混凝土的碳化深度.分析
碳化深度
![碳化深度](https://img.taocdn.com/s3/m/9ef9350e52ea551810a687e2.png)
混凝土碳化深度混凝土的碳化是混凝土所受到的一种化学腐蚀。
空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。
水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。
碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。
可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。
影响混凝土碳化速度的因素是多方面的。
首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。
因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。
混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。
混凝土碳化深度检测
![混凝土碳化深度检测](https://img.taocdn.com/s3/m/969b30fcc850ad02de8041f5.png)
1、影响混凝土碳化的因素影响混凝土碳化的因素有环境因素、原材料因素、施工操作因素等。
铜陵地区空气污染较重,空气中二氧化硫含量较多,酸雨也较多,是影响混凝土质量的主要原因,另外影响混凝土碳化的因素还有如下几点。
①水泥品种。
水泥品种是影响混凝土碳化的主要因素。
矿渣水泥和粉煤灰水泥中的掺合料含有活性氧化硅和活性氧化铝,它们和氢氧化钙结合形成具有胶凝性的活性物质,降低了碱度,因而加速了混凝土表面形成碳酸钙的过程,固而碳化速度较快。
普通水泥碳化速度慢。
②粗、细骨料。
铜陵地区使用的是江砂,细骨料及粉料过多,则碳化速度加快。
③水灰比。
水灰比小的混凝土由于水泥浆的组织密实,透气性小,碳化速度较慢。
④外加剂。
混凝土外加剂的种类较多,但不可使用含有氯化物的外加剂,因为氯化物会加剧钢筋的腐蚀。
⑤浇筑和养护质量。
混凝土浇筑时,振捣不密实、养护方法不当、养护时间不足会造成混凝土内部毛细孔道粗大,使水、空气、侵蚀性化学物质进入混凝土内部,加速混凝土的碳化和钢筋腐蚀。
混凝土结构工程施工质量验收规范中规定:在混凝土试件强度评定不合格及结构实体检验中,可采用非破损或局部破损的检测方法,按国家现行有关标准的规定对结构构件中的混凝土强度进行推定。
常用的有回弹法、超声回弹综合法、钻芯法、后装拔出法等,其中最常用的是回弹法。
而回弹法中碳化深度对混凝土强度的推定值影响很大。
碳化是一个缓慢发展的过程,在进行混凝土结构及构件强度的检验时,为取得比较准确的混凝土的实际强度,应在28d后尽早进行,即在未碳化或碳化程度很小时进行。
2、混凝土碳化的防治①在使用时合理选用水泥品种。
对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;对矿渣水泥和粉煤灰水泥要控制掺量,普通水泥掺粉煤灰,可以在水泥用量不变的情况下,再外掺粉煤灰取代部分砂子,或同时掺用粉煤灰的减水剂,即采用“双掺”的技术措施,这样可以提高混凝土的抗碳化能力。
②选好合适的配合比,适量的外加剂,控制细骨料、粉料用量。
混凝土碳化深度 要求
![混凝土碳化深度 要求](https://img.taocdn.com/s3/m/c55f5c39e97101f69e3143323968011ca300f708.png)
混凝土碳化深度要求混凝土碳化深度是指混凝土中钢筋周围碳化层的厚度,它是评价混凝土耐久性能的重要指标之一。
混凝土碳化深度的大小直接影响混凝土结构的使用寿命和安全性能。
本文将从混凝土碳化的原因、影响因素以及控制措施等方面进行阐述。
混凝土碳化的原因主要是由于混凝土中的水泥石碱性物质与大气中的二氧化碳发生反应,生成碳酸盐,从而降低了混凝土的碱性环境。
碳酸盐的生成会导致混凝土内部的pH值下降,使得钢筋失去被动保护层,进而发生腐蚀。
碳化反应的速度与混凝土中的水泥品种、含量、质量以及环境条件等因素有关。
影响混凝土碳化深度的因素较多。
首先是混凝土自身的性质,例如水胶比、水化程度等。
水胶比是指混凝土中水的用量与水泥的用量之比,水胶比越大,混凝土内部的毛细孔结构越发达,导致混凝土碳化速度加快。
其次是环境条件,如湿度、温度等。
高温、高湿度环境下,混凝土中的水分蒸发速度减慢,碳化反应速度相应减缓。
此外,混凝土中掺入的添加剂、矿物掺合料等也会对碳化深度产生影响。
为了控制混凝土碳化深度,可以从以下几个方面入手。
首先是选择合适的水泥品种和掺合料。
使用高性能的水泥和矿物掺合料,可以提高混凝土的抗碳化性能。
其次是合理控制水胶比。
降低水胶比可以减少混凝土内部的毛细孔结构,从而降低碳化速度。
此外,还可以采取防护措施,如使用碳化抑制剂、防水剂等,形成保护层,提高混凝土的抗碳化性能。
在施工过程中,应注意混凝土的养护。
混凝土在养护期间需要保持一定的湿度,以促进水泥的充分水化。
同时,避免暴露在高温、高湿度环境下,以减缓碳化反应的发生。
此外,定期检测混凝土结构,及时修复发现的裂缝和破损部位,以防止二氧化碳的侵入。
混凝土碳化深度是评价混凝土耐久性能的重要指标之一。
深入了解混凝土碳化的原因和影响因素,采取相应的控制措施,可以有效延长混凝土结构的使用寿命,提高其安全性能。
在工程实践中,需要综合考虑材料选择、施工工艺和养护管理等方面的因素,以确保混凝土结构的耐久性能达到设计要求。
混凝土构件碳化深度与回弹强度检测分析
![混凝土构件碳化深度与回弹强度检测分析](https://img.taocdn.com/s3/m/3c6577254b73f242336c5f20.png)
成分 水化硅酸钙 水化铝酸钙
p H值 1 0 . 4 1 1 . 4 3
பைடு நூலகம்
成分 氢氧化钙 水 化硫铝 酸钙
p l { 值 1 2 . 2 3 1 0 . 1 7
一一
无邑
。 。 。 一
鬃 红色
占 = o
髓色
一
碳化 降低混凝 土孑 L 隙液的 C a ( O H ) 浓度 , 当C a ( 0 H ) 浓度降至水 化 硅酸钙 、 水化铝酸钙等水泥水化物稳定所需 浓度限值以下时 , 水泥水化 物就会分解 , 放出C a O以维持溶液 的[ O H一 1 浓度 , 继续 下去就将导致 水 化物晶体变成胶体 , 降低混凝土构件 强度 。混凝 土构件强度降低 , 混凝 土表面硬度相应降低 , 从而混凝土构件的回弹值也相应的降低 。 3 _ 3 过量碳化使混凝土构件 回弹值急剧下降 碳化使 混凝 土收缩 、 胀裂 , 同时混凝 土碳化 生成 的 C a C O , 使 混凝 土变脆。混凝土收缩 、 胀裂使混凝 土表面松散 , 在 回弹过程 中吸收部分 弹击能量 , 降低 回弹读数值 。碳化增 加混 凝土收缩 , 使混凝土表面发生 做裂纹 , 为各种 侵蚀解 质( 如C O ) 进入 混凝土 内部提供条 件 , 加速 混凝 土碳化 , 昆凝土表面状况直线下 降 , 从 而使回弹值加剧下降。混凝土构 件回弹值下降 , 碳化深度增加 , 从而使混凝土回弹推定值大幅下 降。 3 . 4混凝土碳化对 钢筋耐久性的影响 混凝土碳化 使混凝 土的碱度降低 , 碳化后 , 完全碳化 区的 p H 值由 1 2 左右降到 9 以下 , 钢筋 表面的钝化膜可能发生破坏 , 使混凝 土失 去对 钢筋的保护作用 而导致钢筋锈蚀 。大气中 C O 与混凝土 中碱性物 质的 作用过程是 一个复杂 的多相物理化学 反应 。它是 在气相 、 液相 和固相 中进行 的连续过 程。混凝 土的碳化 由表及 里 , 空气 中的 C O 首先扩 散 到混凝土内部的毛细管孔 隙中与水泥水化产 生的氢氧化钙 和水化硅酸 钙等水化产 物相互作用 形成碳酸钙 , 使 混凝土 的碱度逐渐降低 。当碳 化层 达到钢筋后 , 便会破坏钢筋 的钝化膜层 , 其 周同若 存在发生电化腐 蚀 所必需 的水 分和氧气 或某些有害成 分时 , 混凝 土中的钢筋将产 生锈 蚀, 体积膨胀 , 呈多孔疏松状态 , 极易透气 和吸水 , 因此加剧 了钢筋 的锈 蚀 。钢筋锈蚀 产生 的体积 膨胀 , 由于内部应力 的作用 使混凝土产生 裂 缝, 甚至产生混凝 土表层崩落。 4 . 结 语 } 昆凝土碳化是一个非常复杂 的化学物理反应过程 。其碳 化速度受 环境温度 、 湿度、 养护 条件及水泥 品种 、 水灰 比等各种因素影 响。适 量 的碳化 有助 于改善混 凝土 的部分机 能 , 使 回弹读 数得到一 定的提 高。 但是当碳化过量 , 由于混凝土 收缩 、 胀 裂等原 因 , 加剧混凝土的碳化 , 从 而对混凝土 的强度 和耐久性形成破坏性 的影 响。回弹检测法作为混凝 土强度现 场快速检测方 法 , 有其快 速 、 高效 的优点 , 但 同时也存在 局限 性。 只有深 入理解碳化 的机理及 回弹测试 的原理 , 才能准确 的判 断混
浅析混凝土碳化深度对混凝土强度的影响
![浅析混凝土碳化深度对混凝土强度的影响](https://img.taocdn.com/s3/m/eaec46a11ed9ad51f11df2a7.png)
浅析混凝土碳化深度对混凝土强度的影响摘要:混凝土强度做为混凝土结构物质量检测的一个硬性指标自始至终都受到各级单位的高度重视。
随着科学技术的发展,我们工程建设不仅在安全质量方面在不断的提高,同样也在开创新工艺,开拓新领域。
但是我们对混凝土强度的要求,自始至终都保持着高度的重视,这就使得我们对混凝土的研究越来越深,范围也越来越广。
“混凝土碳化深度”做为一个新生儿就应运而生,也因此将施工质量提升到一个新的高度,新的起点。
关键词:混凝土强度质量检测高度重视新工艺新领域混凝土碳化深度1、混凝土碳化混凝土的碳化产生的本质是一种化学反应。
1.1 混凝土碳化的发生众所周知混凝土是由水泥、粗细骨料、外加剂、水等材料搅拌而成。
水泥的水化反应产生大量的氢氧化钙Ca(OH)2,它属于强碱性物质。
而空气中CO2含量较高,其溶于水后发生化学反应生产碳酸,碳酸属于酸性物质且该反应是一个可逆反应。
酸碱物质结合发生中和反应,生成碳酸盐和水,使得混凝土强度降低的过程就称为混凝土碳化,也称为中性化。
其反应方程式为:Ca(OH)2+CO2=CaCO3+H2O。
[1]由于水泥的水化反应使得混凝土中充满了碱性溶液,这种碱性介质使结构钢筋与空气中氧气隔绝,起到有很好的保护作用,有效的防止了钢筋的锈蚀。
但是在混凝土发生碳化反应后混凝土的碱性度降低,混凝土对结构钢筋的保护作用下降,当混凝土碳化深度超过结构钢筋的混凝土保护层厚度时,混凝土便失去了对结构钢筋的保护作用。
钢筋则暴露在空气和水同时存在的环境下,钢筋便开始逐渐被氧化锈蚀从而导致结构物的使用寿命大大减少。
1.2 混凝土碳化的检测在对超过3个月龄期的一般混凝土结构物在进行强度回弹试验检测时,都会对混凝土的碳化深度进行检测,用于修正回弹强度。
那么如何检测混凝土的碳化深度呢?根据《回弹法检测混凝土抗压强度技术规范》(JGJ/T 23-2011)中规定,检测过程共分为五个步骤:⑴使用小锤和凿子等小型工具在强度回弹测区表面形成一个直径约15mm的空孔洞,其深度应大于混凝土的碳化深度;⑵使用毛刷、气吹等工具对孔洞弄欸的粉末和碎屑进行清除,清除过程中不得用水进行擦洗;⑶使用浓度为1%~2%的酚酞酒精溶液滴在空洞内壁的边缘处,当碳化界限比较清晰时,使用碳化深度测量仪测量碳化界限到混凝土表面的垂直距离,并测量3次,每次度数应精确到0.25mm;⑷取三次测量的平均值做为检测结果,并精确到0.5mm;⑸当测区的碳化深度极差大于2mm时,可能预示着混凝土的强度不均匀,因此每一个测区均需要检测碳化深度值。
混凝土中的碳化深度标准
![混凝土中的碳化深度标准](https://img.taocdn.com/s3/m/7f72fde427fff705cc1755270722192e453658d4.png)
混凝土中的碳化深度标准混凝土是一种广泛使用的建筑材料,但是长期以来存在着碳化问题。
碳化会导致混凝土的强度下降、耐久性降低,甚至会引起钢筋锈蚀。
因此,为了保证建筑物的安全性和耐久性,需要对混凝土中的碳化深度进行标准化。
一、碳化深度的概念碳化深度是指混凝土表面到碳化深度的位置所需要的时间或距离。
混凝土中的碳化是指二氧化碳、硫酸盐等气体或化学物质侵入混凝土内部并与水泥石化学反应,使得水泥石中的钙化合物转化为碳酸钙或硫酸钙。
这种化学反应会导致混凝土中的PH值降低,从而使得钢筋锈蚀,混凝土的强度下降。
二、碳化深度的测量方法1.表观碳化深度法表观碳化深度法是指通过测量混凝土表面到钢筋锈蚀的位置的距离或时间来确定碳化深度。
这种方法简单易行,但是其测量结果受到混凝土表面处理、温度、湿度等因素的影响,因此精度相对较低。
2.化学碳化深度法化学碳化深度法是指通过将混凝土样品浸泡在强酸中,使得混凝土中的碳酸盐溶解,从而测定出碳化深度。
这种方法的精度较高,但是操作难度较大,且需要使用危险化学品,存在安全隐患。
3.电化学碳化深度法电化学碳化深度法是指通过将混凝土样品作为电极,在电解液中进行电化学反应,从而测定出碳化深度。
这种方法的精度较高,操作相对比较简单,但是需要进行电化学分析,因此需要专业的仪器设备和技术人员。
三、碳化深度的标准为了保证建筑物的安全性和耐久性,国家有关部门需要制定碳化深度的标准。
目前,国内外常用的碳化深度标准主要有以下几种:1.GB/T 50082-2009《混凝土结构耐久性规范》GB/T 50082-2009《混凝土结构耐久性规范》是我国混凝土结构设计和施工的基准标准之一。
该标准规定了混凝土的碳化深度应根据混凝土的使用环境和要求确定,但是在室内使用的混凝土结构中,碳化深度不应超过25mm。
2.ASTM C856《Standard Practice for Petrographic Examination of Hardened Concrete》ASTM C856是美国标准化学会制定的混凝土碳化深度标准。
混凝土碳化深度标准
![混凝土碳化深度标准](https://img.taocdn.com/s3/m/d3635f40f56527d3240c844769eae009581ba294.png)
混凝土碳化深度标准一、引言混凝土是建筑施工中常用的一种材料,其灵活性和强度使其成为建筑材料的主要选择。
但是,随着时间的推移和环境的影响,混凝土表面可能会出现碳化现象,这将导致混凝土的强度下降,甚至导致结构的崩溃。
因此,对混凝土碳化深度进行标准化是非常重要的。
二、混凝土碳化深度的定义混凝土碳化深度是指混凝土表面到碳化层的距离,它是混凝土强度下降的主要因素之一。
混凝土碳化是指混凝土中的碳酸盐与空气中的二氧化碳反应,形成碳化层。
三、混凝土碳化深度的测量方法1.荧光法荧光法是通过荧光显微镜观察混凝土切片来测量混凝土碳化深度的方法。
荧光法可以测量混凝土中的钙离子含量,从而确定碳化深度。
荧光法测量结果准确,但需要专业设备和技能。
2.化学方法化学方法是通过化学试剂与混凝土反应来测量混凝土碳化深度的方法。
化学方法简单易行,但是试剂的选择和操作需要专业知识。
3.电化学方法电化学方法是通过测量电极在混凝土中的电势差来测量混凝土碳化深度的方法。
电化学方法可以在现场进行,但测量结果受环境影响较大。
四、混凝土碳化深度标准的制定混凝土碳化深度标准的制定需要考虑多种因素,例如建筑物的类型、使用年限、环境等。
以下是混凝土碳化深度标准的一些基本要求:1.混凝土结构的碳化深度不得超过 1/3 混凝土厚度。
2.混凝土结构的碳化深度不得超过 25mm。
3.建筑物的使用年限越长,混凝土结构的碳化深度标准越高。
4.混凝土结构的碳化深度标准应根据环境条件进行调整。
五、混凝土碳化深度标准的应用混凝土碳化深度标准的应用可以帮助建筑师和工程师更好地选择建筑材料和设计建筑结构。
同时,制定和执行混凝土碳化深度标准可以保证建筑物的安全和可靠性。
六、结论混凝土碳化深度是建筑结构强度下降的主要因素之一,因此制定混凝土碳化深度标准非常重要。
混凝土碳化深度标准的制定需要考虑多种因素,例如建筑物的类型、使用年限、环境等。
制定和执行混凝土碳化深度标准可以保证建筑物的安全和可靠性。
混凝土中碳化深度的测试原理及方法
![混凝土中碳化深度的测试原理及方法](https://img.taocdn.com/s3/m/1bc7422e6ad97f192279168884868762cbaebb55.png)
混凝土中碳化深度的测试原理及方法一、前言混凝土是建筑中常用的材料,为了保证混凝土的耐久性和安全性,需要对混凝土进行测试。
其中,混凝土中的碳化深度是重要的测试参数之一。
本文将介绍碳化深度测试的原理和方法。
二、碳化深度的定义碳化深度是指混凝土中表面开始出现碳化反应的深度。
混凝土中的主要硬化物质是水泥胶体,其主要成分是氧化钙和氧化硅。
在混凝土中,水泥胶体中的氧化钙和二氧化碳发生反应,生成碳酸钙,这个过程被称为碳化反应。
碳化反应会使水泥胶体的pH值下降,导致钢筋锈蚀,从而影响混凝土的力学性质和耐久性。
三、碳化深度的测试方法1. 直接测量法直接测量法是指在混凝土表面划线,然后将表面剥落后,用显微镜观察划线位置下方的混凝土颜色变化。
当颜色发生明显变化时,表示混凝土已经发生了碳化反应。
这个方法简单易行,但是受到混凝土表面材料的影响,不够准确。
2. 溶液浸泡法溶液浸泡法是将混凝土样品放入一定浓度的酸液中,酸会腐蚀混凝土表面,使其发生颜色变化。
使用这个方法需要注意酸液的浓度和浸泡时间,过长的浸泡时间或过高的酸液浓度会对混凝土造成损伤。
3. 电化学测试法电化学测试法是指在混凝土表面设置电极,测量电极和混凝土间的电位差。
混凝土的电位差随着碳化反应的深入而变化,因此可以通过测量电位差来确定碳化深度。
这个方法需要专业设备和技术,但是测试结果准确可靠。
四、电化学测试法的原理电化学测试法是目前比较常用的测试碳化深度的方法。
其原理基于混凝土中的钢筋电化学腐蚀反应。
钢筋表面的氧化物和水在电解质中形成氧化还原反应,从而产生电位差。
混凝土中的氯离子和碳酸离子的浓度会影响钢筋表面的电位,导致电位差发生变化。
电化学测试法需要在混凝土表面设置三个电极,分别是参比电极、工作电极和计量电极。
参比电极用于和工作电极组成电池,用来测量电位差。
工作电极安装在混凝土表面,用于与混凝土中的钢筋连接。
计量电极则放在电池中,用于测量电位差。
五、电化学测试法的步骤1. 准备工作首先需要准备好测试仪器和设备,包括电位计、电极、电缆等。
混凝土的碳化深度
![混凝土的碳化深度](https://img.taocdn.com/s3/m/47682c31eef9aef8941ea76e58fafab069dc44c7.png)
混凝土的碳化深度混凝土是一种被广泛使用的建筑材料,它的主要成分为水泥、骨料、粉煤灰、外加剂和水等。
但是随着混凝土建筑的不断发展和使用,研究发现混凝土一旦发生碳化,将会导致混凝土的强度下降,耐久性变差,不再保持原有的性能。
所以了解混凝土的碳化深度,以及如何减少和延长混凝土的使用寿命是十分重要的。
一、混凝土的碳化原理混凝土碳化是指混凝土中的碳酸盐离子进入混凝土中,与其中的氢氧化钙反应生成碳酸钙。
混凝土中的PC水泥在混凝土制造时,由于它的碱性本质会升高混凝土的pH值。
而高pH值是一种防止混凝土中的钢筋腐蚀的化学条件。
一旦混凝土的pH值降低,将会导致混凝土的碳化,而碳化的深度将会影响到混凝土的性能和使用寿命。
二、混凝土碳化深度混凝土碳化深度是指碳酸盐进入混凝土后形成的混凝土表面一定深度。
通常用于衡量混凝土的性能和耐久性。
混凝土的碳化深度可以根据混凝土的吸收特性、水泥强度、空气温度和湿度等因素来确定。
混凝土碳化深度的测量一般采用PH指数法和电导法。
其中,采用PH指数法进行测量,通过pH值来测量混凝土中的碳酸盐含量,从而确定碳化深度。
电导法则是通过电导率测量混凝土含盐量,也可以反映碳化深度。
三、混凝土碳化深度的影响因素1、水泥强度:随着水泥强度的不同,混凝土的密实性也会不同,从而影响混凝土碳化深度。
2、湿度:在湿度较高的环境中,混凝土碳化深度会有所减少。
3、外界温度:高温环境下,混凝土碳化深度也将增加。
4、气体中的CO2浓度,CO2是混凝土碳化的主要原因之一,高浓度的CO2会导致混凝土快速碳化,从而影响混凝土的性能和使用寿命。
四、延长混凝土的使用寿命和减少碳化深度的方法1、使用高强度水泥,提高混凝土的密实性和耐久性,延长混凝土的使用寿命。
2、保持混凝土表面的湿润,降低空气中CO2浓度,从而减少混凝土碳化深度。
3、加强混凝土的养护和维护,及时进行维修和修复,减少混凝土中出现的损伤和缺陷,延长混凝土的使用寿命。
影响混凝土碳化深度的因素有哪些?
![影响混凝土碳化深度的因素有哪些?](https://img.taocdn.com/s3/m/91d39a9732d4b14e852458fb770bf78a65293af1.png)
混凝土碳化指混凝土中的Ca(OH)2与空气中CO2或水中溶解的CO2或其它酸性物质反应变成CaCO3而失去碱性的过程。
混凝土碳化后会失去混凝土对钢筋的保护作用,严重时,可能导致钢筋混凝土构件中的钢筋生锈蚀膨胀破坏。
影响混凝土碳化的因素有:材料因素、环境因素以及混凝土自身的密实性和Ca(OH)2等碱从提高抗碳化性能的角度来说,混凝土生产时应优先选择硅酸盐水泥或者普通硅酸盐水泥,尽量避免使用矿渣硅酸盐水泥。
还要充分考虑水泥对混凝土保水性的影响,选择泌水性能小的水泥,减少混凝土内部缺陷,提高混凝土自身密实,改善混凝土抗碳化性能。
合理使用引气剂和减水剂,提高混凝土的耐久性,增加混凝土强度,提高抗碳化性能。
矿渣硅酸盐水泥和粉煤灰硅酸盐水泥,由于熟料降低,混合材数量多,配制混凝土时造成其体系碱含量降低,再加上早期水化速率慢,不利于混凝土抗碳化性能。
(2)水泥用量随着混凝土中水泥用量的增加,一方面增加混凝土中的碱含量,体系的pH值提高,有利于混凝土的抗碳化性能;另一方面水泥用量增加,加快了水泥的水化速度,提高了混凝土的早期强度,从而混凝土自身的密实性越高,二氧化碳的渗透能力随强度的增加逐渐降低,使得混凝土的碳化速度变慢,它们之间呈反比例关系。
尽管增加水泥用量可以改善混凝土的碳化,但单凭增加水泥用量来降低混凝土碳化的方法,并不可取。
(3)水灰比的大小水灰比是混凝土中用水量与水泥的重量比。
水灰比是混凝土配合比的重要参数,其直接影响混凝土的强度、耐久性和其他一系列物理性能。
一般来说,混凝土的水灰比越低,其强度越高,混凝土的密实程度也越高,CO2扩散的阻力就越大,抗碳化能力也越强。
水灰比越大,混凝土的孔隙率增加,混凝土内部缺陷增加,造成密实度降低,混凝土渗透性增大,其抗碳化能力降低。
研究表明,当水灰比从0.4增长至0.8时,CO2在混凝土中的扩散能力将达到10倍,当水灰比超过0.65时,其碳化速度将大大加快,水灰比在0.55以下时,碳化速度将受到一定的抑制,抗碳能力有所加强。
碳化深度标准
![碳化深度标准](https://img.taocdn.com/s3/m/c3943ae277a20029bd64783e0912a21614797f14.png)
碳化深度标准
碳化深度是0.5到6毫米之间。
碳化深度正常维持在0.5到6毫米之间,假如养护不到位,一个月的碳化值能够超过6毫米。
碳化其实就是一类化学腐蚀,空气内部的二氧化碳渗透到混凝土内部,和里面的碱性物质出现了化学反应,之后有了碳酸盐与水,从而使得混凝土的碱度变低,也可以叫做中性化。
依据JGJ/T23-2011标准,普通混凝土和泵送混凝土的碳化深度均为0到6mm。
混凝土的碳化是混凝土所受到的一种化学腐蚀。
空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。
水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜。
碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。
可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。
混凝土中碳化深度测试方法的探讨与改进
![混凝土中碳化深度测试方法的探讨与改进](https://img.taocdn.com/s3/m/c1eebe130622192e453610661ed9ad51f11d547c.png)
混凝土中碳化深度测试方法的探讨与改进一、前言混凝土是一种常见的建筑材料,具有较高的强度和耐久性。
然而,在长时间的使用过程中,由于混凝土中的碳酸盐与空气中的二氧化碳反应,会导致混凝土中的钙化物逐渐减少,混凝土结构受损。
因此,了解混凝土中碳化深度的测试方法,对于混凝土的维护和修复具有重要意义。
本文将探讨混凝土中碳化深度测试方法的现状及其存在的问题,并提出改进措施,以期提高测试的准确度和可靠性。
二、现状分析1.碳化深度的定义碳化深度是指混凝土中钙化物被二氧化碳侵蚀的深度。
碳化深度可以用来评估混凝土结构的耐久性。
通常用碳化深度来判断混凝土的耐久性,其深度越深,混凝土的耐久性越差。
2.测试方法(1)酚酞指示法酚酞指示法是最早的碳化深度测试方法之一,使用酚酞指示剂来评估混凝土中碳化深度。
这种方法的优点是简单易行、成本低廉,但缺点也很明显,即酚酞指示剂对环境有一定的污染作用,且测试结果的准确性较低。
(2)电化学方法电化学方法是一种基于混凝土中钢筋的腐蚀电位的测试方法,可以测量混凝土中钢筋的腐蚀情况。
这种方法的优点是准确可靠,但需要专业设备和技术支持,成本较高。
(3)重量损失法重量损失法是一种通过测量混凝土在二氧化碳环境下的重量损失来评估碳化深度的方法。
这种方法的优点是简单易行,但由于测试结果容易受到环境因素的干扰,准确性有待提高。
3.存在的问题(1)测试结果准确性不高由于混凝土结构的复杂性和测试方法的局限性,导致测试结果的准确性不高。
特别是在野外测试中,受到环境因素的干扰,测试结果更加不可靠。
(2)测试成本较高电化学方法是目前最为准确可靠的测试方法之一,但由于需要专业设备和技术支持,测试成本较高,不利于推广应用。
(3)测试方法不易操作目前大部分测试方法需要专业技术支持,操作难度较高,容易出现误差。
因此,需要寻求一种简单易行、准确可靠的测试方法。
三、改进措施1.改进测试方法为了提高测试结果的准确性和可靠性,可以尝试采用多种测试方法相结合的方式,综合评估混凝土中碳化深度。
混凝土中碳化深度的测定方法研究
![混凝土中碳化深度的测定方法研究](https://img.taocdn.com/s3/m/189540276fdb6f1aff00bed5b9f3f90f76c64d8d.png)
混凝土中碳化深度的测定方法研究一、前言混凝土是建筑工程中常用的一种材料,但长期使用后会出现混凝土碳化的问题,这会导致混凝土的强度和耐久性下降,从而影响建筑物的安全性和使用寿命。
因此,测定混凝土中碳化的深度对于保障建筑物的安全具有重要意义。
本文将探讨混凝土中碳化深度的测定方法。
二、混凝土碳化的原因混凝土碳化是指混凝土中含有的碳酸盐与二氧化碳反应而产生的化学过程。
该过程主要是由于空气中的二氧化碳与混凝土中的水合钙反应而产生的,同时也可能与其他因素如水气候、水泥品种等有关。
三、混凝土碳化深度的影响因素混凝土碳化深度受到多种因素影响,主要包括混凝土的密度、水胶比、氯离子含量、碳化期等。
1.混凝土密度混凝土密度越大,碳化深度越小。
这是因为密度大的混凝土抵抗二氧化碳的渗透能力越强,相应的碳化深度就越小。
2.水胶比水胶比越大,混凝土中的孔隙结构越复杂,二氧化碳的渗透能力也就越强,从而导致碳化深度增加。
3.氯离子含量混凝土中的氯离子含量越高,碳化深度也就越大。
这是由于氯离子会降低混凝土的碱度,从而使混凝土更容易受到二氧化碳的侵蚀。
4.碳化期混凝土的碳化期越长,混凝土中的碳酸盐含量越高,碳化深度也就越大。
四、混凝土中碳化深度的测定方法混凝土中碳化深度的测定方法主要有电化学法、酚酞指示剂法、红外光谱法、化学分析法等。
1.电化学法电化学法是一种测定混凝土中碳化深度的常用方法。
该方法通过测量混凝土中钢筋周围电位的变化来确定碳化深度。
具体操作步骤如下:(1)将电极插入混凝土中,用电流源向钢筋施加电流,测量电位的变化。
(2)根据钢筋周围电位的变化推算出碳化深度。
该方法操作简便,但需要保证钢筋周围没有其他电化学反应的干扰。
2.酚酞指示剂法酚酞指示剂法是一种直接测量混凝土中碳化深度的方法。
该方法通过使用酚酞指示剂,测量混凝土中酸性物质的浓度来确定碳化深度。
具体操作步骤如下:(1)在混凝土表面涂上一层酚酞指示剂。
(2)待酚酞指示剂变色后,用显微镜观察颜色变化的深度,即为碳化深度。
混凝土碳化深度检测
![混凝土碳化深度检测](https://img.taocdn.com/s3/m/0eb68b25ba1aa8114431d988.png)
③碳化后的混凝土构件还可采用涂刷环氧基液的方法,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如用溶化的沥青涂抹。对碳化深度较大的,可凿除混凝土松散部分,洗净进入的有害物质,将混凝土衔接面凿毛,用环氧砂浆或细石混凝土填补,最后以环氧基液做涂基保护。
8结构混凝土碳化深度的检测与评定
8.1检测方法
1、影响混凝土碳化的因素
影响混凝土碳化的因素有环境因素、原材料因素、施工操作因素等。
铜陵地区空气污染较重,空气中二氧化硫含量较多,酸雨也较多,是影响混凝土质量的主要原因,另外影响混凝土碳化的因素还有如下几点。
①水泥品种。水泥品种是影响混凝土碳化的主要因素。矿渣水泥和粉煤灰水泥中的掺合料含有活性氧化硅和活性氧化铝,它们和氢氧化钙结合形成具有胶凝性的活性物质,降低了碱度,因而加速了混凝土表面形成碳酸钙的过程,固而碳化速度较快。普通水泥碳化速度慢。
8.2.2测区及测孔布置
(1)测区应包括锈蚀电位测量结果有代表性的区域,也能反映不同条件及不同混凝土质量的部位,结构外侧面应布置测区。
(2)测区数不应小于3个,测区应均匀布置。
(3)每一测区应布置三个测孔,三个测孔应呈“品”字排列,孔距根据构件尺寸大小确定,但应大于2倍孔径。
(4)测孔距构什边角的距离应大于2.5倍保护层厚度。
【关键词】混凝土碳化回弹法检测
1.前言
硅酸盐水泥主要由石灰质原料和粘土质原料组成。石灰质原料提供氧化钙,氧化钙是碱性物质。新拌混凝土由于水化作用形成氢氧化钙,水泥浆在空气中硬化时,表层水化形成的氢氧化钙就会与空气中的二氧化碳生成碳化钙,这被称为混凝土的碳化作用。混凝土的碳化速度及碳化深度与混凝土水灰比有关,还与混凝土所处的的环境条件:如空气中的二氧化碳浓度,空气相对湿度有关。由于碳化收缩,碳酸钙的生成能提高混凝土表面的硬度,在回弹法检测强度时提高了回弹值读数,而且碳化深度与混凝土的龄期接近正比,因此我国在早期的回弹法测定混凝土强度技术的研究中,为了克服混凝土碳化及龄期对回弹法测强的影响,就把碳化深度作为一个参量来采用,使之成为一个反比的系数,当回弹值相当时,碳化深度值越大其对应的混凝土检测强度值越低。
混凝土中碳化深度检测方法
![混凝土中碳化深度检测方法](https://img.taocdn.com/s3/m/e69b5d4c178884868762caaedd3383c4bb4cb4e9.png)
混凝土中碳化深度检测方法一、引言混凝土作为一种广泛应用于建筑工程领域的材料,其性能的稳定性直接关系到工程的质量和使用寿命。
而混凝土中的碳化现象是一种重要的材料性能问题,会严重影响混凝土的力学性能和耐久性能。
因此,深入了解和掌握混凝土中碳化深度的检测方法对于保障工程的质量和安全具有重要意义。
二、混凝土中碳化深度的定义及影响因素1.碳化深度的定义混凝土中碳化深度是指二氧化碳等环境中的化学物质通过混凝土表面渗透进入混凝土内部,与混凝土中的水泥石化合物反应,导致水泥石化合物中的钙离子被脱除,使得混凝土中的碳酸盐含量增加,并使混凝土中的pH值下降,从而影响混凝土的力学性能和耐久性能。
2.影响碳化深度的因素(1)混凝土中的水泥石化合物的种类和含量。
(2)混凝土中的气孔率和孔径分布情况。
(3)二氧化碳的浓度和相对湿度。
(4)混凝土的温度和湿度。
三、混凝土中碳化深度的检测方法1.表面碳化深度检测方法表面碳化深度检测方法是指通过在混凝土表面进行测量,来确定混凝土中碳化深度的方法。
常用的表面碳化深度检测方法有:(1)酚酞指示剂法酚酞指示剂法是一种常用的表面碳化深度检测方法,其原理是将酚酞指示剂涂在混凝土表面上,当混凝土表面的pH值低于9时,酚酞会变色。
通过比较变色的深度和混凝土表面的厚度可以得出混凝土中的碳化深度。
(2)酚醛指示剂法酚醛指示剂法是一种适用于高强度混凝土的表面碳化深度检测方法。
其原理与酚酞指示剂法类似,也是通过比较变色的深度和混凝土表面的厚度来确定混凝土中的碳化深度。
(3)钻孔法钻孔法是一种常用的表面碳化深度检测方法,其原理是通过在混凝土表面钻孔,然后观察钻孔内混凝土的颜色变化来确定混凝土中的碳化深度。
通常情况下,钻孔深度为10mm,钻孔直径为10mm。
2.内部碳化深度检测方法内部碳化深度检测方法是指通过在混凝土内部进行测量,来确定混凝土中碳化深度的方法。
常用的内部碳化深度检测方法有:(1)电化学法电化学法是一种常用的内部碳化深度检测方法,其原理是将混凝土表面的钢筋作为电极,将一定电压下的电流通过混凝土中的钢筋和周围的混凝土流动,通过测量电流的变化来确定混凝土中钢筋周围的碳化深度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土的碳化深度
混凝土碳化深度:土碳化是指混凝土中的高碱性物质(主要是氢氧化钙)同大气中的二氧化碳(CO2)发生化学反应的现象。
由于混凝土碳化是在混土碳化是在混凝土的构件外表面及表面下形成一个坚硬的碳化表皮,所以又称为混凝土“表面碳化”。
测定混凝土碳化深度值的意义:
检测混凝土碳化深度的目的之一是混凝土碳化深度的大小直接影响采用回弹法检测混凝土强度的测定结果,即(对回弹法检测混凝土强度测定值进行修正)必须考虑混凝土碳化深度。
检测混凝土碳化深度的目的之二是由此可定性地推定混凝土中的钢筋锈蚀情况。
下面简述混凝土碳化与钢筋锈蚀的关系分析。
混凝土碳化与钢筋锈蚀的关系:
普通硅盐水泥在水化过程中生成大量的氢氧化钙。
混凝土孔隙中充满了饱和氢氧化钙溶液,钢筋在碱性介质中表面生成难溶的Fe2O3和Fe3O4,这层保护膜(或钝化膜)使钢筋难以生锈。
混凝土硬化以后,表面遭受空气中二氧化碳的作用,氢氧化钙慢慢变成碳酸钙而失去碱性,即前述的混凝土碳化。
图c示出混凝土碳化深度达到钢筋表面,碳化部分的钢筋表面使氧化膜破坏而开始生锈,但碱性部分的钢筋表面并不生锈。
钢筋一生锈,铁锈的体积增大,破坏了混凝土保护层,沿钢筋产生裂缝,水、空气进入裂缝,加速了钢筋的锈蚀。
因此,一般认为当混凝土保护层厚度大于碳化深度时,钢筋没有锈蚀;保护层厚度与碳化深度接近时,则钢筋表面开始有局部锈点出现,当碳化浓度大于保护层时,锈蚀一般不可避免地要出现。
由于已碳化混凝土中钢筋锈蚀将产生钢筋截面削弱、钢筋与混凝土相互作用能力降低,所以一般也认为当钢筋锈蚀发展到混凝土保护层沿钢筋开裂的程度时,尽管尚不影响构件安全使用,但可认为是开始危及结构安全的前兆,甚至可认为这是构件使用寿命的一种极限状态。
混凝土碳化深度的检测方法:
碳化深度,可用合适的工具(如钻、凿子)在测区表面形成直径约为15mm的孔洞,其深度约等于保护层厚度,然后除去孔洞中的粉末和碎屑,不能用液体冲洗。
用浓度为1%的酚酞酒精溶液立即洒在孔洞壁的边缘处,再用钢尺测量自混凝土表面至深处不变色、(未碳化部分呈紫红色)有代表性的交界处垂直距离1~2次,该距离即为混凝土的碳化深度值。
每次测读至0.5mm。
在测区中选取n个碳化深度测点,得到相应碳化深度测量值,即可进行平均碳化深度值的计算。