故,保护人民的生命财产安全。
燃烧和爆炸的危害主要表现在火势和冲击波两个方面。
火势可以引发火灾,破坏建筑和设备,威胁人员的安全。
冲击波可以引发爆炸事故,造成工厂、工地、交通运输等重大事故。
因此,燃烧和爆炸的分析需要研究燃烧材料的性质、火灾和爆炸的起因和传播机制,以及防火防爆的措施和应急处理方法。
在分析燃烧和爆炸过程中,需要考虑以下几个因素:燃烧材料的种类和性质。
不同的材料燃烧产生的热值和燃烧速率不同,对环境的影响也不同。
氧气的供应。
燃烧和爆炸都需要氧气作为氧化剂,如果缺氧则无法燃烧和爆炸。
点火源的存在。
燃烧和爆炸需要点火源引发反应,因此需要防止点火源的存在,避免引发事故。
环境的温度和压力。
燃烧和爆炸也受到环境的温度和压力的影响,高温和高压有利于燃烧和爆炸的发生。
第二章 燃烧与爆炸
可燃气体与空气混合气的火焰传播速度, m/s(管径25.4mm)
气体名称 最大火焰 可燃气体在空气 传播速度 中的含量/% 气体名称 最大火焰 可燃气体在空 传播速度 气中的含量/%
氢 一氧化碳 甲烷 乙烷 丙烷
4.83 1.25 0.67 0.85 0.82
38.5 45 9.8 6.5 4.6
乙炔和氯气的反应:C2H2+Cl2 还原剂
2HCl+2C
2)自燃点的测定及其影响因素
阅读教材26页
影响自燃点的因素 :压力、浓度、催化剂、化学结构等
反应当量浓度时,自燃点最低;
压力越高,自燃点越低;
容器的影响:形状、大小、材质等; 添加剂的影响:活性催化剂使自燃点降低,钝化催化剂使
自燃点升高; 固体物质的粉碎程度:分散度越细,其自燃点越低; 氧气(或其他 助燃气体)的浓度。
加热
加热
所以闭杯法闪点测定值一般 哪个闪点更低一些? 要比开杯法低几度。 影响闪点测定的因素?
闪点的测定
影响闪点测定的因素?
点火源的大小及与液面的距离 加热速率 适用的均匀程度 试样的纯度 测试容器 大气压力
阅读教材 23页内容
闪点的意义——物质的火灾危险性分类P88-90
闪点是物质在储存、运输和使用过程中的安全性指标,也是 其挥发性指标。 闪点越低,越容易挥发,物质的火灾危险性越大,安全性差。
几种油品的闪点和自燃点
几种物质的闪点:乙醚-45℃,苯-11℃,丙酮-10℃,乙醇12℃,醋酸38 ℃
在缺少闪点数据的情况下,也可以用燃点来表征物质的火险。
3、自燃和自燃点——物质的火灾危险性分类P88-90
自燃
可燃物质在在助燃气体中,在外界无明火直接作用的条件 下,由于受热或自行发热,引燃并持续燃烧的现象。
燃烧、爆炸、自燃与缓慢氧的联系与区别
燃烧、爆炸、自燃与缓慢氧的联系与区别一样说燃烧、爆炸、自燃与缓慢氧化的本质差不多上氧化反应,只是由于条件不同而产生了不同的现象。
1.燃烧是发光发热的剧烈的化学反应。
物质在空气里起氧化反应的时候是否有燃烧现象,决定于温度是否达到这种物质的着火点;物质在空气里燃烧的急剧程度,取决于可燃物跟氧气的接触面的大小。
燃烧可分为完全燃烧和不完全燃烧。
不完全的燃烧,其产物往往造成对大气的污染,还会降低热能的利用率,因此一样将固体燃料粉碎,液体燃料喷成雾状来增加和空气的接触机会,同时采纳通风等措施,以提高燃料的利用率。
着火点是物质开始着火时的温度。
纯气体燃料在常温下的着火点是一定的。
例如,氢气的着火点为585℃,甲烷的着火点为537 ℃,一氧化碳的着火点为650 ℃。
固体燃料的着火点不是固定不变的,一样颗粒变细,着火点就会降低。
液体燃料的着火点与燃料的雾化程度有关。
2.爆炸是指可燃物在有限的空间里发生的急速燃烧。
一样有大量的气态生成物产生。
反应瞬时完成,放热集中,来不及扩散,温度骤升,气体体积急剧膨胀,引起爆炸或爆鸣。
若容器口大,则爆鸣,听到尖锐的口哨声;若容器密闭或口小,则爆炸,听到惊天动地的响声。
一样爆炸是由化学反应或核反应引起的。
爆炸瞬时放出大量的能量,会产生爆破及推动作用。
爆炸广泛应用于开矿筑路、推动发动机等。
3.自燃是指可燃物由于缓慢氧化而引起的自发燃烧。
可燃物在缓慢氧化过程中产生的热量,假如不易散失,以致于越积越多,温度逐步升高,达到该可燃物的着火点,不经点火就能自发燃烧起来。
例如:稻草、煤屑或沾有油的布等大量堆积在不通风的地点都有可能自燃。
因此,缓慢氧化是否引起自燃,则决定于氧化所产生的热量扩散和进行缓慢氧化物质的着火点的高低。
4.缓慢氧化是氧化反应的一种形式。
反应过程中几乎不升温、不发光、现象专门不显著。
例如,金属的锈蚀、呼吸作用、食物的腐败等都属于缓慢氧化。
四者间的区别与联系可表示如下:。
燃烧与爆炸考点
燃烧与爆炸考点燃烧与化学爆炸的关系:一、共同点:都需具备可燃物、氧化剂和火源这三种基本因素。
二、区分:主要区分在于氧化反应速度不同。
三、联系:两者可随条件而转化。
同一物质在一种条件下可以燃烧,在另一种条件下可以爆炸。
例如,煤块只能缓慢地燃烧,假如将它磨成煤粉,再与空气混合后就可能爆炸,有些是先爆炸后着火,例如油罐、电石库或乙炔发生器爆炸之后,接着往往是一场大火;在某些状况下会是先火灾而后爆炸。
易燃易爆危急性物质的种类:1、爆炸品;2、压缩气体和液化气体;3、易燃液体;4、易燃固体、自燃物品和遇湿易燃物品;5、氧化剂和有机过氧化物;6、毒害品和感染性物品;7、放射性物品;8、腐蚀品(酸、碱等);9、杂类。
1. 火灾的分类及其预防、限制、灭火措施?答:火灾的分类:依据物质燃烧的特征分:A类火灾:指固体物质火灾B类火灾:液体火灾和可熔化的固体物质火灾。
C类火灾:指气体火灾D类火灾:指金属火灾E类火灾:电器火灾预防措施:平安第一,预防为主。
把有起火危急性的物质以及具有点火能量的着火源,有效地、恰当地进行管理。
把重点首先放在发,火的预防上。
居安思危、应急预案,消防、训练培训,消防器材(含水源)、灭火措施等限制措施:1、防止可燃物的积累2、使建筑物、设备成为非燃烧或难燃烧体3、设置防火墙、防火门、防油堤、防液堤等4、留出空地:比如隔火通道、消防通道5、将危急物设施埋在地下:如汽油罐、液化气罐等灭火措施:(1)对气体火灾:一面马上关闭管道的阀门,一面对四周的可燃物喷射冷却水,使其冷却并使气体逸散开,防止火灾扩大,初期火焰小时,可用干粉灭火器(2)油品火灾:灭火可采纳喷撒干粉、喷射二氧化碳或泡沫灭火剂,用沙土填压等。
(3)固体可燃物火灾:最好采纳喷射大量水的方法进行灭火(4)电器(气)火灾:在通电状况下,要采纳干粉、二氧化碳或氯溴甲烷等灭火剂进行灭火;断电状况用水或泡沫灭火剂进行灭火(5)金属火灾:要采纳干燥的砂子和蛭石等进行灭火;在金属火焰上喷水,则有可能发生爆炸的危急(6)空气中含氧量过甚时导致的火灾:隔绝空气,切断氧气源(7)森林火灾:专业性强,另述;同建筑物火灾10.着火源的种类?举例说明。
燃烧与爆炸
• 蒸发燃烧:如酒精、乙醚等易燃液体的燃烧,就是由于液体蒸发产生的 蒸气被点燃起火后,形成的火焰温度进一步加热液体表面,从而促进它 的蒸发,使燃烧继续下去的现象。
下一页 返回
1.3 燃烧和爆炸的种类
• 分解燃烧:很多固体或非挥发性液体,它们的燃烧是由热分解产生可燃 性气体来实现的。如木材和煤,大多是由于分解产生可燃性气体再行 燃烧的。
• 表面燃烧:当可燃固体(如木材)燃烧到最后,分解不出可燃性气体时,就 会剩下炭和灰,此时没有可见火焰,燃烧转为表面燃烧。金属的燃烧也 是一种表面燃烧,无气化过程,燃烧温度较高。
资料,它主要包括水文站实测断面的年最大洪 峰流量和关系曲线;二是形态调查资料,有关内 容已在项日一中叙述;三是文献考证资料,即历 史文献和档案资料,包括如地方志、档案或碑 文中有关洪水灾害的记载,洪水位和淹没范围, 以及有关的规划设计(如铁路、水电站、城镇)中 所收集的水文资料。
下一页 返回
学习情境一 大中桥设计流量的推算
• 可燃物火灾:如建筑物、家具、木材、纸张、纤维、纺织物等固体可 燃物的火灾,最好采用喷射大量水的方法进行灭火。
• 电器火灾:电器配线、电动机、变压器等电气设备使用的绝缘材料发 生的火灾。
上一页 下一页 返回
1.3 燃烧和爆炸的种类
• 如果在通电情况下,用水或泡沫灭火剂进行灭火,则有可能发生触电事 故,此时要采用干粉、二氧化碳或氯溴甲烷等灭火剂进行灭火。另外, 最好不使用四氯化碳灭火剂,因为四氯化碳气体本身有毒,在灭火时,如 果遇到高温金属,则会产生光气,就有导致救火者中毒的危险。
燃烧与爆炸理论及分析
燃烧与爆炸理论及分析燃烧是一种氧化反应,它以氧气为氧化剂,可将燃料分子中的化学能转化为热能和光能。
燃料和氧气在适当的温度和压力下,通过点燃或引燃源接触以产生火焰。
燃烧过程中,燃料分子中的化学键被断裂,形成高能态的反应中间体,然后再形成新的化学键,生成二氧化碳、水和热能。
燃烧反应可以分为完全燃烧和不完全燃烧两种类型。
完全燃烧是指燃料完全与氧气反应,生成二氧化碳和水。
这是一种高效的燃烧过程,可以最大程度地释放出燃料的化学能。
不完全燃烧是指燃料只与氧气部分反应,生成一氧化碳和其他有害物质,同时释放出更少的能量。
不完全燃烧常发生在氧气供应不足或燃料的燃烧条件不理想的情况下。
爆炸是一种猛烈的化学反应,其特点是有大量的气体产生和伴随着剧烈的声音和光亮。
爆炸反应是急剧的氧化反应,通常需要有燃料、氧气和点火源三个条件。
在一个封闭的容器中,当燃料蒸气与氧气混合在一起,并且有足够的点火源时,就会发生爆炸反应。
爆炸反应通常发生在气体和可燃液体中,但也可以发生在可燃固体中,如火药和炸药。
对于燃烧和爆炸的理论和分析,有几个重要的方面需要考虑。
首先是燃料和氧气的混合比。
燃料和氧气的混合比对于燃烧和爆炸过程的速率和效果有重要影响。
当燃料和氧气的混合比接近理论上的最佳混合比时,燃烧会更加完全,产生更多的能量。
然而,当混合比过高或过低时,燃烧反应的效果就会下降。
其次是燃料的物理状态。
不同的燃料在燃烧和爆炸过程中的行为也有所不同。
气体燃料在燃烧和爆炸过程中比液体和固体更易于扩散和混合,因此更容易发生爆炸。
液体和固体燃料需要较高的温度和压力才能蒸发和燃烧,它们产生的气体容易积聚,从而导致爆炸风险增加。
此外,还需要考虑到燃料的化学性质。
不同的燃料在燃烧和爆炸过程中的反应速率和产物也会不同,这取决于它们的化学性质和分子结构。
一些燃料具有较高的燃烧热和易燃性,它们在燃烧和爆炸过程中会释放大量的能量。
然而,一些燃料可能需要更高的温度和压力才能燃烧,或者它们在燃烧过程中产生的气体比较有害。
燃烧与爆炸知识
燃烧与爆炸知识燃烧与爆炸是我们生活中经常接触到的现象,它们与能量的转化密切相关。
以下将从化学的角度,介绍燃烧与爆炸的基本概念、特征、防范措施等内容。
一、燃烧的概念燃烧是指物质与氧气在一定条件下发生氧化反应,产生热能和光能的过程,其本质是化学反应。
许多物质都可以燃烧,如燃料、木材、纸张、油漆等。
燃烧的产物一般包括二氧化碳、水蒸气和一些其他的化合物。
二、燃烧的特征1. 需要氧气参与:燃烧必须有氧气的参与,否则无法进行。
2. 释放热能:燃烧产生的热量是由化学反应放出的能量,因此燃烧可用于供热、发电等方面。
3. 形成新的物质:在燃烧过程中,原物质发生氧化反应,形成新的物质,如二氧化碳、水等。
4. 释放光能:燃烧还可以产生光能,形成火焰等光现象。
三、防范燃烧事故1. 保持房间通风:燃烧需要氧气,因此空气流通可以避免燃烧过程中氧气的过剩。
2. 定期检查电器设备:电器设备可能存在短路、过热等故障,应定期检查,以避免发生电器引起的火灾。
3. 禁止明火:明火很容易引起火灾,因此应该禁止在易燃的场所使用明火,如油漆厂、化工厂等。
4. 储存易燃物品要注意:易燃物品应储存在通风良好、防火防爆的场所,避免与氧化剂、酸、碱等物质接触。
四、爆炸的概念爆炸是指能产生的高度压缩气体和高能热辐射的突然释放,通常伴随着声音、火焰、冲击波等表现形式。
爆炸是一种极端的燃烧现象,其能量密度远高于普通燃烧。
五、爆炸的特征1. 包含高能量:爆炸释放的能量很高,能够瞬间摧毁周围的物体,产生极强的冲击波。
2. 周围气流的急剧变化:爆炸的过程中,周围的气体非常快地扩散,产生大量的热能、声能等,形成爆炸波。
3. 爆炸波的形成:爆炸波会扩散到周围的物体,对其产生极大的冲击力和破坏力。
爆炸波的作用范围与爆炸物质的性质和量有关。
六、防范爆炸事故1. 严格控制易燃易爆化学品的存放、使用和运输。
避免产生爆炸的条件。
2. 在易燃易爆化学品储存场所要进行安全防护,包括防爆、隔热、通风等。
燃烧爆炸原理
燃烧爆炸原理
燃烧爆炸是一种常见的化学反应过程,其过程可简单描述为燃料与氧气发生反应产生热量和光线。
燃烧反应的基本原理是氧气与燃料相互作用,通过氧化作用释放出化学能,形成新的化合物。
这个过程包括三个主要组成部分:燃料、氧气和活化能。
首先,燃料是指任何可供氧化反应的物质。
常见的燃料包括木材、石油、天然气等。
在燃烧反应中,燃料分子与空气中的氧气分子发生化学反应,将碳和氢原子与氧原子结合生成二氧化碳和水。
这个过程称为氧化或燃烧反应。
其次,氧气是燃烧反应所必需的气体。
空气中含有大约21%
的氧气,这个氧气可以与燃料反应生成热能。
当燃料起始燃烧时,燃烧过程会释放出少量的热量,这将会升高反应温度,促进更多的燃料分子参与反应。
最后,活化能是燃烧反应发生时所需的触发能量。
燃烧反应需要一定的能量来启动反应,这称为活化能。
为了提供足够的能量以启动燃烧反应,常使用点火器、火花或其他能源来提供活化能。
总结来说,燃烧爆炸是一种通过供氧气与燃料发生化学反应来释放热能的过程。
这个过程涉及到燃料、氧气和活化能三个方面的因素。
理解燃烧爆炸原理对于预防和控制火灾以及安全使用化学物质非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
各种物质的燃烧过程如图4—1所示。从中可知, 任何可燃物质的燃烧都经历氧化分解、着火、燃烧等 阶段。物质燃烧过程的温度变化如图4—2所示。T初为 可燃物质开始加热的温度。初始阶段,加热的大部分 热量用于可燃物质的熔化或分解,温度上升比较缓慢。 到达T氧,可燃物质开始氧化。由于温度较低,氧化速 度不快,氧化产生的热量尚不足以抵消向外界的散热。
•
爆炸物分解爆炸是爆炸物在爆炸时分解为较小的 分子或其组成元素。爆炸物的组成元素中如果没有氧 元素,爆炸时则不会有燃烧反应发生,爆炸所需要的 热量是由爆炸物本身分解产生的。
爆炸性气体、蒸气或粉尘与空气的混合物爆炸, 在石油化工生产形成的机会多,且往往不易觉察。
•
• 2.按爆炸速度分类 • (1)轻爆 爆炸传播速度在每秒零点几米至数米之间 的爆炸过程; • (2)爆炸 爆炸传播速度在每秒十米至数百米之间的 爆炸过程; • (3)爆轰 爆炸传播速度在每秒1千米至数千米以上 的爆炸过程。
•
第二节
爆炸
• 一、爆炸的概念 • 物质由一种状态迅速转变成另一种状态,并在瞬 间以声、光、热、机械功等形式放出大量能量的现象 叫做爆炸。实质上爆炸是一种极为迅速的物理或化学 的能量释放过程。 • 二、爆炸的ቤተ መጻሕፍቲ ባይዱ类 • 1.按爆炸性质分类 • (1)物理爆炸 • 物理爆炸是指物质的物理状态发生急剧变化而引 起的爆炸。例如蒸汽锅炉、压缩气体、液化气体过压 等引起的爆炸,都属于物理爆炸。物质的化学成分和 化学性质在物理爆炸后均不发生变化。 •
• •
三、燃烧类型及其特征参数 如果按照燃烧起因,燃烧可分为闪燃、着火、自燃、 爆燃四种类型。闪点、着火点和自燃点分别是上述三种 燃烧类型的特征参数。 • (1)闪燃和闪点 • 液体表面都有一定量的蒸气存在,由于蒸气压的大 小取决于液体所处的温度,因此,蒸气的浓度也由液体 的温度所决定。可燃液体表面的蒸气与空气形成的混合 气体与火源接近时会发生瞬间燃烧,出现瞬间火苗或闪 光。这种现象称为闪燃。闪燃的最低温度称为闪点。可 燃液体的温度高于其闪点时,随时都有被火点燃的危险。
• 此时若停止加热,尚不会引起燃烧。如继续加热, 温度上升很快,到达T自,即使停止加热,温度仍自 行升高,到达T自′就着火燃烧起来。
• 这里,T自是理论上的自燃点,T自′是开始出现 火焰的温度,为实际测得的自燃点。T燃为物质的燃 烧温度。T自到T自′间的时间间隔称为燃烧诱导期, 在安全上有一定实际意义。
• (2)化学爆炸 • 化学爆炸是指物质发生急剧化学反应,产生高 温高压而引起的爆炸。物质的化学成分和化学性质 在化学爆炸后均发生了质的变化。化学爆炸又可以 进一步分为爆炸物分解爆炸、爆炸物与空气的混合 爆炸两种类型。 • 爆炸物分解爆炸是爆炸物在爆炸时分解为较小 的分子或其组成元素。爆炸物的组成元素中如果没 有氧元素,爆炸时则不会有燃烧反应发生,爆炸所 需要的热量是由爆炸物本身分解产生的。
表4—6
可燃气体燃烧热
• •
二、燃烧形式
可燃物质和助燃物质存在的相态、混合程度和燃烧过 程不尽相同,其燃烧形式是多种多样的。 1.均相燃烧和非均相燃烧 按照可燃物质和助燃物质相态的异同,可分为均相燃 烧和非均相燃烧。均相燃烧是指可燃物质和助燃物质间的 燃烧反应在同一相中进行,如氢气在氧气中的燃烧,煤气 在空气中的燃烧。非均相燃烧是指可燃物质和助燃物质并 非同相,如石油(液相)、木材(固相)在空气(气相)中的燃 烧。与均相燃烧比较,非均相燃烧比较复杂,需要考虑可 燃液体或固体的加热,以及由此产生的相变化。
• 3、燃烧热 • 可燃物质燃烧爆炸时所达到的最高温度、最高 压力和爆炸力与物质的燃烧热有关。物质的标准燃 烧热数据不难从一般的物性数据手册中查阅到。 • 因为生成的水蒸气全部冷凝成水和不冷凝时, 燃烧热效应的差值为水的蒸发潜热,所以燃烧热有 高热值和低热值之分。高热值是指单位质量的燃料 完全燃烧,生成的水蒸气全部冷凝成水时所放出的 热量;而低热值是指生成的水蒸气不冷凝时所放出 的热量。 表4—6是一些可燃气体的燃烧热数据。
• 闪点这个概念主要适用于可燃液体。 一些可燃液体 的闪点列于表4—1,一些油品的闪点列于表4—2。
•
(2)着火和着火点 • 可燃物质在空气充足的条件下,达到一定温度 与火源接触即行着火,移去火源后仍能持续燃烧达 5 min以上,这种现象称为着火。着火的最低温度 称为着火点。 易燃液体主要考虑它的闪点和闪燃。 • (3)自燃和自燃点 • 可燃物质在无外界火源的条件下,因受热或自 身发热,并由于散热受到阻碍,使热量蓄积,温度 逐渐上升,当达到一定温度发生的自行燃烧称为自 燃。自燃的最低温度称为自燃点。可燃物质自燃有 受热自燃和自热燃烧两种类型。
•
(4)可燃液体雾滴爆炸 可燃液体在空气中被喷成 雾状剧烈燃烧时引起的爆炸; • (5)可燃蒸气云爆炸 可燃蒸气云产生于设备蒸气 泄漏喷出后所形成的滞留状态。密度比空气小的气体浮 于上方,反之则沉于地面,滞留于低洼处。气体随风漂 移形成连续气流,与空气混合达到其爆炸极限时,在引 火源作用下即可引起爆炸。
三、燃烧的特征参数 • 1、燃烧温度
•
可燃物质燃烧所产生的热量在火焰燃烧区域释放出 来,火焰温度即是燃烧温度。表4—3列出了一些常见物 质的燃烧温度。
2、燃烧速率 a.气体燃烧速率 • 气体燃烧无需像固体、液体那样经过熔化、蒸发 等过程,所以气体燃烧速率很快。气体的燃烧速率随 物质的成分不同而异。单质气体如氢气的燃烧只需受 热、氧化等过程;而化合物气体如天然气、乙炔等的 燃烧则需要经过受热、分解、氧化等过程。所以,单 质气体的燃烧速率要比化合物气体的快。在气体燃烧 中,扩散燃烧速率取决于气体扩散速率,而混合燃烧 速率则只取决于本身的化学反应速率。因此,在通常 情况下,混合燃烧速率高于扩散燃烧速率。
• 气体的燃烧性能常以火焰传播速率来表征,火焰传播 速率有时也称为燃烧速率。燃烧速率是指燃烧表面的 火焰沿垂直于表面的方向向未燃烧部分传播的速率。 在多数火灾或爆炸情况下,已燃和未燃气体都在运动, 燃烧速率和火焰传播速率并不相同。这时的火焰传播 速率等于燃烧速率和整体运动速率的和。 • 管道中气体的燃烧速率与管径有关。当管径小于 某个小的量值时,火焰在管中不传播。若管径大于这 个小的量值,火焰传播速率随管径的增加而增加,但 当管径增加到某个量值时,火焰传播速率便不再增加, 此时即为最大燃烧速率。表4—4列出了烃类气体在空 气中的最大燃烧速率。
• (4)爆燃 • 可燃物质(包括气体、雾滴和粉尘)和空气 或氧气的混合物由火源点燃,火焰立即从火源处 以不断扩大的同心球形式自动扩展到混合物存在 的全部空间,这种以热传导方式自动在空间传播 的燃烧现象称为爆燃。在工业中通常也把爆燃称 为爆炸。石油化工企业由可燃混合气体爆燃造成 的爆炸事故,可发生在容器、塔釜、罐槽和地沟 内,也可发生在厂房和厂区空间内,这类事故通 常是石化企业危害最大的一类事故。
天然气燃烧与爆炸
主讲教师: 吴晓南
第一节
燃烧
• 一、燃烧及其条件 • 燃烧是可燃物质与助燃物质(氧或其他助燃物 质)发生的一种发光发热的氧化反应。
•
可燃物质(一切可氧化的物质)、助燃物质(氧化 剂)和火源(能够提供一定的温度或热量),是可燃物 质燃烧的三个基本要素。缺少三个要素中的任何一 个,燃烧便不会发生。对于正在进行的燃烧,只要 充分控制三个要素中的任何一个,燃烧就会终止。 所以,防火防爆安全技术可以归结为这三个要素的 控制问题。
•
在这样的条件下,气体的燃烧就有可能达到爆炸 的程度。这时的气体或蒸汽与空气的混合物,称为爆 炸性混合物。例如,天然气从喷嘴喷出以后,在火焰 外层与空气混合,这时的燃烧速率取决于扩散速率, 所进行的是扩散燃烧。如果令天然气预先与空气混合 并达到适当比例,燃烧的速率将取决于化学反应速率, 比扩散燃烧速率大得多,有可能形成爆炸。可燃性混 合物的爆炸和燃烧之间的区别就在于爆炸是在瞬间完 成的化学反应。
• 三、常见爆炸类型 • 1.气体爆炸 • (1)纯组元气体分解爆炸 • 具有分解爆炸特性的气体分解时可以产生相当数 量的热量。在高压下容易引起分解爆炸的气体,当压 力降至某个数值时,火焰便不再传播,这个压力称作 该气体分解爆炸的临界压力。 • (2)混合气体爆炸 • 可燃气体或蒸汽与空气按一定比例均匀混合,而 后点燃,因为气体扩散过程在燃烧以前已经完成,燃 烧速率将只取决于化学反应速率。
•
•
•
3.蒸发燃烧、分解燃烧和表面燃烧
可燃固体或液体的燃烧反应有蒸发燃烧、分解 燃烧和表面燃烧几种形式。 • 蒸发燃烧是指可燃液体蒸发出的可燃蒸气的燃 烧。通常液体本身并不燃烧,只是由液体蒸发出的 蒸气进行燃烧。很多固体或不挥发性液体经热分解 产生的可燃气体的燃烧称为分解燃烧。如木材和煤 大都是由热分解产生的可燃气体进行燃烧。而硫磺 和萘这类可燃固体是先熔融、蒸发,而后进行燃烧, 也可视为蒸发燃烧。
• 可燃固体和液体的蒸发燃烧和分解燃烧,均有火 焰产生,属火焰型燃烧。当可燃固体燃烧至分解 不出可燃气体时,便没有火焰,燃烧继续在所剩 固体的表面进行,称为表面燃烧。金属燃烧即属 表面燃烧,无气化过程,无需吸收蒸发热,燃烧 温度较高。 • 此外,根据燃烧产物或燃烧进行的程度,还 可分为完全燃烧和不完全燃烧。
• 二、燃烧过程 • 可燃物质的燃烧一般是在气相进行的。由于可燃物 质的状态不同,其燃烧过程也不相同。 • 气体最易燃烧,燃烧所需要的热量只用于本身的氧 化分解,并使其达到着火点。 • 液体在火源作用下,先蒸发成蒸气,而后氧化分解 进行燃烧。与气体燃烧相比,液体燃烧多消耗液体变为 蒸气的蒸发热。 • 固体燃烧有两种情况:对于硫、磷等简单物质,受 热时首先熔化,而后蒸发为蒸气进行燃烧,无分解过程; 对于复合物质,受热时首先分解成其组成部分,生成气 态和液态产物,而后气态产物和液态产物蒸气着火燃烧。
• 3.按爆炸反应物质分类
•
(1)纯组元可燃气体热分解爆炸 纯组元气体由 于分解反应产生大量的热而引起的爆炸; • (2)可燃气体混合物爆炸 可燃气体或可燃液体 蒸气与助燃气体,如空气按一定比例混合,在引火源 的作用下引起的爆炸; • (3)可燃粉尘爆炸 可燃固体的微细粉尘,以一 定浓度呈悬浮状态分散在空气等助燃气体中,在引火 源作用下引起的爆炸;