高中数学经典的解题技巧和方法(数列求和及综合应用)(可编辑修改word版)
高中数列公式大全基础知识点方法归纳及解题技巧超详细(完整版)
高中数列公式大全基础知识点方法归纳及解题技巧超详细!(完整版)1. 等差数列的定义与性质定义:(为常数), 等差中项:成等差数列前项和 性质:是等差数列(1)若,则(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为 (4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数n 2的等差数列,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有1n n a a d +-=d ()11n a a n d =+-x A y ,,2A x y ⇔=+n ()()11122n n a a n n n S nad +-==+{}n a m n p q +=+m n p q a a a a +=+;232n n n n n S S S S S --,,……a d a a d -+,,n n a b ,n n n S T ,2121m m m m a S b T --={}n a 2n S an bn ⇔=+a b ,n n S 2n S an bn =+{}n a 100a d ><,10n n a a +≥⎧⎨≤⎩n S n 100a d <>,10n n a a +≤⎧⎨≥⎩n S n {}n a {}n a)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:(为常数,),.等比中项:成等比数列,或前项和:(要注意!)性质:是等比数列(1)若,则 (2)仍为等比数列,公比为nq . 注意:由求时应注意什么?时,; 时,.3.求数列通项公式的常用方法 (1)求差(商)法 如:数列,,求 解 时,,∴①时, ②①—②得:,∴,∴1n na q a +=q 0q ≠11n n a a q -=x G y 、、2G xy ⇒=G =n ()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩{}n a m n p q +=+mn p q a a a a =··232n n n n n S S S S S --,,……n S n a 1n =11a S =2n ≥1n n n a S S -=-{}n a 12211125222n n a a a n +++=+……n a 1n =112152a =⨯+114a =2n ≥12121111215222n n a a a n --+++=-+……122n n a =12n n a +=114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列满足,求 注意到,代入得;又,∴是等比数列,时,(2)叠乘法如:数列中,,求 解,∴又,∴. (3)等差型递推公式由,求,用迭加法时,两边相加得∴[练习]数列中,,求()(4)等比型递推公式(为常数,)可转化为等比数列,设 令,∴,∴是首项为为公比的等比数列 ∴,∴ (5)倒数法如:,求 {}n a 111543n n n S S a a +++==,n a 11n n n a S S ++=-14n nS S +=14S ={}n S 4nn S =2n ≥1134n n n n a S S --=-==……·{}n a 1131n nana a n +==+,n a 3212112123n n a a a n a a a n--=·……·……11n a a n =13a =3n a n =110()n n a a f n a a --==,n a 2n ≥21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………1(2)(3)()n a a f f f n -=+++……0(2)(3)()n a a f f f n =++++……{}n a ()111132n n n a a a n --==+≥,na ()1312nn a =-1n n a ca d -=+c d 、010c c d ≠≠≠,,()()111n n n n a x c a x a ca c x --+=+⇒=+-(1)c x d -=1d x c =-1n d a c ⎧⎫+⎨⎬-⎩⎭11d a c c +-,1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭11212nn n a a a a +==+,n a由已知得:,∴ ∴为等差数列,,公差为,∴, ∴( 附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由∴ [练习]求和: (2)错位相减法若为等差数列,为等比数列,求数列(差比数列)前项和,可由,1211122n n n n a a a a ++==+11112n n a a +-=1n a ⎧⎫⎨⎬⎩⎭111a =12()()11111122n n n a =+-=+·21n a n =+{}n a d 111nk k k a a =+∑()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭111112123123n+++++++++++ (1)21n n a S n ===-+…………,{}n a {}n b {}n n a b n n n S qS -求,其中为的公比.如: ①②①—②时,,时, (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.相加[练习]已知,则由∴原式 (附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
高中数学人教A版必修五-2021届高考数列求和的方法讲解(Word版可编辑)
数列求和的方法总结和练习方法概述:1.求数列的前n项和的方法(1)公式法①等差数列的前n项和公式S n =()21naan+=na1+()dnn21-.②等比数列的前n项和公式(Ⅰ)当q=1时,S n=na1;(Ⅱ)当q≠1时,S n=()qqa n--111=a1-a n q1-q.③常见的数列的前n项和:123+++……+n=(1)2n n+, 1+3+5+……+(2n-1)=2n2222 123+++……+n=(1)(21)6n n n++,3333123+++……+n=2(1)2n n+⎡⎤⎢⎥⎣⎦等(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法这是推导等差数列前n项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(5)错位相减法这是推导等比数列的前n项和公式时所用的方法,主要用于求{a n·b n}的前n项和,其中{an}和{b n}分别是等差数列和等比数列.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.2. 常见的裂项公式 (1)()11+n n =1n -1n +1;(2)()k n n +1=1k (1n -1n +k);(3)()()12121+-n n =12(12n -1-12n +1);(4)()()211++n n n =12()()()⎥⎦⎤⎢⎣⎡++-+21111n n n n ; (5)1n +n +k =1k(n +k -n ).(6)设等差数列{a n }的公差为d ,则1a n a n +1=1d (1a n -1a n +1).数列求和题型考点一 公式法求和1.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.2.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.变式训练1.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为T n ,求T n .2.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .考点二 错位相减法1.已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n .2.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.变式训练1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .2.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .3.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n .4.设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .5.已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .6.设数列{a n}的前n项和为S n,已知a1=1,a2=2,且a n+2=3S n-S n+1+3, n∈N*.(1)证明:a n+2=3a n;(2)求S n.考点三分组求和法1.在等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=22 n a+n,求b1+b2+b3+…+b10的值.2.已知数列{a n}的前n项和S n=n2+n2,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=n a2+(-1)n a n,求数列{b n}的前2n项和.变式训练1.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n -a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.考点四 裂项相消法1.S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.2.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和.3.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=an+1SnSn+1,求数列{b n}的前n项和T n.变式训练1.正项数列{a n}满足:a2n-(2n-1)a n-2n=0.(1)求数列{a n}的通项公式a n;(2)令b n=1(n+1)a n,求数列{b n}的前n项和T n.2.等差数列{a n }中,a 7=4,a 19=2a 9.(1)求{a n }的通项公式;(2)设b n =1na n,求数列{b n }的前n 项和S n .3.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12. (1)求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n .考点五 倒序相加法1.已知函数f (x )=14x+2(x ∈R ).(1)证明:f (x )+f (1-x )=12;(2)若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.变式训练1.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.考点六 并项求和1.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.2.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =()21+n n a ,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .。
高中数学解数列求和问题的技巧
高中数学解数列求和问题的技巧数列是高中数学中的重要概念之一,求和问题是数列中常见的考点。
解决数列求和问题需要掌握一些技巧和方法,下面我将介绍几种常见的数列求和问题及其解题技巧。
一、等差数列求和问题等差数列是指数列中相邻两项之间的差值恒定的数列。
求等差数列的前n项和,可以利用求和公式来解决。
求和公式为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示末项,n表示项数。
例如,给定一个等差数列的首项为3,公差为2,求前10项的和。
根据求和公式,首先计算出末项an:an = a1 + (n - 1) * d = 3 + (10 - 1) * 2 = 21。
然后代入公式计算出前10项的和:Sn = (a1 + an) * n / 2 = (3 + 21) * 10 / 2 = 120。
二、等比数列求和问题等比数列是指数列中相邻两项之间的比值恒定的数列。
求等比数列的前n项和,可以利用求和公式来解决。
求和公式为:Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比,n表示项数。
例如,给定一个等比数列的首项为2,公比为3,求前5项的和。
根据求和公式,代入相应的值计算出前5项的和:Sn = 2 * (1 - 3^5) / (1 - 3) = 242。
三、特殊数列求和问题除了等差数列和等比数列外,还存在一些特殊的数列,求和问题也有相应的解题技巧。
1. 平方数列求和问题:平方数列是指数列中的每一项都是前一项的平方。
例如,1,1,4,16,...。
求平方数列的前n项和,可以利用平方数的求和公式来解决。
求和公式为:Sn = (2^(n+1) - n - 2) / 3。
2. 斐波那契数列求和问题:斐波那契数列是指数列中的每一项都是前两项的和。
例如,1,1,2,3,5,...。
求斐波那契数列的前n项和,可以利用斐波那契数列的性质来解决。
(完整word版)数列求和常见的7种方法(word文档良心出品)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k 43421321个个 (找通项及特征) ∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n nn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;。
(word完整版)高中数学经典的解题技巧和方法(数列求和及综合应用)
高中数学经典的解题技巧和方法(数列求和及综合应用)【编者按】数列求和及综合应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。
因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。
好了,下面就请同学们跟我们一起来探讨下数列求和及综合应用的经典解题技巧。
首先,解答数列求和及综合应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:i•了解数列求和的基本方法。
2 •能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。
3 •了解等差数列与一次函数、等比数列与指数函数的关系。
技巧。
、可转化为等差、等比数列的求和问题考情聚焦:1 •可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。
2 •该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识3•多以解答题的形式出现,属于中、高档题目。
解题技巧:某些递推数列可转化为等差、等比数列解决,其转化途径有:;或消常数转化为0・c 0. p'- 0^ p-f 1)4 •换元变换- -—如将递推公式為i xd d n4令抓=,则转化为On(q、d为非零常数,q丰1 , d丰1)变换成的形式。
好了,搞清楚了数列求和及综合应用的上述内容之后, F面我们就看下针对这两个内容的具体的解题交汇点处命题。
1 •凑配、消项变换一一如将递推公式(q、d为常数,q丰0,工1 )。
通过凑配变成3.对数变换一一如将递推公式取对数得11—,前n 项和S n 满足S n 1- S n =33(n N ).(I ) 求数列{ a n }的通项公式a n 以及前n 项和S n ;(II )若S, t ( S 1+S ), 3( S 2+S )成等差数列,求实数化归转化思想。
(完整word版)高中数学_数列求和及数列通项公式的基本方法和技巧
数列求和的基本方法和技巧关键词:数列求和 通项分式法错位相减法反序相加法分组法分组法合并法数列是高中代数的重要内容,又是学习高等数学的基础•在高考和各种数学竞赛中都占有重要的地位数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定 的技巧•下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法 1、等差数列求和公式: S nn(a1 an)na !n(n 1)d2 2[例]求和 1 + X 2 + X 4+ X 6+…x 2n+4(x 工 0)解: ••• X M0•••该数列是首项为1,公比为X 2的等比数列而且有n+3项 当x 2= 1即X =±1时和为n+3评注:(1)利用等比数列求和公式•当公比是用字母表示时,应对其是否为 1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对 X 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.2n 1对应高考考题:设数列 1,( 1+2 ),•••,( 1+2+2 2 ), ..... 的前顶和为 S n,则S n的值。
2、等比数列求和公式:S nn^ 印(1 q n )1 q3、S nnkk 1 1n(n 1) 25、S nnk3k 11 2[才(n 1)]22a 1 a n q 1 q(q 1)n214、S nk—n(n 1)(2 n 1)k 16当黑忖1即篡詳主1对?和為自然数方幕和公式:(q 1)二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n • b n}的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列•求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法[例]求和:S n 1 3x 5x2 7x3(2n 1)x n 1(X 1)解:由题可知,{(2n 1)x n1}的通项是等差数列{2n —1}的通项与等比数列{x n1}的通项之积设xS n 1x 3x2 5x3 7x4(2n 1)x n.................... ②(设制错位)①一②得(1 x)S n 1 2x 2x22x32x42x n1(2n1)x n(错位相减)再利用等比数列的求和公式得:(1 x)Snn 11 x1 2x - (2n 1)x n1 xS (2n S n1)xn 11 ;2n 1)x n (1 x)2(1 x)注意、1要考虑当公比x为值1时为特殊情况2错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
(完整word版)高中数学数列知识点总结(经典),推荐文档
高一数学期末复习专题解三角形3. 正、余玄定理的解题类型: (1) 两类正弦定理解三角形的问题: ① 已知两角和任意一边,求其他的两边及一角 ② 已知两角和其中一边的对角,求其他边角 (2) 两类余弦定理解三角形的问题: ①已知三边求三角.②已知两边和他们的夹角,求第三边和其他两角4. 判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形 式或角的形式.5. 解题中利用 ABC 中:ABC,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A B) si nC,cos(A B) cosC, tan (A B) tanC,.A B C AB .CAB C sincos —,cos sin ,ta ncot .2 2 2 2 2 26、 三角公式: (1) 倍角公式: (2) 两角和、差公式:1正弦定理:a b c2Rsin AsinB sin Ca:b:c sin A:sin B:sin C .cos A2a b 2c 2bc cos A2.余弦定理: b22a c 2 2ac cos B 或 cos B2cb 2a 2ba cos Ccos Cb 22c 2a2bc2 22ac b2ac222ba c2ab数列基础知识点和方法归纳1.等差数列的定义与性质(1)定义:a n 1 and ( d 为常数),通项公式: a n ai n 1 d(2)等差中项: x , A y 成等差数列 2A x y (3) 前n 项和: S na 1 a n nnnn n 1d 122(4)性质: a n 是等差数列① 任意两项间的关系式; a n = a m + (n — m )d (m 、n € N ) ② 若 m n p q ,贝U a m a . a p a q ;③ S n , S 2n S n , S 3n S 2n ……仍为等差数列,公差为n 'd ; ④ 若三个成等差数列,可设为a d , a, a d⑤ 若a n , b n 是等差数列,且前n 项和分别为S n , T n ,则空 乩b m T 2m 1⑥a n 为等差数列 S n an 2 bn ( a,b 为常数,是关于n 的常数项为0的二次函数)S n 的最值可求二次函数S n an 2 bn 的最值;或者求出a .中的正、负分界项,a o即:当a ,, d 0,解不等式组时o 可得§达到最大值时的n值.a o当a ,0, d 0,由“ 可得S n 达到最小值时的n 值.a n 1 0⑦项数为偶数2n 的等差数列a n 有n(a n a n 1)6, a . 1为中间两项)⑧ 项数为奇数2n 1的等差数列a n 有:S偶S奇nd ,a n 1S2n 1 (2n 1)a n(a n为中间项),a n ,32.等比数列的定义与性质(1) 定义:也a nq ( q 为常数,q 0),(2) (3) (4) 通项公式: 等比中项: 前n 项和: 性质: a n a nX 、S nG 、y 成等比数列na(q 1) a 11 q n 1 q(q 1)是等比数列 ①任意两项间的关系: —m - na m = a n . q②若 m n p q ,贝U a . a p- a qG 2 xy ,或 G 、、xy(要注意!)(m 、n € N ).③S n , S 2nS n , S sn S ?n ……仍为等比数列,公比为ql注意:由S n 求a n 时应注意什么?n 1 时,a 1 S i ; n 2 时,a nS n S n 13.求数列通项公式的常用方法(1)求差(商)法 如:数列a n , 1 12a 1 尹2 夬n 2n 5, 求 an解:n 1时, n 2时,為 2 1 / 1尹214 2n①-②得:寺a n2,…a n 14(n 1) 2n1( n 2)5& 1a n 1, 3注意到a n 1 Sn 1 S n ,代入得S n[练习]数列a n 满足S n a 1 n 2 时,a nS n S n 14,求 a n又S 4 , • S n 是等比数列,S n 4(2)叠乘法如:数列a n 中, 3,3a nn求a n n 1解: a2a1 a3a2 a n 1又a1 3, —a n(3)等差型递推公式由a n a n 1 f(n).a o,求a n,用迭加法a2 a i a3 a2 f(2)f⑶两边相加得an a i f (2) f (3) f (n)--a n a0f(2)f(3)……[练习]数列a n中,a11 (4)等比型递推公式a n ca n 1d( c、d为常数,可转化为等比数列 ,设a n x令(c 1)x d , x d5・■ i c 1d d n 1…a n a1cc 1 c 1(5)倒数法如:a11,an 12a n求a n 2由已知得:1a n 21a n 12a n2••• 1为等差数列,11 ,a n a1 a n a n…a n a n a n 1 f (n)f(n)a n 3n1a n 2,求a n a n(3n1),a n丄a n公差为1,a n是首项为a ia n—,c为公比的等比数列c 11a n(附:公式法、利用a n S(nS n S n1)1 (n2)、累加法、累乘法•构造等差或等比3换元法)4.求数列前n 项和的常用方法(1) 公式法 (2)裂项相消法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项da 1a n 1(3)错位相减法由 S n qS n ,求 S n , 其中q 为b n 的公比.(4)分组求和法所谓分组求和法就是对一类既不是等差数列, 也不是等比数列的数列,若将这类 数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
高中数学数列求和技巧及应用
高中数学数列求和技巧及应用数列是高中数学中的重要内容,求和是数列的一个基本运算。
在解决数列求和问题时,我们需要掌握一些技巧和方法,以便更快更准确地求解。
本文将介绍几种常用的数列求和技巧,并通过具体的例子进行说明,帮助读者更好地理解和应用。
一、等差数列求和技巧等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列的求和问题,我们可以利用求和公式来简化计算。
求和公式:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和,a1为首项,an为末项,n为项数。
举例说明:求等差数列1,3,5,7,9的前10项和。
首先确定a1 = 1,an = 9,n = 10,代入求和公式得到:Sn = (1 + 9) * 10 / 2 = 50因此,等差数列1,3,5,7,9的前10项和为50。
这个例子展示了等差数列求和的基本思路,通过找到首项、末项和项数,代入求和公式即可得到结果。
二、等比数列求和技巧等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列的求和问题,我们可以利用求和公式来简化计算。
求和公式:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn表示等比数列的前n项和,a1为首项,q为公比,n为项数。
举例说明:求等比数列2,4,8,16,32的前5项和。
首先确定a1 = 2,q = 2,n = 5,代入求和公式得到:Sn = 2 * (1 - 2^5) / (1 - 2) = 62因此,等比数列2,4,8,16,32的前5项和为62。
这个例子展示了等比数列求和的基本思路,通过找到首项、公比和项数,代入求和公式即可得到结果。
三、特殊数列求和技巧除了等差数列和等比数列,还存在一些特殊的数列,它们的求和方法也各不相同。
下面我们将介绍两种常见的特殊数列求和技巧。
1. 平方数列求和技巧平方数列是指数列中每一项都是某个正整数的平方的数列。
对于平方数列的求和问题,我们可以利用平方和公式来简化计算。
数列求和7种方法(方法全-例子多)精选全文
可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
高中数学数列求解方法 (完整版)
高中数学数列解题方法总结类型一:)(1n f a a n n +=+()(n f 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴=类型二:1()n n a f n a +=⋅ (()f n 可以求积)−−−−→解决方法累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。
解析:1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅123211143n n n n n n --=⋅⋅⋅⋅+-21n =+ 又1a 也满足上式;21n a n ∴=+ *()n N ∈类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)−−−−→解决方法待定常数法 可将其转化为1()n n a t A a t ++=+,其中1Bt A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。
例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。
解析:设()13n n a t a t -+=+,则132n n a a t -=+1t ∴=,于是()1131n n a a -+=+{}1n a ∴+是以112a +=为首项,以3为公比的等比数列。
1231n n a -∴=⋅-类型四:()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组A B C αββα⋅-=⎧⎨-⋅=⎩,解出,;αβ还原到(*)式,则数列{}1n na a α++是以21a a α+为首项, A β为公比的等比数列,然后再结合其它方法,就可以求出n a 。
(word完整版)高中数学必修五数列求和方法总结附经典例题和答案详解,推荐文档
数列专项之求和-4(一)等差等比数列前n 项求和1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nnn 项求和② 数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法. ②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列{}n n a b ⋅的前n 项和.此法是在推导等比数列的前n 项和公式时所用的方法.例23. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S )0(≠x例24.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.一般地,当数列的通项12()()n ca anb an b =++ 12(,,,a b b c 为常数)时,往往可将na 变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:设12n a an b an b λλ=-++,通分整理后与原式相比较,根据对应项系数相等得21cb b λ=-,从而可得12211211=().()()()c c an b an b b b an b an b -++-++常见的拆项公式有: ①111(1)1n n n n =-++; ②1111();(21)(21)22121n n n n =--+-+③1a b=-- ④11;m m mn n n C C C -+=- ⑤!(1)!!.n n n n ⋅=+- ⑥])2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n…… 例25. 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例26. 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28. 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。
高中数学解数列的常用技巧和方法详解
高中数学解数列的常用技巧和方法详解数列是高中数学中非常重要的一个概念,它在各种数学问题中都有广泛的应用。
解数列问题需要掌握一些常用的技巧和方法,本文将详细介绍其中的一些重要内容。
一、等差数列的求和公式等差数列是指数列中相邻两项之间的差值是一个常数的数列。
对于等差数列,我们可以通过求和公式来快速计算前n项的和。
设等差数列的首项为a1,公差为d,前n项的和为Sn,则有以下公式:Sn = (n/2)(a1 + an)其中,an为数列的第n项。
这个公式的推导可以通过数学归纳法来证明,但在解题时我们可以直接使用。
例如,对于等差数列1, 3, 5, 7, 9,要求前4项的和,可以直接套用求和公式:S4 = (4/2)(1 + 9) = 20二、等比数列的求和公式等比数列是指数列中相邻两项之间的比值是一个常数的数列。
对于等比数列,我们同样可以通过求和公式来计算前n项的和。
设等比数列的首项为a1,公比为r,前n项的和为Sn,则有以下公式:Sn = a1(r^n - 1) / (r - 1)这个公式同样可以通过数学归纳法来证明,但在解题时我们也可以直接使用。
例如,对于等比数列2, 4, 8, 16,要求前5项的和,可以直接套用求和公式:S5 = 2(2^5 - 1) / (2 - 1) = 62三、数列的通项公式除了求和公式,我们还需要掌握数列的通项公式,即可以通过该公式直接计算数列的第n项。
数列的通项公式可以通过观察数列的规律来得出,也可以通过已知的前几项来推导。
例如,对于等差数列1, 4, 7, 10,我们可以观察到每一项都比前一项大3,因此可以猜测数列的通项公式为an = 3n - 2。
我们可以验证这个猜测是否正确:当n = 1时,an = 3(1) - 2 = 1,符合数列的首项;当n = 2时,an = 3(2) - 2 = 4,符合数列的第二项;当n = 3时,an = 3(3) - 2 = 7,符合数列的第三项;当n = 4时,an = 3(4) - 2 = 10,符合数列的第四项。
高中数学数列求和及通项的求法
数列通项公式的求法
观察法 累差法 积商法 利用前n项和 构造等差、等比数列
例1 求数列
解:
的通项公式。
注意:最后一个式子出现
,必
须验证 。此时
,适合上式,
故
例2 求数列 的通项公式
利用 与 的关系
利用
可解决许多
已知 与 的关系题目中的
例3 已知数列 满足
,
求通项公式
6)数列 {an}满足:a1=2,a2=5,且 an+2-3an+1+2an=0,求通项公式.
3:数列{an}的前n项和Sn=2an+1, 求通项公式.
练1:{an}的前n项和Sn=2an+ n , 求通项公式. 练2:a1=1,an=
作业:
1、 写出下列数列的一个通项公式
1)
2)
2、
求数列的通项式。
3 、 {an}是首项为1的正项数列,且
(n+1)a2n+1-nan2+an+1an=0(n∈N+)求an 4 、 {an}首项为1,a1a2a3···an=n2(n∈N+), 求an
数列求和的常用方法: 公式法、倒序相加法、 错位相减法、裂项相消法。 尤其是要求掌握用拆项法、裂项 法和错位法求一些特殊的数列的 前n项和。
熟记公式常用数列的前n项和:
(1)等差数列求和公式
(2)等比数列求和公式
例题讲解
拆项法: 例一、求数列
的前n项和。
裂项法:
1.求数列
前n项和
2.求数列
前n项和列
3. 求和:
前n项和
(5050) 4. 求和:1×4 + 2×5 + 3×6 + ……+ n×(n + 3)
高中数学数列求解方法 (完整版)
高中数学数列解题方法总结类型一:)(1n f a a n n +=+()(n f 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴=类型二:1()n n a f n a +=⋅ (()f n 可以求积)−−−−→解决方法累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。
解析:1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅123211143n n n n n n --=⋅⋅⋅⋅+-21n =+ 又1a 也满足上式;21n a n ∴=+ *()n N ∈类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)−−−−→解决方法待定常数法 可将其转化为1()n n a t A a t ++=+,其中1Bt A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。
例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。
解析:设()13n n a t a t -+=+,则132n n a a t -=+1t ∴=,于是()1131n n a a -+=+{}1n a ∴+是以112a +=为首项,以3为公比的等比数列。
1231n n a -∴=⋅-类型四:()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组A B C αββα⋅-=⎧⎨-⋅=⎩,解出,;αβ还原到(*)式,则数列{}1n na a α++是以21a a α+为首项, A β为公比的等比数列,然后再结合其它方法,就可以求出n a 。
高中数学中的数列与数列求和问题解析与技巧
高中数学中的数列与数列求和问题解析与技巧数列是高中数学中的重要概念,它是由一系列按特定顺序排列的数字组成。
在数列中,每个数字称为项,而项与项之间的关系是数列的核心内容。
本文将对数列及数列求和问题进行解析,并介绍解决这些问题的技巧。
一、数列的定义和分类数列是由一系列按照一定规律排列的数字组成的数集。
数列可以分为等差数列和等比数列两大类。
1. 等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
一般来说,等差数列可以用首项a1和公差d来表示,其中首项是数列中的第一个数,公差是相邻两项之间的差值。
2. 等比数列等比数列是指数列中相邻两项之商保持恒定的数列。
等比数列可以用首项a1和公比q来表示,其中首项是数列中的第一个数,公比是相邻两项之间的比值。
二、常见的数列求和问题与解析在数列中,求和是一种常见的问题。
有时我们需要计算数列前n项的和,有时我们需要计算数列的无穷级数和。
下面将分别介绍这两类问题的解析方法。
1. 数列前n项和数列前n项和指的是数列中前n项的和,一般用Sn表示。
求解数列前n项和的方法取决于数列的类型。
对于等差数列而言,其前n项和可以通过以下公式来计算:Sn = (a1 + an) * n / 2其中,a1为首项,an为第n项。
对于等比数列而言,其前n项和可以通过以下公式来计算:Sn = a1 * (1 - q^n) / (1 - q)其中,a1为首项,q为公比。
2. 数列无穷级数和数列的无穷级数和是指数列中所有项的和。
求解数列无穷级数和的方法也与数列的类型相关。
对于等差数列而言,其无穷级数和不存在,因为等差数列是有限项的。
对于等比数列而言,其无穷级数和存在的条件是公比的绝对值小于1。
公比小于1时,无穷级数和可以通过以下公式来计算:S = a1 / (1 - q)其中,a1为首项,q为公比。
三、解决数列与数列求和问题的技巧解决数列与数列求和问题时,有一些常用的技巧可以帮助快速求解。
1. 寻找数列的规律数列中的每一项都与前面的项有一定的关系。
湖南高中数列求和简答题技巧方法
湖南高中数列求和简答题技巧方法一、理解数列求和的概念数列求和是指将数列中的数字加在一起形成一个总数。
在湖南高中的数学考试中,数列求和是常见的题型,需要学生掌握基本的求和方法。
二、熟悉常用的求和公式1. 等差数列求和:等差数列是指每一项与其前一项的差都是一个常数的数列。
对于等差数列,我们可以使用求和公式:Sn =n/2(a1 + an),其中Sn是数列的和,n是项数,a1是第一项,an是最后一项。
2. 等比数列求和:等比数列是指每一项与其前一项的商都是一个常数的数列。
对于等比数列,我们可以用求和公式:Sq = (a1-an*r^n)/(1-r),其中Sn是数列的和,n是项数,a1是第一项,an是最后一项,r是公比。
3. 倒序相加法:对于一些特殊的数列,如一些求通项公式的题目,可以通过倒序相加法求和。
这种方法需要学生掌握数列的特性,灵活运用。
三、解题技巧1. 观察法:首先观察题目中的数列特点,确定适合的求和公式。
如果题目中的数列比较特殊,可能需要使用倒序相加法等技巧。
2. 代数法:将数列中的数字用代数式表示,然后代入求和公式进行计算。
这种方法需要学生具备一定的代数知识。
3. 简化法:对于一些复杂的数列,可以通过简化数字或通项公式的技巧,使求和过程更加简便。
四、注意事项1. 不要急于求成,要仔细审题,理解题意后再进行解题。
2. 不要忽视细节,如符号、小数点等。
3. 对于一些特殊的数列,要灵活运用各种求和方法,找到最适合的方法。
总之,湖南高中数列求和简答题需要学生掌握基本的概念、公式和技巧,同时注意细节和特殊情况。
通过不断的练习和实践,学生可以逐渐提高自己的解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学经典的解题技巧和方法(数列求和及综合应用)【编者按】数列求和及综合应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。
因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。
好了,下面就请同学们跟我们一起来探讨下数列求和及综合应用的经典解题技巧。
首先,解答数列求和及综合应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.了解数列求和的基本方法。
2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。
3.了解等差数列与一次函数、等比数列与指数函数的关系。
好了,搞清楚了数列求和及综合应用的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。
一、可转化为等差、等比数列的求和问题考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。
2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。
3.多以解答题的形式出现,属于中、高档题目。
解题技巧:某些递推数列可转化为等差、等比数列解决,其转化途径有:1.凑配、消项变换——如将递推公式(q、d 为常数,q≠0,≠1)。
通过凑配变成;或消常数转化为2.倒数变换—如将递推公式(c、d 为非零常数)取倒数得3.对数变换——如将递推公式取对数得4.换元变换——如将递推公式(q、d 为非零常数,q≠1,d≠1)变换成,令,则转化为的形式。
⎝ ⎭ 33 3 3 ⎝ ⎭ ⎝ ⎭ ⎩= = = ⎝ ⎭ 1⎛ 1 ⎫n +1例 1:(2010·福建高考文科·T17)数列{ a n } 中 a = 3 ,前 n 项和 S n 满足 S n +1 - S n = 3 ⎪(n ∈N * ).( I ) 求数列{ a n }的通项公式 a n 以及前 n 项和 S n ;(II )若 S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数 t 的值。
【命题立意】本题考查数列、等差数列、等比数列等基础知识,考查运算求解能力,考查函数方程思想、化归转化思想。
【思路点拨】第一步先求a n 的通项,可知a n 为等比数列,利用等比数列的前 n 项和求解出S n ;第二步利用等差中项列出方程求出 t【规范解答】 ( I ) 由 S - S⎛ 1 ⎫n +1 得⎛ 1 ⎫n +1(n ∈ N * ) ,又 a = 1 ,故 a⎛ 1 ⎫n(n ∈ N * ),从1 ⎡ ⎛ 1 ⎫n⎤n +1 n ⎪ ⎝ ⎭ n +1 ⎪ ⎝ ⎭ 1 3n ⎪ 而 S n = ⎢1- ⎪ 2 ⎢⎣ ⎝⎭ ⎥(n ∈ N * )⎥⎦ (II )由( I ) S = 1 , S = 4 , S = 13, 从而由 S , t ( S +S ), 3( S +S ) 成等差数列可得 1 3 2 9 327 1 1 2 2 31 + 3⨯⎛ 4 + 13 ⎫ =2 ⨯⎛ 1 + 4 ⎫ t , 解得t = 2 。
39 27 ⎪ 3 9 ⎪【方法技巧】要求数列通项公式,由题目提供的是一个递推公式,如何通过递推公式来求数列的通项。
题目要求的是项的问题,这就涉及有关“项”与“和”如何转化的问题。
一般地,含有 S n 的递推关系式,一⎧ 般利用 a n = ⎨SS 1 , n - S n -1 n = 1化“和”为“项”。
, n ≥ 2二、错位相减法求和考情聚焦:1.错位相减法求和,是高中数学中重要的数列求和方法,是近年来高考的重点考查内容。
2. 该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。
3. 多以解答题的形式出现,属于中、高档题。
解题技巧:几种求通项及求和方法(1) 已知,求可用叠加法,即an n9(2) 已知 ,求 可用叠乘法,即(3) 设{}为等差数列,为等比数列,求数列 的前 n 项和可用错位相减法。
例 2:(2010 ·海南宁夏高考·理科 T17)设数列{a n } 满足 a 1 = 2 , (Ⅰ)求数列{a n } 的通项公式:(Ⅱ)令b n = na n ,求数列{b n } 的前 n 项和 S n .【命题立意】本题主要考查了数列通项公式以及前 n 项和的求法,解决本题的关键是仔细观察形式,找到规律,利用等比数列的性质解题.【思路点拨】由给出的递推关系,求出数列的通项公式,在求数列的前 n 项和. 【规范解答】(Ⅰ)由已知,当 n ≥ 1时,a n +1 = [(a n +1 - a n ) + (a n - a n -1) + + (a 2 - a 1)] + a 1 = 3(22n -1 + 22n -3 + + 2) + 2 = 22(n +1)-1而 a = 2 ,满足上述公式,所以{a } 的通项公式为 a= 22n -1 .1n n(Ⅱ)由b = na = n • 22n -1 可知,nns =1• 2 + 2 • 23 + 3 • 25 + + n • 22n -1 ①从而① - ②得22 s = 1• 23 + 2 • 25 + 3 • 27 + + n • 22n +1②(1- 22 )s = 2 + 23 + 25 + + 22n -1- n • 22n +1 即 S n = 1⎡⎣(3n -1)22n +1+ 2⎤⎦【方法技巧】利用累加法求数列的通项公式,利用错位相减法求数列的和. 三、裂项相消法求和考情聚焦:1.裂项相消求和是高中数学中的一个重要的数列求和方法,是近年来高考的重点考查内容。
2. 该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。
nn 3. 多以解答题的形式出现,属中、高档题目。
解题技巧:裂项求和的几种常见类型(1);(2);(3);(4) ;(5)若是公差为 d 的等差数列,则;(6);(7)(8)。
例 3:(2010·山东高考理科·T18)已知等差数列{a n } 满足: a 3 = 7 , a 5 + a 7 = 26 ,{a n } 的前 n 项和为 S n .(1)求 a n 及 S n ;(2)令b n =1 a2 -1(n ∈N *),求数列{b n } 的前 n 项和T n .【命题立意】本题考查等差数列的通项公式与前 n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求 a n 及 S n由(1)求出b n 的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列{a n } 的公差为 d ,因为 a 3 = 7 , a 5 + a 7 = 26 ,所以有⎧a 1 + 2d = 7(2);⎨2a+10d = 26 ,解得 a 1 = 3,d = 2 ,⎩ 1n 1 2k -1 2k 2k+1 2 n 32 23 n n+14 n+1 4(n+1)所以 a = 3 + (2 n -1)=2n+1; S = 3n+n(n-1)⨯ 2 = n 2 +2n . nn211 1 1 1 1 1(2)由(1)知 a n = 2n+1,所以 b n = a 2 -1 = 2n+1)2 - = ⋅ = ⋅ ( - ) ,n ( 1 4 n(n+1) 4 n n+1 1 1 1 1 1 1 1 1 n所以T n = 4 ⋅ (1- + - + + - ) = ⋅ (1- )= ,即数列{b n } 的前 n 项和T n =n. 4(n+1)【方法技巧】数列求和的常用方法:1、直接由等差、等比数列的求和公式求和,注意对公比 q ≠ 1 的讨论.2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列,再求解.4、裂项相消法:主要用于通项为分式的形式,通项拆成两项之差求和,正负项相消剩下首尾若干项,注意一般情况下剩下正负项个数相同.5、倒序相加法:把数列正着写和倒着写相加(即等差数列求和公式的推导过程的推广). 四、与不等式有关的数列问题考情聚焦:1.数列综合问题,特别是数列与不等式的综合问题是高考中经常考查的重要内容。
2. 该类问题可与函数的单调性、基本不等式、导数函数等知识交汇,综合命题。
3. 多以解答题的形式出现,属高档题。
例 4:(2010·天津高考文科·T22)在数列{a } 中, a =0,且对任意 k ∈ N * , a , a , a 成等差数列,其公差为 2k.(Ⅰ)证明a 4 , a 5, a 6 成等比数列;(Ⅱ)求数列{a n } 的通项公式;2 (Ⅲ)记T n = a + 32 + a 2 + a ,证明 2 < 2n - T n ≤ (2 n ≥ 2). 23 n【命题立意】本小题主要考查等差数列的定义及前 n 项和公式、等比数列的定义、数列求和等基础知识, 考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法. 【思路点拨】(Ⅰ)(Ⅱ)应用定义法证明、求解;(Ⅲ)对 n 分奇数、偶数进行讨论.⎪ 2k +1 2k ( )∑ 【规范解答】(I )由题设可知, a 2 = a 1 + 2 = 2 , a 3 = a 2 + 2 = 4 , a 4 = a 3 + 4 = 8 , a 5 = a 4 + 4 = 12 ,a = a + 6 = 18 。
从而 a 6 = a 5 = 3,所以 a , a , a 成等比数列. a 5 a 4 24 5 6(II ) 由题设可得 a 2k +1 - a 2k -1 = 4k , k ∈ N *所以 a 2k +1 - a 1 = (a 2k +1 - a 2k -1 ) + (a 2k -1 - a 2k -3 ) +...(a 3 - a 1 )= 4k + 4 (k -1) +... + 4 ⨯1 = 2k (k +1), k ∈ N *.由 a = 0 ,得 a= 2k (k +1) ,从而 a = a- 2k = 2k 2 .12k +12k2k +1⎧ n 2 -1 ⎪ 2 , n 为奇数n 2 (-1)n-1 所以数列{a n } 的通项公式为 a n = ⎨ n 2⎪⎩ 2 , n 为偶数 或写为a n = 2 + 4 , n ∈ N * . (III ) 由(II )可知 a = 2k(k +1) , a = 2k 2,以下分两种情况进行讨论:(1) 当 n 为偶数时,设 n=2m (m ∈ N *)nk 2若 m = 1,则2n - ∑ a = 2 ,若 m ≥ 2 ,则k =2 knk 2 m (2k )2 m -1 (2k +1)2m 4k 2 m -1 4k 2 + 4k +1∑ a = ∑ a + a = ∑ 2k 2 + ∑2k (k +1) k =2 k k =1 2k k =1 2k +1k =1 k =1= m -1 ⎡ 4k 2 + 4k 1 ⎤m -1 ⎡ 1 ⎛ 1 1 ⎫⎤ 2m + ∑⎢ 2k (k +1) + 2k (k +1) ⎥ = 2m + ∑⎢2 + 2 k - k -1 ⎪⎥k =1 ⎣ ⎦k =1 ⎣ ⎝ ⎭⎦ = 2m + 2 (m -1) + 1 ⎛1- 1 ⎫ = 2n - 3 - 1 . 2 m ⎪ 2 n⎝⎭nk 2 3 1 3 n k2所以2n - ∑ a = + ,从而 < 2n - ∑ < 2, n = 4, 6,8,....k =2 k 2 n 2 k =2 a k(2)当 n 为奇数时,设 n = 2m +1(m ∈ N *) .nk 2 2mk 2(2m +1)23 1 (2m +1)2∑ a = ∑ a +a= 4m - - + 2 2m 2m m +1k =2 kk =2 k2m +16 5= 4m +1-1= 2n -3-1 2 2 (m -1) 2 n +1n k 2 3 1 3 n k 2所以2n -∑a =+,从而< 2n -∑ < 2, n = 3, 5, 7,....k =2 k2 n +1 2 k =2 a k3综合(1)和(2)可知,对任意n ≥ 2, n ∈N*, 有2 < 2n -Tn≤ 2.。