二次函数中点的存在性问题

合集下载

二次函数存在性问题

二次函数存在性问题

二次函数存在性问题一、存在三角形:1、如图,已知抛物线y=-x 2+2x+3交x 轴于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。

(1)求点A 、B 、C 的坐标。

(2)若点M 为抛物线的顶点,连接BC 、CM 、BM ,求△BCM 的面积。

(3)连接AC ,在x 轴上是否存在点P 使△ACP 为等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由。

2、如图,直线AC :1y x =--与抛物线24y ax bx =+-都经过点(1,0)A -、(3,4)B -.(1)求抛物线的解析式;(2) 动点P 在线段AC 上,过点P 作x 轴的垂线与抛物线相交于点E ,求线段PE 长度的最大值; (3) 当线段PE 的长度取得最大值时,在抛物线上是否存在点Q ,使△PCQ 是以PC 为直角边的直角三角形?若存在,请求出Q 点的坐标;若不存在.请说明理由.3、已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上(如图11)。

(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式。

(4分) (2)如图12,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E 。

①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标。

(3分) ②又连接CD 、CP (如图13),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没 有,请说明理由。

(3分)图11A B O C 图9 yx P E 图12 图13二、 存在四边形:1、如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在, 求点F 的坐标;若不存在,请说明理由.2、在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3、如图,在平面直角坐标系中CDA Rt AOB Rt ∆≅∆,且)2,0(),0,1(B A -抛物线22-+=ax ax y 经过点C 。

二次函数中的存在性问题

二次函数中的存在性问题

⼆次函数中的存在性问题⼆次函数中的存在性问题存在性问题是指判断满⾜某种条件的事物是否存在的问题,这类问题的知识覆盖⾯较⼴,综合性较强,题意构思⾮常精巧,解题⽅法灵活,对学⽣分析问题和解决问题的能⼒要求较⾼,是近⼏年来各地中考的“热点”。

这类题⽬解法的⼀般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出⽭盾,就做出“不存在”的判断。

以下⼏篇内容为⼏种典型的⼆次函数中出现的存在性问题,希望⼤家在以后的学习中如果遇到此类型时能够轻松解决。

⼀、特殊三⾓形的存在性问题(⼀)⼆次函数中的等腰三⾓形存在性问题如果△ABC是等腰三⾓形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.因此,解等腰三⾓形的存在性问题时,通常要进⾏分类讨论。

这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。

⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(⼆)⼆次函数中的直⾓三⾓形存在性问题如果△ABC是直⾓三⾓形,那么存在①∠A为直⾓,②∠B为直⾓,③∠C为直⾓三种情况.因此,解直⾓三⾓形的存在性问题时,通常要进⾏分类讨论。

这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。

⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(三)⼆次函数中的等腰直⾓三⾓形存在性问题在解决等腰直⾓三⾓形存在性问题时,往往要⽤到⼏何和代数相结合的⽅法,设出点的坐标后,利⽤等腰直⾓三⾓形的⼏何性质及函数关系式列⽅程求解,最常⽤到的有:①两直⾓边相等,直⾓边与斜边的⽐为1:√2;②斜边中线垂直于斜边,且等于斜边的⼀半。

③直⾓顶点处构造三垂直,得到全等三⾓形,利⽤对应边的等量关系求解。

专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版)

专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版)

专题22.8 二次函数中的存在性问题【八大题型】【人教版】【题型1 二次函数中直角三角形的存在性问题】 (1)【题型2 二次函数中等腰三角形的存在性问题】 (3)【题型3 二次函数中等腰直角三角形的存在性问题】 (5)【题型4 二次函数中平行四边形的存在性问题】 (7)【题型5 二次函数中矩形的存在性问题】 (9)【题型6 二次函数中菱形的存在性问题】 (11)【题型7 二次函数中正方形的存在性问题】 (13)【题型8 二次函数中角度问题的存在性问题】 (15)【题型1 二次函数中直角三角形的存在性问题】【例1】(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG 的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.【变式1-1】(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=−√36x2+2√33x+2√3与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.【变式1-2】(2022秋•日喀则市月考)如图,二次函数y=﹣x2+4x+5的图象与x轴交于A,B两点,与y 轴交于点C,M为抛物线的顶点.(1)求M点的坐标;(2)求△MBC的面积;(3)坐标轴上是否存在点N,使得以B,C,N为顶点的三角形是直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.【变式1-3】(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠P AB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【题型2 二次函数中等腰三角形的存在性问题】【例2】(2022•沙坪坝区校级模拟)如图1,抛物线y=ax2+bx+2(a≠0)交x轴于点A(﹣1,0),点B (4,0),交y轴于点C.连接BC,过点A作AD∥BC交抛物线于点D(异于点A).(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上一动点,过点P作PE∥y轴,交AD于点E,过点E作EG⊥BC于点G,连接PG.求△PEG面积的最大值及此时点P的坐标;个单位,得到新抛物线y1,在y1的对称轴上(3)如图2,将抛物线y=ax2+bx+2(a≠0)水平向右平移32确定一点M,使得△BDM是以BD为腰的等腰三角形,请写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.【变式2-1】(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN 与线段DM的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG 是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.【变式2-2】(2022秋•永嘉县校级期末)如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正x2+3x+k交y 半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=−34轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中,若存在△ADP是等腰三角形,请求出所有满足条件的k的值.【变式2-3】(2022•杭州校级自主招生)如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)求A点坐标并求抛物线的解析式;(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△P AB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.【题型3 二次函数中等腰直角三角形的存在性问题】【例3】(2022•顺城区模拟)如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C (0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.x2+bx+c的图象与x轴交于点A(﹣2,0),与【变式3-1】(2022•碑林区校级三模)已知抛物线C1:y=14y轴交于点C(0,﹣3),顶点为D.(1)求抛物线C1的表达式和点D的坐标;(2)将抛物线C1沿x轴平移m(m>0)个单位长度,所得新的抛物线记作C2,C2的顶点为D′,与抛物线C1交于点E,在平移过程中,是否存在△DED′是等腰直角三角形?如果存在,请求出满足条件的抛物线C2的表达式,并写出平移过程;如果不存在,请说明理由.【变式3-2】(2022•琼海二模)如图1,抛物线y=ax2+bx+3与x轴交于点A(3,0)、B(﹣1,0),与y 轴交于点C,点P为x轴上方抛物线上的动点,点F为y轴上的动点,连接P A,PF,AF.(1)求该抛物线所对应的函数解析式;(2)如图1,当点F的坐标为(0,﹣4),求出此时△AFP面积的最大值;(3)如图2,是否存在点F,使得△AFP是以AP为腰的等腰直角三角形?若存在,求出所有点F的坐标;若不存在,请说明理由.【变式3-3】(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【题型4 二次函数中平行四边形的存在性问题】【例4】(2022•垦利区二模)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x轴于点F,AB=4,设点D的横坐标为m.(1)求抛物线的解析式;(2)连接AE、CE,当△ACE的面积最大时,点D的坐标是;(3)当m=﹣2时,在平面内是否存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.【变式4-1】(2022•澄迈县模拟)在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;【变式4-2】(2022•福山区一模)如图,抛物线y=ax2+bx+c过点A(﹣1,0),点B(3,0),与y轴负半轴交于点C,且OC=3OA,抛物线的顶点为D,对称轴交x轴于点E.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)若点P是抛物线上一点,过点P作PQ⊥x轴交直线BC于点Q,试探究是否存在以点E,D,P,Q为顶点的平行四边形.若存在,求出点P坐标;若不存在,请说明理由.【变式4-3】(2022•青羊区校级模拟)抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的函数表达式;(2)如图1,点P在线段AC上方的抛物线上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线的对称轴l上的一个动点,在抛物线上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.【题型5 二次函数中矩形的存在性问题】【例5】(2022•齐齐哈尔三模)综合与实践如图,二次函数y=﹣x2+c的图象交x轴于点A、点B,其中点B的坐标为(2,0),点C的坐标为(0,2),过点A、C的直线交二次函数的图象于点D.(1)求二次函数和直线AC的函数表达式;(2)连接DB,则△DAB的面积为6;(3)在y轴上确定点Q,使得∠AQB=135°,点Q的坐标为;(4)点M是抛物线上一点,点N为平面上一点,是否存在这样的点N,使得以点A、点D、点M、点N 为顶点的四边形是以AD为边的矩形?若存在,请你直接写出点N的坐标;若不存在,请说明理由.【变式5-1】(2022•博山区一模)如图,已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,与y轴交于点C,x﹣4.且点A的坐标为(﹣2,0),直线BC的解析式为y=12(1)求抛物线的解析式.(2)如图1,过点A作AD∥BC交抛物线于点D(异于点A),P是直线BC下方抛物线上一点,过点P作PQ∥y轴,交AD于点Q,过点Q作QR⊥BC于点R,连接PR.求△PQR面积的最大值及此时点P 的坐标.(3)如图2,点C关于x轴的对称点为点C′,将抛物线沿射线C′A的方向平移2√5个单位长度得到新的抛物线y′,新抛物线y′与原抛物线交于点M,原抛物线的对称轴上有一动点N,平面直角坐标系内是否存在一点K,使得以D,M,N,K为顶点的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【变式5-2】(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒√2个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.【变式5-3】(2022•黔东南州)如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC 于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.【题型6 二次函数中菱形的存在性问题】【例6】(2022•烟台一模)如图,平面直角坐标系中,正方形ABCD的顶点A,B在x轴上,抛物线y=﹣x2+bx+c经过A,C(4,﹣5)两点,且与直线DC交于另一点E.(1)求抛物线的解析式;(2)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为Q,连接EQ,AP.试求EQ+PQ+AP的最小值;(3)N为平面内一点,在抛物线对称轴上是否存在点M,使得以点M,N,E,A为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【变式6-1】(2022•邵阳县模拟)如图,直线l:y=﹣3x﹣6与x轴、y轴分别相交于点A、C;经过点A、x2+bx+c与x轴的另一个交点为点B,其顶点为点D,对称轴与x轴相交于点E.C的抛物线C:y=12(1)求抛物线C的对称轴.(2)将直线l向右平移得到直线l1.①如图①,直线l1与抛物线C的对称轴DE相交于点P,要使PB+PC的值最小,求直线l1的解析式.②如图②,直线l1与直线BC相交于点F,直线l1上是否存在点M,使得以点A、C、F、M为顶点的四边形是菱形,若存在,求出点M的坐标;若不存在,请说明理由.【变式6-2】(2022•嘉定区二模)在平面直角坐标系xOy(如图)中,已知抛物线y=ax2+bx+3经过点A(3,0)、B(4,1)两点,与y轴的交点为C点.(1)求抛物线的表达式;(2)求四边形OABC的面积;(3)设抛物线y=ax2+bx+3的对称轴是直线l,点D与点B关于直线l对称,在线段BC上是否存在一点E,使四边形ADCE是菱形,如果存在,请求出点E的坐标;如果不存在,请说明理由.【变式6-3】(2022•山西模拟)综合与探究如图,二次函数y=ax2+bx+4的图象与x轴分别交于点A(﹣2,0),B(4,0),点E是x轴正半轴上的一个动点,过点E作直线PE⊥x轴,交抛物线于点P,交直线BC于点F.(1)求二次函数的表达式.EF,求此时点P的坐标.(2)当点E在线段OB上运动时(不与点O,B重合),恰有线段PF=12(3)试探究:若点Q是y轴上一点,在点E运动过程中,是否存在点Q,使得以点C,F,P,Q为顶点的四边形为菱形,若存在,直接写出点Q的坐标;若不存在,请说明理由.【题型7 二次函数中正方形的存在性问题】【例7】(2022•铁锋区二模)综合与探究如图,在平面直角坐标系中,直线y=x+b与x轴交于点A(4,0),与y轴交于点B,过A,B两点的抛物线交x轴于另一点C,且OA=20C,点F是直线AB下方抛物线上的动点,连接F A,FB.(1)求抛物线解析式;(2)当点F与抛物线的顶点重合时,△ABF的面积为;(3)求四边形F AOB面积的最大值及此时点F的坐标.(4)在(3)的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内另一点M,使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.【变式7-1】(2022•陇县二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),)两点,且与y轴交于点C,点B是该抛物线的顶点.B(1,−94(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【变式7-2】(2022秋•南宁期中)如图,抛物线与y轴交于点C(0,3),与x轴于点A(﹣1,0)、B(3,0),点P是抛物线的顶点.(1)求抛物线的解析式;(2)Q是抛物线上第一象限除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标;(3)若M、N为抛物线上两个动点,分别过点M、N作直线BC的垂线段,垂足分别为D、E.是否存在点M、N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【变式7-3】(2022•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【题型8 二次函数中角度问题的存在性问题】【例8】(2022•西宁)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.(1)求抛物线解析式;(2)连接BE,求△BCE的面积;(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.,0),B(3,【变式8-1】(2022•鄂尔多斯)如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(−127)两点,与y轴交于点C.2(1)求抛物线的解析式;(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式8-2】(2022•运城二模)如图,已知抛物线y=ax2+bx﹣8与x轴交于点A(﹣2,0),B(8,0)两点,与y轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线PE∥y轴,交直线BC于点D,交x轴于点F,以PD为斜边,在PD的右侧作等腰直角△PDF.(1)求抛物线的表达式,并直接写出直线BC的表达式;(2)设点P的横坐标为m(0<m<3),在点P运动的过程中,当等腰直角△PDF的面积为9时,请求出m的值;(3)连接AC,该抛物线上是否存在一点M,使∠ACO+∠BCM=∠ABC,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.x2+bx+c交x轴于A(﹣3,0),B(4,0)【变式8-3】(2022•罗湖区校级一模)如图,已知抛物线y=−13两点,交y轴于点C,点P是抛物线上一点,连接AC、BC.(1)求抛物线的表达式;(2)连接OP,BP,若S△BOP=2S△AOC,求点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使得∠QBA=75°?若存在,直接写出点Q的坐标;若不存在,请说明理由.。

二次函数的存在性问题(Word版解析+答案)

二次函数的存在性问题(Word版解析+答案)

中考压轴题解析二次函数的存在性问题【典例分析】【考点 1】二次函数与相似三角形问题例1】已知抛物线y ax2 bx 3与 x轴分别交于A( 3,0),B(1,0)两点,与 y轴交于点 C.2)点 F 是线段 AD 上一个动点.1AD .2ABC 相似?若相似,求出点 F 的坐标;若不相似,请说明理由.变式1-1】如图,抛物线y ax2 2x c经过A( 1,0),B两点,且与y轴交于点C(0,3) ,抛物线与直线y x 1交于A,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B 的左侧,若以P,B,C为顶点的三角形与ABE相似,求点P的坐AF①如图 1,设k ,当 k 为何值时,CFAD1)求抛物线的表达式及顶点 D 的坐标;标.1【变式1-2】如图,已知抛物线y m(x 2)(x m)(m > 0)与 x 轴相交于点 A,B,与 y轴相交于点 C,且点 A 在点 B 的左侧 .( 1)若抛物线过点( 2, 2),求抛物线的解析式;(2)在( 1)的条件下,抛物线的对称轴上是否存在一点H ,使 AH+CH 的值最小,若存在,求出点 H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点 A,B,M 为顶点的三角形与△ACB 相似?若存在,求出 m 的值;若不存在,请说明理由 .考点 2】二次函数与直角三角形问题BC交于点D,连接AC 、AD ,求VACD的面积;3 点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F ,问是否存在点E使VDEF 为直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.例2】如图,抛物线y ax2bx c a 0的顶点坐标为2, 1 ,图象与y 轴交于点C 0,3 ,与x轴2 设抛物线对称轴与直线【变式2-1】如图,经过x 轴上A( 1,0), B(3,0)两点的抛物线y m(x 1)2 4m (m 0)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙ G 经过点C ,求解下列问题:1)用含m的代数式表示出C,D 的坐标;2)求抛物线的解析式;3)能否在抛物线上找到一点Q,使△BDQ 为直角三角形?如能,求出Q点的坐标,若不能,请说明理由。

二次函数存在性问题

二次函数存在性问题

类型3直角三角形存在性问题
3、如图,抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,与x轴交于另一点B. (1)求抛物线的表达式; (2)已知点D(m,m+1)在第一象限的抛物线上,连接CD,BD,把△BCD沿BC折叠, ①求点D的对应点D′的坐标; ②在抛物线上是否存在点P,使得△DD′P是以DD′为一直角边的直角三角形?若存在,求 出点P的坐标;若不存在,请说明理由.
体验中考
7、[2017·齐齐哈尔] 如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线 折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC,OA的长是关于x的一元二次 方程x2-12x+32=0的两个根,且OA>OC. (1)求线段OA,OC的长.(2)证明△ADE≌△COE,并求出线段OE的长. (3)直接写出点D的坐标. (4)若F是直线AC上的一个动点,在平面直角坐标系内是否存在点P,使以点E,C,P,F为 顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
二次函数存在性问题
上次作业处理
类型1全等三角形存在性问题
1、已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物 线的顶点,点B在x轴上. (1)求抛物线对应的函数表达式. (2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在, 求出点P的坐标;若不存在,请说明理由. (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
(3)如图②,取一根橡皮筋两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在 直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是 否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果 不存在,请简要说明理由.

第4讲二次函数中的点的存在性问题中的角度题

第4讲二次函数中的点的存在性问题中的角度题

龙文教育一对一个性化辅导教案学生学校汇景年级九年级次数第4 次科目数学教师日期2015-3-15 时段17-19 课题二次函数动点中的点的存在性问题中的角度问题教学重点二次函数的综合题教学难点二次函数中的点的存在性问题教学目标二次函数中的点的存在性问题教学步骤及教学内容一、课前热身:1、检查学生的作业,及时指点;2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。

3、课前小测二、内容讲解:三、课堂小结:带领学生对本次课授课内容进行回顾、总结四、作业布置:布置适量的作业学生课外进行巩固管理人员签字:日期:年月日作业布置1、学生上次作业评价:○好○较好○一般○差备注:2、本次课后作业:课堂小结家长签字:日期:年月日课前小测:1、已知,则BC的长为()2、一个袋中有标记数分别为-2,1,6的三张卡片(除标记数外完全相同),先从袋中随机取出一张卡片,把卡片上标记数作为点A的横坐标,放回后再从袋中随机取出一张卡片,把标记数作为点A的纵坐标,问点A在哪一象限的概率的概率最大?下列答案正确的是()A、第一象限B、第二象限C、第三象限D、第四象限3、如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是___4、在平面直角坐标系xoy中,已知二次函数y=x2+k图象与x轴没有交点,且该图象与直线y=-x+k都经过点P,|OP|=10,试求实数k的取值。

5、如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动.在P、Q两点移动过程中,当△PQC为等腰三角形时,求t的值.例:如图,在平面直角坐标系xoy中,点p为抛物线y=x2上一动点,是否存在点P,使∠pox=45度,若存在,请求P的坐标,若不存在,说明理由。

(完整版)二次函数中的存在性问题(等腰三角形的存在性问题)

(完整版)二次函数中的存在性问题(等腰三角形的存在性问题)

二次函数中的存在性问题(等腰三角形)[07福建龙岩]如图,抛物线254y ax ax =-+经过ABC △已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点, 是否存在PAB △是等腰三角形.若存在,求出所有符合条 件的点P 坐标;不存在,请说明理由. 解:(1)抛物线的对称轴5522a x a -=-= (2)(30)A -, (54)B , (04)C ,把点A 坐标代入254y ax ax =-+中,解得16a =-215466y x x ∴=-++(3)存在符合条件的点P 共有3个.以下分三类情形探索.设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,2BM = ① 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= 在1Rt ANP △中,1PN ==== 152P ⎛∴ ⎝⎭ ② AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ==== 252P ⎛∴ ⎝⎭③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△.312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = 3(2.51)P ∴-,[07广西河池]如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S , 求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ 成为以BQ 等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.(1)把x =0代入224233y x x =-++得点C 的坐标为C (0,2) 把y =0代入224233y x x =-++得点B 的坐标为B (3,0)(2)连结OP ,设点P 的坐标为P (x ,y )OBPC S 四边形=OPC S △+OPB S △ =112322x y ⨯⨯+⨯⨯= 3223x ⎛+- ⎝∵ 点M 运动到B 点上停止,∴03x ≤≤∴23324S x ⎛⎫=--+ ⎪⎝⎭(03x ≤≤)(3)存在. BC=13 ① 若BQ = DQ∵ BQ = DQ ,BD = 2 ∴ BM = 1 ∴OM = 3-1 = 2 ∴2tan 3QM OC OBC BM OB ∠=== ∴QM =23 所以Q的坐标为Q (2,23) . ② 若BQ =BD =2 ∵ △BQM ∽△BCO ,∴BQ BC =QM CO =BMBO∴=2QM∴ QM∵BQ BC =BM OB ∴ 3BM∴ BM ∴ OM = 3 ··················································· 11分 所以Q 的坐标为Q (313-,13) ··················································· 12分[07年云南省]已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ), 请求出△CBE 的面积S 的值;(3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并 写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由. 解:(1)∵抛物线经过点(1,0)A 、(5,0)B ∴(1)(5)y a x x =--. 又∵抛物线经过点(0,5)C ∴55a =,1a =.∴抛物线的解析式为2(1)(5)65y x x x x =--=-+.(2)∵E 点在抛物线上, ∴m = 42–4×6+5 = -3.∵直线y = kx +b 过点C (0, 5)、E (4, –3), ∴5,4 3.b k b =⎧⎨+=-⎩解得k = -2,b = 5.设直线y =-2x +5与x 轴的交点为D ,当y =0时,-2x +5=0,解得x =52.∴D 点的坐标为(52,0). ∴S =S △BDC + S △BDE =1515(5)5+(5)32222⨯-⨯⨯-⨯=10.(3)∵抛物线的顶点0(3,4)P -既在抛物线的对称轴上又在抛物线上,∴点0(3,4)P -为所求满足条件的点.(4)除0P 点外,在抛物线上还存在其它的点P 使得△ABP 为等腰三角形.理由如下:∵220024254AP BP ==+=>,∴分别以A 、B 为圆心半径长为4画圆,分别与抛物线 交于点B 、1P 、2P 、3P 、A 、4P 、5P 、6P , 除去B 、A 两个点外,其余6个点为满足条件的点. (说明:只说出P 点个数但未简要说明理由的不给分)xyC B AE–1 1 O[07山东威海]如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式. (3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.解:(1)有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =+,2(1y x =-.(2)设抛物线2l 的函数表达式为2y x bx c =++,点(12)A ,,(31)B ,在抛物线2l 上,12931b c b c ++=⎧∴⎨++=⎩,解得9211.2b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线2l 的函数表达式为291122y x x =-+. (3)229119722416y x x x ⎛⎫=-+=-+ ⎪⎝⎭,C ∴点的坐标为97416⎛⎫⎪⎝⎭,.过A B C ,,三点分别作x 轴的垂线,垂足分别为D E F ,,, 则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =. ABC ADEB ADFC CFEB S S S S ∴=--△梯形梯形梯形117517315(21)22122164216416⎛⎫⎛⎫=+⨯-+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭.x图①x图②x图③x延长BA 交y 轴于点G ,设直线AB 的函数表达式为y mx n =+, 点(12)A ,,(31)B ,在直线AB 上,213.m n m n =+⎧∴⎨=+⎩,解得125.2m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的函数表达式为1522y x =-+.G ∴点的坐标为502⎛⎫ ⎪⎝⎭,. 设K 点坐标为(0)h ,,分两种情况: 若K 点位于G 点的上方,则52KG h =-.连结AK BK ,. 151553122222ABK BKG AKG S S S h h h ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭△△△. 1516ABK ABC S S ==△△,515216h ∴-=,解得5516h =.K ∴点的坐标为55016⎛⎫ ⎪⎝⎭,.若K 点位于G 点的下方,则52KG h =-.同理可得,2516h =.K ∴点的坐标为25016⎛⎫⎪⎝⎭,. (4)作图痕迹如图③所示. 由图③可知,点P 共有3个可能的位置.注:作出线段AB 的中垂线得1分,画出另外两段弧得1分.x[07山东泰安]如图,在OAB △中,90B ∠=,30BOA ∠=,4OA =,将OAB △绕点O 按逆时针方向旋转至OA B ''△,C 点的坐标为(0,4). (1)求A '点的坐标; (2)求过C ,A ',A 三点的抛物线2y ax bx c =++的解析式;(3)在(2)中的抛物线上是否存在点P ,使以O A P ,,为顶点的三角形 是等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由 解:(1)过点A '作A D '垂直于x 轴,垂足为D ,则四边形OB A D ''为矩形 在A DO '△中,A D OA ''=sin 4sin 6023A OD '∠=⨯=2OD A B AB''=== ∴点A '的坐标为(2 (2)(04)C ,在抛物线上,4c ∴= 24y ax bx∴=++(40)A ,,(2A ',在抛物线24y ax bx =++上 16440424a b a b ++=⎧⎪∴⎨++=⎪⎩,3a b ⎧=⎪⎨⎪=⎩ ∴所求解析式为23)42y x x =++. (3)①若以点O 为直角顶点,由于4OC OA ==,点C 在抛物线上,则点(04)C ,为满足条件的点. ②若以点A 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(44),或(44)-,,经计算知;此两点不在抛物线上.③若以点P 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(22),或(22)-,,经计算知;此两点也不在抛物线上.综上述在抛物线上只有一点(04)P ,使OAP △为等腰直角三角形[08广东梅州]如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB , AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于 AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L . (3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)解: (1) DC ∥AB ,AD =DC =CB , ∴ ∠CDB =∠CBD =∠DBA , ∠DAB =∠CBA , ∴∠DAB =2∠DBA ,∠DAB +∠DBA =90 , ∴∠DAB =60 , ∠DBA =30 , AB =4, ∴DC =AD =2, R t ∆AOD ,OA =1,OD =3,.∴A (-1,0),D (0, 3),C (2, 3).(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A (-1,0),B (3,0), 故可设所求为 y =a (x +1)( x -3) 将点D (0,3)的坐标代入上式得, a =33-. 所求抛物线的解析式为 y =).3)(1(33-+-x x ···································· 7分 其对称轴L 为直线x =1. ········································································· 8分 (3) ∆PDB 为等腰三角形,有以下三种情况:①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,P 1D =P 1B ,∆P 1DB 为等腰三角形; ·········································································· 9分 ②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P 2、P 3,DB =DP 2,DB =DP 3, ∆P 2DB , ∆P 3DB 为等腰三角形;③与②同理,L 上也有两个点P 4、P 5,使得 BD =BP 4,BD =BP 5. ··················· 10分 由于以上各点互不重合,所以在直线L 上,使∆PDB 为等腰三角形的点P 有5个.[08福建南平]如图,平面直角坐标系中有一矩形纸片OABC ,O 为原点,点A C ,分别在x 轴,y 轴上,点B 坐标为(2)m ,(其中0m >),在BC 边上选取适当的点E 和点F ,将OCE △沿OE 翻折,得到OGE △;再将ABF △沿AF 翻折,恰好使点B 与点G 重合,得到AGF △,且90OGA ∠=.(1)求m 的值;(2)求过点O G A ,,的抛物线的解析式和对称轴; (3)在抛物线的对称轴...上是否存在点P ,使得OPG △是 等腰三角形?若不存在,请说明理由;若存在,直接答出.... 所有满足条件的点P 的坐标(不要求写出求解过程). (1)(2)B m ,,由题意可知2AG AB ==2OG OC ==OA m =90OGA ∠=,222OG AG OA ∴+= 222m ∴+=.又0m >,2m ∴=(2)过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,.又由(1)知(20)A ,, 设过O G A ,,三点的抛物线解析式为2y ax bx c =++ 抛物线过原点,0c ∴=.又抛物线过G A ,两点,1420a b a b +=⎧∴⎨+=⎩解得12a b =-⎧⎨=⎩∴所求抛物线为22y x x =-+ ∴它的对称轴为1x =.(3)答:存在,满足条件的点P 有(10),,(11)-,,(112),,(112)+,.[08湖南株洲]如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B 的坐标为(3,-1),二次函数2y x =-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.(1)222345y x x y x x =-+-=-+-或等 (满足条件即可) ……1分(2)设2l 的解析式为2y x bx c =-++,联立方程组21193b c b c-=-++⎧⎨-=-++⎩, 解得:911,22b c ==-,则2l 的解析式为291122y x x =-+-, ……3分点C 的坐标为(97,416-) ……4分(3)如答图23-1,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、E 、F ,则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =.得:1516ABC ABED BCFE CFD S S S S ∆=--=梯形梯形梯形A . ……5分延长BA 交y 轴于点G ,直线AB 的解析式为1522y x =-,则点G 的坐标为(0,52-),设点P 的坐y ox 图(1)yo x 图(2) l 1l 2标为(0,h )①当点P 位于点G 的下方时,52PG h =--,连结AP 、BP ,则52ABP BPG APG S S S h ∆∆∆=-=--,又1516ABC ABP S S ∆∆==,得5516h =-,点P 的坐标为(0,5516-). …… 6分②当点P 位于点G 的上方时,52PG h =+,同理2516h =-,点P 的坐标为(0,2516-).综上所述所求点P 的坐标为(0,5516-)或(0,2516-) …… 7分(4) 作图痕迹如答图23-2所示.由图可知,满足条件的点有1Q 、2Q 、3Q 、4Q ,共4个可能的位置. …… 10分答图23-2EF 答图23-1[08浙江温州]如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在, 请求出所有满足要求的x 的值;若不存在,请说明理由. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 10C ∴∠===,45QM QP ∴=,1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=. ③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BA C CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.A BCD ER P H QA BCD ER P H QM2 1 HA B CDE RPHQ二次函数中的存在性问题(直角三角形)[08辽宁十二市]如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.x。

二次函数存在性问题,角度问题

二次函数存在性问题,角度问题

二次函数存在性问题,角度问题1.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.2.如图,在直角坐标系中,二次函数经过A(﹣2,0),B(2,2),C(0,2)三个点.(1)求该二次函数的解析式.(2)若在该函数图象的对称轴上有个动点D,求当D点坐标为何值时,△ACD的周长最小.(3)在直线y=x上是否存在一点E,使得△ACE为直角三角形?有,请求出E点坐标;没有,说明理由.3.如图抛物线y=ax2+bx+c与x轴交于A(1,0)、B(4,0)两点,与y轴交于点C(0,﹣3),抛物线顶点为点D.(1)求抛物线的解析式;(2)P是抛物线上直线BC上方的一点,过点P作PQ⊥BC于点Q,求PQ的最大值及此时P点坐标;(3)抛物线上是否存在点M,使得∠BCM=∠BCO?若存在,求直线CM的解析式.4.如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度;最大时,求点E的坐标及S△ABF(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.6.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A、B,与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)点A的坐标为,点B的坐标为;(2)如图1,当点P在直线BC上方时,过点P作PD⊥x轴于点D,交直线BC于点E.若PE=2ED,求△PBC 的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求这个抛物线的解析式及顶点D的坐标;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)设动点P的横坐标为m,△PAC的面积为S.请直接写出面积S随着m的增大而减小时m的取值范围.8.如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B.(1)求抛物线解析式;(2)E(m,0)是x轴上一动点,过点E作ED⊥x轴于点E,交直线AB于点D,交抛物线于点P,连接PB.①点E在线段OA上运动,若△PBD是等腰三角形时,求点E的坐标;②点E在x轴的正半轴上运动,若∠PBD+∠CBO=45°,请直接写出m的值.9.如图在平面直角坐标系中,已知抛物线y=x2﹣2x+c与两坐标轴分别交于A,B,C三点,且OC=OB,点G是抛物线的顶点.(1)求抛物线的解析式.(2)若点M为第四象限内抛物线上一动点,点M的横坐标为m,四边形OCMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是x轴上的动点,判断有几个位置能够使得点P、Q、A、G为顶点的四边形为平行四边形,直接写出相应的点P的坐标.10.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n 与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣2,0),D(10,﹣12),P点为抛物线y=﹣x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式.(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线于点E,作PF∥y轴交直线l于点F,求PE+PF 的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形?若存在,直接写出M的坐标;若不存在,请说明理由.11.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n 与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y =﹣x2+bx+c上一动点(不与A、D重合).(1)直接写出抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,连接PA、PD,①当△PAD的面积最大时,P点的坐标是;②当AB平分∠DAP时,求线段PA的长.(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.12.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,经过B、C两点的抛物线y=ax2+x+c与x轴的另一个交点为A.(1)求抛物线的解析式;(2)点E是直线BC上方抛物线上的一个动点,过点E作y轴的平行线交直线BC于点M,当△BCE面积最大时,求出点M的坐标;(3)在(2)的结论下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形是平行四边形?如果存在,请求出点P的坐标:如果不存在,请说明理由.13.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3),点D是顶点,过:S△CEB=3:5.点C的直线交线段AB于点E,且S△ACE(1)求抛物线的解析式及直线CE的解析式;(2)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(3)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使AF+FH的值最小此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.14.如图,抛物线与x轴交于A(﹣1,0)、B(3,0),交y轴于C(0,3).(1)求抛物线的解析式;(2)P是直线BC上方的抛物线上的一个动点,设P的横坐标为t,P到BC的距离为h,求h与t的函数关系式,并求出h的最大值;(3)设点M是x轴上的动点,在平面直角坐标系中,存在点N,使得以点A、C、M、N为顶点的四边形是菱形,直接写出所有符合条件的点N坐标.15.如图,抛物线y=x2+bx+c过A(4,0),B(2,3)两点,交y轴于点C.动点P从点C出发,以每秒5个单位长度的速度沿射线CA运动,设运动的时间为t秒.(1)求抛物线y=﹣x2+bx+c的表达式;(2)过点P作PQ∥y轴,交抛物线于点Q.当t=时,求PQ的长;(3)若在平面内存在一点M,使得以A,B,P,M为顶点的四边形是菱形,求点M的坐标.16.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n 过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接PA,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣的图象经过点A(﹣1,0),C(2,0),与y轴交于点B,其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点的坐标;(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;(3)M(x,t)为抛物线对称轴上一个动点,若平面内存在点N,使得以A、B、M、N为顶点的四边形为菱形,则这样的点N共有个.18.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.19.如图,抛物线y=ax2﹣6x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+5经过点B(5,0),C(0,5).(1)求抛物线的解析式;(2)抛物线的对称轴直线l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由;(3)在直线BC上是否存在点M,使AM与直线BC的夹角等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.20.如图,抛物线y=ax2+bx+6与x轴交于A(2,0),B(8,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,当∠PCB=∠BCO时,求点P的横坐标.21.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴正半轴交于点A(4,0),与y轴交于点B(0,2),点C在该抛物线上且在第一象限.(1)求该抛物线的表达式;(2)将该抛物线向下平移m个单位,使得点C落在线段AB上的点D处,当AD=3BD时,求m的值;(3)连接BC,当∠CBA=2∠BAO时,求点C的坐标.22.如图①,在平面直角坐标系中,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图②,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)抛物线上是否存在点P,使∠CBP+∠ACO=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由.23.如图1,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,交y轴于点C,CO=3AO,点P是抛物线上第一象限内的一动点,点Q在抛物线上.(1)求抛物线的解析式;(2)过点P作PD∥y轴交BC于点D,求线段PD长度的最大值;(3)如图2,当BQ交y轴于点M,∠QBC=∠PBC,∠BCP=45°,求点M的坐标.。

二次函数中等腰三角形点的存在性问题(共15张PPT)

二次函数中等腰三角形点的存在性问题(共15张PPT)

1. 如图,已知点A (-2,1),B (4,3), 则线段AB的长是________.
C
练习:如图,已知点A (-2,3),B (4,-1), 则线段AB的长是________.
y
(-2,3) A.
x o
B. (4,-1)
例题精讲
1. 如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴 交于A、B两点,与y轴交于点C,且BO=OC=3AO. (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点P, 使△PBC是等腰三角形?若存在, 请写出符合条件的P点坐标, 若不存在,请说明理由.
四.问题应用
①注意分类方式,要做到不重、不漏; ②操作分三步进行;
P1(0, 2), P2 (0, 2), P3(0, 2
3),
P4
(0,
2 3
3)
一、回顾两点间距离公式
1.两点间距离公式
平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),
则两点间距离公式
AB
(x2 x1)2 ( y2 y1)2 .
一.问题的提出
如图,点A、B为两定点,在直 线m上是否存在一点P,使得 △PAB是等腰三角形?
二.问题分析
演示
三.问题解决——几何作图法
分类: ①以P为顶点,PA=PB ②以A为顶点,AP=AB ③以B为A为圆心AB为半径 ③以B为圆心BA为半径
【方法小结】
1. 若一个三角形是等腰三角形,没有明确给出底边和腰,则需 要进行分类讨论. 2. 以线段AB为边的等腰三角形构造方法如上图所示(基本图 形). 等腰三角形的另一个顶点在线段AB的垂直平分线上,或 以点A、点B为圆心,AB长为半径的圆周上(不与线段AB共 线).(两圆一线法找点)

二次函数解析几何--存在性问题

二次函数解析几何--存在性问题

二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

一、方法总结解存在性问题的一般步骤: (1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。

二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+- (2)中点坐标公式:1212,22x x y y x y ++== (3)斜率公式:①2121y y k x x -=-;②tan k θ=(θ为直线与x 轴正方向的夹角)(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2 ②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一面积问题例1.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.2.(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.例2:如图,在坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A (1,0),B (0,2),抛物线y=21x 2+bx-2的图象过C 点. (1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l .当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?x CO yA B D1 1 图2变式练习:如图,抛物线y=ax 2+bx+c 关于直线x=1对称,与坐标轴交与A ,B ,C 三点,且AB=4,点D (2,23)在抛物线上,直线l 是一次函数y=kx-2(k≠0)的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线l 平分四边形OBDC 的面积,求k 的值;例3:将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点 B (–3,0).(1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;y xCBOA变式练习:如图1,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;能力提升:1.(2013菏泽)如图1, △ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图像与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图像上,且该二次函数图像上存在一点D 使四边形ABCD 能构成平行四边形. (1)试求b 、c 的值,并写出该二次函数的解析式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问:①当P 运动到何处时,由PQ ⊥AC ?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.题型二:构造直角三角形例2.(2010四川乐山)如图所示,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若tan ∠OAC=2. (1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l 上是否存在点P ,使∠APC=90°?若存在,求出点P 的坐标;若不存在,请说明理由;变式练习: 1.函数218y x =的图象如图所示,过y 轴上一点()02M ,的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D .(1)当点A 的横坐标为2-时,求点B 的坐标;(2)在(1)的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P 的坐标;若不存在,请说明理由;y D B MA COx3.(2010山东聊城)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90º的点P 的坐标.4.(2012广州)如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1E5.(2013白银)如图,在直角坐标系xOy 中,二次函数y=x 2+(2k ﹣1)x+k+1的图象与x 轴相交于O 、A 两点.(1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6,求点B 的坐标; (3)对于(2)中的点B ,在此抛物线上是否存在点P ,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB 的面积;若不存在,请说明理由.6.(2013山西)如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.7.(2013济宁)如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB 与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.8.(2013 绵阳)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A(-1,0),直线l:x=m(m>1)与x轴交于D。

二次函数存在性问题(一题多问)

二次函数存在性问题(一题多问)

【原题】已知,如图1,经过点A (-3,0)的抛物线2y ax bx c =++与x 轴相交于点B (-2,-2)及原点O .点D 是抛物线第二象限图像上的一点,AH ⊥x 轴与H 点,且tan ∠DAH =4. 【问题】(1)求点D 坐标及抛物线的解析式;(2)在线段OB 下方的抛物线上有一点M ,当△MOB 的面积最大时,求点M 的坐标,并求出最大面积.A 图1xyH BDOA xyBDO(3)在(2)的条件下,抛物线上是否存在点N (不与M 重合),使得S △OBN =S △OBM ,若存在,求出N 点坐标;若不存在,请说明理由. 变式练习:抛物线上是否存在点N ,使得S △OBN =14S △OBD .(4)连接BD ,取BD 中点F ,在抛物线的对称轴上是否存在一点Q ,使得QF +QD 的值最小,求出点Q 坐标,并求出QF +QD 的最小值.变式练习:①连接BD ,取BD 中点F ,点R 、S 分别是x 轴、y 轴上的动点,当四边形DFRS 的周长最小时,求出R 、S 的坐标,并求出四边形DFRS 周长的最小值.②连接BD ,在x 轴上是否存在一点Q ,使得∣QD -QB ∣的值最大,若存在,求出点Q 坐标,并求出最大值;若不存在,请说明理由.③连接AD ,点M 、N 分别是线段OD 、AD 上的动点,连接AM ,MN ,当AM +MN 的值最小时,求出点N 的坐标.④将线段OB 向左移动m 个单位长度,得到线段O ′B ′连接O ′D 、B ′D ,是否存在这样的m ,使得O ′D +B ′D 的值最小?若存在,求出m 的值;若不存在,请说明理由.⑤已知P (0,a )、Q (0,a +3)是y 轴上的两个动点,当四边形BDQP 的周长最小时,求a 的值.A xyBDOA xyBDO(5)在(4)的条件下,点G 是线段OD 上的动点,当△DFG 是等腰三角形时,求点G的坐标.(6)在(4)的条件下,点G 是线段OD 上的动点,把△BFG 沿着线段FG 翻折,是否存在这样的点G ,使△BFG 与△DFG 的重叠部分的面积等于△BDG 的14,若存在,求出DG 的长;若不存在,请说明理由.(7)若点K 在抛物线上,点L 在抛物线的对称轴上,且A 、O 、K 、L 为顶点的四边形是平行四边形,求点K 的坐标;A xyBDOA xyBDOA xyBDO变式练习:若点K 在抛物线上,点L 在x 轴上,且A 、B 、K 、L 为顶点的四边形是平行四边形,求点K 的坐标.(若求L 的坐标呢?)(8)若点U 是抛物线对称轴上一点,当△ADU 是Rt △时,求点U 的坐标.A xyBDOA xyBDO(9)连接BD ,点N 是直线BD 上的一点,在y 轴的正半轴,是否存在一点M ,使得∠MNO =45°,且存在唯一的N 点,若存在,求出M 点坐标;若不存在,请说明理由.变式训练:连接BD ,把△OBD 沿着OD 翻折,使得点B 落在第一象限的点B ˊ处,点P从点D 出发向点B 作匀速运动,点Q 从点B ˊ出发向点D 作匀速运动,两点同时出发,速度均为每秒一个单位长度,连接OP ,OQ ,当时间t 为多少秒时,PO 平分∠BPQ 的同时,QO 平分∠PQ B ˊ?A xyBDOA xyBDOB ˊ(10)P 是抛物线上的第一象限内的动点,过点P 作PT ⊥x 轴,垂足为T ,是否存在点P ,使得以P 、T 、A 为顶点的三角形△BOD 相似?若存在,求出点P 的坐标;若不存在,请说明理由.变式练习:P 是抛物线上的一点,过点P 作PT ⊥x 轴,垂足为T ,过点B 作BI ⊥x 轴,垂足为I ,是否存在点P ,使得以P 、T 、A 为顶点的三角形△ABI 相似?若存在,求出点P 的坐标;若不存在,请说明理由.(11)若点C 在抛物线上,且∠CDO =∠BDO ,试探究:在(2)的条件下,是否存在点G ,使得△GOD ∽△COB ?若存在,请求出所有满足条件的点G 坐标;若不存在,请说明理由.I A xyBDOCA xyBDO。

点的存在性问题

点的存在性问题

二次函数中存在点的问题1、如图,在平面直角坐标系xOy 中,AB ⊥x 轴于点B ,AB=3,tan ∠AOB=3/4。

将△OAB 绕着原点O 逆时针旋转90o ,得到△OA 1B 1;再将△OA 1B 1绕着线段OB 1的中点旋转180o ,得到△OA 2B 1,抛物线y=ax 2+bx+c (a ≠0)经过点B 、B 1、A 2。

(1)求抛物线的解析式;(2)在第三象限内,抛物线上的点P 在什么位置时,△PBB 1的面积最大?求出这时点P 的坐标;(3)在第三象限内,抛物线上是否存在点Q ,使点Q 到线段BB 1的距离为22?若存在,求出点Q 的坐标;若不存在,请说明理由。

2、如图,经过原点的抛物线y=﹣x 2+2mx (m >0)与x 轴的另一个交点为A .过点P (1,m )作直线PM ⊥x 轴于点M ,交抛物线于点B .记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连接CB ,CP .(1)当m=3时,求点A 的坐标及BC 的长;(2)当m >1时,连接CA ,问m 为何值时CA ⊥CP ?(3)过点P 作PE ⊥PC 且PE=PC ,问是否存在m ,使得点E 落在坐标轴上?若存在,求出所有满足要求的m 的值,并定出相对应的点E 坐标;若不存在,请说明理由.3、如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2 经过A,B两点。

(1)求A点坐标及线段AB的长;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B 移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒。

①当PQ⊥AC时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围。

4、如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.。

二次函数中存在性问题

二次函数中存在性问题

二次函数中存在性问题典例分析例1.已知,如图,已知抛物线y=ax2+bx x轴交于A(3,0),B(-1,0)两点,与y轴交于点C,连接AC,BC,若点M是x轴上的动点(不与点B重合),MN⊥AC于点N,连接CM.(1)求抛物线的解析式;(2)当MN=1时,求点N的坐标;(3)是否存在以点C,M,N为顶点的三角形与△ABC相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.例2.如图,已知抛物线y=ax2+bx+c的图象与x轴交于点A,B(点A在点B的右侧),且与y轴交于点C,若OA=OC,一元二次方程ax2+bx+c=0的两根为1和3,点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F 为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.同步练习:1、如图,在平面直角坐标系中,抛物线y=ax2-4ax+1与x轴正半轴交于点A和点B,与y 轴交于点C,且OB=3OC,点P是第一象限内的点,联结BC,△PBC是以BC为斜边的等腰直角三角形.(1)求这个抛物线的解析式;(2)求点P的坐标;(3)点Q在x轴上,若以Q、O、P为顶点的三角形与以C、A、B为顶点的三角形相似,求点Q的坐标.2、如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.参考答案例1、答案:(1)∵抛物线ya =ax 2+bxx 轴交于A (3,0),B (-1,0)两点,得0930a b a b ⎧=+⎪⎨=-⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩2y x x = (2)∵233y x x =--∴当x =0时,y=,∴C (0,,∴OC∵A (3,0),∴OA =3,∴∠OAC =30°,∵MN =1,∠MNA =90°,在Rt △AMN 中,AN过点N 作NH ⊥x 轴于点H ,∴NH=2,AH =32, 当点M 在点A 左侧时,N 的坐标为(32,-2), 当点M 在点A 右侧时,N 的坐标为(,32), 综上,点N 的坐标为(32,-32)或(,32), (3)设M 点为(x ,0),则由(2)可得AB=4,BC2,AC,∵BC2+AC2=AB2,∴△ABC是直角三角形,∠BCA=90°,又由2S△CMA=AM×OC=AC×MN得:MN=,∴若以点C,M,N为顶点的三角形与△ABC相似,则:①:=,即2(3)4x-=234x+,即6x=6,所以x=1,此时M为(1,0);②:=,即2(3)43x-=234x+,即x2+3x=0,解之可得:x=0或x=-3,∴M为(0,0)或(-3,0),综上所述,存在以点C,M,N为顶点的三角形与△ABC相似,且M的坐标为(1,0)或(0,0)或(-3,0).分析:(1)把A、B两点坐标代入解析式求出a、b后可以得解;(2)过点N作NH⊥x轴于点H,则根据题意可以得到NH及AH的值,再分点M在点A左侧和点M在点A右侧两种情况分别写出点N坐标即可;(3)由题意可得△ABC为直角三角形,所以若以点C,M,N为顶点的三角形与△ABC相似,则MN CMCB AB=或MN CMCA AB=,由这两种情况分别求出M的坐标即可.例2、答案:(1)∵一元二次方程ax2+bx+c=0的两根为1和3,∴OA=OC=3,OB=1,∴点C(0,3),设二次函数的表达式y=a(x-1)(x-3),∴a(0-1)(0-3)=3,∴a=1,∴y=(x-1)(x-3),∴抛物线解析式为:y=x2-4x+3;(2)分两种情况:①如图1,当点P1为直角顶点时,点P1与点B重合,则P1(1,0),②如图2,当点A为△APD2的直角顶点,∵OA=OC,∠AOC=90°,∴∠OAD2=45°,当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2.又∵P2D2∥y轴,∴P2D2⊥AO,∴点P2,D2关于x轴对称,设直线AC的函数关系式为y=kx+b.由题意得:303k bb+=⎧⎨=⎩,∴13kb=-⎧⎨-⎩,∴直线AC的解析式为:y=-x+3,∵D2在y=-x+3上,P2在y=x2-4x+3上,∴设D2(x,-x+3),P2(x,x2-4x+3),∴(-x+3)+(x2-4x+3)=0,∴x2-5x+6=0,∴x1=2,x2=3(舍),∴当x=2时,y=x2-4x+3=22-4×2+3=-1,∴P2的坐标为P2(2,-1),综上所得P点坐标为P1(1,0),P2(2,-1);(3)分两种情况考虑:①以AP为边构造平行四边形,平移直线AP交x轴于点E,交抛物线于点F,∵点P 的坐标为(2,-1),∴设点F 的坐标为(x ,1),∴x 2-4x +3=1,解得:x 1=,x 2=,∴点F 的坐标为(1)和(,1);②以AP 为对角线进行构造平行四边形,∵点A ,E 的纵坐标为0,∴点F 的纵坐标为-1,此时点P ,F 重合,∴不存在这种情况,舍去.综上所述,符合条件的F 点有两个,即(,1)和(,1).分析:(1)先求出点C 坐标,代入解析式可求解;(2)分两种情况讨论,由直角三角形的性质可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.同步练习:1、解:(1)∵抛物线241y ax ax =-+∴点C 的坐标为(0,1)∵OB =3OC ∴点B 的坐标为(3,0)∴91210a a -+=∴13a =∴214133y x x =-+ (2)如图,过点P 作PM ⊥y 轴,PN ⊥x 轴,垂足分别为点M ,N .∵∠MPC =90°-∠CPN ,∠NPB =90°-∠CPN ,∴∠MPC =∠NPB在△PCM 和△PBN 中,PMC PNB MPC NPB PC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PCM ≌△PBN ,∴PM =PN .).,(a a P 设点22PB PC = ,2222)3()1(a a a a +-=-+∴,2=a 解得,).2,2(P ∴),0,3(,2B x =该抛物线对称轴为 ).0,1(A ∴),1,0(),0,3(),0,1(),2,2(C B A P .2,22,22===∴AB AC PO,45,135 =∠=∠POB CAB 31tan ==∠∆OB OC OBC BOC Rt 中,在, ,90,45 <∠≠∠∴OCB OBC ,OA OC OAC Rt =∆中,在,45,45 <∠∴=∠∴ACB OCA左侧时:只有在点相似时,点与当O Q ABC OPQ ∆∆)0,4(,4,2222)1(-∴=∴=∴=Q OQ OQOQ OP AB AC 时,当 )0,2(,2,2222)2(-∴=∴=∴=Q OQ OQ OP OQ AB AC 时,当当点Q 在点A 右侧时,综上所述,点Q 的坐标为)0,2()0,4(--或2、解:(1)∵B (2,t )在直线y =x 上,∴t =2,∴B (2,2),把A 、B 两点坐标代入抛物线解析式可得42293042a b a b +=⎧⎪⎨+=⎪⎩,解得23a b =⎧⎨=-⎩, ∴抛物线解析式为y =2x 2-3x ;(2)如图1,过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,∵点C 是抛物线上第四象限的点,∴可设C (t ,2t 2-3t ),则E (t ,0),D (t ,t ),∴OE =t ,BF =2-t ,CD =t -(2t 2-3t )=-2t 2+4t ,∴S △OBC =S △CDO +S △CDB =12CD •OE +12CD •BF =12(-2t 2+4t )(t +2-t )=-2t 2+4t , ∵△OBC 的面积为2,∴-2t 2+4t =2,解得t 1=t 2=1,∴C (1,-1);(3)存在.连接AB 、OM .设MB 交y 轴于点N ,如图2,∵B (2,2),∴∠AOB =∠NOB =45°,在△AOB 和△NOB 中=AOB NOB OB OBABO NBO ⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△AOB ≌△NOB (ASA ),∴ON =OA =32, ∴N (0,32),∴可设直线BN 解析式为y =kx +32, 把B 点坐标代入可得2=2k +32,解得k =14,∴直线BN 的解析式为y =14x +32, 联立直线BN 和抛物线解析式可得2134223y x y x x ⎧=+⎪⎨⎪=-⎩,解得22x y =⎧⎨=⎩或384532x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴M (-38,4532), ∵C (1,-1),∴∠COA =∠AOB =45°,且B (2,2),∴OB =OC, ∵△POC ∽△MOB ,∴OM OB OP OC==2,∠POC =∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,∵∠COA =∠BOG =45°,∴∠MOG =∠POH ,且∠PHO =∠MGO ,∴△MOG ∽△POH , ∴OM MG OG OP PH OH===2, ∵M (-38,4532), ∴MG =38,OG =4532, ∴PH =12MG =316,OH =12OG =4564,∴P (4564,316). 根据对称性可知,作点P 关于直线OC 使得对称点P ′,显然△P ′OC ∽△MOB , ∵直线OC 的解析式为y =-x ,∴直线PP ′的解析式为y =x -3364, 由3364y x y x =-⎧⎪⎨=-⎪⎩,解得3312833128y y ⎧=⎪⎪⎨⎪=⎪⎩, 设P ′(m ,n ),则有45642m +=33128,3162n +=-33128, 解得m =-316,n =-4564,∴P ′(-316,-4564), 故存在满足条件的点P ,其坐标为(4564,316)或(-316,-4564).。

中考数学二次函数存在性问题及参考答案

中考数学二次函数存在性问题及参考答案

中考数学二次函数存在性问题及参照答案一、二次函数中相像三角形的存在性问题1. 如图,把抛物线y x2向左平移1个单位,再向下平移 4 个单位,获得抛物线y ( x h) 2k .所得抛物线与x 轴交于A,B两点(点A在点B的左侧),与y轴交于点C,极点为D.(1)写出h、k的值;(2)判断△ ACD的形状,并说明原因;(3)在线段 AC上能否存在点 M,使△ AOM∽△ ABC若存在,求出点 M的坐标;若不存在,说明原因 .2.如图,已知抛物线经过 A(﹣ 2,0),B(﹣ 3,3)及原点 O,极点为C.( 1)求抛物线的分析式;( 2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、 O、 D、 E 为极点的四边形是平行四边形,求点 D 的坐标;( 3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,能否存在点 P,使得以 P、M、A 为极点的三角形△ BOC相像若存在,求出点P 的坐标;若不存在,请说明原因.二、二次函数中面积的存在性问题3. 如图,抛物线y ax2bx a > 0 与双曲线 ykx订交于点 A,B.已知点 B 的坐标为(- 2,- 2),点A 在第一象限内,且tan ∠ AOX= 4.过点 A 作直线 AC∥ x 轴,交抛物线于另一点C.(1)求双曲线和抛物线的分析式;(2)计算△ ABC的面积;(3)在抛物线上能否存在点 D,使△ ABD的面积等于△ ABC的面积.若存在,请你写出点 D的坐标;若不存在,请你说明原因.yA DO xB C4.如图,抛物线 y=ax2+c(a> 0)经过梯形 ABCD的四个极点,梯形的底 AD在 x 轴上,此中 A(- 2,0 ), B(- 1, -3).( 1)求抛物线的分析式;(3 分)()点 M为 y 轴上随意一点,当点 M到 A、B两点的距离之和为最小时,求此时点M的坐标;(2分)2( 3)在第( 2)问的结论下,抛物线上的点P 使=4建立,求点P的坐标.( 4 分)S△PAD S△ABM(4)在抛物线的 BD段上能否存在点 Q使三角形 BDQ的面积最大,如有,求出点 Q的坐标,若没有,请说明原因。

中考数学 二次函数存在性问题 及参考答案

中考数学 二次函数存在性问题 及参考答案

中考数学二次函数存在性问题及参考答案中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线 $y=x^2$ 向左平移1个单位,再向下平移4个单位,得到抛物线 $y=(x-h)^2+k$。

所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。

1)写出h、k的值;2)判断△ACD的形状,并说明理由;3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。

2.如图,已知抛物线经过A($-2,0$),B($-3,3$)及原点O,顶点为C。

1)求抛物线的解析式;2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;3)P是抛物线上的第一象限内的动点,过点P作PM⊥x 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。

二、二次函数中面积的存在性问题3.如图,抛物线 $y=ax^2+bx$ ($a>0$)与双曲线$y=\frac{k}{x}$ 相交于点A,B。

已知点B的坐标为($-2,-2$),点A在第一象限内,且 $\tan\angle AOX=4$。

过点A作直线AC∥x轴,交抛物线于另一点C。

1)求双曲线和抛物线的解析式;2)计算△ABC的面积;3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积。

若存在,请写出点D的坐标;若不存在,请说明理由。

4.如图,抛物线 $y=ax^2+c$ ($a>0$)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A($-2,0$),B($-1,-3$)。

1)求抛物线的解析式;2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;3)在第(2)问的结论下,抛物线上的点P使$\triangle PAD=4\triangle ABM$ 成立,求点P的坐标。

二次函数图象上点的存在性问题

二次函数图象上点的存在性问题

联合函数y=x2 可得
ቤተ መጻሕፍቲ ባይዱ
P(3,9)
M
练习:(2009—2010 昌平二模)如图,抛物线y=ax2+bx-4a经 过A(-1,0)、C(0,4)两点,与x轴交于另一点B. (1)求抛物线的解析式; (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关 于直线BC对称的点的坐标; (3)在(2)的条件下,连接BD,点P为抛物线上一点, 且∠DBP=45°,求点P的坐标.
例1已知抛物线 y=x2-2x-3 的的顶点为 D,点 P、 Q 是抛 物线上的动点,若△DPQ 是等边三角形,求△DPQ的面积。
解:根据 y=x2-2x-3可得D(1,-4),因为△QPD是等边三
角形,所以直线DQ的斜率为 ,因为D(1,-4),
所以l DQ: y= x-4-
,与二次函数y=x2-2x-3联立起来解方 程,可得xQ=1+
∵P点在抛物线上,
∴P (
)
全等、相似与角度
板块二:二次函数与多个角
技巧和方法: 在抛物线上找点,满足两角和(差)关系。
例1二次函数 y=x2-2x-3 的图象与 x 轴交于 A、 B 两点 (点 A 在点 B 的左侧),与 y 轴交于 C 点,在二次函数的图 象上是否存在点 P,使锐角∠PCO>∠ACO?若存在,请你 求出 P 点的横坐标的取值范围;若不存在,请你说明理由。
例3 (2010 苏州)如图,以 A 为顶点的抛物线与 y 轴交于点 B。 已知 A、 B 两点的坐标分别为(3, 0)、 (0, 4)。 ⑶在⑵的条件下,试问:对于抛物线对称轴上的任意一点 P, PA2+PB2+PM2>28 是否总成立? 请说明理由
解:(1) (1)设y=a(x-3)2,把B(0,4)代入,得a= (2)∵m,n为正整数∴ (m-3)2 应该是9的整数,∴m是3的倍数, 又∵m>3,∴m=6,9,12..., 当m=6时,n=4,此时MA=5,MB=6, ∴四边形OAMB的四边长为3,4,5,6, 当m≥9时,MB>6,∴四边形OAMB的四边长不能是四个连续的 正整数,∴点M坐标只有一种可能(6,4); (3)设P(3,t),MB与对称轴交点为D,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数中的存在性问题
1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由.
2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式;
(2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由.
3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.
4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3).
(1)求直线AC及抛物线的解析式;
(2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积;
(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.
5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C.
(1)求直线BC的解析式;
(2)求抛物线的顶点及对称轴;
(3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由;
(4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.
1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,
2.与y轴交于点C.在直线CA上方的抛物线上是否存在
3.一点D,使得△ACD的面积最大?若存在,求出点D
4.的坐标;若不存在,请说明理由.
解答:
解:对于抛物线y=﹣x2+x﹣3,
令y=0,得到﹣x2+x﹣3=0,
解得:x=1或x=4,
∴B(1,0),A(4,0),
令x=0,得到y=﹣3,即C(0,﹣3),
设直线AC解析式为y=kx+b,
将A与C坐标代入得:,
解得:k=,b=﹣3,
∴直线AC解析式为y=x﹣3,
设平行于直线AC,且与抛物线只有一个交点的直线方程为y=x+m,
此时直线与抛物线交于点D,使得△ACD的面积最大,
与二次函数解析式联立消去y得:﹣x2+x﹣3=x+m,
整理得:3x2﹣12x+4m+12=0,
∴△=144﹣12(4m+12)=0,
解得:m=0,
∴此时直线方程为y=x,点D坐标为(2,).
2.(2008•宁波校级自主招生)已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.
(1)求直线和抛物线解析式;
(2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由.
解答:解:(1)∵直线y=kx+4过A(1,m),B(4,8)两点,
∴,解得,∴y=x+4,
把O、A、B三点坐标代入抛物线解析式,得,,
∴y=﹣x2+6x;
∴S△OCD=2S△OAB=12,×6×h=12,解得h=4,
由﹣x2+6x=4,得x=3±,
∴D(3+,4)或(3﹣,4).
3.(2014春•昌平区期末)已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过
点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积
最大?若存在,求出点D的坐标;若不存在,说明理由.
解答:
解:(1)把x=0代入y=x﹣3得y=﹣3,则C点坐标为(0,﹣3),
把y=0代入y=x﹣3得x﹣3=0,解得x=4,则A点坐标为(4,0),
把A(4,0),C(0,﹣3)代入y=﹣x2+mx+n得,
解得,
所以二次函数解析式为y=﹣x2+x﹣3;
(2)存在.
过D点作直线AC的平行线y=kx+b,当直线y=kx+b与抛物线只有一个公共点时,点D到AC的距离最大,此时△ACD的面积最大,
∵直线AC的解析式为y=x﹣3,
∴k=,即y=x+b,
由直线y=x+b和抛物线y=﹣x2+x﹣3组成方程组得,消去y得到3x2﹣
12x+4b+12=0,
∴△=122﹣4×3×(4b+12)=0,解得b=0,
∴3x2﹣12x+12=0,解得x1=x2=2,
把x=2,b=0代入y=x+b得y=,
∴D点坐标为(2,).
4.(2010•孝感模拟)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3).
(1)求直线AC及抛物线的解析式;
(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.
解答:解:(1)∵点C(2,3)在直线y=kx+1上,
∴2k+1=3.
解得k=1.
∴直线AC的解析式为y=x+1.
∵点A在x轴上,
∴A(﹣1,0).
∵抛物线y=﹣x2+bx+c过点A、C,

解得
∴抛物线的解析式为y=﹣x2+2x+3.
(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4,
可得抛物线的对称轴为x=1,B(3,0).
∴E(1,2).
根据题意,知点A旋转到点B处,直线l过点B、E.
设直线l的解析式为y=mx+n.
将B、E的坐标代入y=mx+n中,
联立可得m=﹣1,n=3.
∴直线l的解析式为y=﹣x+3.
∴P(0,3).
过点E作ED⊥x轴于点D.
∴S△PAE=S△PAB﹣S△EAB=AB•PO﹣AB•ED=×4×(3﹣2)=2.
(3)存在,点F的坐标分别为(3﹣,0),(3+,0),(﹣1﹣,0)(﹣1+,0).
5.(2013秋•红安县校级月考)如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A
在B的左侧),交y轴于点C.
(1)求直线BC的解析式;
(3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由;
(4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.
考点:二次函数综合题.
专题:压轴题.
分析:(1)令y=0,解关于x的一元二次方程求出点B的坐标,令x=0求出点C的坐标,设直线BC的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答即可;
(2)把二次函数解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;
(3)根据轴对称确定最短路线问题,直线BC与对称轴的交点即为使线段AQ+CQ最小的点Q,然后利用直线解析式求解即可;
(4)过点P作PD∥y轴与BC相交于点D,根据抛物线解析式与直线BC的解析式表示出PD,再根据S△PBC=S△PCD+S△PBD列式整理,然后利用二次函数最值问题解答.
解答:
解:(1)令y=0,则﹣x2+x+2=0,
整理得,x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
所以,点B的坐标为(3,0),
令x=0,则y=2,
所以,点C的坐标为(0,2),
设直线BC的解析式为y=kx+b,则,
解得,
所以,直线BC的解析式为y=﹣x+2;
(2)∵y=﹣x2+x+2,
=﹣(x2﹣2x+1)+2+,
=﹣(x﹣1)2+,
∴顶点坐标为(1,),
(3)由轴对称确定最短路线问题,直线BC与对称轴的交点即为使线段AQ+CQ最小的点,
x=1时,y=﹣×1+2=,
所以,存在Q(1,),使线段AQ+CQ最小;
(4)如图,过点P作PD∥y轴与BC相交于点D,
则PD=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,
所以,S△PBC=S△PCD+S△PBD,
=×(﹣x2+2x)×3,
=﹣x2+3x,
=﹣(x﹣)2+,
所以,当x=时,△PBC的面积最大为,
此时,y=﹣×()2+×+2=,
所以,存在P(,),使S△PBC最大=.
点评:本题是二次函数综合题型,主要利用了抛物线与x轴的交点坐标的求解,待定系数法求一次函数解析式,二次函数的顶点坐标与对称轴的求法,轴对称确定最短路线问题,二次函数的最值问题.。

相关文档
最新文档